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English summary

The dynamics of human crowds is an interesting, but highly complex topic, and phenomena have

been observed ranging from well-organized structure formation leading to quasi steady-state

equilibrium to violent and turbulent flows resulting in catastrophic scenarios with large numbers

of casualties. This report reviews fifty years of scientific work on crowd dynamics. Although

the aim of this report is to gain insight into the modelling of exceptional crowd events such

as demonstrations and riots, a large portion of the described research deals with normal state,

pedestrian traffic. This is partly due to the fact that the open literature on crowd modelling is

dominated by this particular class of applications, but also because treating normal behaviour

crowd dynamics is a necessary first step in modelling also the more extreme cases of crowd

dynamics. The main part of the report is devoted to classifying and describing different theoretical

crowd models. However, a separate section on relevant experimental work is also included. This

report marks the first step towards developing a new crowd simulation tool applicable to scenarios

involving human crowd and less-lethal weapons interactions.
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Sammendrag

Dynamikken til ei menneskemengd er eit interessant, men svært komplekst tema. Observerte

fenomen knytt til menneskemengder varierar frå danning av velorganiserte strukturar som fører til

kvasistasjonære jamvektstilstandar, til valdelege og turbulente straumar som resulterer i katastro-

fale hendingar med mange omkomne. Denne rapporten presenterar ein gjennomgang av vitskapleg

arbeid gjennomført dei siste femti åra på temaet dynamikk i menneskemengder. Hovudmålet

med rapporten er å få innsikt i modellering av eksepsjonelle hendingar der menneskemengder

er involvert, slik som demonstrasjonar og opptøyar. Likevel fokuserer store delar av forskinga

som vert skildra det vi kan kalle fotgjengartrafikk eller liknande former for normale fenomen i

ei menneskemengd. Dette skuldast dels det faktum at svært mykje av den opne litteraturen på

temaet dynamikk i menneskemengder blir dominert av akkurat denne type problem. Men i tillegg

er studia av dynamikk i menneskemengder i normaltilstand viktig som eit fyrste steg med tanke

på å forstå dynamikken til menneskemengder i meir ekstreme situasjonar òg. Hovuddelane av

rapporten tek for seg klassifisering og skildring av teoretiske modellar av menneskemengder. I

tillegg, skildrar ein eigen del relevant eksperimentelt arbeid på området. Denne rapporten markerer

fyrste steg mot å utvikle eit nytt verkty for simulering av menneskemengder som kan nyttast på

situasjonar som involverer vekselverknad mellom ei menneskemengd og mindre-dødelege våpen.
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1 Introduction

The dynamics of human crowds is an interesting, but highly complex topic, and phenomena have

been observed ranging from well-organized structure formation leading to quasi steady-state

equilibrium to violent and turbulent flows resulting in catastrophic scenarios with large numbers

of casualties. Optimization of pedestrian flow is linked to the desire for increased efficiency

and has been studied empirically for nearly fifty years (Fruin, 1971; Hankin & Wright, 1958;

Older, 1968; Weidmann, 1992). Numerous crowd disaster events are known from history, and

the table in Fig. 1.2 shows a selection of disasters occurring over a period of 35 years (Helbing

& Johansson, 2009). All events in the list were fatal with the number of deaths ranging from tens

to over a thousand people. Still none of the events were originally related to fires, bomb attacks,

train or plane accidents, or riots. The Wai tragedy in 2005 increased in size after angry pilgrims,

in response to relatives and friends already being trampled to death, set shops on fire. The Ghana

stadium disaster in 2001 can largely be attributed to the fact that the police used plastic bullets

and tear gas in response to disappointed football fans throwing plastic seats and bottles onto the

pitch. The 2006 event in Yemen occurred at a political rally, not a violent riot. According to a

news bulletin in the Guardian, most of the dead were believed to be schoolchildren and teenagers.

Figure 1.1 Picture taken at the Love Parade crowd disaster in Duisburg, Germany in 2010. In
total 21 people died and more than 500 people were injured.

If we were to include crowd disasters which started with a fire, a bomb attack, accidents, or a riot,
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the list of human tragedies where crowd dynamics plays a role becomes substantially longer. It

quickly becomes clear that crowd dynamics deals with many aspects of human nature. But in

addition, it is also quite clear that crowd dynamics is related to phenomena, such as fluid flow and

many-particle physics, studied within the framework of mathematics and the natural sciences.

Figure 1.2 Selection of some major crowd disasters in the period 1971-2006. The table is taken
from Helbing & Johansson (2009).

1.1 Collective behaviour

Let us assume we have a system consisting of many similar entities, and that the interactions

between the entities under certain conditions can lead to transitions in the state of the system. If

a transition causes the entities to adopt a pattern of behaviour almost completely determined by

the collective effects due to the other entities in the system, then we have an example of collective

behaviour. An important aspect of collective behaviour is that the dynamics of a single entity

is dominated by the influence of the other entities and that behaviour therefore can be radically

different from what one would observe when the entity is left on its own. Fig. 1.3 shows a handful

of examples of collective motion involving living, "self-propelled" entities (Vicsek & Zafeiris,

2012). But even non-living entities, such as molecules or self-propelled particles can exhibit

collective behaviour (Czirók, Stanley & Vicsek, 1997).

Human crowds of sufficiently high density exhibit features of collective behaviour, such as arching

near bottlenecks (Helbing, Farkas & Vicsek, 2000), stop-and-go waves evolving into turbulence

(Helbing, Johansson & Al-Abideen, 2007), lane formation (Helbing et al., 2001), and freezing
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Figure 1.3 Examples of collective behaviour among animals and humans: (a) Wingless locusts
marching. (b) A rotating colony of ants. (c) A three-dimensional array of golden rays.
(d) A vortical structure of fish. (e) Starlings in flight facing a predator bird. (f) A herd
of zebras. (g) People spontaneously ordered into channels of uni-directional flow. (h)
A herd of sheep in motion. The figure is taken from Vicsek & Zafeiris (2012).
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by heating (Helbing, Farkas & Vicsek, 1999). These are quite generic phenomena of collective

behaviour which a human crowd can have in common with a set of non-living particles. Trail

formation is another example of collective behavior observed in relation to movement patterns

among both animals and humans (Helbing et al., 2001): A trail does not simply follow a straight

line, and the trail has not been designed by individual animals or humans. Instead, a trail is

the result of some kind of underlying optimization process in which a number of individuals

over a relatively long period of time have contributed to the result. In all of these examples, the

behaviour is not primarily the result of an intelligent thought process, but rather the result of a

complex coupling of the collective state and the reaction this causes at the level of the individual.

Although this gives a certain foundation for the idea of modeling human crowd behaviour using

a mathematical approach, a question still remains: What happens when the density in the crowd

drops?

