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English summary

The Navier-Stokes equations, the Euler equations, thetiegseaof elasticity and expressions
derived from those, are in most cases treated in Cartesiamlioates. In some cases it can
necessary to handle those equations in other coordinatensysin the cases of cylindrical
coordinates, for example in the description of the flow atbanoustic antennas, it is natural
to use cylinder coordinates. In this report, we present thhmaélism necessary to handle the
mentioned equations and related expressions in genetal@erdinates. The formalism include
tensor analysis, developed during 1850-1900 by GregormiRKiurbastro, Tullio Levi-Civita,
Sophus Lie and others. Albert Einstein used tensor anafgsthe mathematical basis for the
General Theory of Relativity. In this report we will limit oself to describe the classical fluid
equations in generalized coordinates.

The tensor-theory can appear to be difficult and one can asksihecessary to go through
all these complicated calculations. Can't they be founchatweb or in standard collections
of formulas? We have looked for expressions, for example(V(pT)), whereT is the mo-
mentum flux density tensor that appears in Lighthill's eguratWe could not find this derived
in cylinder coordinates and it was necessary to calculaby tand to achieve our goals. In
the analysis of flow around an acoustic antenna, variousterappear, for example the strain
rate tensor, structural tensors and tensorial expresawntved in the RANS equations, it was
necessary to follow the formalism of tensor analysis in itleta

With data given in cylinder coordinates, it is natural to fie tanalysis also in cylinder coordi-
nates. Physical components of both vectors and tensorssatkin the physical interpretations
of the data.

Although the treatment in cylinder coordinates addresadithis report only is directly ap-

plicable to a limited number of applications, the conceptenfsor analysis is fundamental in
practically all applications of continuum mechanics.
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Sammendrag

Navier-Stokes ligninger, Euler ligningene og elastisitégningene og uttrykk avledet av disse
handteres oftest i Cartesiske koordinater. Det kan likesere avgjgrende a kunne handtere
disse ligningene i andre koordinatsystemer, for eksempglinder-koordinater i tilfellet
stramning omkring eller i cylindriske rar, for eksempelasiming rundt akustiske antenner.

| dene rapporten presenterer vi formalismen som ma tiefottfykke de nevnte ligningene i
generaliserte koordinater. Formalismen omfatter temsdyae, som ble utviklet i tidsrommet
1850-1900 av Gregorio Ricci Kurbastro, Tullio Levi-Civitdophus Lie og andre. Albert Ein-
stein benyttet tensor analysen som som matematisk funddaregenerell relativitetsteori. |
denne rapporten vil vi begrense oss til & beskrive de ldessiuid ligningene i generaliserte
koordinater.

Tensor-teorien kan virke tung og vanskelig og en kan spageosn det er ngdvendig a gjen-
nomga alle disse kompliserte regningene, at det ikke hageseke pa “webben” eller i en
standard formesamling etter ngdvendige uttrykk. Vi harééer uttrykk somv - (V(pT)), her
er T er momentum-fluks-tetthets-tensoren. Uttrykket forekamnirLighthill’s ligning. Vi fant
ikke dette uttrykket i sylinderkoordinater og for & naletavar det nadvendig a fglge tensor
analysens prosedyrer til punkt og prikke. | analysen awngiggomkring en akustisk antenne
sa inngar flere tensorer som for eksempel deformasj@seasoren, struktur tensorer og ten-
sorielle uttrykk som forekommer i RANS ligningene. Med dgtt i sylinder koordinater er det
naturlig & gjennomfgre analysen i sylinder koordinatessilkalske komponenter beregnes bade
for vektor og tensor under den fysiske tolkningen av dataene

Selv om behandlingen av cylinder koordianter i denne rappokun har begrenset anvendelse,

er konseptene i tensor analyse av fundamental betydningktigk talt alle anvendelser av
kontinumsmekanikk.
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1 Introduction

In an effort to simulate the sound excited by a turbulent lauy layer surrounding a seismic
streamer we encounter an in-homogeneous wave equati@d daghthill’'s equation. This
equation is a result of re-writing the Navier Stokes equmestifor compressible flows without
making any physical simplifications. The source terms doathin Lighthill's equation, which
are of importance for example for turbulent flows, are theseanf sound propagating from
the turbulent region and into the surroundings. They maylassified as a quadrupole source.
Replacing the turbulent source by quadrupoles is calletithili's analogy. Lighthill's theory
has had huge impact in the field of aero-acoustics and aastigity. For details on Lighthill's
analogy, see [11, 9, 10]. The inhomogeneous wave equatiitenvin the form suggested by
Lighthill is )

%%—V%:V-V-(pvv—l—a). (1.1)
Herep is the pressure(’ the local sound speeg,the density,v is the velocity andr is a
stress tensor caused by thermal and viscous dissipation eXjression

T =pvv+o, (1.2)

is a second rank tensor and

the double divergencef a tensor is acalarwhich is a zero rank tensor.

In our work on seismic streamers, we have learned that naissed by the impact from the
external turbulent boundary layer, called flow noise, catuce the quality of the data sampled
by those systems. To better understand the nature of the mais its impact, we have used as
input, the data from a simulation of a turbulent boundanetaynto equation 1.1 to simulate
the noise in the streamer. The streamer is shaped as a cytindet has been convenient to
use cylinder coordinates in the simulations. We have non ladxée to find terms likév - (V -

T) written out in cylinder coordinates, neither in the litenat nor on the web. It has been
necessary to calculate these terms the hard way by hanaviiofjcthe recipe given in this
report. It has not been a waste to prepare this report sincalseeencounter several other
tensorial expression that enter into our analysis of temuflows surrounding acoustic antennas
and that we need to be able to fully control.

There is also a section devoted to the kinematics of rotatoaydinate systems, and the equa-
tions of elasticity. The tensor analysis as presented mriport is based on the general treat-
ment of Heinbockel, Irgens and Lovelock and Rund, see [3]af@@l [12]. Tensor analysis is
also a basic ingredient in differential geometry. An introtion to tensor analysis and differen-
tial geometry is given in Kreyszig's book, see [7].
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2 Basic terminology

Vectors and tensors discussed in this report are usualljedpip Euclidian spacers also
denotedR?, but the theory presented can to some extent be extendeditoemsional differ-
entiable manifoldsX,, equipped with an affine connection, see [12] chapter 3. Aerinédiate
step is the Riemann manifold, which is at least equipped with a metgg; from which dis-
tances in space, lengths of and angle between vectors caasidagated.

2.1 Some conventions

Considering two coordinate systems in which a pdnhas coordinates’, ..., 2" and
z!, ..., 7" These two n-tuples are related through the transformstion
El :El(w:L? 7'%.”)7
T =Tt 2"
For convenience the n-tuple', ..., z" is denoted by:?, and the transformations above are

simply writtenz? = 7¢(27).

