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English summary 
This report describes mathematical modelling of the elastic stiffness of nanocomposites, which in 
this context is referred to as particles of nano-size included in a polymer matrix, i.e. particles with 
one dimension of nanometre size. The main motivation for this work was to establish 
mathematical models for calculating the elastic properties of different nanocomposites, which 
then can be included in a “model toolbox” for future applications and for improved understanding 
of this type of materials. In this study, it is assumed that micromechanics models and continuum 
mechanics theory can be applied in the modelling.  
 
In this report, an interphase model found in the literature is considered. The interphase is defined 
as the layer surrounding the particle, which has different elastic properties compared to the neat 
matrix (and the particle). Such models can thus be applied for describing changes in the polymer 
structure due to the inclusions, the bonding properties between the particle and the matrix, as well 
as the stiffness increase for the composite as a function of particle volume fraction. 
 
Only spherical particles are included in the interphase model considered. Extensions of the model 
that include other spheroidal inclusion shapes than spheres are therefore presented. With the 
introduction of non-spherical inclusions, random orientation of the particles is also relevant. 
Stiffness expressions are presented for including randomly oriented spheroidal inclusions.  The 
general two-phase Mori-Tanaka, described and analyzed in more detail in another recent FFI 
report, is included for comparison.  
 
The composite elastic stiffness calculated by the interphase model and the two-phase Mori-
Tanaka model is found to agree well for different spheroidal inclusion shapes and orientations.  
 
The composite stiffness calculations from using the interphase model are also compared with 
experimental data for two different nanocomposites. Based on a very brief and initial analysis, the 
model calculations are observed to agree well with the experimental data. Hence, the significant 
stiffness increase for some composites, especially for low volume fractions, may be explained by 
interphase effects.  A more thorough and detailed analysis than presented in this report can be 
found in a recent paper by the author (submitted to journal in March 2015). 
 
Future studies should consider other factors that will influence the composite elastic stiffness, as 
well as other particles, such as graphene. 
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Sammendrag 
Denne rapporten beskriver matematisk modellering av elastisk stivhet for nanokompositter, som i 
denne konteksten refererer til partikler av nanostørrelse som er inkludert i en polymermatrise, det 
vil si partikler der en av dimensjonene er i nanometer. Hovedmotivasjonen for dette arbeidet har 
vært å etablere matematiske modeller som kan benyttes for å beregne de elastiske egenskapene til 
ulike nanokompositter, som deretter kan inkluderes i en “modellverktøykasse” for fremtidige 
applikasjoner og for økt forståelse av denne typen materialer. Det er antatt at mikromekaniske 
modeller og kontinuummekanikk kan benyttes i modelleringen.   
 
Denne rapporten tar for seg en interfasemodell som er funnet i litteraturen. Interfasen er definert 
som et lag som omkranser partikkelen, med andre elastiske egenskaper enn matrisen (og 
partikkelen). Slike modeller kan benyttes for å beskrive endringer i polymerstrukturen som følge 
av inklusjonene, heftegenskapene mellom partikkel og matrise, så vel som økningen i stivhet for 
komposittet som en funksjon av partikkelvolumfraksjon. 
 
Det er kun sfæriske partikler som er inkludert i interfasemodellen. Utvidelser av modellen er 
derfor presentert, hvor også andre inklusjonsgeometrier ut over kuleformede er inkludert. Ved 
introduksjon av ikke-sfæriske partikler, er det også relevant å se på tilfeldig orientering av 
partikler. Uttrykk er derfor presentert, hvor vilkårlig orientering av partiklene er inkludert. Den 
generelle Mori-Tanaka-modellen, som er beskrevet og analysert in mer detalj i en annen FFI-
rapport, er tatt med for sammenlikning.   
 
Det er godt samsvar mellom den elastiske stivheten til komposittet beregnet ved bruk av 
interfasemodellen og to-fase Mori-Tanaka-modellen for ulike inklusjonsgeometrier og 
orienteringer. 
 
Stivhetsberegningene for interfasemodellen er også sammenliknet med eksperimentelle data for 
to ulike nanokompositter. Basert på en generell og initiell analyse, er det observert at 
beregningene samsvarer bra med eksperimentelle data. Den betydelige stivhetsøkningen for noen 
kompositter, spesielt for små volumefraksjoner, kan derfor beskrives ved interfaseeffekter. En 
mer grundig og detaljert analyse enn det som er presentert i denne rapporten er gitt i en 
journalartikkel av forfatteren (innsendt til tidsskrift i mars 2015). 
 
Fremtidige studier bør fokusere på andre faktorer som kan påvirke den elastiske stivheten til 
komposittet, så vel som andre partikler, slik som grafén. 
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1 Introduction 
The work presented in this report is a follow-up study of the work by Thorvaldsen [1], where 
different models for the elastic stiffness of nanocomposites based on the Mori-Tanaka method 
were described. This study considered different two-phase models, which included specialized 
expressions for given particle/matrix systems with a given spheroidal shape and orientation, but 
also a more general model that can be applied for all spheroidal shaped inclusions (i.e. spheres, 
oblate and prolate shaped). A set of assumptions were made for the modelling. First of all, all 
particles have a spheroidal shape and are aligned or randomly oriented. All fibre-like inclusions 
were assumed straight, i.e. no waviness was included. Moreover, a full load transfer between the 
particles and the surrounding matrix was assumed. Finally, the particles were presumed to be 
perfectly dispersed in the matrix, i.e. no voids or agglomerates were present in the matrix. This 
latter assumption was the main reason for restricting to two-phase composites. Another follow-up 
study by Thorvaldsen opened for a second inclusion phase, i.e. three-phase models [2]. In this 
study, the same assumptions were made, except that a second inclusion phase, i.e. voids, 
agglomerates or other particles, was included in the model expressions. In both previous studies, 
the model results were compared with experimental results, and it was concluded that a multi-
phase Mori-Tanaka based method, or other multi-phase models, may not be sufficient for 
describing all type of nanoparticle/polymer composites.  
 
Studies have shown that the particle interphase should be taken into account when establishing 
models for nanocomposites, see e.g. [3;4]. The interphase is defined as the layer surrounding the 
particles, see Figure 1.1. Depending on the binding between the particles and the matrix, which 
may be modified and altered, for example by functionalization or other surface treatment to the 
particles, see e.g. [5], the elastic properties of the non-bulk interphase region will vary. For 
example, from a recent study by Hseih et al. [6] it seems that the curing agent in the polymer 
system will influence on the toughness of the composite. This could again indicate that the elastic 
stiffness of the interphase region is depending on the curing agent, which moreover will influence 
on the binding between the particles and the matrix. The elastic properties of the interphase are 
thus generally different from the neat matrix.      
 
In this report, we consider mathematical models taking the particle interphase into account, and 
study and report how the interphase properties will affect the elastic stiffness of the 
nanocomposite. The study is restricted to one inclusion phase in the matrix.  Hence, no voids or 
agglomerates are assumed to be present in the composite. This study is also restricted to the case 
of constant thickness of the interphase, i.e. no variation of the interphase thickness as a function 
of volume fraction of the particles. Extending the model analysis to also include a variation in 
interphase thickness may be relevant, but will then include tuning of two parameters, i.e. the 
elastic stiffness of the interphase and its thickness; a recently submitted journal paper includes the 
interphase thickness factor variation [7]. The interphase model results are compared with the 
calculated elastic stiffness using the general two-phase Mori-Tanaka model, which has been 
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found from the two previous studies to be the most flexible and applicable model. The interphase 
model results are furthermore compared with available experimental data found in the literature. 

 
 
 
Odegard et al.  

2 Mathematical models 
In this section, models that take into account the interphase region in nanoparticle/polymer 
composites are presented. The interphase model for aligned spherical inclusions is taken from the 
literature. Due to restrictions of this model, modifications/extensions that include non-spherical 
inclusions are also presented, as well as composites with randomly oriented inclusions. 
 
For completeness and for comparison with the interphase models, the general Mori-Tanaka multi-
phase model, described in the two previous studies [1;2], is included also in this report.    

2.1 The general Mori-Tanaka model 

The general Mori-Tanaka model for a multi-phase composite with unidirectionally aligned 
inclusions can be expressed as 
 

−

=

−− − −

= = =

= +

    = + + = +    
    

∑

∑ ∑ ∑

1

0 0 0
1

11 1 1
dil

0 0 0 0 0 0
1 1 1

    

N

C r r r
r

N N N
dil dil

r r r r r r r r
r r r

C V C A V C A

V C V C A V I V A V C V C A A

 (2.1) 

 
  

Interphase
 

Particle 

Matrix 

Figure 1.1 Representative volume entity for a nanoparticle. The particle is surrounded by an 
interphase region, with different elastic properties compared to the neat matrix. 
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where in the above expressions 
 

dil 1 1
0[ ( )]r r r rA I S C C C− −= + −  (2.2) 

 
−−

=

 = +  
∑

11

0 0
1

N
dil

r r
r

A V I V A  (2.3) 

 
and  
 

dil
0r rA A A=  (2.4) 

 
For a two-phase composite, (2.1) this can be written as 
 

( )( )−= + +
1dildil

C m m p p p m p pC V C V C A V I V A  (2.5) 

 
where m  is the matrix phase and p  the inclusion phase. Furthermore, mV is the volume fraction 
of the matrix, pV is the volume fraction of the inclusions, mC is the stiffness matrix of the matrix, 

pC is the stiffness matrix of the inclusions, I the identity matrix and  

 
dil 1 1[ ( )]p p p m pA I S C C C− −= + −  (2.6) 

 
where pS is the Eshelby tensor for the inclusions [8;9]. Expressions for the Eshelby tensor for 

relevant inclusion geometries may be found in [1] and the references therein. 
 
The general Mori-Tanaka model for a multi-phase composite with randomly oriented inclusions 
can in a similar way be expressed as 
 

−− − −

= = =

    = + + = +    
    

∑ ∑ ∑
11 1 1

dil
, 0 0 0 0 0 0

1 1 1

{ } { }
N N N

dil dil
C random r r r r r r r r

r r r

C V C V C A V I V A V C V C A A  (2.7) 

 
where the curly brackets indicate orientationally averaging of all possible orientations, as 
described and showed in [3], and also [1]. The expression in (2.7) may for a two-phase composite 
be written as 
 

{ }( )( )−= + +
1dildil

C m m p p p m p pC V C V C A V I V A  (2.8) 
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2.2 The effective interphase model for spherical inclusions 

An effective interphase model has been presented by Odegard et al. [10;11] for composites with 
spherical inclusions. This model includes an interphase surrounding the nanoparticle. Note that 
Odegard et al. refer to their model as an “effective interface model”. To the author’s knowledge 
and understanding, the interface is the surface of the particle being in contact with the non-bulk 
matrix. The interphase, on the other hand, is the non-bulk matrix region, with a certain thickness 
surrounding the particle. This latter terminology is also in accordance with Fisher and Brinson 
[3], and will thus be employed in this report.   
 