1.2 Modelling of socio-economic systems

Gradually, as the density in a crowd drops, the influence of other people on the motion of indi-

vidiuals decreases. The ideas, desires, and motivations of each person in the crowd start to have

a stronger and stronger impact on the dynamics. At this point, we have a socio-economic system

which is far more complicated to model than a densely populated crowd: (i) The number of factors

playing a significant role in the decision making process of individuals is in practice endless. (ii)

Randomness often plays an important role. (iii) Typically, there is no ensemble of equivalent

systems since no two groups of people are truly identical. (iv) Non-linear models with many vari-

ables can be expected to exhibit phenomena like hysteresis and chaos and may therefore be highly

dependent on the exact specification of parameters. (v) And finally, with many variables comes the

inherent problem of separating the effect of different variables from each other. The modelling of

socio-economic systems has been discussed extensively by Helbing (2010). He divides relevant

modelling approaches into 3 categories: Qualitative descriptions, detailed models, and simple

models.

1.2.1 Qualitative descriptions

Due to the challenges associated with socio-economic modelling, it is quite common among

social scientists to reject the modelling approach altogether. This is justified by the view that all

models over-simplify the socio-economic processes. This leaves mainly one possible research

approach: To work out narratives that describe real-life events as detailed as possible, compare

descriptions of several similar events, and finally draw conclusions regarding the systems on the

basis of comparison. This approach is clearly fruitful in providing an overview of the problem and

in giving the researchers a qualitative understanding of dynamics of the system. However, it can

be difficult to extract general guidelines based on qualitative descriptions. And it will typically be

even harder to gain in-depth knowledge on threshold values of important quantities such as density

and velocities.
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1.2.2 Detailed models

The next approach, also quite commonly used in psychological and social research, is to develop

highly detailed models which attempt to include as many aspects as possible of the system

under consideration. There is an element of simplification in that one includes only features

that are assumed to be characteristic to the relevant type of system. However, the number of

variables and parameters is typically very large, and the parameters are often chosen to fit specific

observations. As a consequence, such models might very well give realistic results in a certain

range of applications. The problem is, however, that the input parameters have been so finely

tuned to the applications being studied that no really new knowledge is gained. With a sufficiently

large number of tuned parameters, a model can be structured that fits any phenomena. Also, if

the model is comparable to the real-life system in complexity, then interpreting the results of the

model will be just as difficult as interpreting real-life events.

1.2.3 Simple models

In simple models, one tries to reduce the number of variables and parameters down to a minimum.

The hope is that dominating processes in socio-economic systems can still be recreated. The

results from applying such a model can more easily be interpreted and does not have to rely so

heavily on input parameters that are difficult to calibrate in the first place. Features not explicitly

described by the models can still in some sense be taken into account by applying a statistical

approach. Critics still claim that a simplified model is likely to neglect features that are essential

to the description of the system. It is also difficult to keep the model simple as one naturally wants

better fit to observations.

2 Classification and evaluation of models

Crowd modelling has in recent years become an important tool in studying the dynamics of

human crowds. It has become a key design issue in applications ranging from military simulation,

safety engineering, architectural design, and digital entertainment. Looking beyond the specific

applications, Zhou et al. (2010) sort crowd models primarily based on crowd size and relevant

time scales. Small-and medium-sized crowds include from a few tens up to roughly a thousand

people, while a large crowd model can include tens of thousand people or more. Time scales

can also vary by several orders of magnitude. Short time scale phenomena often deal with the

movement patterns changing considerably within seconds or minutes. Long time scale phenomena

can include social or psychological changes taking years to develop. Fig. 2.1 shows how different

modeling approaches and different application categories is distributed in the two-dimensional

parameter space.

Fluid dynamical models: Based on the assumption that the dynamics of individuals become

unimportant to the description of the dynamics of a large, densely populated crowd, crowd

models based on Navier-Stokes equations have been developed. These models usually neglect the

description of individuals altogether (Bradley, 1993). One problem with these models is that the
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Figure 2.1 Classification of crowd models based on crowd size and time scale (taken from Zhou
et al., 2010).

basic assumption limits the applicability of the models quite severely. Another issue is the fact

that Navier-Stokes type equations are non-linear and coupled and thus fairly difficult to solve both

efficiently and accurately.

Particle models: Particle models, also referred to as entity-based models, represent the simpler

option among the discrete model types. People are treated more or less as identical particles with

little or no internal structure. The dynamics of the particles is either determined by forces that

reflect various physical, social, and psychological influences, or through ruled-based algorithms

that consider the local distribution of particles. The former is known as social force models
(Helbing & Molnár, 1995), while the latter approach is most commonly applied in relation to

so-called cellular automata models (Burstedde et al., 2001).

Agent-based models: When we start referring to the model entities as agents rather than particles,

this indicates that the complexity in the modelling of individuals has been increased. Although

there is not a clearly defined distinction between the two, agent-based models incorporate models

of internal processes, both physical and psychological, which is not included in particle models.

This usually means that the internal state of the agents vary in time according to social interactions

with other agents. Social relation between agents can also be of importance. Agent-based models

can be seen as an extension to the social force approach (Braun, Bodmann & Musse, 2005), rely

on rule-based action (Wijermans, 2011), or be some kind of combination of the two (Korhonen et

al., 2008a).
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Zhou et al. (2010) discusses different criteria with which one can evaluate the different crowd

models: (a) Flexibility refers to a model’s ability to adapt to different situations. (b) Extensibility

indicates how easily the model can accommodate new features. (c) Efficiency concerns the Cpu-

time needed to execute a crowd simulation for a given scenario. (d) Scalability tells us how much

execution time and memory usage increase with increasing crowd size. Strangely enough, Zhou

et al. (2010) do not include believability as one of their criteria. They argue that believability is

subjective and therefore not properly defined. However, it is reasonable to extend the list with the

following two evaluation criteria: (e) Accuracy is a measure of how well a given model reproduces

experimental data. (f) Robustness refers to how sensitive the simulation results are to uncertainties

in the model parameters and how this compares to uncertainties in the experimental data.

3 Specific models

After having given this general overview over different approaches to crowd modelling and

different types of modelling techniques, we will take a closer look at a 3 specific models which

highlights important differences in numerical approaches. We will also briefly review a handful of

other models which represent alternatives to the first three models. Finally in this section, we list

some of the commercial crowd modelling software packages available. This review will limit itself

to models relevant for simulating small- and medium-sized crowds over relatively short-term time

scales.

3.1 The Helbing social force model

Perhaps the single most important contributor to the field of numerical crowd modelling, is Prof.

Dirk Helding at ETH Zürich (formerly at Dresden University of Technology) and his collaborators.

The concept of using a social force model was first presented in 1995 Helbing & Molnár (1995),

and the models have been gradually revised and extended since then studying phenomena such as

pedestrian transportation, panic in crowds, and crowd disasters (Helbing, Farkas & Vicsek, 2000;

Helbing & Johansson, 2009; Helbing, Johansson & Al-Abideen, 2007; Helbing et al., 2001). Fig.

3.1 illustrates some of the results obtained with the Helbing model. Despite the unquestionable

impact that the model has had on crowd modelling, the Helbing model has been criticized for

over-simplifying the problem (Lakoba, Kaup & Finkelstein, 2005). The model we will describe in

some detail here, is taken from Helbing et al. (2002).