We assume the Einstein summation convention. An index egpteby lower case Latin letters
i,j,k, ... occurring twice implies summation. For example= X, a’.

The Kronecker delta is

g0 0 i#]
R A -

2.2 Material/Lagrangian and spatial/Eulerian coordinates

Two reference systems of special relevance in mechanicthateagrangianthat also is called

the material reference system, and t&ilerian that also is called thepatial reference system.
A detailed discussion of these systems is given in ([1]). Treinology most commonly used
in fluid mechanics for reference systems is Lagrangian arndrian while the more physically

intuitive expressions “material” and “spatial” are not soich in use.

The material reference system is connected to materiatlest The material coordinates of a
particle do not change in time during motion. The materiardmates of a particular particle
can be viewed as that particles label. They are locked tophdicle as time evolves. On the
other hand, the spatial coordinates are not linked to angcpéar particle. They are locked to
a position in a particular spatial reference system. #ebe the material coordinate of a given
particle. That particle must also have a spatial coordindte- z7(z*). Since at one instant of
time there can be only one particle in a particular point afcgpand a particle can only be in
only one spatial point there must be a one to one correspoadegtween the material and the
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spatial coordinates for that particle. The functieh(z?) is bijective. The use of material’ or
spatialz’ coordinates must be equivalent. The coordinate transfgiwen by

=", i,j=1,...,n (2.1)
with inverse
zt = 24 (T), (2.2)

are bijective and”’>°. The manifold on which they are defined is mdimensional differen-
tiable manifold It is denotedX,,.

Through this we can assure that the mechanics of particieessed in the material and spatial
reference systems can be assessed through the formalisnmsoi tcalculus. The theory pre-
sented under is applicable in a very wide framework and theeriaéispatial reference systems
covers a very special but anyway relevant case given hera agample.

Consider the coordinateg andz’, both assigned to a poii® on a differentiable manifoldy,,
and satisfying the mappings given by (2.1) and (2.2). ThenKctier delta can be written

P ox' OTs

0% = . 2.3
70T Ond (2:3)
and )
ox" 0x®
k
= ——. 2.4
L 9as o7t 24)
The Jacobian of the transformation = z*(z7) is
ozt ... 2"
= 2.5
J o, ..., z") 23)

Using the product rule for determinants we get

o(!',....a") o@,....7")
aT,....7") O(al,...,a") I

so neitherJ nor J—! can be zero. This must always be assured when selectingmeter
frames.

Scalars vectorsandtensorsare all familiar expressions that most of us encounter witho

any deeper reflections and concerns. By a scalar field we tfimksingle valued function

that varies through space and time. By vectors and tenso@ssaciate certain collections of
numbers. In fact, these entities carry a deeper meaninghwias proved very useful to express
mechanical quantities and the relations between them.

Let 2* andz’ represent coordinates of two reference systems satisfyitig(2.1) and (2.2)

that fulfill the requirements stated above. Consider twglsivalued functions in the z°
system and in thez’ system. Let the point P have the coordinatésandz’. We say thats
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is ascalarif 5(z%) = s(2) in point P. A scalar is anéhvariant If this is satisfied not only in

a particular point but for all points iX,,, we say thats represents a scalar field. A scalar field
is independent on reference system, a very convenient toehakien utilized in the description
of invariant physical fields. An example of a single valueddiion that is not a scalar field is
any of the components of a vector field. They depend on referegistem, but the vector is an
invariant.

A scalar field is denoted a tensor field of rank or order zerectdfs and tensor fields, are nat-
ural extensions of the scalar field to higher rank. A vestpwith components?, is considered
a first rank tensor. The componentsspecify v in the z* system whilez® specify its com-
ponents in ther’ system. Both component sets refer to the same obje€or that to be the
fulfilled, certain transformation laws must be satisfied tfoe components (as will be discussed
later). These arguments can be extended to tensors of highier

2.3 Relative scalars, vectors and tensors

Let z* andZ’ be the coordinates assigned to a pdibn a differentiable manifoldy,,. A
function s(z*) on X, is a relative scalar of weight’ if it transforms as

5@ = JWs(2?). (2.6)

If W =0, s is called a scalar (as we have seen), also called an absohlte.df W =1 ands
satisfy (2.6), it is called a scalar density. For example /| det(g;;)| whereg;; is the metric
tensor, is a scalar density.

A tuple A? that transforms as
— ozt .
A'(@h) = JWV = Al (2 2.7
@) = " S5 A (2.7)
is called a contravariant vector of weighit. If W = 0 it is called an absolute contravariant
vector or simply a contravariant vector. A tuplg is called a covariant vector of weight if
it transforms as follows

_ oxd
A7) = TV Q;i A;(a). (2.8)

Here we have used both sub and superscripts. Their meanaugnieeclear when we express
vectors in relation to contravariant and covariant vectsds. An example of a contravariant
vector is the tangent vector (velocity vectaf) We have

B dzt

ds

,UZ

(2.9)

According to the chain rule,

R

ds _ 0xl ds 0w’

-1
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which shows that the tangent vectdris a contravariant vector. On the other hand consider the
scalar fieldy(x?). Again applying the chain rule, the components of the gradiecomes

(') _ op@') _ 0x* 94(a")

orl oz oz Oxk

showing that the gradient of a scalar is a covariant vector.

(2.10)

Relative tensors are defined in the same way. A second raativeetensor is a contravariant
tensor of weightV if it transforms as follows

T _ W oz o 1

A 5 Bl (2.12)
ForW =0, A% is called a contravariant tensor of rapk
A mixed relative type(1, 1) tensor transforms as
—i O Ozt
i W k
Ay =J e ﬁA .- (2.12)
It is now easy to define a typg, s) tensor density
— i1 oz ozl Ox™ ox™s
J1--Jr _ 1,74 l1...01y
A ki..ks — aﬂ?ll o axlr afkl ce 85165 A" M. (213)

Relative tensors of weighHl” = 1 are generally called tensor densities while relative tensd
weightW = 0 are called absolute tensors. For simplicity they are juéddensors.

3 Base vectors

In this section we consider vectors and tensors on a diffiade manifold equipped with a
metric. A vector is represented by its componentsor A?, but sometimes it is given with-

out any explicit reference to the coordinatesfAasWe say that it is given on coordinate free
form. The components!; or A7 of A express the vector using appropriate base vectors. In a
Riemann spac#/,,, one set of base vectors are tangents to the coordinate Viresall them
covariant base vectors. They are writtegy }. There is also a set of reciprocal base vectors
{g'} which are normals to the coordinate surfadgs}, (see [3]). We have

gi-g" =d.