A nanoparticle/polymer composite where the particles have a surrounding interphase region and a 
bulk matrix phase outside the interphase, can be expressed as, 
 

( )( ) ( ) ( ) −
   = + + − + − + +   

1

C m p i i m pi p p i p m p i piC C V V C C A V C C A V I V V A  (2.9) 

 
where in this case  
 

11( )p p p p m mA I S S C C C
−− = − + −   (2.10) 

 
and 
 

− −− −
     = − + − + + −    + +  

1 11 1( ) ( )p i
pi p p p m m p i m m

i p i p

V V
A I S S C C C S C C C

V V V V
 (2.11) 

 
In the same way as for the general two-phase Mori-Tanaka model above, m  indicates the matrix 
phase and p  the inclusion phase, whereas i  now indicates the interphase. Furthermore, mV is the 
volume fraction of the matrix, pV is the volume fraction of the inclusions, and iV is the volume 

fraction of the interphase. Moreover, mC is the stiffness matrix of the matrix, pC is the stiffness 

matrix of the inclusions, and iC is the stiffness matrix of the inclusions. Finally, I is the identity 
matrix and pS  is the Eshelby tensor of the particles, which in the model by Odegard et al. is said 

to be spherical. The Eshelby tensor may, however, easily be varied for different spheroidal 
shapes. 

2.3 An effective interphase model for randomly oriented inclusions 

The effective interphase model described in Section 2.2 only takes spherical particles into 
account. As a consequence of this, the particles can be considered as aligned. An extension of the 
model to also include randomly oriented inclusions with an interphase, and with spheroidal 
shapes different from spheres (i.e. prolate and oblate shape), will be presented here. The idea is 
that the same “averaging strategy”, as was applied for the general multi-phase Mori-Tanaka 
model for randomly oriented inclusions described in Section 2.1, can be applied for the interphase 
model. 
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By comparing the terms in the general multi-phase Mori-Tanaka model and the effective 
interphase model, we find the terms that need to be orientationally averaged. The composite 
stiffness for such a composite can then be expressed as, 
 

( ) ( ){ } ( ){ } ( ) −   = + + − + − + +  
1

C m p i i m pi p p i p m p i piC C V V C C A V C C A V I V V A  (2.12) 

 
where the curly brackets indicate the average of the quantity over all possible orientations. To the 
author’s knowledge, this model has not been published elsewhere. 
 
In the same way as reported for the general multi-phase Mori-Tanaka model for randomly 
oriented inclusions [1], the latter factor in the above expression, i.e. piA , is not averaged in case 

of spherical inclusions, but averaged for prolate and oblate spheroidal inclusions. As reported in 
[1], there is presently no full understanding of why this is required.  

3 Interphase volume fraction 
When considering a nanocomposite with an interphase region in addition to the particles and the 
neat polymer matrix, a re-calculation of the volume fractions of the composite must be 
performed. Instead of the two phases (matrix and particles), the total volume of the composite is 
now a sum of three volume fractions, that is  
 
= + +1 p i mV V V  (3.1) 

 
where, as in the expressions in the previous section, pV  is the volume fraction of the particles, iV  

is the volume fraction of the interphase, and mV  is the volume fraction of the neat matrix.  

 
The volume fraction of the interphase can be calculated from the volume of the composite. 

3.1 Spherical inclusions 

When assuming spherical shaped inclusions, the volume of the particle pv  and the interphase 

region iv  can be calculated from the general expression for the volume of a sphere: π= 34 3v r . 
Assuming now that the radius of the particle is pr , and that the interphase region has a radius that 

is n times the radius of the particle, the volume of the interphase can be calculated as 
 

π π π= − = − = −3 3 3 3 34 4 4
( ) ( 1) ( 1)

3 3 3i p p p pv nr r r n n v  (3.2) 

 
Hence, the volume of the interphase is 3( 1)n − times the volume of the particle. From this follows 
that the volume fraction of the interphase is 3( 1)n − times the volume fraction of the particles.  
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Employing (3.2), the volume fraction of the different constituent materials of the nanocomposite 
may then be expressed as 
 

= −

= − − − = −

3

3 3

( 1)

1 ( 1) 1

i p

m p p p

V n V

V n V V n V
 (3.3) 

 
The parameter n  will in the rest of this report be referred to as the interphase thickness factor. 

3.2 Spheroidal shaped inclusions 

In the same way as for the special case of spherical inclusions (where a b c= = ), the volume 
fraction of the interphase can be calculated for the other spheroidal shaped particles (i.e. oblate 
and prolate). Assuming that the half axis for the interphase region is n times the half axis of the 
particle, we end up with the same expressions as in (3.3). This should be quite accurate for most 
particles, maybe except for inclusions where c a b= .  

3.3 Fibre-like inclusions 

Fisher and Brinson [3] present a formula for calculating the interphase volume fraction for CNTs 
and other fibre-like particles. The expression is based on simple calculations of the volume of 
cylinders,  
 

3

2i p
p p

t tV V
r r

    
 = +           

 (3.4) 

 
In the above expression, t  denotes the thickness of the interphase region, whereas the rest of the 
parameters are defined earlier. Assuming, in the same way as in Section 3.1 and Section 3.2, that 
the interphase is n  times the particle radius, we end up with the same expression for the volume 
fraction of the interphase as in (3.3). 

4 Composite material systems 
Two different composite material systems will be applied for comparison of the model results in 
Section 5. The same material systems will be used in the comparison between model results and 
experimental data in Section 6. 
 
The material data for a nanoalumina/epoxy composite are taken from Johnsen et al. [12], and 
given in Table 4.1. The table also includes the elastic properties which are assumed and applied 
for the interphase. 
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Table 4.1 Material data for nanoalumina/epoxy composites [12]. 

Material parameter Unit Value Comment 
Matrix:    
Young’s modulus GPa 3.12  
Poisson’s ratio  0.35  
Alumina inclusion:    
Young’s modulus GPa 386  
Poisson’s ratio  0.22  
Interphase:    
Young’s modulus GPa 1.0-4.0 Varied 
Poisson’s ratio  0.35  
 
The material properties for a nanosilica/epoxy composite are taken from Johnsen et al. [13], and 
given in Table 4.2. In a similar way as for the first material system, the table also includes the 
elastic properties which are assumed and applied for the interphase. 
 

Table 4.2 Material properties for a nanosilica/epoxy composite.[13]. 

Material parameter Unit Value Comment 
Matrix:    
Young’s modulus GPa 2.96  
Poisson’s ratio  0.35  
Silica inclusion:    
Young’s modulus GPa 70  
Poisson’s ratio  0.20  
Interphase:    
Young’s modulus GPa 1.0-4.0 Varied 
Poisson’s ratio  0.35  

5 Comparison of model results 
For comparison of model results, that is, comparing the general multi-phase Mori-Tanaka model 
with the Odegard et al. interphase model, we use the material data for the  nanosilica/epoxy 
composite [13]. 

5.1 Spherical inclusions 

The interphase model, see Section 2.2, is established for composites with spherical particles. Our 
first test case is therefore analysis of this type of composites. Two model parameters are varied: 
1) The elastic stiffness of the interphase, and 2) the interphase thickness factor. 
 
First, the elastic stiffness of the interphase is set to 1.0 GPaiE = , which is much lower than the 

elastic stiffness of the neat polymer, whereas the interphase thickness factor is varied. As can be 



 
  
  
 

 14 FFI-rapport 2015/00608 

 

observed in Figure 5.1, the composite stiffness is reduced when increasing the interphase 
thickness factor. For a certain interphase thickness value, the composite elastic stiffness becomes 
lower than the neat polymer stiffness for all volume fractions. This is as expected, and can be 
explained by the volume fraction of the interphase. When the volume fraction of the interphase 
region becomes large, a larger volume fraction (of the matrix) has a lower stiffness than the neat 
matrix, resulting in reduced composite stiffness. For a given value of n , the entire matrix area is 
contained in the interphase region, and the composite stiffness is reduced below the bulk matrix 
stiffness – even for low particle concentrations. 
 
Since the interphase thickness factor is higher than 1.0 for all the displayed curves, the two-phase 
Mori-Tanaka model predicts a higher elastic stiffness than the interphase model. This is also as 
expected. Note that the composite stiffness obtained from the Mori-Tanaka model is equal to the 
stiffness obtained by setting 1.0n =  in the interphase model; the latter curve is not shown in this 
case. 

 

Figure 5.1 Composite elastic stiffness for a composite with spherical inclusions. The interphase 
elastic stiffness is set to 1.0 GPa, whereas the interphase thickness factor is varied. 

 
Second, the elastic stiffness of the interphase is set to 4.0 GPaiE = , which is higher than the 

elastic stiffness of the neat matrix, whereas the interphase thickness factor is varied. As shown in 
Figure 5.2, the composite stiffness is increased when increasing the interphase thickness factor. 
This is as expected. Following a similar argumentation as in the first case, when the volume 
fraction of the interphase region becomes larger, a larger volume fraction of the matrix has a 
higher stiffness than the neat matrix, resulting in a higher composite elastic stiffness.  
 
The two-phase Mori-Tanaka model predicts a lower elastic stiffness than the interphase model for 
all volume fractions. This is also as expected, because a composite with an interphase region with 
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a higher elastic stiffness will give a higher composite elastic stiffness compared to the case of no 
interphase region. Again, the composite stiffness obtained from the Mori-Tanaka model is equal 
to the stiffness obtained by setting 1.0n =  in the interphase model. 
 

 

Figure 5.2 Composite elastic stiffness for a composite with spherical inclusions. The interphase 
elastic stiffness is set to 4.0 GPa, whereas the interphase thickness factor is varied. 

5.2 Aligned prolate spheroidal inclusions 

To compare the two-phase Mori-Tanaka model and the interphase model for aligned particles, 
test cases are run for prolate (i.e. elongated) spheroidal shaped inclusions. As mentioned above, 
the Odegard et al. model only included spherical inclusions. Thus, this may be seen as an 
extension of their model, as well as a verification of the implemented code for other spheroidal 
shapes. 
 