The idea behind the Helbing force model is to model crowd behaviour by formulating forces

which describe interaction between pairs of persons, interaction between a person and a solid wall,

and the self-propelling force which represents a person’s own will to move in a certain way. Each

person, or agent if you will, a has attributes such as mass (ma), physical diameter (da), position

(ra), and velocity (va). The momentum equation for the agent can be written as

ma
dva

dt
=

∑
b∈A

f soc

ab +
∑
b∈A

f con

ab +
∑
c∈B

f bnd

ac + fwill

a . (3.1)
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Figure 3.1 Crowd modeling results obtained with the Helbing model: (a) Density of pedestrians
in a simulation of 30.000 agents in the city centre of Dresden, Germany (Johansson,
Helbing & Shukla). (b) Simulation of pedestrians moving towards a 1-m wide exit of
a room of size 15 m × 15 m (Helbing, Farkas & Vicsek, 2000). (c) Lane formation in
crowds of oppositely moving agents (Helbing et al., 2001).

The forces acting on agent a are divided into 4 based on the type of interaction: f soc

ab and f con

ab

represent social and contact force interactions, respectively, with neighbouring agent b (where A is

the set of all agents), f bnd

ac denotes interactions with solid boundary element c (where B is the set of

all boundary elements), and fwill

a indicates the self-propelling will force. To simplify the discussion

on inter-agent force, we also define the following quantities for a pair of agents a and b:

rab = rb − ra, (3.2)

r̂ab =
rab
‖rab‖ , (3.3)

t̂ab = ẑ × r̂ab, (3.4)

vab = vb − va, (3.5)

and

v̂ab =
vab

‖vab‖ , (3.6)

where ẑ ≡ [0, 0, 1] is the constant unit vector out of the computational plane.

3.1.1 Social inter-agent forces

The social inter-agent force describes primarily the tendency of people to keep a certain minimum

distance to other people, known as the "territorial effect". If agents are part of a group, e.g.

a family or group of friends, this is proposed modelled using an attraction force which will

counteract any splitting of the group. The social force between agents a and b is formulated as

f soc

ab = −Aa exp

(
dab − rab

Ba

)[
λa + (1− λa)

1 + cosφab

2

]
r̂ab, (3.7)

where Aa is the interaction strength at the limit of physical contact and Ba is the interaction

range. In the Helbing model these parameters are constants typical equal to 2000 N and 0.08 m,
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respectively. The parameter λa controls the anisotropy since cosφab = r̂ab · va/‖va‖, and dab

is the mean physical diameter of the two agents, typically in the range 0.5-0.7 m. Note that the

interaction range is often chosen to be much smaller than the physical diameter. This implies that

the social force has a short range, the number of interactions per agent is small or moderate (in

the case of very high densities), and the modelling of applications where relatively large velocity

differences can occur might not be realistic (Lakoba, Kaup & Finkelstein, 2005).

3.1.2 Contact inter-agent forces

When the distance between two agents becomes equal to the corresponding mean physical dia-

meter, the two agents come in direct contact. Normally, this should only occur at high crowd

densities or in situations of panic. In this case, the Helbing-model assumes a body force coun-

teracting body compression and a frictional force hindering tangential motion. The form of the

physical force is

f con

ab = [κ‖r̂ab + κ⊥(vab · t̂ab)t̂ab]Θ(rab − dab), (3.8)

where κ‖ = 1.2 · 105kgs−2, κ⊥ = 2.4 · 105kgm−1s−1, and Θ(z) = zH(z) (where H(z) is the

Heaviside function which is 0 for z < 0 and 1 otherwise).

3.1.3 Will force

The self-propelling force, or will force, in the Helbing model uses a very simple formulation in

that it only depends on the difference between the desired velocity ua and the actual velocity va.

However, there is great flexibility in choosing different rules for how ua is chosen. For instance,

the direction of ua could be coupled to the local average flow direction to achieve a herding

effect (Helbing, Farkas & Vicsek, 2000). Or, the desired speed could be coupled to the relation

between remaining distance to the preferred position and the time left before this position should

be reached (Helbing & Johansson, 2009). In any case, the will force is inversely proportional to

the relaxation time τa and is formulated as

fwill

a = ma
ua − va

τa
. (3.9)

Note that if the agent is at rest, the will force is proportional to the desired velocity. This means

that agents with a large desired speed can more easily force their way through a crowd than agents

with a small desired speed.

3.1.4 Boundary forces

Interaction with boundaries of walls and other obstacles are treated in the same way as interaction

between pairs of particles, both a social force and a contact force is applied. The position of an

agent relative to a wall is given by the normal vector from the wall to the agent, the velocity of the

wall is prescribed (usually zero), and the physical diameter of a boundary is assumed to be zero

as well. In Helbing et al. (2002), it is mentioned that fire fronts are treated in a similar manner but

with a larger interaction strength.
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Figure 3.2 An agent, its possible movements, and the associated matrix of preference, Ma (taken
from Burstedde et al., 2001).

3.2 The floor field cellular automata model

Cellular automata (CA) is a discrete, rule-based method. Two-dimensional models of pedestrian

traffic based on the CA method were introduced more than a decade ago (Blue & Adler, 2000;

Fukui & Ishibashi, 1999; Muramatsu & Nagatani, 2000). The floor field model (Burstedde et al.,

2001; Kirchner & Schadschneider, 2002; Nishinari et al., 2004; Schadschneider, Kirchner & Nish-

inari, 2002) is by many considered the more flexible CA approach in that it combines mechanisms

for finding the shortest free path to a target location with models of interactions with other agents

and with infrastructure. This is achieved by taking inspiration from the motion of ants which is

based on the process of chemotaxis, a chemical communication system (Schadschneider et al.,

2009). In the two-dimensional floor field model, the underlying structure is a two-dimensional grid

with a cell width which corresponds to the space occupied by a single agent, typically equal to 40

cm i both directions. All agents are assumed to have the same speed, and the size of the time step

is chosen so that a moving agent moves exactly one cell width per time step. In this section we

will first review the basic rules of the CA method, and then look at the generation of floor fields.

3.2.1 Basic rules

Each agent is given a direction of preference. From the preferred direction a 3 × 3 matrix of

preference is constructed which describes the probability of an agent to move to one of the 9

nearest cells (see Fig. 3.2). Based on the resulting probability distribution, a desired move is

drawn. This is done in parallel for all agents. If the target cell is occupied, the agent stays in the

original cell. If the target cell is not occupied and no other agent targets the same cell, the move

is performed. If more than one agent targets a given cell, only the agent with the higher relative

probability will be allowed to perform the move. As a result, a cell can either be empty or contain

exactly one agent. The basic matrix is modified by the effect of other agents and obstacles through

the introduction of floor fields. In addition, rules for switching between two modes ("happy" and

"unhappy") are introduced to prevent artificial jamming near obstacles.
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Figure 3.3 Examples of floor fields in cellular automata models. Panel a shows a static floor field
due to solid walls (taken from Nishinari et al., 2004), while panel b shows a dynamic
floor field due to agents exiting a room through a door located in the middle of the
upper boundary (taken from Schadschneider et al., 2009).