In Cartesian coordinate we have the orthonormal Hasg. g; or g’ can be expressed as linear
combinations of the Cartesian base vectors as

gi =a;;e; and g' =a"e;

wherea;; anda” are matrices.
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A vector A can be expressed in Cartesian coordinates by the companeass
A= a;e;. (31)

A vector A can also be expressed as linear combinations otthend contravarianbases
{g:} and{g’}. The covariant base vectogs are defined as tangents to the coordinate lines
r(at,... 2% ... a"), wherea!,... a" are constants. For example for n=3, the coordinate
lines are the family of curves(z!, a2, a?), r(at, 22,a3) andr(a!,a?, 23) wherea!, a?,a® are

constantsg; is calculated as follows
or

87 Pu
The base vectorg; obey a covariant like transformation

(3.2)

__ Or or 0xd  Oxd

A
We call them covariant base vectors although the base weatercoordinate dependent. The
base vectog’ is normal to the coordinate surfaeér!, ..., a’,...,2"). When n=3, the co-
ordinate surfaces are given bya', 22, 23), r(z!,a?, 23) andr(z!, 22, a3), with o', a?, a®
constants.
In Cartesian coordinateg, a vectorr can be expressed through the Cartesian Haggas
r = y'e;. The covariant base vectors are related to the Cartesiandsa®llows

Or or oy’ ayJ Oz’

&7 Gui — oyl 91 O G T es 8—ng (3.3)

The base vectorg® are called contravariant base vectors. They are relatedet@artesian base
vectors as A A
.IZ {2

OxJ
They obey contravariant like transformation laws

g’ (3.4)

. ox oz’ ox' ozl
g = 8—y’fek = @a—ykek = @g . (3.5)
or equivalent
o Oxt
g = afjg]- (3.6)

In Cartesian coordinates, the base vectors are constandere. Generally, a base vector
changes when going from a point, to anotherz’; + dz/, for exampledg; = (9g;/0x7)dx’.
Using (3.3), we have

ogi i oyt o 0? y ox™
oxd  Oxd \ Oxt = 020z Oyt

where{;7;}, are called the Christoffel symbols of second kind. Theydefned as

By ox™

"} = 50 o (3.8)
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On the other hand using (3.4), we get

dgi 0 <6yl> ' oy,

m (3.9)

ori 0z \ ox @ = OrtoxI O™ = lijmlg

where[ij, k], the Christoffel symbols of first kind are defined as

ale 8yl
ij,m| = ——2——"—. 3.10
(27, m] 0x'0xI Ox™ (3.10)
Notice that bothij,m] and {;";} are symmetric in(i andj). The partial derivatives og;
along directionz’ are expressed as linear combinations of the base vegtasdg; using the

Christoffel symbol of first and second kind.

Taking the derivative of; - g/ = 6{ and using (3.7) we have

_ o8 08 _ (g
=0 = g ok {7/} = ok {r}e"
4 The metric tensor

The arc lengthis between two points in space is an invariant. It must be theesanCartesian
coordiantes,’ and in generalised coordianteé Using (3.3) since

o 8yi ayi
ds® = dy'dy' = =
T T T 50 9at

whereg;; = g; - g; is in fact a tensor since

drida® = g; - grdalda® = gjpda? da®, (4.1)

_ 0y oy 0a'0a™Oy' Oyt Oal Oa™
9ik = i ozF  om oz ol o o oTF I

g;; is called the metric tensor. We have

OyP Oy? > oz’ oy*

9ij8’ = (gi - g;)g’ = <8xi 9077 1) g ECk = 5% = 8i

It is expected that the arc lengtls? > 0. To fulfill this, the metric tensor must be positive
definite. The Riemann space is a differentiable manifoldmmpd with a positive definite
metric. The length of a vectad’ is g;; A’A7. For a vector in a space with a positive definite
metric, g;; A°A7 > 0. For pseudo Riemann space, there is not a requirement thahekric

is positive definite and situations can occur where the vdetmyths is zero in spite that its
components are non-zero. For details see the treatmenjrcithpter 7.

The metric tensor can be used to relate the co and contravdrése vectors througl, =

9i;&’. The metric tensoy;; has a reciprocal tensgf/ = g’ - g/. They are related through
9i;9°% = 6. In a similar wayg’ can be expressed hy through the relatiog’ = g¥/g;.
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From (3.7) and (3.9) we have for the Christoffel symbols
{i"}gm = lid,mlg™ = [ij,s] = gms{i™5} & i) = g™ id,m].

A summary of useful relations between the metric tensor AedChristoffel symbols are given
below

[ij7 m] = gsm{isj}7 (4-2)
"5} = g""lig, 5], (4.3)
Gij 1 a4
L = [ik, 5] + |k, 1. (4.4)
o0 1 (0gjk | Ogi  Ogij
3. K] = 2 <8£Ci * dxi  dxk )’ (49)
Ol ) )
oor =~ (4.6)
ogi .. m m
oo = lij.mlg™ = " Yen. @4.7)

In [12] chapter 3, the Christoffel symbols are defined bytiefa(4.5) and (4.3), which requires
the existence of a tensgf;. Note that the Christoffel symbols are not tensors. Using)(éand
the fact thaty;; is a tensor, it can be shown that the Christoffel symbols sf ind second

kind transform as

[i7, k] 0°x7 0x° +@6_x58_xl
o R0 T o o ozt

T 9T 0T 0%
{761}- (4.9)

[v6,1], (4.8)

9%z oz n 0TI oY 8_xl
T OTF 0xP 0P OFt OTF

ik} =

5 Vectors and tensors
A vector A can be expressed in the bagg} or equivalently in the baség’} as
A=Ag = Ajgj. (5.1)
Given the vectorA, the componentsi; or A* can be calculated by the inner product
Aj=A-g;, and A'=A.g'.

A physical vector-components are calculated by taking ttogeption along the normalized base
vector (g./|g|). It is easy to show that the physical componentdofs A(a) = A%, /Jaa,
with no sum overo.

The co- and contravariant vector componentsand A’ transform as

oxl

and o
— Tt .
= oA, (5.3)
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Using (3.6) we get

Ag = A = (Zk_Ajﬁ> g =0 = A=_—=4

and similarly for A’ to obtain (5.3).

Assuming the contravariant vector components are givem the covariant components can be
calculated using the following formula and vise versa.