In the same way as in Section 5.1, the interphase elastic stiffness and the interphase thickness 
factor is varied. For all cases the aspect ratio of the inclusions is set to 3α = . 
 
First, the elastic stiffness of the interphase is set to 1.0 GPaiE = , which is much lower than the 

elastic stiffness of the neat matrix, whereas the interphase thickness factor is varied. As can be 
observed in Figure 5.3, the composite stiffness is reduced for an increasing value of n . This is as 
expected. As for the case of spherical particles, a larger volume fraction of the matrix gets a lower 
stiffness than the bulk matrix when the interphase region is increased, and the composite stiffness 
is reduced. 
  
The Mori-Tanaka model predicts higher stiffness than the interphase model; the same curve is 
obtained by setting 1.0n =  in the interphase model. These results are also as expected. 
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Comparing the composite elastic stiffness obtained for the composite with prolate spheroidal 
inclusions with the corresponding composite with spherical inclusions (i.e. the first case in 
Section 5.1), we observe that the composite with prolate spheroidal inclusions have a higher 
elastic stiffness.  
 

 

Figure 5.3 Composite elastic stiffness for a composite with aligned prolate spheroidal 
inclusions. The interphase elastic stiffness is set to 1.0 GPa, whereas the interphase 
thickness factor is varied. 

 
Second, the elastic stiffness of the interphase is set to 4.0 GPaiE = , which is higher than the 

matrix bulk elastic stiffness, whereas the interphase thickness factor is varied. As is displayed in 
Figure 5.4, the composite stiffness is increased for increasing values of n . The same 
argumentation as in the previous cases applies: When the volume fraction of the interphase region 
becomes larger, a larger volume fraction of the matrix has a higher stiffness than the neat matrix, 
resulting in a higher composite elastic stiffness. This is as expected. Moreover, the Mori-Tanaka 
model predicts lower stiffness than the interphase model for all values.  
 
Comparing the composite elastic stiffness of the composite with prolate shaped inclusions with 
the corresponding composite with spherical particles (i.e. second case in Section 5.1), we observe 
that the composite with prolate spheroidal inclusions have a higher elastic stiffness.  
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Figure 5.4 Composite elastic stiffness for a composite with aligned prolate spheroidal 
inclusions. The interphase elastic stiffness is set to 4.0 GPa, whereas the interphase 
thickness factor is varied. 

5.3 Aligned oblate spheroidal inclusions 

Composites with aligned oblate (i.e. contracted) spheroidal inclusions are also considered. The 
calculated elastic stiffness for the two-phase Mori-Tanaka model and the interphase model is 
compared. As for the prolate inclusion case, this may be seen as an extension of the Odegard et 
al. model, as well as a verification of the implemented code for other spheroidal shaped 
inclusions different from spherical. 
 
The interphase elastic stiffness and the interphase thickness factor are varied. The aspect ratio of 
the inclusions is in this case set to 1 3α = . 

 
First, the elastic stiffness of the interphase is set to 1.0 GPaiE = , which is much lower than the 

matrix bulk elastic stiffness, whereas the interphase thickness factor is varied. 
 
As shown in Figure 5.5 , the elastic stiffness of the composite is reduced for increasing values of 
n . For a certain interphase thickness value, the composite elastic stiffness becomes lower than 
the neat polymer stiffness for all volume fractions. This is as expected, and can again be 
explained by the volume fraction of the interphase. Also, for a given value of n , the entire matrix 
area is included in the interphase region, and the composite stiffness is reduced below the bulk 
matrix stiffness – even for low particle concentrations. 
 
The Mori-Tanaka model predicts a higher stiffness than the interphase model for all values; the 
same stiffness curve is obtained by setting 1.0n =  for the interphase model.  
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When comparing the composite elastic stiffness of the composite to oblate shaped inclusions with 
the corresponding composite with spherical particles (i.e. first case in Section 5.1), we observe 
that the composite with oblate spheroidal inclusions have a lower elastic stiffness, which is as 
expected.  
 

 

Figure 5.5 Composite elastic stiffness for a composite with aligned oblate spheroidal inclusions. 
The interphase elastic stiffness is set to 1.0 GPa, whereas the interphase thickness 
factor is varied. 

 
Second, the elastic stiffness of the interphase is set to 4.0 GPaiE = , which is higher than the 

elastic stiffness of the neat matrix, whereas the interphase thickness factor is varied. As is 
observed in Figure 5.6, the composite elastic stiffness is increased for increasing values of n . The 
same argumentation as in the previous cases applies: When the volume fraction of the interphase 
region becomes larger, a larger volume fraction of the matrix has a higher stiffness than the neat 
matrix, resulting in a higher composite elastic stiffness.  This is as expected. Moreover, the Mori-
Tanaka model predicts lower stiffness than the interphase model for all values; the same stiffness 
is obtained by setting 1.0n =  in the interphase model.  
 
When comparing the composite elastic stiffness of the composite with oblate shaped inclusions 
with the corresponding composite with spherical particles (i.e. second case in Section 5.1), we 
observe that the composite with oblate spheroidal inclusions have a lower elastic stiffness. This is 
as expected. 
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Figure 5.6 Composite elastic stiffness for a composite with aligned oblate spheroidal inclusions. 
The interphase elastic stiffness is set to 4.0 GPa, whereas the interphase thickness 
factor is varied. 

5.4 Randomly oriented prolate spheroidal inclusions 

In this next test case, the composite elastic stiffness calculated for the two-phase Mori-Tanaka 
model and the interphase model is compared for a composite with randomly oriented prolate 
spheroidal inclusions. This case is an extension of the model presented by Odegard et al. [11], 
where the model expressions for the interphase model are presented in Section 2.3. 
 
As for the previous cases, the interphase elastic stiffness and the interphase thickness factor is 
varied. The aspect ratio of the inclusions is set to 3α = , which is the same value as employed for 
the corresponding composite with aligned inclusions described in Section 5.2. 
 
First, the elastic stiffness of the interphase is set to 1.0 GPaiE = , which is much lower than the 

elastic stiffness of the neat matrix, whereas the interphase thickness factor is varied. As shown in 
Figure 5.7, the elastic stiffness of the composite stiffness is decreasing for increasing values of n . 
For a certain interphase thickness value, the composite elastic stiffness becomes lower than the 
neat polymer stiffness for all volume fractions. This is as expected, and can be explained by the 
increasing volume fraction of the interphase. For a given value of n , the entire matrix area is 
included in the interphase region, and the composite stiffness is reduced below the bulk matrix 
stiffness – even for low particle concentrations. 
 
The Mori-Tanaka model predicts higher stiffness than the interphase model for all values, except 
for the case where 1.0n = . In this case the elastic stiffness calculated by the two models is very 
similar for volume fractions up to 0.2; the deviation is believed to be round-off errors in the 
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calculations. This indicates that the averaging strategy proposed for the interphase model is 
applicable. 
 

 

Figure 5.7 Composite elastic stiffness for a composite with randomly oriented prolate 
spheroidal inclusions. The interphase elastic stiffness is set to 1.0 GPa, whereas the 
interphase thickness factor is varied. 

 
Second, the elastic stiffness of the interphase is set to 4.0 GPaiE = , which is higher than the 

elastic stiffness of the neat matrix, whereas the interphase thickness factor is varied. As shown in 
Figure 5.8, the elastic stiffness of the composite is increased for increasing values of n . The same 
argumentation as in the previous cases applies: When the volume fraction of the interphase region 
becomes larger, a larger volume fraction of the matrix has a higher stiffness than the neat matrix, 
resulting in a higher composite elastic stiffness. This is as expected.  
 
The Mori-Tanaka model predicts lower stiffness than the interphase model. For the case of

1.0n =  in the interphase model, the elastic stiffness calculated by the two models is close to the 
same for volume fractions up to 0.2; the deviation is believed to be round-off errors in the 
calculations. Again, this indicated that the averaging strategy proposed for the interphase model is 
applicable. 
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Figure 5.8 Composite elastic stiffness for a composite with randomly oriented prolate 
spheroidal inclusions. The interphase elastic stiffness is set to 4.0 GPa, whereas the 
interphase thickness factor is varied. 

5.5 Random oriented oblate spheroidal inclusions 

The composite elastic stiffness calculated for the two-phase Mori-Tanaka model and the 
interphase model is next compared for a composite with randomly oriented oblate spheroidal 
inclusions. This case is an extension of the model presented by Odegard et al. [11], where the 
model expressions for the interphase model are presented in Section 2.3. 
 
As for the previous cases, the interphase elastic stiffness and the interphase thickness factor is 
varied. The aspect ratio of the inclusions is set to 1 / 3α = , which is the same value as employed 
for the corresponding composite with aligned oblate inclusions described in Section 5.2. With this 
aspect ratio, the elastic stiffness for the composite with random oriented oblate spheroidal shaped 
inclusions should be equal to the elastic stiffness of the composite with random oriented prolate 
spheroidal inclusions, see Section 5.4 (where the aspect ratio was set to 3α = ).  
 
First, the elastic stiffness of the interphase is set to 1.0 GPaiE = , which is much lower than the 

elastic stiffness of the neat matrix, whereas the interphase thickness factor is varied. As displayed 
in Figure 5.9, the elastic stiffness of the composite is decreasing for increasing values of  n . For a 
certain interphase thickness value, the composite elastic stiffness becomes lower than the neat 
polymer stiffness for all volume fractions. This is as expected, and can be explained by the 
increasing volume fraction of the interphase. For a given value of n , the entire matrix area is 
included in the interphase region, and the composite stiffness is reduced below the bulk matrix 
stiffness – even for low particle concentrations. 
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The Mori-Tanaka model predicts higher stiffness than the interphase model for all values, except 
for the case where 1.0n = . In this case the elastic stiffness calculated by the two models is close 
to the same for volume fractions up to 0.2, which also in this case indicates that the averaging 
strategy proposed for the interphase model is applicable. 
 
When comparing the calculated elastic stiffness for the composite with randomly oriented oblate 
spheroidal inclusions to the corresponding calculated stiffness for the composite with randomly 
oriented prolate spheroidal inclusions (see first case in Section 5.4), the results agree well. This is 
as expected. 
 

 

Figure 5.9 Composite elastic stiffness for a composite with randomly oriented oblate spheroidal 
inclusions. The interphase elastic stiffness is set to 1.0 GPa, whereas the interphase 
thickness factor is varied.  