3.2.2 Floor field generation

The basic movement probabilities are modified by two floor fields so that a movement in the

direction of higher fields is preferred. The dynamic floor field, D, represents a virtual trace left by

moving agents. This trace changes in time, not only due to the movement of the agents, but also

due to processes of decay and diffusion which lead to the broadening and dilution of the trace in

time. The static floor, S does not change in time and reflects solid boundaries, doors etc. Examples

of a static and dynamic floor field are shown in panels a and b, respectively, of Fig. 3.3. Taking

into account the effect of the floor fields, the modified elements in the matrix of preference can be

written as

pij = NMije
kSSijekDDij (1− nij), (3.10)

where N = 1/
∑

ij pij ensures normalization. The parameter kS controls the influence of the static

floor field and thereby determines the effective velocity of a single agent in the direction of its

destination in the absence of other effects. The tendency of following in the footsteps of others,

often called herding, is controlled by the parameter kD. The occupation number nij is 0 for empty

cells and 1 for occupied cells, thereby preventing movement to occupied cells.

3.3 FDS+Evac

The publicly and freely available FDS+Evac simulation software combines Fire Dynamics

Simulator (FDS) (McGrattan & Forney, 2004), a computational fluid dynamics solver for mod-

elling fire-driven fluid flow, with an agent-based egress calculation model (Hostikka et al., 2007;

Korhonen et al., 2008a,b) to achieve a state-of-the-art fire simulation tool. As such, it represents

a hybrid approach where elements of widely different computational techniques are used. In this

section we will review the theoretical basis for the evacuation model. The discussion is split in

3 parts, the agent movement model, the interaction of agents and fire, and the model for agent

FFI-rapport 2013/03050 17



Figure 3.4 Left panel shows a comparison of evacuation from a sports hall simulated with
FDS+Evac (Korhonen et al., 2008b) and Simulex (Thompson & Marchant, 1995).
Right panel illustrates the 3-circle agent model used in the FDS+Evac code.

decision-making.

3.3.1 Agent dynamics model

The starting point for the agent dynamics model in FDS+Evac is the Helbing model described

in section 3.1. This means that the movement of agents are primarily determined by social

and physical forces acting on them. There are however a few extensions to the Helbing model

implemented in FDS+Evac. First of all, the contact force has been extended relative to that given

by Eq. 3.8 by the inclusion of a radial damping term, cd(vab · r̂ab)r̂ab. The parameter cd (typically

cd = 500kgs−1) determines to what extent collisions between agents are considered inelastic.

Secondly, the social interaction parameters are made velocity-dependent. In its simplest version,

only the interaction strength, Aa, is varied. In the counterflow extension, both the interaction

strength and the interaction range, Ba, is coupled to velocity, in addition to providing agents

with rules on how to move around obstacles (Heilövaara, 2012). An illustration of the effect of

extending the model to handle counterflow is seen in Fig. 3.5, where a single agent is meant to

move through a crowd of agents moving in the opposite direction.

The agents are modelled by 3 circles rather than only one. The three-circle body model is taken

from (Langston, Masling & Asmar, 2006) and is illustrated by the sketch on the right-hand side of

Fig. 3.4. The three-circle body model is coupled to equations of rotation. The momentum equation

for the rotation is

Iza
d2φa(t)

dt2
= M con

a (t) +M soc

a (t) +Mwill

a (t) + ηza(t), (3.11)

where Iza = 4.0kgm2 is the moment of inertia and ηza(t) is a small random fluctuation torque

(a similar random term is added to the momentum equation for translational movement). The

deterministic contributions to the total torque due to physical contact, social repulsion, and will
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Figure 3.5 Simulation of a single agent trying to move from right to left chamber through a 2-m
wide corridor where 100 other agents are moving in the opposite direction. Panel a
shows how the single agent fails in his attempt when the counterflow extension is not
applied. In contrast, panel b shows that the single agent manages to move through
the corridor, near the upper corridor wall, when the counterflow model is included
(Heilövaara, 2012).

forces are defined as

M con

a = rcon

ab × f con

ab , (3.12)

M soc

a = rsoc

ab × f soc

ab, (3.13)

Mwill

a =
Iza
τ za

[�(t)− ω(t)], (3.14)

with

�(t) =
φa(t)− ϕa

π
�max

a . (3.15)

The spatial vector rcon

ab is defined as the vector from the centre of agent a to the point of physical

contact with neighbour b. Correspondingly, rsoc

ab is defined as the section of the inter-agent vector

rab which starts at the centre of agent a and ends at the surface of a. In the expression for the

torque due to will forces, Eq. 3.14, τ za denotes the rotational reaction time and ω(t) = dφa(t)/dt

is the angular velocity. The target angular speed, �a(t) is shown in Eq. 3.15 to increase with

increasing difference between the instant body angle (φa) and the preferred body angle (ϕa). If

we assume −π ≤ φa − ϕ ≤ π, the absolute value of the target angular velocity is limited by

�max
a = 4πs−1.
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3.3.2 Agent and fire interactions

From the Fire Dynamics Simulator, spatial information regarding gas temperature, smoke and

gas densities, and radiation levels is obtained and can be used to modify the agent dynamics. So

far, the focus has been on the effect of smoke on the speed of agents and on how toxic effects

of the gas can incapacitate agents. The first effect has been studied experimentally (Frantzich

& Nilsson, 2003). Based on this work, the preferred speed of agents is assumed to decrease

linearly with increasing smoke concentration. The toxic effects of gaseous fire products are

treated using Purser’s Fractional Effective Dose (FED) concept (Purser, 1995). The present

version of FDS+Evac considers only the concentration of CO, CO2, and O2. It is assumed that the

concentration of CO2 is sufficiently low to not have narcotic effects in itself but only have an effect

due to its stimulating effect on hyperventilation. The total FED value is thus found as

FEDtot = FEDCO × HVCO2
+ FEDO2

, (3.16)

where the FED value due to CO is multiplied by the CO2-dependent hyperventilation factor.

An agent is considered incapacitated when the FED value exceeds unity. In this case, the agent

becomes static but otherwise unchanged.

3.3.3 Model for agent decision-making

Decision-making in the context of evacuation simulations primarily deals with selecting an

appropriate exit. Test versions of FDS+Evac have also implemented routines for simulating group

behaviour but this is not available in the official version of the code (Korhonen et al., 2008b). Exit

selection is done in a two-step process: First, all exits known to a given agent are sorted into 6

categories according to whether the exit is visible, familiar, and whether disturbing conditions such

as increased temperature and smoke apply to the exit. The categories have been ranked based on:

(i) Physical conditions at the exit, (ii) The agent’s familiarity with the exit, and finally (iii) The

visibility of the exit to the agent. If more than one exit is found in the top ranked category, the exit

providing the fastest evacuation is selected. In estimating the evacuation time, the estimated time

of queuing is added to the estimated time of walking.

3.4 Other models

In this section we will quickly review 4 other crowd dynamics models. The first 2 models focus on

classic applications of pedestrian traffic, while the last 2 models are aimed at simulating the more

complex scenarios related to riots.

3.4.1 Cognitive heuristics model

Due to what is perceived as limitations of other physics-inspired pair interaction models, Mous-

saïd, Helbing & Theraulaz (2011) propose a model of pedestrian behaviour based on a cognitive

science approach. The model addresses the following two questions: (i) What kind of informa-

tion is used by the pedestrian? And, (ii) how is this information processed to adapt the walking
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Figure 3.6 Illustration of the cognitive heuristics model: Panel A shows a bird’s eye view of an
example where pedestrian p1 try to reach destination point O1 without walking into
agents and walls found within the vision field (turquoise region). Panel B show the
same scene from the perspective of agent p1. Panel C represents an abstraction of the
scene where darker areas correspond to shorter collision distances. Finally, panel D
gives a graphical representation of the function f(α) reflecting the distance to
collision as a function of the angle α (taken from Moussaïd, Helbing & Theraulaz,
2011).

behaviour? Vision is in this case assumed to be the main source of information, and it is assumed

that the preferred walking speed and direction is modified according to the visual information.