A; = gisA° and A= g A,. (5.4)

Tensors are generalizations of vectors which are first rankars. They can be expressed as
a linear combination of dyads. A 2'nd rank tensBrcan be expresse@l = T;;g'g’ where
{g'g’} is a dyad base. In 3D space the dyad basedhemmponents. The sefg;g;}, {gig’},
{g'g;} and{g’g’} form bases for the second rank tendor The second rank dyadic base in
Cartesian coordinates {g;e;}. For example in Cartesian coordinates, the dyad base can be
expressed

1 0 0 010 0 00
e|e; = 0 0 O s ese; = 0 0 O 5 . esez = 0 0 O
0 00 0 00 0 01

The covariant tensor components can be expressed as
Tij = gi - Tg;
and for example the mixed componefits are
T,) =g - Tg’.

Tensor components can be expressed in various combinatfdrsses, for exampl&;; and T4
called covariant and contravariant tensdf‘%j, and TZ.J are called mixed tensors.

Notice that the componentE/ and le. are equal only if the tensor is symmetric. As for vec-
tors, conversions from covariant to contravariant comptean be done using the expressions
analog to (5.4)

T,) = guT" and Tj; = gixgT" (5.5)

and so on...
6 Derivation of vectors and tensors

Consider a curv€(t) in the spaceX,,. Let ¢t be a parameter (e.g. the arc length). We want to
differentiate scalar, vector or tensor fields aldhgvhich is expressed by = r(¢) which in
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component form isc’ = xi(t). The fieldt = dr/dt is the tangent of the curv@, which on
component form is given as

- da?
t' = . 6.1
o (6.1)
Let o be a scalar field. The derivative efalongC is simply
da  dadx'  Oa i 6.2)

dt  Oxt dt  Oxt
which also can be written on the form

da
= t.
’n =Va-

To calculate the derivative of a vecteralong the curve® is a more complicated process than
ordinary derivation. It is not sufficient to consider onlyetbhange of the components of
alongC, but one has also to take into account the change of the bassryva@longC. This can
be expressed as follows

d_V_a_Vd_.%'k_ v i_|_v.a_gi d_xk_ v’ 4 agz d_.%'k (6.3)
at — ok dt  \0xzk® T ok ) Tat ~ \0F% TV 0ak ) Tdt '
From (6.3), (3.7) and (3.9), the derivative wfalong the curv& become
dv ov; i ov
i ( —ufs k}> 8= <— +o'{)! k}> (6.4)
The quantities
avz
- Ul{z k}
and Ny
Bk i),

are in fact tensors. They are defined as the partial covadiematives, simply denoted covari-
ant derivatives ofy; andv® respectively and are writteny;,, and vi‘ » We have

31)@

—u{i's} (6.5)

Vi|lk =

and Ny
9k + o'’} (6.6)

The derivative along the curve expressed by the covariaitatiees are

7
/U‘k;_

dv Z-d:r:k . daF
ar VIR g T Vs
The derivative ofv along the curve? can be expressed by the absolute derivafivg 5t as

dv &'

v _v, 6.7
at ~ ot® (6.7)
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From (6.7) and (6.4) it follows that

vt d
B . (6:8)

The covariant derivatives of vectors (and tensors) aretnaisd so they transform as tensors.
Using (6.5) and (4.9) we get

0v;

— 7 9zt [ Ov oz Ozt
Uik = 5% —{ilk} = 8_1 ok <—j vs{;* l}) 97 5k il

It can be shown that the derivative of a covariant second tan&orc;; is

862"
Cijlk = a—xi — e{i'k} —ca{'s} (6.9)

and the derivative of a mixed tensor is
7

i 8cj I i igl
ik = g TR = il (6.10)

By applying (6.9), the covariant derivative of a product wbtvectors can be shown to follow
the product rule for for ordinary derivation

(aibj) = &“k - azb ('} — aibi{;'s} =
e o0 i) — (6.11)
') + (5% — ar{i's}) b; .
ai‘kbj + al-bﬂk.

The covariant derivative of a scalar field equals its padeivative,a); = da/z*. This is due
to the fact that a scalar field has no directional informatidfrite o« = a - b = g;b* and take the
covariant derivative

Oé‘i — (akbk)‘l - ak,“lbk + akbk‘l =
BF + ap B — @b {43} + axb {13} =

8(ak bk) Oa

ozt ozt

The covariant derivative of the metric tensor is zero. Frém®); (4.2) and (4.4) we have

09ij dg; .
Gijle = 5 =% — gu{;'k} — g {i'} = ﬂ [jk,i] — [ik, j] = O,

whis is known as Ricci's lemma. We may also expect gﬁé}g = 0. Let us start showing that
5§‘k = 0. First showing thatS; is a tensor. From (2.3) and (2.4)

5 0T 0ut 07k 00t 00 Omt 0t 0w 00T _ 07t 00
LT 0 o7 0r 00 07 O 0% 0w 0l 0w o7’
then using the rule for differentiation of a mixed tensorl(¥.

5 = 5t + 07 ot = 8l liTa} =0
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Taking the derivative ofj;;j¢/* = 0%, gives g/ =0
Changing from co- to contravariant components can be donaibiyng and lowering the in-
dices. Using Ricci's lemma and the product rule for covariifferentiation

i __ St i __ (St _ st
a =gas = a|j_(g as)|j_g as|j

and similarly

ol — gsz’gajas‘o.
All componentsa;;, aﬂ"j,ai‘jand o'l are equivalent. Notice that although we writ&/ the term
contravariant differentiation is not used.

7 Cylinder coordinates, basic expressions

Most expressions involving differentiation of vectorkeligradc), div(a), curl(a) etc. .., can

be found in books of mathematical formulas ([14]). Expressiinvolving for example tensor
components and terms derived from them can not be found muaid collections of formulas.
An example of such a term is the double divergence term of thmemtum flux density tensor
appearing in Lighthill's equatiofV - (V - pvv). An attempt to find this term on the web was not
successful and we had to calculate it from the basics. Therenany examples of such terms
which implies that we have to compute them the hard way asoeagblbelow.

Let curvilinear coordinates ilR* be denoted byz!, 22, z3). In the case of cylinder coordi-
nates we writg R, ¢, z), the mapping between cylinder coordinates and Cartesiardic@tes
(W' y2 %) is

Cylinder coordinates Cartesian coordinates

' =R y' = Rcosf
2 =0 y? = Rsin 6
3=z Y3 =z

Let the unit base vectors in Cartesian coordinategeiees, es}. The unit base vectors in
cylinder coordinates can be written ésg, ey, e.}. A vector can be expressed by its physical
components as follows

a=aprer + ageg + a.e.,.