 
Second, the elastic stiffness of the interphase is set to 4.0 GPaiE = , which is higher than the 

elastic stiffness of the neat matrix, whereas the interphase thickness factor is varied. As shown in 
Figure 5.10, the elastic stiffness of the composite is increased for increasing values of n . The 
same argumentation as in the previous cases applies: When the volume fraction of the interphase 
region becomes larger, a larger volume fraction of the matrix has a higher stiffness than the neat 
matrix, resulting in a higher composite elastic stiffness. This is as expected.  
 
The Mori-Tanaka model predicts lower stiffness than the interphase model. For the case of

1.0n =  in the interphase model, the elastic stiffness calculated by the two models is close to the 
same for volume fractions up to 0.2, which indicated that the averaging strategy proposed for the 
interphase model is applicable. 
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When comparing the calculated elastic stiffness for the composite with randomly oriented oblate 
spheroidal inclusions to the corresponding calculated stiffness for the composite with randomly 
oriented prolate spheroidal inclusions (see second case in Section 5.4), the results agree well. This 
is as expected. 
 

 

Figure 5.10 Composite elastic stiffness for a composite with randomly oriented oblate spheroidal 
inclusions. The interphase elastic stiffness is set to 4.0 GPa, whereas the interphase 
thickness factor is varied. 

5.6 Two special cases 

Two special cases where the interphase model seems to calculate an unphysical stiffness should 
be noted. This is demonstrated for the composite with spherical inclusions, but this also yields for 
other spheroidal inclusions. 

5.6.1 Case 1: Zero stiffness at the interphase  

The general two-phase Mori-Tanaka model has been reported by Thorvaldsen [1] to work for 
composites with voids, i.e. an inclusion phase with zero stiffness. The elastic stiffness of the 
“composite” is then reduced, compared to the neat matrix stiffness. For the interphase model, a 
similar result should be obtained in the case where the interphase region has zero stiffness. In 
such a situation, the particles will not contribute to the composite stiffness, but still be part of the 
volume of the composite, i.e. a volume fraction higher than zero.  
 
Figure 5.11 displays the calculated elastic stiffness employing the interphase model for a 
composite with interphase elastic stiffness equal to zero. As can be observed in the figure, the 
interphase model calculates a stiffness increase in case of an interphase thickness factor value 
close to 1.0. For higher values of the interphase thickness factor, the elastic stiffness of the 
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composite is reduced. An interphase thickness factor of 1.45n =  in the interphase model, gives a 
composite stiffness which is close to the stiffness obtained from the two-phase Mori-Tanaka 
model. 
 
The interphase model generally calculates a composite stiffness that is unphysical and not 
according to other model calculations and experimental data. The interphase model should thus 
not be applied in this case, as it requires non-zero interphase stiffness.  
 

 

Figure 5.11 Elastic stiffness for a composite with voids. For the interphase model the interphase 
elastic stiffness is set to zero. 

5.6.2 Case 2: Interphase elastic stiffness equal to the neat matrix stiffness 

In the case where the interphase elastic stiffness is equal to the stiffness of the bulk matrix, no 
interphase is actually present in the composite. The calculated stiffness employing the interphase 
model should then be equal to the composite elastic stiffness obtained from the two-phase Mori-
Tanaka model. 
 
From considering the stiffness expression for the interphase model in (2.11) , we easily see that 
we end up with inverting a zero matrix in case i mC C= . The zero matrix is singular, and cannot 

be inverted. Hence, the interphase model is not applicable for this special case. 

6 Comparison with experimental results 
The purpose of this section is to make an initial and brief comparison between the calculated 
elastic stiffness and experimental data for some relevant nanocomposites. A more detailed and 
thorough analysis is found in [7]. For the two composite systems given in Section 4, stiffness data 
from experimental tests is available. 
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6.1 Alumina/epoxy composite 

6.1.1 Spherical inclusions 

Experimental data for spherical nanoalumina particles embedded in epoxy is given in Table 6.1. 
Two different techniques are applied for the dispersion of the particles, that is, horn sonication 
and bath sonication. Moreover, a silane (GPS) surface treatment is applied for improving the 
adhesion between the particles and the surrounding matrix. More details are found in [12]. The 
data set is very small, which means that it may be difficult to draw any conclusions on the 
agreement between the calculated elastic stiffness and the experimental values. However, 
improved understanding on the effect of alumina inclusions can be obtained. 
 

Table 6.1 Experimental results for the elastic properties of epoxy/alumina nanocomposites 
with spherical inclusions. The data are taken from [12]. 

Material type Sonication wt% Nominal Vf Tensile modulus, E (MPa) 
Epoxy N/A N/A 0.0 3.12 ± 0.11 
NT-50nm Bath 1.0 0.00350 3.15 ± 0.10 
NT-50nm Bath 4.0 0.01385 3.22 ± 0.13 
NT-50nm Horn 1.0 0.00345 3.40 ± 0.19 
NT-50nm Horn 2.9 0.01025 3.24 ± 0.070 
GPS-50nm Bath 3.0 0.01060 3.29 ± 0.13 
GPS-50nm Horn 1.0 0.00345 3.13 ± 0.06 
(NT= Not treated; GPS = silane treated) 
 
The magenta curve in Figure 6.1 gives the calculated elastic stiffness of the nanoalumina/epoxy 
composite with spherical inclusions, as a function of particle volume fraction, using the two-
phase Mori-Tanaka model. The other curves display the calculated composite elastic stiffness 
employing the interphase model, with interphase elastic stiffness of 4.0 GPa and varying value of 
the interphase thickness factor.   
 
As can be observed in the figure, there is good agreement between the model results and the 
experimental data in case of employing the bath sonication procedure for the untreated particles. 
In this case, the interphase thickness seems to be small, and do not significantly affect the 
composite stiffness. For the test specimen where the horn sonication procedure has been used, as 
well as the case of using bath sonication together with particle surface treatment, the interphase 
model with a higher interphase thickness factor value seems to better estimate the composite 
elastic stiffness. One explanation for the composite stiffness increase is that the GPS surface 
treatment actually improves the interphase properties. The reason for the stiffness improvement 
for the untreated particle case is more difficult to explain.  For the specimens where the GPS 
treated particles are dispersed using the horn sonication, the models overestimate the elastic 
stiffness of the composite.  
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Figure 6.1 Alumina/epoxy nanocomposite. Experimental data is taken from Johnsen et al. [12]. 

6.1.2 Fibre-like inclusions 

The experimental data for alumina whisker inclusions are shown in Table 6.2. In the same way as 
for the spherical particles, two different sonication techniques are applied. In this case, no surface 
treatment is applied for improving the adhesion between the particles and the surrounding matrix. 
In the same way as in [1], the aspect ratio is set to 20, which is chosen to get a best fit with the 
experimental data for the composite elastic stiffness calculated by the two-phase Mori-Tanaka 
model. In the same way as for the spherical alumina particles, more data is required before 
drawing any conclusions on the behaviour and properties of the nanocomposite. 
 

Table 6.2 Experimental results for the elastic properties of epoxy/alumina nanocomposites 
with fibre-like inclusions. The data are taken from [12]. 

Material type Sonication wt% Nominal Vf Tensile modulus, E 
Epoxy N/A N/A 0.0 3120 ± 110 
NT-wiskers Bath 0.1 0.00035 3310 ± 140 
NT-wiskers Bath 1.0 0.00350 3360 ± 110 
NT-wiskers Bath 3.0 0.01060 3450 ± 170 
NT-wiskers Bath 5.0 0.01730 3540 ± 130 
NT-wiskers Horn 0.1 0.00035 3210 ± 190 
NT-wiskers Horn 1.0 0.00345 3390 ± 120 
NT-wiskers Horn 2.9 0.01025 3360 ± 140 
(NT= Not treated) 
 
The calculated elastic stiffness is shown together with the experimental data in Figure 6.2. The 
calculated composite stiffness using the interphase model agrees very well with the stiffness 
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obtained from the two-phase Mori-Tanaka model in case of no interphase (i.e. 1.0n = ). For a 
composite with an interphase elastic stiffness higher than the neat matrix and an interphase 
thickness factor higher than 1.0, the calculated composite stiffness is increased compared to the 
bulk matrix. On the other hand, for a composite with an interphase elastic stiffness lower than the 
neat matrix and an interphase thickness factor higher than 1.0, the calculated composite stiffness 
is decreased compared to the neat matrix.  
 
As can also be observed in the figure, the model composite with improved properties for the 
interphase estimates a stiffness which is closer to the stiffness values obtained experimentally, but 
the interphase model is not able to estimate the significant stiffness improvements for very low 
particle volume fractions. Thus, the reason for this significant stiffness increase seems not to be 
due to interphase effects.  
 

 

Figure 6.2 Composite with randomly oriented alumina whiskers. The experimental data are 
taken from Johnsen et al. [12]. 

6.2 Nanosilica-epoxy composite with spherical particles 

Experimental results for the elastic stiffness of silica/epoxy nanocomposites are reported by 
Johnsen et al. [13]. The obtained elastic stiffness values for the nanocomposites with spherical 
nanosilica particles are given in Table 6.3. 
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Table 6.3 Experimental results for the elastic properties of silica/epoxy composites with 
spherical inclusions. The data are taken from[13]. 

Material type wt% Nominal Vf Tensile modulus, E (MPa) 
Epoxy N/A 0.0 2960 ± 200 
Nanosilica-epoxy 4.1 0.025 3200 ± 150 
Nanosilica-epoxy 7.8 0.049 3420 ± 180 
Nanosilica-epoxy 11.1 0.071 3570 ± 130 
Nanosilica-epoxy 14.8 0.096 3600 ±   50 
Nanosilica-epoxy 20.2 0.134 3850 ± 240 
 
The calculated composite elastic stiffness together with the experimental data is displayed in 
Figure 6.3. As can be observed, the interphase thickness seems to vary as a function of particle 
volume fraction in this case. For high volume fractions, the interphase does not seem to 
significantly influence the composite elastic stiffness. The calculated results for both the two-
phase Mori-Tanaka model and the interphase model with an interphase thickness close to 1.0 
agree well with the experimental data. For low volume fractions, on the other hand, the stiffness 
increase may be due to improved elastic properties of the interphase.  
 
Note, however, that the applied properties for the interphase may not be physically representative. 
This will, however, not be analysed further in this report. A more thorough discussion of the 
interphase stiffness properties and the interphase thickness factor is found in [7].  
 