Simulation results obtained with this method is shown to compare well with experimental data

on pedestrian scenarios such as single agent manoeuvres in a corridor, unidirectional flow in a

street at varying crowd density, and turbulent flows in front of a bottleneck (Moussaïd, Helbing &

Theraulaz, 2011).

The locally preferred walking direction, αdes, is found as a trade-off between avoiding obstacles

such as neighbouring agents and minimizing detours from the most direct route to the destination

point. The first heuristic of the model is therefore:

A pedestrian a chooses the direction αdes that allows the most direct path to destination point
Oa, taking into account the presence of obstacles.

Each agent has a field of vision which corresponds to an angle of ±φ relative to line of sight. The

chosen direction αdes is at any given point in time computed by minimizing the distance to the

destination point in the direction α0 as:

d(α) = d2max + f(α)2 − 2dmaxf(α) cos(α0 − α), (3.17)

where the function f(α) indicates the distance to the first collision as a function of angle. In
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computing f(α), the agents take into account the other pedestrians’ walking speeds and body sizes

(representing the projection of an agent’s body on the horizontal plane by a circle whose radius is

proportional to the agent’s mass). An upper limit to the allowed values of f(α) is equal to dmax and

corresponds to the "horizon distance".

Because a time period τ is required for an agent to stop in case of an unexpected obstacle, agents

should take this time delay into account when determining safe distances to other agents. The

second heuristic of the model is therefore:

A pedestrian maintains a distance from the first obstacle in the chosen walking direction that
ensures a time to collision of at least τ .

For this reason, the instant preferred velocity becomes vdes,a = min(v0a, dh/τ), where dh is

the distance between pedestrian a and the first obstacle in the preferred direction αdes,a. The

desired velocity vector obtained with the cognitive heuristics model is then combined with the

Helbing expression for the will force (see Eq. 3.9). To take into account body collisions in cases of

overcrowding, physical contact forces with other agents and solid boundaries are included as in the

Helbing model (see Eq. 3.8). The change in the actual velocity is determined by the momentum

equation where the will force and contact force is included. Fig. 3.6 illustrates the principles

of the method in a case where an agent, marked p1, tries to reach a door without colliding with

3 neighbouring agents and 3 walls found within the field of vision. Note that one of the agents,

marked p4, is hidden behind one the other agents, and that the third agent, p3, is moving at roughly

a right angle relative to the line of sight of agent p1.

3.4.2 PLEdestrians: A least-effort formulation

The least-effort formulation is based on the approximation that a person’s caloric expenditure

rate R can be expressed as quadratic function of the velocity (Whittle, 2002). By integrating the

expression for the caloric rate function over a given trajectory, we get an estimate of the total

caloric cost of traversing the trajectory. This leads to the following expression for the energy Ea

required for an agent a to move along a path Π:

Ea(Π) = ma

∑
Π

(ew,ava
2 + es,a)dt, (3.18)

where ew,a and es,a are constants depending on the gender, age, and fitness level of the agent.

From Eq. 3.18 we can calculate an optimal speed (typically around 1.3 m/s for an average adult

male). In a crowded environment, one must also take into account neighbouring agents and solid

obstacles. This results in additional constraints on the optimization calculations. This leads to a

two-step computational algorithm where, first, a set of permissible velocities an agent can take

is determined, and secondly, a trajectory is chosen so as to minimize the caloric cost. (Guy et al.,

2010, 2012). A snapshot from a full-scale pedestrian simulation using the least-effort formulation

is compared with real-life photo in Fig 3.7.

The restrictions put on an agent’s velocity to avoid collisions is somewhat similar to the cognitive
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Figure 3.7 Snapshot from a simulation using the least-effort formulation of a busy crossing at the
Shibuya station in Tokyo, Japan (panel a) compared with a still from a real-life video
of the crossing (panel b) (taken from Guy et al., 2010).

heuristic model described in section 3.4.1: The constraint on the velocity of agent a due to

neighbouring agent b is found by first computing , δṽab, the minimum change in the relative

velocity of the two agents required to avoid a collision in the next τ seconds. This constrains the

velocity of a and b to change by at least δṽab/2. The complete set of permissible velocities for a

given agent is given by the union of the linear constraint from all neighbouring agents and nearby

walls. With the contraint that the agent is limited to paths whose initial velocity lies within the set

of non-colliding velocities, Eq. 3.18 is minimized with respect to caloric cost. As a simplifying

assumption, the method is restricted to paths Π that can be represented by two linear segments:

The first segment corresponds to a motion to avoid collisions with nearby obstacles, and the

second segment leads the agent directly towards its target position. The least-effort formulation

has been validated against standard pedestrian scenarios

3.4.3 The Epstein civil violence model

The models described so far have either represented normal behaviour scenarios such as pedestrian

traffic applications or evacuation scenarios where the motivations and goals of agents are clearly

defined. Now, we will look at a model which focuses on the dynamics in a potentially violent

crowd. The Epstein civil violence model comes in two different versions. One deals with the

scenario of a generalized rebellion against central authority, the other is directed towards inter-

group violence (Epstein, 2002). In the following discussion, we will focus on the former version.

The model involves two categories of actors: Agents are members of the general population which

might be actively rebellious or not. Cops are the forces of the central authority, whose task is

to arrest actively rebellious agents. Associated with each agent are 5 socio-political parameters,

level of risk aversion (R), perceived hardship (H), perceived legitimacy of the regime (L), level of

grievance (G), and the agent’s activity state (S). The first 3 parameters are randomly set for each

agent from a uniform distribution between 0 and 1. Grievance is related to hardship and legitimacy

through the simple relation:

Ga = Ha(1− La). (3.19)
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Figure 3.8 Group-averaged tension (blue curve) and rebellious activity level (red curve) as
function of time in a simulation rebellion dynamics (taken from Epstein, 2002).

Eq. 3.19 tells us that grievance becomes large if hardship is large and legitimacy is low. A large

grievance value is the basis for active rebellion. However, most people would also consider the risk

of being arrested before actually becoming an active rebel. The risk of being arrested, as assessed

by a given agent a, is coupled to the ratio of cops to active rebels within the field of vision of agent

a. The field of vision is defined as a certain area centred on the position of the agent. The arrest

probability is given as

Pa = 1− e−kNC
a /NA

a , (3.20)

where the constant k is chosen so as to provide a suitable probability when NC
a = NA

a . The

integers NC
a and NA

a denote the number of cops and agents, respectively, within the field of vision.

Note that NA
a ≥ 1 because agent a always counts herself as being a potentially active rebel. The

net risk can be defined Nrisk,a = Ra · Pa and Trisk is defined as non-negative threshold risk. If

Ga −Nrisk,a > Trisk then agent a becomes an active rebel. If not, agent a becomes quiet.