The unit base vectors for cylinder coordinates can be expced Cartesian coordinates as

er(0) = e cos(f) + ez sin(6),
ep(f) = —eq sin(f) + ey cos(6),

€, =€,

where
883/89 =ey and 889/89 = —€R. (7.1)
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Let r(x!, co, c3) Wherecy andcs are constants express the coordinate liher(ci, 22, c3) the
coordinate liner? etc..., then the tangent base vector along the dinis g; = dr/0x'. The
reciprocal or normal base vectogs satisfyg; - g/ = 55 . Any vectorr can be expressed in
cylinder coordinates as

r = Rer(0) + ze,. (7.2)

The base vectorg; andg’ then become

g1 = €eR, gl = €eR,
g2 = Rey, g? = (1/R)ey, (7.3)
g3 =e,, gi=e,.

The components of the metric tensefs = g; - g; and the reciprocal’’ = g’ - g/ become

1 0 0 1 0 0
gj=10 R> 0 ¢?=10 1/R2 0 |. (7.4)
0 0 1 0o 0 1

The Christoffel symbol of first kindij, k] and of second kind;’;}, can be calculated from
(7.4) using (4.5) and (4.3). All components become zero fxce

[12,2] = [21,2] = R, [22,1] = —R, (7.5)
{12} = {221} =1/R, {2'2}=-R. (7.6)

Consider a vector field. It can equivalently be expressed expressed by the physizand
contravariant components as

a = apepr+ ageg+ a.e,
= ajer + azep/R + age,
a'er + a’Rey + a’e,.

Since{er, ey, e.} are unit vectors, we get the following relations betweenghegsical compo-
nents and the covariant and contravariant components

ag = a(2) = az/R = Ra?, (7.7)
)

The physical components can in the case of orthogonal auaei be calculated from the
expressiom(a) = /gaaa”, Where Greek letters in this case means no-sum. The physical
components of a second rank tensorigy3) = \/WAQB. Using this expression, the
contravariant components of a second rank tensor in cylinderdinates can be expressed
through the physical components and vice versa

Arr ArG/R Arz
(A7) = | Ap/R Agg/R* Ay /R |, (7.8)
Azr AzG/R Azz
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and the relation between the co and contravariant compsragatcalculated by (5.5) to yield

Al RZplZ g8 A, RAg A
(Aij) = | R?A?Y R*A?? R2A% | = | RAy, R%?App RAy |- (7.9
A3l R2A32 43 A, RA, A,

8 Covariant derivatives in cylinder coordinates

By using the definition (6.5) and (6.6) together with (7.6% wan calculate the components of
the covariant derivative tensors. Expressed by the phystraponentSar, ag, a.), we obtain

dar dar _ dagr

R 20 — 9 Dz

) — ag 9ag dag
(aiy) = | R%% R(%p+ar) Ry (8.1)

da Oay %

oR 00 oz

The mixed componentsi‘j of the tensor can be calculated by us'mfg = g*'as;, we obtain

dar dar dag
R o0 — a0 0z
i y— | L10ag 1 (Oag 1 9ag
@y)=1 wm9r = < o0+ aR) R 0z (8.2)
Oa. Oa day
oR 90 9z

The component setsﬂj anda'/ be calculated in the same way so we do not write them up
here.

9 Vector operations

From now, we use the convention that the partial derivativa scalar is writterda/0z' = a.;
and the partial derivative of a vectéla/0z’ = a,;. As an example it is convenient to express
the divergence of a vectov - a = g' - a,; = g’ - (gra’),; = aiu- Some of the most common
scalar and vector operations can then be expressed

Va=gla,, (9.1)
i i 1 i
V-azg-a,i:a‘i:%(\/ga),i, (9.2)
4 g 1 .. 4
Vxa=g'xa,= e”kakdgi = ﬁe”kak’jgi =w'g;, (9.3)
, 1 g
Via=V-Va=a, =—(/99%,;),, (9.4)
i = ZEVaday)
i L i i
VZa =V Va=q"g = (—(vga')+a* {1 }e:. (9.5)

N

Notice thatV - a is a scalar whileVa = g'a,|;g’ is a second rank tensor.

Examples of various vector derivative operations.
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Va:
The gradient of the scalar is Va = gla,; = g'oy;.
In cylinder coordinates
Va=arg +098 +a,.g" = 8—aeR + —8—aee + 4 0o e..
OR R 06 0z
V. a:
The divergence of a vector is the contraction of the covamnivative tensor formed by that
vector: V -a = tr(Va) = a',.
We use thay” = Ko(gij)/g anddg/0gi; = Ko(gi;), SO0g, = ggklgkl,l-. We havegy;,; =
[ki, 0] + [li, k). Theng,; = gg* ([ki, 1] + [li, k]) = 29{x"i}. = {i*i} = 9.6 /29 = (1/v/9)(/9)..
Thena', = o', +a*{s"i} = (1/\/9)(V/ga").i.
In cylinder coordinates, using the above formula
190 < 8a> 8_@2 Q_ﬁ_lﬁ(RaR)+ 1 dag 8@2

Ror\%or) "0 v 9 TR or " Ros o

V.
a= OR

V x a:
The curl becomesV x a = w'g; = "% ay ;g = % ay,; g = (1/,/9)¢"*ay, jgi, since{,*;} is
symmetric inkj. The contravariant components of the curl become
1 10a, Oag
- }_z 0 9.
2 <8aR 8a2> )
R\ 0z OR R’
3 10(Rag) 10ag

"R OR R8O 7
where{wg, wy,w,} are the physical components of x w.
Via:
The Laplaceian of an absolute scalaM$a = V-Va = V- (giah) = V (g'a,). Leta; = oy,
thenV - Va = V-a = a'; = (¢"ap); = g% + g% == oy’ = al;. Seta’ = af,

thenVZa = V- (Va) = V-a = (1//9)(y/ga").;. Now a’ = (Va) = gYa,;, which implies
Via = (1/,/9)(/99" a,j ),i- Then in cylinder coordinate¥?a becomes

Via=— ((Rg"a;) g+ (RgQch Do+ (Rg¥ay) )

m H:UlH

(R()c7R) —|-

V3a:

The Laplaceian of a vector i§72a = V - Va. Note that in generaV(V - a) # V - (Va).
We takeV?a = V - (Va). WhereVa is a second rank tensor. Let us wrkea = T, then
V-Va=V-T = Tfg:. Now selectingl"* = a'* and usingV - Va = (a'*),g; = d'|fg;.
The covariant derivative of the tenset* becomes

(@) = (@™),5 +a”* {5} + a7 P} = (1/v9) (Vaa ) +a7F {,F}.