 

Figure 6.3 Silica/epoxy composite. The experimental results are taken from Johnsen et al. [13]. 
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7 Summary 
In this report, the interphase model by Odegard et al. [11] for calculation of the elastic stiffness of 
composites is described. The interphase is defined as the layer surrounding the particle. The 
interphase has different elastic properties compared to the neat matrix (and the particle), and thus 
can be applied for describing changes in the polymer structure due to the inclusions, the bonding 
properties between the particle and the matrix, as well as the increased composite elastic stiffness. 
Only spherical particles are considered and included in the interphase model. Extensions of the 
Odegard et al. interphase model that include non-spherical spheroidal inclusions are therefore 
presented. With the introduction of non-spherical inclusions, random orientation of the particles is 
also relevant. Expressions are thus presented for randomly oriented spheroidal inclusions.  The 
general two-phase Mori-Tanaka, described and analysed in more detail in [1], is included for 
comparison.  
 
The composite elastic stiffness calculated by the interphase model and the two-phase Mori-
Tanaka model is found be agree well for different spheroidal inclusion shapes and orientations.  
 
The composite stiffness calculations from using the interphase model are also compared with 
experimental data for two different nanocomposites. Based on a very brief and initial analysis, the 
model calculations are observed to agree with the experimental data. The significant stiffness 
increase may be explained by interphase effects.  It seems, however, that the interphase thickness 
may be a function of the particle volume fraction. For high volume fractions an interphase 
thickness factor close to 1.0 makes the best fit with experimental data, meaning that the 
interphase does not significantly influence the composite stiffness. For low volume fractions a 
much higher interphase thickness value is required for the model calculations to agree with 
experimental data. In this latter case, the interphase effects are more significant.  
 
A more thorough and detailed analysis of the use of the general Mori-Tanaka  model and the 
interphase model, including a comparison with more experimental data, is found in [7]. Here, also 
a varying interphase thickness factor, as a function of particle volume fraction, is included in the 
models.  
 
Future work should consider other factors that will influence the composite elastic stiffness, as 
well as other inclusion materials than those included in the current study. Graphene (or graphene 
oxide) is one relevant type of particle. 
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Appendix A Model summary 
Table A.1 and Table A.2 give the Matlab file name for each of the implemented model, as well as 
reference to the paper and type of inclusion geometry. 
 
The Matlab codes for all models are given in Appendix B. 
 

Table A.1 Models for aligned inclusions. 

File name Reference Inclusion geometry 
Spherical Fibre-like Disc shaped 

interphase_1.m [11] X X X 
mori_tanaka_3.m [3;14;15] X X X 

 

Table A.2: Models for randomly oriented inclusions. 

File name Reference Inclusion geometry 
Spherical Fibre-like Disc shaped 

interphase_2.m [11] X X X 
mori_tanaka_6.m [3;14;15] X X X 
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Appendix B Matlab code 

B.1 General Mori-Tanaka model for aligned inclusions 

% Mori-Tanaka – general model 

% File name: “mori_tanaka_3.m” 

% Generally: Model N-1 spheroidal shaped inclusions in an isotropic 

matrix 

% This case: One type of isotropic inclusion 

% Three geometries: 

% 1) aligned spherical inclusions 

% 2) aligned fibre-like inclusions with aspect ratio 

% 3) aligned disc-shaped inclusion with aspect ratio 

% 

% Author: Tom Thorvaldsen, FFI, March 2014 

   

% Elastic properties - matrix 

E_0 = 2.96  

nu_0 = 0.35 

 

C = zeros (6,6); 

const = (E_0*(1-nu_0))/((1+nu_0)*(1-2*nu_0)); 

C(1,1) = const; 

C(1,2)= const*(nu_0/(1-nu_0)); 

C(1,3)= const*(nu_0/(1-nu_0)); 

C(2,1) = C(1,2); 

C(2,2) = const; 

C(2,3) = const*(nu_0/(1-nu_0)); 

C(3,1) = C(1,3); 

C(3,2) = C(2,3); 

C(3,3) = const; 

C(4,4) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C(5,5) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C(6,6) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C; 

 

% Elastic properties - inclusion 

E_i = 70  

nu_i = 0.20 

 

D = zeros (6,6); 

const = (E_i*(1-nu_i))/((1+nu_i)*(1-2*nu_i)); 

D(1,1) = const;   

D(1,2)= const*(nu_i/(1-nu_i)); 
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D(1,3)= const*(nu_i/(1-nu_i)); 

D(2,1) = D(1,2); 

D(2,2) = const; 

D(2,3) = const*(nu_i/(1-nu_i)); 

D(3,1) = D(1,3); 

D(3,2) = D(2,3); 

D(3,3) = const; 

D(4,4) = const*((1-2*nu_i)/(2*(1-nu_i))); 

D(5,5) = const*((1-2*nu_i)/(2*(1-nu_i))); 

D(6,6) = const*((1-2*nu_i)/(2*(1-nu_i))); 

D; 

 

% Geometry: 

geom = 1  % spherical inclusions 

%geom = 2  % fibre-like inclusions 

%geom = 3  % disc shaped inclusions 

 

if (geom == 1) 

  % Spherical inclusions: 

  S_1111 = (7-5*nu_0)/(15*(1-nu_0));  

  S_2222 = S_1111 

  S_3333 = S_1111 

  S_1122 = (5*nu_0-1)/(15*(1-nu_0)); 

  S_1133 = S_1122 

  S_2211 = S_1122 

  S_2233 = S_1122 

  S_3311 = S_1122 

  S_3322 = S_1122 

  S_1212 = (4-5*nu_0)/(15*(1-nu_0))  

  S_1221 = S_1212 

  S_2323 = S_1212 

  S_2332 = S_1212 

  S_3131 = S_1212 

  S_3113 = S_1212 

   

elseif (geom == 2) 

  % Fiber-like inclusions: 

  l = 1000       % fibre length 

  d = 1       % fibre diameter 

  a = l/d     % aspect ratio 

  a2 = power(a,2.0) 

  g = (a/power(a2-1,1.5))*(a*sqrt(a2-1)-acosh(a)) 

  b = 1/(1-nu_0) 
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  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  S_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g) 

  S_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  S_3333 = S_2222; 

  S_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  S_3322 = S_2233; 

  S_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  S_3311 = S_2211; 

  S_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  S_1133 = S_1122; 

  S_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  S_3232 = S_2323; 

  S_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  S_1313 = S_1212; 

  S_3131 = S_1313; 

 

elseif (geom == 3) 

  % Disc-shaped inclusions 

  l = 0.5       % fibre length 

  d = 1       % fibre diameter 

  a = l/d     % aspect ratio 

  a2 = power(a,2.0) 

  g = (a/power(1-a2,1.5))*(acos(a)-a*sqrt(1-a2)) 

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  S_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g); 

  S_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  S_3333 = S_2222; 

  S_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  S_3322 = S_2233; 

  S_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  S_3311 = S_2211; 

  S_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  S_1133 = S_1122; 

  S_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  S_3232 = S_2323; 

  S_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  S_1313 = S_1212; 

  S_3131 = S_1313; 
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end  

 

% Eshelby tensor (using engineering strains) 

S = zeros(6,6); 

 

% Matrix form: 

S(1,1) = S_1111; 

S(1,2) = S_1122; 

S(1,3) = S_1133; 

S(2,1) = S_2211; 

S(2,2) = S_2222; 

S(2,3) = S_2233; 

S(3,1) = S_3311; 

S(3,2) = S_3322; 

S(3,3) = S_3333; 

S(4,4) = 2*S_1212; 

S(5,5) = 2*S_2323; 

S(6,6) = 2*S_3131; 

S; 

 

% Dilute matrix 

I = zeros(6,6); 

I(1,1) = 1.0; 

I(2,2) = 1.0; 

I(3,3) = 1.0; 

I(4,4) = 1.0; 

I(5,5) = 1.0; 

I(6,6) = 1.0; 

I; 

 

A_dil = inv(I+S*inv(C)*(D-C)) 

Vf = 0.0:0.001:0.2;  

 

for i =1:length(Vf)  

  V0 =(1-Vf(i));  

  A_0 = inv(V0*I + Vf(i)*A_dil);  

  A_r = A_dil*A_0; 

  C_comp = V0*C*A_0 + Vf(i)*D*A_r 

   

  % Calculating the composite elastic stiffness 

  if (geom == 1) 

    % Isotropic material properties 

    nu_c = C_comp(1,2)/(C_comp(1,1)+C_comp(1,2)); 
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    E_c  = 2*C_comp(4,4)*(1+nu_c); 

    E_11(i) = E_c/E_0; 

  elseif (geom == 2) 

    % Transversely isotropic proerties 

    S_comp = inv(C_comp); 

    E_11(i) = 1/(S_comp(1,1)*E_0); 

  elseif (geom == 3) 

    % Transversely isotropic proerties 

    S_comp = inv(C_comp); 

    E_11(i) = 1/(S_comp(1,1)*E_0); 

  end 

end 

 

if (geom ==1) 

  plot(Vf,E_11,'b') 

elseif (geom == 2) 

  plot(Vf,E_11,'c') 

elseif (geom == 3) 

  plot(Vf,E_11, 'r') 

end 

xlabel ('V_f') 

ylabel('E_{comp}/E_m') 

B.2 Interphase model for aligned inclusions 

% Interphase model 

% File name: “interphase_1.m” 

% Generally: One type of isotropic inclusion with interface 

% Three geometries: 

% 1) aligned spherical inclusions 

% 2) aligned fiber-like inclusions with aspect ratio 

% 3) aligned disc-shaped inclusion with aspect ratio 

% 

% Author: Tom Thorvaldsen, FFI, January 2014 

  

% Elastic properties – bulk matrix 

E_0 = 3.0; % GPa 

nu_0 = 0.35; 

 

C = zeros (6,6); 

const = (E_0*(1-nu_0))/((1+nu_0)*(1-2*nu_0)); 

C(1,1) = const; 

C(1,2)= const*(nu_0/(1-nu_0)); 

C(1,3)= const*(nu_0/(1-nu_0)); 
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C(2,1) = C(1,2); 

C(2,2) = const; 

C(2,3) = const*(nu_0/(1-nu_0)); 

C(3,1) = C(1,3); 

C(3,2) = C(2,3); 

C(3,3) = const; 

C(4,4) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C(5,5) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C(6,6) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C; 

 

% Elastic properties - particle inclusion 

E_p = 70 %GPa ; 

nu_p = 0.20; 

 

D = zeros (6,6); 

const = (E_p*(1-nu_p))/((1+nu_p)*(1-2*nu_p)); 

D(1,1) = const;   

D(1,2)= const*(nu_p/(1-nu_p)); 

D(1,3)= const*(nu_p/(1-nu_p)); 

D(2,1) = D(1,2); 