The cops have a clearly defined task every time step: To arrest a randomly chosen active agent

found within the field of vision. The field of vision of the cops and agents need not be the same.

The rule for spatial movement of both agents and cops is highly simplistic: Each time steps, all

agents and cops move to a random site within their own field of vision. Based on these simple

rules, the model can model how active rebellion in a group of people can vary in time. An inter-

esting aspect of this model is how one can monitor the build up of tension in the group. If the

average grievance is high, but the average level of rebellious activity low because the typical risk

aversion is also high, then the tension could be considered high. In Fig. 3.8, the relation between

tension and the rebellious activity level in the model is illustrated. The graph shows two curves

plotted as functions of time. The red and blue curves correspond to the group-averaged tension

level and activity level. Most notably, is the way a tension build-up is followed by an outburst of

high activity level and a shock-like drop in tension. An empirical study later found the explanatory

power of the model to be high (Klemens et al., 2010).

3.4.4 The Jager approach-avoidance model

As an example of a rule-based simulation model, we will briefly review the Jager approach-

avoidance model developed in order to study clustering and fighting in two-party crowds (Jager,
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Figure 3.9 Graphic representation of the behavioural model in the Jager model which illustrates
how the agent behaviour is a function of the aggression motivation of the agent and
the local distribution of neighbouring agents, both of own and other party (taken from
Jager, Popping & van de Sande, 2001).

Popping & van de Sande, 2001). The model is based on the assumptions that the tendency to

approach or to avoid is a fundamental behavioural characteristic and the that behaviour of agents is

not strictly deterministic. All simulations are restricted to a 100×100 grid where only one agent can

occupy a single cell. In other words, this model is in the tradition of cellular automata (see section

3.2). Similarly, the time step is fixed to 1s, and the agents can during a given time step be static or

move to a neighbouring cell. The crowd forming a party are heterogeneous and is typically split

into groups of friends or acquaintances.

The model further acknowledges observational work which states that some 90% of the people

present at riot situations are quite calm and only fulfil the role of spectators. For this reason, agents

belong to one of the three types hard-core rioter, hangers-on, or spectators. The difference

between the behaviour of the three agent types, is simply how often the agents scan the surround-

ing area. A hard-core rioter scans the area twice as often as a hanger-on and 8 times as often as

the spectators. Fig. 3.9 graphically explains how the scanning process can lead to behavioural

changes for a given agent a: Let δNa = Nown,a −Nother,a denote the difference between number of

neighbouring agents belonging to the agent’s own party and the number of neighbouring agents

belonging to the other party. If δNa ≥ 10, then the level of aggression motivation for agent a, let

us refer to it as Ma, will increase by 1. If on the other hand δNa ≤ −10, then Ma, will decrease

by 1. If 15 < Ma ≤ 30 the behaviour will be more offensive or even aggressive. In the latter

case, agent a will engage a neighbouring agent from the other party in a fight lasting for 100 s. If

Ma ≤ 15 the behaviour of agent will be neutral or possibly defensive. In the latter case, this means

approaching agents of own party, choosing acquaintances if this is possible.
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Figure 3.10 Number of on-going
fights as a function of
time in a crowd of 400
agents where the
relative size of the two
parties is 3:1 and
where the proportion
of hard-core rioters is
either 5% (red curve)
or 1% (blue curve)
(Jager, Popping & van
de Sande, 2001).

The model has three independent variables. These are the size of the crowd, the relative size of the

two parties, and the proportion of hard-core individuals. It is assumed that the number of hangers-

on is twice the number of hard-core agents. Fig. 3.10 shows results from a simulation where

400 agents in total are included. The relative size of the two parties is 3:1, and the percentage of

hard-core agents is either 5% (red curve) or 1% (blue curve). The graph shows the number of

on-going fights as function of time. After about 15 minutes, the number of fights increases quite

steadily until a peak is reached at around half an hour. The peak is almost twice as large when

the hard-core agent percentage is 5% rather than 1%. At later times, when the system has gone

through a linear phase and a saturation phase, the number of fights is stabilizing at a lower level. It

might seem like the time scale in the stabilizing phase is slower in the case of the lower hard-core

agent percentage.

3.5 Commercial crowd modelling software

There are a number of commercial crowd modelling software packages available aimed at a wide

range of applications, from digital entertainment to architectural design and crowd management

training. However, the scientific value of such software is often difficult to assess since (i) tech-

nical details regarding the software are usually confidential in order to secure commercial interests,

and (ii) emphasize is often put on crowd animation rather than crowd simulation. Nevertheless,

we will briefly mention a handful of commercially available crowd modelling software packages

in this section. The information put together here is taken from the web sites of the individual

software companies and from the review in Challenger, Clegg & Robinson (2009).

Legion: Legion combines two-dimensional simulations with two- or three-dimensional visualiz-

ation. The agents move through the environment according to the principle of least effort, with

minimal time, minimal costs (dissatisfaction and discomfort), minimal congestion and maximum

speed (Still, 2000). The agents also have the ability to make decisions regarding which route to

take, considering environmental circumstances such as queuing. Properties of the agents, such
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Figure 3.11 Simulation of egress
from Holmenkollen ski
jump arena. The plot
shows crowd density
as a function of
position. The analysis
was performed by
Movement Strategies
AS (Movement
Strategies AS, 2012).

as size, preferred speed, age, and amount of luggage, can be assigned randomly from a suitable

distribution. The software is primarily directed towards applications of pedestrian traffic, evacu-

ation processes, and planning of large events. Fig. 3.11 shows an example of the use of Legion in

studying egress from a ski jump area (Movement Strategies AS, 2012).

Myriad II: Just as with Legion, Myriad II is based on the research of Prof. Keith Still. The

software combines methods for network analysis, spatial analysis, and agent-based analysis into

one modelling suite. This makes it possible to study part of the problem using a simpler approach

such as by network analysis, and restrict the use of agent-based analysis to areas characterized

by more complex interactions. As in Legion, the agent dynamics in Myriad II is calculated using

the least effort principle. In this case, the software is designed to test boundary conditions rather

than specific circumstances, This means assessing the effect of difference in flow rate, density,

ingress, circulation, and egress. The agents are capable of scanning, seeing, and reacting to the

environment.

MassMotion: According to the user guide, MassMotion has been developed to be a generalized

pedestrian simulator. The space is represented by three-dimensional geometry. The calculation

of crowd movement is separated into two distinct processes. The first component governs the

individual agents’ basic movements and and how they respond to changes in the environment.This

is done using a modified social force algorithm. The second component is concerned with network

path planning between origins and destinations. It analyzes distance, congestion, and terrain to

develop costs for all available routes to the agent goal and to select an appropriate cost-effective

route.

Massive: Massive is well-known as a crowd simulation software, primarily due to its use in digital

entertainment. This is understandable as it was developed for the film trilogy Lord of the Rings.

Since then, it has become an industry standard in digital film production. In later years, the area

of application for the code has been extended to include engineering simulation and architectural
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visualization. The agent dynamics is controlled by fuzzy logic in combination with a library of

pre-programmed manoeuvres which makes the agents respond to sight, hearing, and touch.