FFl-rapport 2013/02772 21



Using the expressions for the Christoffel symbols in cydindoordinates, we get
a'lf = (@) = (@) + ('3a + (R,
which gives

1 1
a'l} = Eah + (%11) Rz (a|2) 0+ (%3) Ea|22
1 i ( 8@3) 1 0%ap O%ar ag 2 Oay

o 92 @ oo

R
. 1 1 (3 80,9 1 82619 820,9 2 8aR ag
_E{ (R >+R2ae2+az2+ﬁ69 TR
1

3’ 8@2 1 82az n 82az
k= RaR TR T a2

= (V*

10 Tensor operations

Let u be the velocity vector. Note thatu; /027 does not transform as a tensor, it does.
We call it the velocity derivative tensor. It can be written
w; = (wy; + uj|z')/2 + (wij; — Uj|z')/2 = Sij + wij /2
where we have introduced the rate of strain tensor
Sij = (us)j + uj)/2, (10.1)
and the rotation tensor
wij = (UZU — u]|2) = (ui,j — ujﬂ-). (102)
The covariant components of the rate of strain tensor imdgli coordinates are
8;_}? (8593 u9+R8ue) /2 <%uz 8uR) /2
(Sij) = | - R (8“*9 +uR) <R% a“Z) /2

Ouz
0z

The physical components of a second rank tensar(isg) = JigwggﬁTaﬁ, where Greek let-
ters in this case means no-sum. The physical component® ohtl of strain tensor expressed
by the physical components of the velocity, witly = R, 8, z we get

B (G- %+ 4e)/e (%n+%e)
S =| - 1 <8ue +uR> <Fauz +8ue>/2 ) (10.3)
du
a - 0z
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Sometimes it can be of practical interest to express the oaes of a symmetric tensor in
Cartesian coordinate§,'}, we denote its;;, derived from its components;; in generalized

coordinates{z’}. We have
_0atox
Sij = Oyt Oyl ki-
Using the covariant components of a symmetric terfsgrin cylinder coordinates, we get the
following Cartesian components

511 = (cos?0)Sy1 — (sin(260)/R)S12 + (sin? §/R?) S,

812 = 891 = (sin(20)/2)S11 + (cos(20)/R)S12 — (sin(26)/2R?)Ssa,
s13 = s31 = (cos0)S13 — (sinf/R)Sas,

599 = (sin?0)Sy1 + (sin(260)/R)S12 + (cos? 6/ R?) S,

S93 = S32 = (sin#)S13 + (cos 0/ R)Sas,

533 = S33.
These expressions may be useful when visualizing symmntetmiors where the components are

given in for example cylinder coordinates and the coordirsistem used by the visualization
system is Cartesian.

11 Rotating coordinates

Consider two orthogonal coordinate syste@sand O with common origin with basis vectors
{g1,82,83} and{g;,8,,8;}. Letgs = g3 be the rotation axis that coinside for the two
systems. Assum@ is an inertial sysem whil@® is rotating with angular velocity2, where

Q = Qgs. Then,g; are time independent whilg;, = g;(¢) are time dependent.

o, = 3 Qt 43 Qt
g1 =81 COS. + g2 Sin (11.1)
8o = —g1sin Ot + ga cos (Ut

A point P has position given by the vecterwith coordinatesr’ andz’ with i = 1,2,3. Then
r=a'g; =T'g;

which implies

1 Lcos Qt — 2 sin Qt

T ==
2% = 7' sin Qt + T2 cos O, 11.2)
or equivalent
7! = 2! cos Ot + 2% sin Ot
72 = —x! sin Qt + 22 cos O,
which also can be written
7! = 2! cos (—Qt) — 22 sin (—Ot) (11.3)

72 = ol sin (—Qt) + 22 cos (—O0t).
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The time derivative of (11.1) becomes

1 = Q(—g1 sin Qt + go cos Q) = Qg,
9 = Q(—g1 cos Qt — gosin Q) = —Qg;

0al. 03,

With rotation vectorQ2 = Qgs, the above expression can be written in compact form
g =Qx§g (11.4)
The time varying vecton(t) given in the rotating frame ia(t) = @'(t)g;. Computing the time

derivative ofa(t) gives
Aa=0g+ag=0g+2x(@E). (11.5)

The velocity vector isv = i'g;, (11.5) gives then the relation between the velocity conepts
in the inertial systen© and the rotating syster@®

ilg =T g+ Q% (T'E,) (11.6)

which states that the velocity in the framieequals the velocity observed @ plus the contri-
bution from the rotation oD.

( Notice thatz’g; = x'g;, points to the same poin®. For any instants, g; follow the
transformation lawg; = dz* /0z'g;. but that although the velocity = i'g; = v'g; is a vector,
as the frame0D is acceleratedy;g; # v;g;. In fact the velocityv; that follows (11.6) is not a
tensorial neither is the acceleratiapn that we derive below. )

The acceleration is obtained by taking the time derivati#€1@.6) and using (11.4). The
acceleration ir0 is expressed by quantities in the rotating systéras

iy =T g+ TUXE +Qx @TE) +Qx @TE)+2x T (QxE)), (11.7)
which finally becomes
B =T g 2T X (TE)+ Ux (UxTE). (11.8)

Here the following expressions are valid in the rotatingrfesD, where

i'g, is the acceleration,

20 x 7 g, is the Coriolis acceleration,

Q x (z'g;) is acceleration due to spin up/down ©f
Q x (Q x 7g;) is the centrifugal force.

The three last accelerations are caused by rotation or ehangtation ofO.
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In rotating cylinder coordinate$er, &5, e.} with coordinates(R, 6, z), where = 6 — €, the
terms in (11.8) become

Qx (AxT'E) =0 x (Qxr)=—-0°Rep (11.9)
Q2 x (7T'g;) = QRey (11.10)
2Q x v;g; = 29(51%6@ — 5§§R) (11.11)

12 Navier Stokes equations in cylinder coordinates

In coordinate free form, the compressible Navier Stokesatgus including momentum and
mass conservation can be written

P (g—‘tf + (v- V)v) = —Vp+ puV3v (12.1)
and 5
8—? +V-(pv)=0. (12.2)

wherev is velocity, p is the pressurey the mass density and is the dynamic viscosityy =
w/p is the kinematic viscosity. It is included in the definitiohtbe Reynolds-numbefRe =
UL/v.

When deriving the Navier Stokes equations in cylinder coatgs, we start writing them

in generalized coordinates. Let us express the momentum equation (12.1) selecting the
covariant basigg;}. Note that it is equivalent to express the equations in{gfé system.
Assuming that the coordinate system does not vary in tivgg/0t = g; = 0, then

ov o

E
The advective term becomes
v Vv =g (V)" = o' (08 = v (0,8
For the pressure gradient, we haVe = plig;, and we have previously shown that
Viv = (gklﬂiu)wgi = U%gz‘-

Substituting these terms into (12.1), we obtain the NaStekes equation for generalized
coordinates

v’ i i i
p < D +v* |k> = —plt + pot|k. (12.3)

The equation of continuity becomes

dp i
Fn + (pv"); = 0. (12.4)

The advection term and the pressure term can be written

vEul =R 07 {0} and plf = gFp.
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Introducing cylinder coordinates and physical componenthe velocity, the equation of radial
momentum balance becomes

OvR VUR.Q v2
W""URUR,R"F R7 +UZUR,z_Ef:
DRV UR,00 VR 2ugyg
— =4+ _— (R d R - = — d
p R <( B e T >

The momentum balance equations in the azimuthal and axedtdins can be derived in the
same way. We do not write them here.