D(2,2) = const; 

D(2,3) = const*(nu_p/(1-nu_p)); 

D(3,1) = D(1,3); 

D(3,2) = D(2,3); 

D(3,3) = const; 

D(4,4) = const*((1-2*nu_p)/(2*(1-nu_p))); 

D(5,5) = const*((1-2*nu_p)/(2*(1-nu_p))); 

D(6,6) = const*((1-2*nu_p)/(2*(1-nu_p))); 

D; 

 

% Elastic properties  - interface 

E_i = 4.0; %GPa 

nu_i = 0.35;  

 

H = zeros (6,6); 

const = (E_i*(1-nu_i))/((1+nu_i)*(1-2*nu_i)); 

H(1,1) = const;   

H(1,2)= const*(nu_i/(1-nu_i)); 

H(1,3)= const*(nu_i/(1-nu_i)); 

H(2,1) = H(1,2); 

H(2,2) = const; 

H(2,3) = const*(nu_i/(1-nu_i)); 
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H(3,1) = H(1,3); 

H(3,2) = H(2,3); 

H(3,3) = const; 

H(4,4) = const*((1-2*nu_i)/(2*(1-nu_i))); 

H(5,5) = const*((1-2*nu_i)/(2*(1-nu_i))); 

H(6,6) = const*((1-2*nu_i)/(2*(1-nu_i))); 

H; 

 

% Geometry: 

geom = 1  % spherical inclusions 

%geom = 2  % fiber-like inclusions 

%geom = 3  % disc-shaped inclusions 

 

if (geom == 1) 

  % Spherical inclusions: 

  S_1111 = (7-5*nu_0)/(15*(1-nu_0));  

  S_2222 = S_1111; 

  S_3333 = S_1111; 

  S_1122 = (5*nu_0-1)/(15*(1-nu_0)); 

  S_1133 = S_1122; 

  S_2211 = S_1122; 

  S_2233 = S_1122; 

  S_3311 = S_1122; 

  S_3322 = S_1122; 

  S_1212 = (4-5*nu_0)/(15*(1-nu_0));  

  S_1221 = S_1212; 

  S_2323 = S_1212; 

  S_2332 = S_1212; 

  S_3131 = S_1212; 

  S_3113 = S_1212; 

   

elseif (geom == 2) 

  % Fiber-like inclusions: 

  l = 3       % fibre length 

  d = 1       % fibre diameter 

  a = l/d     % aspect ratio 

  a2 = power(a,2.0) 

  g = (a/power(a2-1,1.5))*(a*sqrt(a2-1)-acosh(a)) 

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  S_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g) 
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  S_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  S_3333 = S_2222; 

  S_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  S_3322 = S_2233; 

  S_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  S_3311 = S_2211; 

  S_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  S_1133 = S_1122; 

  S_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  S_3232 = S_2323; 

  S_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  S_1313 = S_1212; 

  S_3131 = S_1313; 

 

elseif (geom == 3) 

  % Disc-shaped inclusions 

  l = 1       % fibre length 

  d = 3       % fibre diameter 

  a = l/d     % aspect ratio 

  a2 = power(a,2.0) 

  g = (a/power(1-a2,1.5))*(acos(a)-a*sqrt(1-a2)) 

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  S_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g); 

  S_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  S_3333 = S_2222; 

  S_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  S_3322 = S_2233; 

  S_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  S_3311 = S_2211; 

  S_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  S_1133 = S_1122; 

  S_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  S_3232 = S_2323; 

  S_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  S_1313 = S_1212; 

  S_3131 = S_1313; 

end  

 

% Eshelby tensor (using engineering strains) 

S = zeros(6,6); 
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% Matrix form: 

S(1,1) = S_1111; 

S(1,2) = S_1122; 

S(1,3) = S_1133; 

S(2,1) = S_2211; 

S(2,2) = S_2222; 

S(2,3) = S_2233; 

S(3,1) = S_3311; 

S(3,2) = S_3322; 

S(3,3) = S_3333; 

S(4,4) = 2*S_1212; 

S(5,5) = 2*S_2323; 

S(6,6) = 2*S_3131; 

S; 

 

% Dilute matrix 

I = zeros(6,6); 

I(1,1) = 1.0; 

I(2,2) = 1.0; 

I(3,3) = 1.0; 

I(4,4) = 1.0; 

I(5,5) = 1.0; 

I(6,6) = 1.0; 

I; 

 

J = inv(S+inv(D-C)*C) 

K = inv(S+inv(H-C)*C) 

A_p = I-S*J 

 

n = 1.5  % Size of interphase; r_i = n*r_p 

Vf = 0.0:0.001:0.20;   

E_11(1) = 1.0 % to avoid dividing on zero in the expressions in the for-

loop 

 

for j =2:length(Vf) 

  Vi = (n^3-1)*Vf(j)  % volume fraction of the interface; function of Vf 

  V0 =(1-Vf(j)-Vi); 

  if (V0>=0.0) 

    A_pi = I-S*((Vf(j)/(Vf(j)+Vi))*J+(Vi/(Vf(j)+Vi))*K) 

    C_comp = C +((Vf(j)+Vi)*(H-C)*A_pi+Vf(j)*(D-H)*A_p)*inv(V0*I... 

 +(Vf(j)+Vi)*A_pi) 

     

    if (geom == 1) 
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      % Isotropic material properties 

      nu_c = C_comp(1,2)/(C_comp(1,1)+C_comp(1,2)); 

      E_c  = 2*C_comp(4,4)*(1+nu_c); 

      E_11(j) = E_c/E_0; 

    elseif (geom == 2) 

      % Transversely isotropic properties 

      S_comp = inv(C_comp); 

      E_11(j) = 1/(S_comp(1,1)*E_0); 

    elseif (geom == 3) 

      % Transversely isotropic properties 

      S_comp = inv(C_comp); 

      E_11(j) = 1/(S_comp(1,1)*E_0); 

    end 

  else 

    E_11(j)=0.0; 

  end 

end 

 

if (geom ==1) 

  plot(Vf,E_11,'b') 

elseif (geom == 2) 

  plot(Vf,E_11,'g') 

elseif (geom == 3) 

  plot(Vf,E_11, 'g') 

end 

xlabel ('V_f') 

ylabel('E_{comp}/E_m') 

B.3 General Mori-Tanaka model for randomly oriented inclusions 

% Mori-Tanaka – general model 

% File name: “mori_tanaka_6.m” 

% Generally: Model N-1 spheroid shaped inclusions in an  

% isotropic matrix 

% This case: One type of isotropic inclusion 

% Three geometries: 

% 1) random spherical inclusions 

% 2) random fibre-like inclusions with aspect ratio 

% 3) random disc-shaped inclusion with aspect ratio 

% 

% Author: Tom Thorvaldsen, FFI, March 2014 

   

% Elastic parameters - matrix 

E_0 = 3.12 
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nu_0 = 0.35 

 

C = zeros (6,6); 

const = (E_0*(1-nu_0))/((1+nu_0)*(1-2*nu_0)); 

C(1,1) = const; 

C(1,2)= const*(nu_0/(1-nu_0)); 

C(1,3)= const*(nu_0/(1-nu_0)); 

C(2,1) = C(1,2); 

C(2,2) = const; 

C(2,3) = const*(nu_0/(1-nu_0)); 

C(3,1) = C(1,3); 

C(3,2) = C(2,3); 

C(3,3) = const; 

C(4,4) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C(5,5) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C(6,6) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C; 

 

% Elastic parameters - inclusion 

E_i = 386 

nu_i = 0.22  

 

D = zeros (6,6); 

const = (E_i*(1-nu_i))/((1+nu_i)*(1-2*nu_i)); 

D(1,1) = const;   

D(1,2)= const*(nu_i/(1-nu_i)); 

D(1,3)= const*(nu_i/(1-nu_i)); 

D(2,1) = D(1,2); 

D(2,2) = const; 

D(2,3) = const*(nu_i/(1-nu_i)); 

D(3,1) = D(1,3); 

D(3,2) = D(2,3); 

D(3,3) = const; 

D(4,4) = const*((1-2*nu_i)/(2*(1-nu_i))); 

D(5,5) = const*((1-2*nu_i)/(2*(1-nu_i))); 

D(6,6) = const*((1-2*nu_i)/(2*(1-nu_i))); 

D; 

 

% Geometry: 

geom = 1  % spherical inclusions 

%geom = 2  % fibre-like inclusions 

%geom = 3  % disc-shaped inclusions 
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if (geom == 1) 

  % Spherical inclusions: 

  S_1111 = (7-5*nu_0)/(15*(1-nu_0));  

  S_2222 = S_1111 

  S_3333 = S_1111 

  S_1122 = (5*nu_0-1)/(15*(1-nu_0)); 

  S_1133 = S_1122 

  S_2211 = S_1122 

  S_2233 = S_1122 

  S_3311 = S_1122 

  S_3322 = S_1122 

  S_1212 = (4-5*nu_0)/(15*(1-nu_0))  

  S_1221 = S_1212 

  S_2323 = S_1212 

  S_2332 = S_1212 

  S_3131 = S_1212 

  S_3113 = S_1212 

   

elseif (geom == 2) 

  % Fiber-like inclusions: 

  l = 1000      % fibre length 

  d = 1       % fibre diameter 

  a = l/d     % aspect ratio   

  a2 = power(a,2.0) 

  g = (a/power(a2-1,1.5))*(a*sqrt(a2-1)-acosh(a)) 

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  S_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g) 

  S_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  S_3333 = S_2222; 

  S_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  S_3322 = S_2233; 

  S_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  S_3311 = S_2211; 

  S_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  S_1133 = S_1122; 

  S_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  S_3232 = S_2323; 

  S_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  S_1313 = S_1212; 

  S_3131 = S_1313; 
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elseif (geom == 3) 

  % Disc-shaped inclusions 

  l = 0.00005       % fibre length 

  d = 1       % fibre diameter 

  a = l/d     % aspect ratio 

  a2 = power(a,2.0) 

  g = (a/power(1-a2,1.5))*(acos(a)-a*sqrt(1-a2)) 

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  S_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g); 

  S_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  S_3333 = S_2222; 

  S_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  S_3322 = S_2233; 

  S_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  S_3311 = S_2211; 

  S_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  S_1133 = S_1122; 

  S_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  S_3232 = S_2323; 

  S_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  S_1313 = S_1212; 

  S_3131 = S_1313; 

end  

 

% Eshelby tensor (using engineering strains) 

S = zeros(6,6); 

% Matrix form: 

S(1,1) = S_1111; 