4 Empirical Studies

So far in this report, we have reviewed a wide range of different approaches to numerical mod-

elling of crowd dynamics. But no matter what approach is chosen, the computational models

can only to a certain degree be founded on strict logic. In addition, the models must rely on as-

sumptions made regarding human behaviour. It is therefore of great importance to calibrate the

computational models against empirical data. In this section we will review a handful of the most

important empirical work on crowd dynamics. We first focus on pedestrian dynamics, or crowd

dynamics under normal conditions. After that, we review empirical work on evacuation, riots, and

crowd disasters.

4.1 Pedestrian dynamics

As mentioned in the introduction, empirical studies of pedestrian flow started to emerge in the

late 50s and in the 60s (Hankin & Wright, 1958; Navin & Wheeler, 1968; Oeding, 1963; Older,

1968). Right from the start, this has been studied from an engineering point of view, focusing on

improving pedestrian traffic (Fruin, 1971; Predtechenskii & Milinskii, 1978). The most frequently

quoted studies of this type are probably the studies of Fruin (1971) and Weidmann (1992).

Fruin introduced the concept of level-of-service standards (LOS) as a measure that defines relative

degrees of convenience for different pedestrian traffic volumes and densities. Table 4.1 describes

the 6 LOS categories and corresponding levels of flux and inverse density. Fruin also described

time-space analysis where the product of available space and available time is compared to the

product of the number of people passing through the area and the time it takes for them to pass

through the area. He also looked at human body dimensions, locomotion characteristics (walking),

and behavioural preferences.

Weidmann took the empirical study of pedestrian flow to a new level with his thesis (Weidmann,

1992). He collected information regarding step length and rate of energy consumption associ-

ated with pedestrian motion (see Fig. 4.1). He also derived the following emprically founded

expression for pedestrian velocity v as function of density ρ given a certain preferred velocity u:

v = u

(
1− exp

[
−γW

(
1

ρ
− 1

ρmax

)])
, (4.1)

where ρmax should correspond to a maximum density and γW is a density constant. Fig. 4.2 shows

how this parameterized model fits with empirical data for u = 1.34 m/s, ρmax = 5.4 agents/m2, and

γW = 1.913 agents/m2.

Although the work of Fruin and Weidmann are qualitatively in agreement with each other, there

are quantitative discrepancies between the two. Later studies have tried to reduce the uncertainties

by combining information from several studies with new experimental data (Kretz, Grünebohm

28 FFI-rapport 2013/03050



LOS J [1/(ms)] 1/ρ [m2] Description

A ≤ 0.4 ≥ 3.3 Threshold of free flow, convenient passing, conflicts avoidable.

B 0.4-0.55 2.3-3.3 Minor conflicts, passing and speed restrictions.

C 0.55-0.8 1.4-2.3 Crowded but fluid movement, passing restricted,

cross and reverse flows difficult.

D 0.8-1.1 0.9-1.4 Significant conflicts, passing and speed restrictions,

intermittent shuffling.

E 1.1-1.4 0.5-0.9 Reverse, passing and cross flows very difficult;

intermittent stopping.

F - ≤ 0.5 Critical density, flow sporadic, frequent stops,

contacts with others.

Table 4.1 Walkway level-of-service (LOS) categories with corresponding levels of pedestrian flux
(J) and inverse density (1/ρ).

Figure 4.1 Step length during pedestrian movement (panel a) and rate of energy expenditure as a
function of velocity (panel b) (Weidmann, 1992).

Figure 4.2 Relation between
pedestrian density and
velocity as found
directly from empirical
data (solid line) and the
parameterized model
from Eq. 4.1
(Weidmann, 1992).
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Figure 4.3 Comparison of standard and density-based head detection algorithms: (i) The
standard algorithm applies the object detector directly on the original snapshot
(lower left panel), while (ii) the density-based algorithm combines information on the
estimated crowd density with an object detector (lower right panel). Red and green
squares indicate false and true positives, respectively, with both methods. Yellow
squares indicate true positives found only using the density-based approach. The
figure is taken from Rodriquez et al. (2011).
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& Schreckenberg, 2006; Moussaïd et al., 2012; Schadschneider et al., 2009). Others perform

experiments specifically with simulations in mind. In other words, data from experiments are

used directly to optimize parameters in a specific numerical model (Johansson, Helbing & Shukla;

Scovanner & Tappen, 2009).

Evaluation of real-world crowds is another important area of empirical research. Here, a main

challenge has been to automatically extract data from video footage using pattern recognition

techniques. An example of an advanced person detection scheme utilizes crowd density estimates

to improve the detection algorithm (Rodriquez et al., 2011). The detection scheme is illustrated in

Fig. 4.3. Starting from the original snapshot (upper left panel), a state-of-the-art object detector

(Felzenszwalb, 2010) can be used to identify heads in a crowd. However, due to the complexity

of information in a picture of a reasonably dense crowd, the standard detection scheme results in

a relatively small number of true positives and a number of false positives (green and red squares,

respectively, in lower left panel). By estimating the crowd density in the picture (upper right

panel) and feeding the density information into the object detector, the number of true positives is

increased by 50% and the number of false positives is decreased by 75% (yellow and red squares,

respectively, in lower right panel).

4.2 Evacuation, riots, and crowd disasters

The study of pedestrian dynamics is expected to provide insight into the normal dynamic state

of a human crowd, a state where psychological and social aspects of the human interaction are

reasonably well understood. In contrast, events of evacuation and riots represent exceptional

conditions where many aspects of human nature can be of importance in predicting characteristics

of the crowd dynamics. In the extreme, exceptional crowding can lead to crowd disasters. Since

events of this type are strongly dependent on social and psychological factors, in addition to the

purely physical factors, it is a major challenge to study the underlying mechanisms. Not only is

it difficult to arrive at a constructive simulation model. It is equally difficult to design controlled

experiments which adequately take into account the effects of fear, anger, and other strong

emotions, which may or may not play a role. For this reason, the study of exceptional crowding

events has largely been restricted to descriptions of real events, or collecting "anecdotal evidence"

(Dickie, 1995; Elliott & Smith, 1993; Helbing & Mukerji, 2012). Qualitative descriptions of such

events have in the past been coloured by political and social views of the observer. In addition, the

information regarding an event is often both limited and biased (Helbing, 2010).

Limitations in the descriptive approach are likely to have contributed to the formation of the

7 myths of the traditional foundation of crowd research. These theories have largely been

rejected in modern day crowd research as stereotypes (Couch, 1968). We here review the myths as

listed by Wijermans (2011):

1. Myth of irrationality: The idea that individuals in a crowd lose rational thought. Avail-

able evidence supports the opposite idea, that individuals largely act rationally given the
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information and goals they have (Adang, 1998; Couch, 1968).

2. Myth of emotionality: The idea that individuals in a crowd become more emotional. Al-

though crowd phenomenon often are associated with settings where strong emotions are

present, high level of emotions is not a result of the crowding.

3. Myth of suggestibility: The idea that individuals in a crowd are more likely to obey or

imitate. Some models include imitation as a separate mechanism (Baron & Kerr, 2003),

while others claim that behaviour which might resemble imitation in reality is caused by

other effects (Wijermans, 2011).