12.1 The momentum equations in rotating cylinder coordinates

An extensive treatment of rotating flows and the basic eqoatof rotating flows is given by
Childs, see ([2]). Navier Stokes equations in rotatingrdir coordinates is derived by using
the results obtained in section (11). We add the centrifagal Coriolis terms to the equations
in stationary cylinder coordinates. The radial momemtumagign in the rotating frame become

81)3 VOUR.0 1)2
W+URUR’R+ R’ + VUR — Eﬁ — Q2R — 2Quy =
PR |V UR,00 VR 20
_25r 7 (R R - i 4124
+ R (( UR,R),R + R + RVUR 22 R R )

12.2 The stress tensor

The physical components of the stress tengpr= —pd;i. + 2nS;; can be written in cylinder
coordinates using the physical components of the stramteatsor (16.4), we get

ORR = —P+ 2UURR
ore = W(ug,r —ug/R+urg/R)
099 = —p + (21/R)(ug,p + ur)

(12.5)
00, = ,u(uzﬁ/R + ue,z)
Oz = —p+ 2#“2,2
02k = (UR,z + Uz R)
In the incompressible casé‘i =0 andC — co. We may write
pli = —p(v'v") s (12.6)
Notice that in the incompressible case
(Uivk)\kﬁ = Ui|k\ivk + Ui\kvk“a (22.7)
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since generallyﬂw # Ui|z'|k = 0. In the incompressible case with Cartesian coordinates
differentiation commute and

0%p ot ol

oridrt  OzJ Oxi
1 oI B o’ oI B o' _1 oI n o’ oI n o' B
4\ oxt OxJ oxrt OxJ 4\ oxt  OxJ oxrt  oxi )

Q€05 — S5 Sij,

where S;; is the strain rate tensor anfdj; = w;;/2 andw;; is rotation tensor as defined in sec-
tion (10). This does not generally apply since the secondériant derivatives do not commute,
i.e. vi‘k“ £ vi|i|k in curved space.

We recognize(€2;;€2;;—S5;;5:5)/2 = Q > 0 as Hunt’s criteria to identify a vortex, see [4], where
rotation dominates over strain. Tldg criteria should be used with some care in the general
case since it is not clear thét as defined above is a tensorial quantity. Generatly, =
—p(v'v*¥) ; should be used. This deserves some additional analysis Sjpc= (v /07 +

vl /0xt) /2 is not a tensor. The criteria for identifying a vortex hasoateen discussed Jeong
and Hussain, see [6], using the second eigenvalyes 0 criteria of S;;5;; + €;;€;;. As
proposed in [6], it is not clear that; is a tensorial quantity. It should be used with care in
non-Cartesian coordinate systems and deserves someoadtginalysis.

13 Lighthill’'s equation in generalized coordinates

Lighthill's equation can be derived from the Navier-Stolkgiations, involving both thermal
and viscous dissipation, see (James Lighthill). Here wdegegffects of dissipation and start
with the Euler equations for compressible flows

ov op
p (E + (v - V)v) = —Vp, T +V-(pv)=0. (13.1)
By assuming that the motion is adiabatic, i.e isentropic flgw= C2§p, wherep is the
pressure( is the sound speed andis the density, one can show that the equations can be
written in an equivalent form where the left hand side hasfoine of a wave-equation. In
coordinate-free form, Lighthill's equation can be written

ia—?p—v? =V (V- (pvv))

2oz v PT r

wherepvv is the momentum flux density tensor.

From the Euler equations (13.1) we have

a(pv') vt 9p _ I(pv')

0O==0r "o Yo" e

+ (oo )y, + ol
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Sincegiﬂk = 0, and lowering the index, we can wrif¢’ = g*p|;, = (pg’*);;, and

I(pv’ i i
(gt )4 (" v* + pg™*) )y, = 0.
Assuming isentropic conditions and constant speed of séungp = C25p and we have
RN
C2ot2 o2

Taking the time derivative of the equation of continuity ahé divergence of the momentum

equation (13.1) we get '
52/) . _8(Pvl)u

oz ot

= (pv"v* + pg™) ki
which can be written
1 0%p
czor P
This is the component form of Lighthill's equation in gerer@d coordinates.

i = (po"v") s (13.2)

14 Lighthill’s equation in cylinder coordinates

Now we want to express the right side of equation (13.2) iftndgr coordinates with the
physical velocity component& g, vg,v,) as arguments. The terpj! is obtained in section (9),
so we skip it here. The double divergence is more complex.ukdtke it in steps, first we
write

. . 1 " e i 4
(o' s = T = (G (VIT 0+ THIWY) =y

The components of vecter are
o' =TH, =T + T+ T

The divergence ofi’ becomes

1

: a
(\/gal),z' = & tagtay+al

i 1

By substituting the expressiari = 7% . into the above relation yields

Tik

i 1k _ pg22 , 1ol
wi == w (T - RTZ+ T

1
R

+ le,k _RT22 + %Tll .
4 (T%,k"‘ %(Tu LT %Tm)
_|_

k 1
(T3 & + ET?’l)

0
2
SinceT" is symmetric, this expression can be expanded and simplified

Tik\ku =T pp+ T g+ TP — 2T + TP+ 5T
2 13 22
+ 5T, + 2T oy + 2T 4+ 2T — RT* .
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Substituting the phyaical components of the velocity figld, have

) p(0)? pulv? pule? pvh  purve/R - puRv.
(1) = - p(v?)? prt? = - pu/R* pugv./R |,
_ _ p?)31)3 o _ pvg

which implies

T = (pvR),RR + (Pvg/RQ) 09 + (pv2) .. + l(pvg%)
+R2 (PURUG) o+ 5 (PURUz) » + %(PvRve) RO+ 5 (Pvevz) 02 (14_1)
+2(pvRv:) R: — 1 (PV3) R

which is the right hand side of Lighthill's equation in cydier coordinates with the physical
components of the velocity field as arguments. Notice m%z‘ is a scalar.