S(1,2) = S_1122; 

S(1,3) = S_1133; 

S(2,1) = S_2211; 

S(2,2) = S_2222; 

S(2,3) = S_2233; 

S(3,1) = S_3311; 

S(3,2) = S_3322; 

S(3,3) = S_3333; 

S(4,4) = 2*S_1212; 

S(5,5) = 2*S_2323; 

S(6,6) = 2*S_3131; 

S; 
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% Dilute matrix 

I = zeros(6,6); 

I(1,1) = 1.0; 

I(2,2) = 1.0; 

I(3,3) = 1.0; 

I(4,4) = 1.0; 

I(5,5) = 1.0; 

I(6,6) = 1.0; 

I; 

 

A_dil = inv(I+S*inv(C)*(D-C)) 

 

% Averaging matrix  

M =(1/120)*[24 64 0 16 16 0 0 0 0 0 0 64; 

  24 9 45 6 6 10 10 5 5 20 40 24; 

  24 9 45 6 6 10 10 5 5 20 40 24; 

  8 8 0 12 32 20 0 40 0 0 0 -32; 

  8 8 0 32 12 0 20 0 40 0 0 -32; 

  8 8 0 12 32 20 0 40 0 0 0 -32; 

  8 8 0 32 12 0 20 0 40 0 0 -32; 

  8 3 15 2 2 30 30 15 15 -20 -40 8; 

  8 3 15 2 2 30 30 15 15 -20 -40 8; 

  8 3 15 2 2 -10 -10 -5 -5 20 40 8; 

  8 8 0 -8 -8 0 0 0 0 40 20 28; 

  8 8 0 -8 -8 0 0 0 0 40 20 28] 

 

D_A_dil = D*A_dil 

 

% Averaging of D_A_dil 

D_A_dil_vec(1) = D_A_dil(1,1); 

D_A_dil_vec(2) = D_A_dil(2,2); 

D_A_dil_vec(3) = D_A_dil(3,3); 

D_A_dil_vec(4) = D_A_dil(1,2); 

D_A_dil_vec(5) = D_A_dil(2,1); 

D_A_dil_vec(6) = D_A_dil(1,3); 

D_A_dil_vec(7) = D_A_dil(3,1); 

D_A_dil_vec(8) = D_A_dil(2,3); 

D_A_dil_vec(9) = D_A_dil(3,2); 

D_A_dil_vec(10) = D_A_dil(4,4); 

D_A_dil_vec(11) = D_A_dil(5,5); 

D_A_dil_vec(12) = D_A_dil(6,6); 

 

D_A_dil_aver_vec = M*transpose(D_A_dil_vec); 
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D_A_dil_aver(1,1) = D_A_dil_aver_vec(1);  

D_A_dil_aver(2,2) = D_A_dil_aver_vec(2);  

D_A_dil_aver(3,3) = D_A_dil_aver_vec(3);  

D_A_dil_aver(1,2) = D_A_dil_aver_vec(4);  

D_A_dil_aver(2,1) = D_A_dil_aver_vec(5);  

D_A_dil_aver(1,3) = D_A_dil_aver_vec(6);  

D_A_dil_aver(3,1) = D_A_dil_aver_vec(7);  

D_A_dil_aver(2,3) = D_A_dil_aver_vec(8);  

D_A_dil_aver(3,2) = D_A_dil_aver_vec(9);  

D_A_dil_aver(4,4) = D_A_dil_aver_vec(10);  

D_A_dil_aver(5,5) = D_A_dil_aver_vec(11);  

D_A_dil_aver(6,6) = D_A_dil_aver_vec(12);  

D_A_dil_aver;   

     

% Averaging of A_dil 

A_dil_vec(1) = A_dil(1,1); 

A_dil_vec(2) = A_dil(2,2); 

A_dil_vec(3) = A_dil(3,3); 

A_dil_vec(4) = A_dil(1,2); 

A_dil_vec(5) = A_dil(2,1); 

A_dil_vec(6) = A_dil(1,3); 

A_dil_vec(7) = A_dil(3,1); 

A_dil_vec(8) = A_dil(2,3); 

A_dil_vec(9) = A_dil(3,2); 

A_dil_vec(10) = A_dil(4,4); 

A_dil_vec(11) = A_dil(5,5); 

A_dil_vec(12) = A_dil(6,6); 

  

A_dil_aver_vec = M*transpose(A_dil_vec); 

 

A_dil_aver(1,1) = A_dil_aver_vec(1);  

A_dil_aver(2,2) = A_dil_aver_vec(2);  

A_dil_aver(3,3) = A_dil_aver_vec(3);  

A_dil_aver(1,2) = A_dil_aver_vec(4);  

A_dil_aver(2,1) = A_dil_aver_vec(5);  

A_dil_aver(1,3) = A_dil_aver_vec(6);  

A_dil_aver(3,1) = A_dil_aver_vec(7);  

A_dil_aver(2,3) = A_dil_aver_vec(8);  

A_dil_aver(3,2) = A_dil_aver_vec(9);  

A_dil_aver(4,4) = A_dil_aver_vec(10);  

A_dil_aver(5,5) = A_dil_aver_vec(11);  

A_dil_aver(6,6) = A_dil_aver_vec(12);  

A_dil_aver;   
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Vf = 0.0:0.001:0.2;  

for i =1:length(Vf) 

  V0 =(1-Vf(i));  

  if (geom == 1) 

    A_0 = inv(V0*I + Vf(i)*A_dil);   % gives the correct spherical 

distr. 

  elseif (geom == 2) 

    A_0 = inv(V0*I + Vf(i)*A_dil_aver); % gives a transversely iso 

C_comp 

  elseif (geom == 3) 

    A_0 = inv(V0*I + Vf(i)*A_dil_aver); 

  end 

   

  C_comp = (V0*C + Vf(i)*D_A_dil_aver)*A_0 

 

  if (geom == 1) 

    % Isotropic material properties 

    nu_c = C_comp(1,2)/(C_comp(1,1)+C_comp(1,2)); 

    E_c  = 2*C_comp(4,4)*(1+nu_c); 

    E_11(i) = E_c/E_0; 

  elseif (geom == 2) 

    % Transversely isotropic properties 

    S_comp = inv(C_comp); 

    E_11(i) = 1/(S_comp(1,1)*E_0); 

  elseif (geom == 3)  

    % Transversely isotropic proerties% 

    S_comp = inv(C_comp); 

    E_11(i) = 1/(S_comp(1,1)*E_0); 

  end 

end 

 

if (geom ==1) 

  plot(Vf,E_11,'r') 

elseif (geom == 2) 

  plot(Vf,E_11, 'c') 

elseif (geom == 3) 

  plot(Vf,E_11, 'r--') 

end 

xlabel ('V_f') 

ylabel('E_{comp}/E_0') 
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B.4 Interphase model for random oriented inclusions 

% Interface model 

% File name: “interphase_2.m” 

% Generally: One type of isotropic inclusion with interface 

% Three geometries: 

% 1) random spherical inclusions 

% 2) random fiber-like inclusions with aspect ratio 

% 3) random disc-shaped inclusion with aspect ratio 

% Author: Tom Thorvaldsen, FFI, January 2014 

% Elastic properties – bulk matrix 

E_0 = 3.0; % GPa 

nu_0 = 0.35; 

 

C = zeros (6,6); 

const = (E_0*(1-nu_0))/((1+nu_0)*(1-2*nu_0)); 

C(1,1) = const; 

C(1,2)= const*(nu_0/(1-nu_0)); 

C(1,3)= const*(nu_0/(1-nu_0)); 

C(2,1) = C(1,2); 

C(2,2) = const; 

C(2,3) = const*(nu_0/(1-nu_0)); 

C(3,1) = C(1,3); 

C(3,2) = C(2,3); 

C(3,3) = const; 

C(4,4) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C(5,5) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C(6,6) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C; 

 

% Elastic propeties - particle inclusion 

E_p = 70; %GPa ; 

nu_p = 0.20; 

 

D = zeros (6,6); 

const = (E_p*(1-nu_p))/((1+nu_p)*(1-2*nu_p)); 

D(1,1) = const;   

D(1,2)= const*(nu_p/(1-nu_p)); 

D(1,3)= const*(nu_p/(1-nu_p)); 

D(2,1) = D(1,2); 

D(2,2) = const; 

D(2,3) = const*(nu_p/(1-nu_p)); 

D(3,1) = D(1,3); 

D(3,2) = D(2,3); 
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D(3,3) = const; 

D(4,4) = const*((1-2*nu_p)/(2*(1-nu_p))); 

D(5,5) = const*((1-2*nu_p)/(2*(1-nu_p))); 

D(6,6) = const*((1-2*nu_p)/(2*(1-nu_p))); 

D; 

 

% Elastic propeties  - interface 

E_i = 4.0 %386 %GPa ; 

nu_i = 0.35 % 0.22 % 0.2; 

 

H = zeros (6,6); 

const = (E_i*(1-nu_i))/((1+nu_i)*(1-2*nu_i)); 

H(1,1) = const;   

H(1,2)= const*(nu_i/(1-nu_i)); 

H(1,3)= const*(nu_i/(1-nu_i)); 

H(2,1) = H(1,2); 

H(2,2) = const; 

H(2,3) = const*(nu_i/(1-nu_i)); 

H(3,1) = H(1,3); 

H(3,2) = H(2,3); 

H(3,3) = const; 

H(4,4) = const*((1-2*nu_i)/(2*(1-nu_i))); 

H(5,5) = const*((1-2*nu_i)/(2*(1-nu_i))); 

H(6,6) = const*((1-2*nu_i)/(2*(1-nu_i))); 

H; 

 

% Geometry: 

%geom = 1  % spherical inclusions 

%geom = 2  % fiber-like inclusions 

geom = 3  % disc-shaped inclusions 

 

if (geom == 1) 

  % Spherical inclusions: 

  S_1111 = (7-5*nu_0)/(15*(1-nu_0));  

  S_2222 = S_1111; 

  S_3333 = S_1111; 

  S_1122 = (5*nu_0-1)/(15*(1-nu_0)); 

  S_1133 = S_1122; 

  S_2211 = S_1122; 

  S_2233 = S_1122; 

  S_3311 = S_1122; 

  S_3322 = S_1122; 

  S_1212 = (4-5*nu_0)/(15*(1-nu_0));  
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  S_1221 = S_1212; 

  S_2323 = S_1212; 

  S_2332 = S_1212; 

  S_3131 = S_1212; 

  S_3113 = S_1212; 

   

elseif (geom == 2) 