4. Myth of destructiveness: The idea that individuals in a crowd are more likely to act violently.

Crowds are not generally associated with a higher level of violence (Adang, 1998; Couch,

1968). The reason for individuals to act violently is event specific and not inherently linked

to the crowd setting.

5. Myth of spontaneity: The idea that violence occurs more suddenly in a crowd. This is a

combination of the myths of irrationality and destructiveness.

6. Myth of anonymity: The idea that individuals in a crowd feel more anonymous. Exper-

imental studies contradict the deindividuation theories claiming behaviour in crowd to

be less controlled by social norms (Postmes, Spears & Lea, 1998). Again, event-specific

parameters can be such that the social influence from peers can be stronger than the social

norms formulated in laws etc.

7. Myth of uniformity: The idea that all individuals in a crowd act in the same way. Studies

show that people in a crowd behave differently and that for instance only a small fraction of

the people present at a riot actually are involved in violent activities (Adang, 1998).

Generally, the myths can be viewed as over-simplified or wrongly interpreted observational

features of crowds associated with some types of exceptional events, such as for instance a riot.

4.2.1 Evacuation

Evacuation events are closely linked to pedestrian traffic in that the fundamental process is

transportation of pedestrians. Therefore, several experimental studies treat evacuation events

as cases of pedestrian flow with little attention to social or psychological aspects (Fang et al.,

2010; Lei et al., 2012) of the evacuation. Others have tried to distinguish between normal flow,

controlled (non-competitive) evacuation and panic (competitive) evacuation (Was, 2010). This

separation was to some degree achieved by instructing the test subjects to walk normally, evacuate

while optimizing the evacuation time for the whole group, or evacuate with the aim of optimizing

their own, personal evacuation time. The role of visibility in an evacuation event has been studied

by blindfolding test subjects (Isobe, Helbing & Nagatani, 2004). Animal experiments have

also been performed to gain insight into dynamics of panic evacuation (Saloma et al., 2003).

However in the end, panic evacuation in a human crowd can only fully be explored empirically by

studying real-life, dramatic evacuation events such as the 1993 bombing of the World Trade Center

(Aguirre, Wenger & Vigo, 1998).
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Figure 4.4 Pressure suits, 4 of in all 6, worn at the Roskilde Festival 2011 (panel a). The suits
worn by the test subjects measured pressure levels as function of time in the crowd in
front of the stage (panel b). The images are taken from Still (2011).

4.2.2 Riots and large gatherings

What distinguishes riots and gatherings of large crowds from scenarios of pedestrian dynamics,

is that not all phases of an event is dominated by systematic transportation of individuals in the

crowd. True enough, transportation of people at the start and (in particular) at the end of events

such as a demonstration or a rock concert are often the most critical phases of the event (Still,

2000). However, crowd events of this type also contain a phase where people are more or less

motivated to stay roughly in the same area for a certain period of time. Whether the event can be

classified as a gathering, a demonstration, or a riot, depends on form and content of individual and

collective behaviour during the interim phase when a number of people are in the same location

at the same time (McPhail, 1983). For this reason, motivations and intentions of the individuals

in the crowd can be expected to play an important role. Klemens et al. (2010) studied empirically

the conditions for rebellious events in light of the theoretical model of Epstein (2002). Others have

looked at the social-psychological interactions during a riot, e.g. in connection with sports events

(Russel, 2004). It is also of interest to find experimental evidence for the level-of-service model of

Fruin (1971) by estimating densities in real crowds (Weppner & Lukowicz, 2011). In the case of

extremely high densities (5−7 m−2), we know from damage on railings and other infrastructure that

pressure levels due to pushing in fatal events have exceeded 4500N (Fruin, 1993). Experiments to

determine forces on guardrails due to leaning and pushing have shown that force levels of 30% to

75% of participants weight can occur (Fruin, 1993). Fig. 4.4 shows two images taken at a pressure

suit experiment at the Roskilde Festival 2011. Similar tests have been performed at Wembley

stadium in 2009 and at the Roskilde Festival in 2010 (Kemp & Coole, 2010).

5 Concluding remarks

In this report I have presented a review of available research on crowd modelling. I have also to

some degree included literature on relevant empirical work. Although the aim of the study is to
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gain insight into the modelling of exceptional crowd events such as demonstrations and riots, a

large portion of the described research deals with normal state, pedestrian traffic. This is partly

due to the fact that the open literature on crowd modelling is dominated by this particular class of

applications, but also because treating normal behaviour crowd dynamics is a necessary first step

in modelling also the more extreme cases of crowd dynamics. Still, it should be emphasized that

crowd dynamics in exceptional scenarios is expected to be more challenging to model than normal

state scenarios due to the increased influence of complex social and psychological factors.

Based on the research described in this review, a number of conclusions can be made: First of all,

it seems fair to say that crowd dynamics is well established as an important topic in urban planning

and safety and security engineering. This is illustrated by the commercial tools that are available

which effectively applies crowd dynamical principles to relevant problems. At the same time,

crowd dynamics is an interesting and constantly evolving area of scientific research. The main

challenge in gaining new insight into the field of crowd dynamics, is probably the fact that this

research is highly interdisciplinary. This makes it inherently difficult to fully utilize all relevant

literature. Researchers will generally relate more easily to that part of existing research which fits

better with their own research background, be it sociology, psychology, or physics. Furthermore,

any researcher will try to contribute by applying his or her own expertise to the problem at hand.

This is natural. The only danger is, that contributions stemming from other scientific disciplines

are more easily rejected by the researcher. As a result, it becomes difficult to merge findings

produced with widely different research approaches. Communication across disciplines is difficult

not only because the scientific language changes from one discipline to another, but also because

fundamental scientific perspectives are different in different disciplines. In addition, the lack of

communication across disciplines is self-reinforcing because the less knowledge we have on a

scientific topic, the harder it is to understand the research on this topic.

Another striking feature of crowd dynamics, is the importance of crowd density on the crowd

behaviour. In the low density regime, people are acting completely independent of each other

and collective behaviour is non-existent. The actions of individuals are controlled by the scenario

specific settings and the motivations and plans that individuals have in a given scenario. If this is

the case, then clearly we cannot predict deterministically people’s behaviour in any given scenario.

An approach based solely on natural sciences most likely would not be particularly fruitful, while

psychological effects are probably very important for the outcome. However as crowd density

increases, effects of collective behaviour start to emerge. These effects are in many ways similar

to what one can observe in herds of animals or even in ensembles of non-living, self-propelling

particles. This tells us that fundamental laws of physics are probably starting to become important

to the understanding of the crowd dynamics, at the expense of psychological and social effects.

In the case of extremely high crowd density, there is no longer any room for individuals to make

intelligent decisions that affect the dynamics. In this regime, I believe it is safe to assume that only

physical forces play an important role. In most realistic scenarios involving human crowds, the

crowd density is on some intermediate level. In this case, psychological, social, and physicical

effects will all play an important role in determining the dynamics of the crowd.
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Two different but similar sized crowds will never behave exactly the same in a given scenario.

It is therefore futile to search for a crowd model that can predict correctly the behaviour of any

crowd in any given setting. However, one can hope that future models are more successful at

incorporating knowledge from different disciplines, and that these models provide a better balance

between different effects that are important in making statistically accurate predictions on crowd

behaviour.
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