15 The RANS equations

A field quantity f is decomposed in an average quanfityand a fluctuating quantity’. We
write f = F' + f’. The averaging procedures are such that

F=F = (15.1)
f =0, (15.2)
fa=173. (15.3)
Tq = 0. (15.4)

For details, see ([13]) where the evolution equation forReynolds stress is developed in
Cartesian coordinates. An extension to generalized coates follows below.

Assuming incompressibility)ih. = 0, both u”| and VT = 0. Taking equation (12.3), substituting
the decomposition of and averaging, we get the averaged momentum equation

ov?
ot

1 . ) .
+ VRV = —;P'Z + vV — R*,. (15.5)

The termsR* = v/iy/k represent the contravariant components of the Reynoldssstensor.
Subtracting (15.5) from the equation fof gives the following equation

N
ot

Vk“/l),z‘k + ’U,kvlk _;p/h _ (,U/Z,U/k; _ ,U/Z,U/k)lk _|_ V'U/Z|£, (156)

which is the fluctuating momentum equation. From now, weewrifor the fluctiating quanti-
ties instead oft’. Taking thei component the fluctuating momentum equation and multiglyin
with v/, the j component of the same equation and multiplying witrsumming and averag-
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ing, we get the Reynolds stress evolution equation in gémedacoordinates

@ = —Vk@ivi) convection
(mkvz + viv V]|k) turbulent production
—(u uﬂuk)|k turbulent diffusion

—L(g” (pv) o 97 (@v)',)  pressure diffusion (15.7)
+p(g v’ ot g]"mz‘o) pressure strain
gk (Vo7 ) |4, viscous diffusion
—nga(vilkvj‘a + ”i|a”j\k) viscous dissipation

Notice the existense of a termiu’/u* which implies a closure problem. The terms above can
be written out in cylinder coordinates. Note thatJ is a contravariant tensor.

We write the evolution equation for the this expression, Reynolds stress (15.7) as follws

ORY
ot

=CI4+ T +T7 + P+ PI+ Vi + VI (15.8)

This tensors physcal components can be calculated usingssipn (7.8). For examplg,y =
rAl2 A,, = A Agy = r?A?2. Let us as calculate some of the terms in cylinder coordénage
examples. The pressure diffusion tensor is

1j 1 10 (==\] jo (——=\i
P = — (Pv)], + 9" (PV)},,)-
Substituting A’ = (po)’ = pvi, we get using (6.6)

1/ [OA . OA
o 10 sf Jjo S
pp =2 (g (S arin) + o (G atiah)).

Using this formula, the fact that? is diagonal and given by (7.4), that all Christoffel symbols
{7} are zero excepf?2} = {221} = 1/r,{2'2} = —r and substituting for the physical vector
components ofd?, we get the following physical components for the pressiiffesion tensor

2 Opv,. 2 (Orpv,

p or pr \ Or
= L (O )
Py(zz) = P33 _%ag?.
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16 Basic equations from the theory of elasticity

The treatment here is a generalization of the elasticityaggus given in ([8]). Consider a point
P in a solid and assume the body is deformed such that iist displaced to another point
P'. The displacement vector is, = rj, — r,. Consider another poin@ close toP. After
deformation@ is moved toQ’. The displacement vector f@ is u, = r;, — r,. The change in
the vector connectin@® and Q due to displacement is

du=uy—u, = (r; — 1)) — (rg — 1p),

which on component form is written
du; = dxg —dx;.

The distance betweeR and Q before displacement &> = dz;dx;, and after displacement is
dl'* = dz!dz!. Due to continuity we write

du; = %u;dxj.
Then
dl’? = dw? + 2uijdxidxj,
where 1 (/0u; Oujy\ = Ouy duy
Y=g {(&Uj * (%ci) * Ox; a—xj} (16.1)

Let us show that,; is indeed a tensor we consider two coordinate systénandO. The line
elementsd!’ anddl are invariants. We write
(dI')? = di* + 2u;;da’ dx?,
(dl)? = dI* + 2w dz'dz
Sincedx! = (0z'/0z7)dz’ and the line elements are invariants, we get
dx* Ozt
ozt oz "

showing thatu;; are the covariant tensor components. The expression;fagiven in (16.1) is
valid for Cartesian coordinates. Generally we may write gtrain tensor as

Usj

2uij = ((wg)j + wjpi) + ppjug))- (16.2)

If the deformation is small, we may omit the non-linear temthe above expression, then we
may write

o 1 6uz 8uj o
U5 = §<6IJ + aﬁﬂl) — ug{l ]}. (163)
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Recall that the physical components of a veetor) = v*, /g, and for a tensofl'(«, 5) =

T8, /Gaagpp €tC...Since a symmetric tensor is symmetric in all cooreirsystems, we write

fori,j=1,2,3
(w3 +us1)/2

(w12 +u21)/2 —us/r
(ug3 +us2)/2

Uyl
U9 + ruy

- u3,3

Using equation (7.7) for the physical components of a veat®rcalculate the physical compo-
nents of the strain tensor which has the same form as the sat@ tensor, see (10.3)

RS NORL )
u(ij) = | — (3“9 —|—ur) %(8_1;9 + %%) (16.4)
Ou,
7

The stress tensor and body forces
The total force on a body i FdV, whereF is force/volume. According to the divergence

theorem of integration, for the vector fietd

jéa-ds:/v-adv.
S 1%

This can be generalized to a tensor field, say
994 gy _ / FydV.

%Jlkd&g —/ 92,

Hereo;; is the stress tensor arfg is the: component of the force (force/volume) related to the

8Uik

stress,
v axk '
This formula is valid in Cartesian coordinates. Generally way write in coordinate free form

F=V.o

As an example we can derive the co-variant components ofdiee fF;. Then we may look

for expressions Iikeri’“‘k. We have
V.o gk 008
dak

Carrying out the derivation in this expression gives
ol - Ogt . Og; 4 , 4
Vo =g o bgleitogt S 2gol g el 22 = 0 g0/ 0 (ke o O (ke
where we have used (4.6,4.7). Cleaning up, we get
o F
k i ng{isk} + O'Z‘S{skk}-

F=(V-0)i=0") = ok

J
K Oo,
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As an example of equivalence of the co and contravarianrgcive can use the contravariant
components which are more convenient when calculating tiysigal components. We have

i i do'* sk i is
F'=o") = 50k T Mk} + o e
which implies that
ao.ak: sk « as( k
F(a) =/ gaa( Ok +o {s k} +o {s k}) (16.5)

Introducing physical components, we get

0o, 1 00,4 00y 1
F, = Ir + r 90 + 92 + , <Jrr - 0-99)5 (166)
. dord 1 dogy 0o 2
Fy = ar + ; 90 G + ;Ure, (16.7)
P 00, laffez Jo, Orz (16.8)

or r 00 0z r
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