  % Fiber-like inclusions: 

  l = 3.0       % fibre length 

  d = 1.0       % fibre diameter 

  a = l/d     % aspect ratio 

  a2 = power(a,2.0) 

  g = (a/power(a2-1,1.5))*(a*sqrt(a2-1)-acosh(a)) 

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  S_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g) 

  S_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  S_3333 = S_2222; 

  S_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  S_3322 = S_2233; 

  S_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  S_3311 = S_2211; 

  S_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  S_1133 = S_1122; 

  S_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  S_3232 = S_2323; 

  S_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  S_1313 = S_1212; 

  S_3131 = S_1313; 

 

elseif (geom == 3) 

  % Disc-shaped inclusions 

  l = 1.0       % fibre length 

  d = 3.0       % fibre diameter 

  a = l/d     % aspect ratio 

  a2 = power(a,2.0) 

  g = (a/power(1-a2,1.5))*(acos(a)-a*sqrt(1-a2)) 

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 

  e = 1/(a2-1) 
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  S_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g); 

  S_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  S_3333 = S_2222; 

  S_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  S_3322 = S_2233; 

  S_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  S_3311 = S_2211; 

  S_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  S_1133 = S_1122; 

  S_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  S_3232 = S_2323; 

  S_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  S_1313 = S_1212; 

  S_3131 = S_1313; 

end  

 

% Eshelby tensor (using engineering strains) 

S = zeros(6,6); 

% Matrix form: 

S(1,1) = S_1111; 

S(1,2) = S_1122; 

S(1,3) = S_1133; 

S(2,1) = S_2211; 

S(2,2) = S_2222; 

S(2,3) = S_2233; 

S(3,1) = S_3311; 

S(3,2) = S_3322; 

S(3,3) = S_3333; 

S(4,4) = 2*S_1212; 

S(5,5) = 2*S_2323; 

S(6,6) = 2*S_3131; 

S; 

 

% Dilute matrix 

I = zeros(6,6); 

I(1,1) = 1.0; 

I(2,2) = 1.0; 

I(3,3) = 1.0; 

I(4,4) = 1.0; 

I(5,5) = 1.0; 

I(6,6) = 1.0; 

I; 
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J = inv(S+inv(D-C)*C) 

K = inv(S+inv(H-C)*C) 

 

A_p = I-S*J 

 

% Average matrix 

M =(1/120)*[24 64 0 16 16 0 0 0 0 0 0 64; 

  24 9 45 6 6 10 10 5 5 20 40 24; 

  24 9 45 6 6 10 10 5 5 20 40 24; 

  8 8 0 12 32 20 0 40 0 0 0 -32; 

  8 8 0 32 12 0 20 0 40 0 0 -32; 

  8 8 0 12 32 20 0 40 0 0 0 -32; 

  8 8 0 32 12 0 20 0 40 0 0 -32; 
  8 3 15 2 2 30 30 15 15 -20 -40 8; 

  8 3 15 2 2 30 30 15 15 -20 -40 8; 

  8 3 15 2 2 -10 -10 -5 -5 20 40 8; 

  8 8 0 -8 -8 0 0 0 0 40 20 28; 

  8 8 0 -8 -8 0 0 0 0 40 20 28] 

 

DH_Ap = (D-H)*A_p 

 

% Averaging of DH_Ap 

DH_Ap_vec(1) = DH_Ap(1,1); 

DH_Ap_vec(2) = DH_Ap(2,2); 

DH_Ap_vec(3) = DH_Ap(3,3); 

DH_Ap_vec(4) = DH_Ap(1,2); 

DH_Ap_vec(5) = DH_Ap(2,1); 

DH_Ap_vec(6) = DH_Ap(1,3); 

DH_Ap_vec(7) = DH_Ap(3,1); 

DH_Ap_vec(8) = DH_Ap(2,3);  

DH_Ap_vec(9) = DH_Ap(3,2); 

DH_Ap_vec(10) = DH_Ap(4,4); 

DH_Ap_vec(11) = DH_Ap(5,5); 

DH_Ap_vec(12) = DH_Ap(6,6); 

 

DH_Ap_aver_vec = M*transpose(DH_Ap_vec); 

 

DH_Ap_aver(1,1) = DH_Ap_aver_vec(1);  

DH_Ap_aver(2,2) = DH_Ap_aver_vec(2);  

DH_Ap_aver(3,3) = DH_Ap_aver_vec(3);  

DH_Ap_aver(1,2) = DH_Ap_aver_vec(4);  

DH_Ap_aver(2,1) = DH_Ap_aver_vec(5);  

DH_Ap_aver(1,3) = DH_Ap_aver_vec(6);  
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DH_Ap_aver(3,1) = DH_Ap_aver_vec(7);  

DH_Ap_aver(2,3) = DH_Ap_aver_vec(8);  

DH_Ap_aver(3,2) = DH_Ap_aver_vec(9);  

DH_Ap_aver(4,4) = DH_Ap_aver_vec(10);  

DH_Ap_aver(5,5) = DH_Ap_aver_vec(11);  

DH_Ap_aver(6,6) = DH_Ap_aver_vec(12);  

 

DH_Ap_aver;   

 

n = 1.5  % r_i = n*r_p 

Vf = 0.0:0.001:0.2;  

E_11(1) = 1.0 

 

for j =2:length(Vf) 

  Vi = (n^3-1)*Vf(j)  % volume fraction of the interface; function of Vf 

  V0 =(1-Vf(j)-Vi); 

  if (V0>=0.0) 

    A_pi = I-S*((Vf(j)/(Vf(j)+Vi))*J+(Vi/(Vf(j)+Vi))*K) 

 

    % Averaging of A_pi 

    Api_vec(1) = A_pi(1,1); 

    Api_vec(2) = A_pi(2,2); 

    Api_vec(3) = A_pi(3,3); 

    Api_vec(4) = A_pi(1,2); 

    Api_vec(5) = A_pi(2,1); 

    Api_vec(6) = A_pi(1,3); 

    Api_vec(7) = A_pi(3,1); 

    Api_vec(8) = A_pi(2,3);  

    Api_vec(9) = A_pi(3,2); 

    Api_vec(10) = A_pi(4,4); 

    Api_vec(11) = A_pi(5,5); 

    Api_vec(12) = A_pi(6,6); 

     

    Api_aver_vec = M*transpose(Api_vec); 

     

    Api_aver(1,1) = Api_aver_vec(1);  

    Api_aver(2,2) = Api_aver_vec(2);  

    Api_aver(3,3) = Api_aver_vec(3);  

    Api_aver(1,2) = Api_aver_vec(4);  

    Api_aver(2,1) = Api_aver_vec(5);  

    Api_aver(1,3) = Api_aver_vec(6);  

    Api_aver(3,1) = Api_aver_vec(7);  

    Api_aver(2,3) = Api_aver_vec(8);  
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    Api_aver(3,2) = Api_aver_vec(9);  

    Api_aver(4,4) = Api_aver_vec(10);  

    Api_aver(5,5) = Api_aver_vec(11);  

    Api_aver(6,6) = Api_aver_vec(12);  

    

    Api_aver; 

 

    % Averaging of HC_Api 

    HC_Api = (H-C)*A_pi 

     

    HC_Api_vec(1) = HC_Api(1,1); 

    HC_Api_vec(2) = HC_Api(2,2); 
    HC_Api_vec(3) = HC_Api(3,3); 
    HC_Api_vec(4) = HC_Api(1,2); 

    HC_Api_vec(5) = HC_Api(2,1); 

    HC_Api_vec(6) = HC_Api(1,3); 

    HC_Api_vec(7) = HC_Api(3,1); 

    HC_Api_vec(8) = HC_Api(2,3);  

    HC_Api_vec(9) = HC_Api(3,2); 

    HC_Api_vec(10) = HC_Api(4,4); 

    HC_Api_vec(11) = HC_Api(5,5); 

    HC_Api_vec(12) = HC_Api(6,6); 

     

    HC_Api_aver_vec = M*transpose(HC_Api_vec); 

    

    HC_Api_aver(1,1) = HC_Api_aver_vec(1);  

    HC_Api_aver(2,2) = HC_Api_aver_vec(2);  

    HC_Api_aver(3,3) = HC_Api_aver_vec(3);  

    HC_Api_aver(1,2) = HC_Api_aver_vec(4);  

    HC_Api_aver(2,1) = HC_Api_aver_vec(5);  

    HC_Api_aver(1,3) = HC_Api_aver_vec(6);  

    HC_Api_aver(3,1) = HC_Api_aver_vec(7);  

    HC_Api_aver(2,3) = HC_Api_aver_vec(8);  

    HC_Api_aver(3,2) = HC_Api_aver_vec(9);  

    HC_Api_aver(4,4) = HC_Api_aver_vec(10);  

    HC_Api_aver(5,5) = HC_Api_aver_vec(11);  

    HC_Api_aver(6,6) = HC_Api_aver_vec(12);  

     

    HC_Api_aver;  

     

    if (geom == 1) 

      A_0 = inv(V0*I+(Vf(j)+Vi)*A_pi);   % Gives the correct spherical 

distr. 
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    elseif (geom == 2) 

      A_0 = inv(V0*I+(Vf(j)+Vi)*Api_aver); % gives a transversely iso 

C_comp 

    elseif (geom == 3) 

      A_0 = inv(V0*I+(Vf(j)+Vi)*Api_aver); 

    end    

     

    C_comp = C +((Vf(j)+Vi)*HC_Api_aver+Vf(j)*DH_Ap_aver)*A_0 

     

    if (geom == 1) 

      % Isotropic material properties 

      nu_c = C_comp(1,2)/(C_comp(1,1)+C_comp(1,2)); 

      E_c  = 2*C_comp(4,4)*(1+nu_c); 

      E_11(j) = E_c/E_0; 

    elseif (geom == 2) 

      % Transversely isotropic properties 

      S_comp = inv(C_comp); 

      E_11(j) = 1/(S_comp(1,1)*E_0); 

    elseif (geom == 3) 

      % Transversely isotropic proerties 

      S_comp = inv(C_comp); 

      E_11(j) = 1/(S_comp(1,1)*E_0); 

    end 

  else 

    E_11(j)=0.0; 

  end 

end 

 

 

if (geom ==1) 

  plot(Vf,E_11,'c') 

elseif (geom == 2) 

  plot(Vf,E_11,'r') 

elseif (geom == 3) 

  plot(Vf,E_11, 'r') 

end 

xlabel ('V_f') 

ylabel('E_{comp}/E_m') 
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