

 FFI RAPPORT

 RAPID AUTODYN-3D PENETRATION
SIMULATIONS USING A VIRTUAL TARGET

 OLSEN Åge Andreas Falnes, TELAND Jan Arild

 FFI/RAPPORT-2002/00575

FFIBM/766/130

 Approved
 Kjeller 27. August 2002

 Bjarne Haugstad
 Director of Research

RAPID AUTODYN-3D PENETRATION
SIMULATIONS USING A VIRTUAL TARGET

OLSEN Åge Andreas Falnes, TELAND Jan Arild

FFI/RAPPORT-2002/00575

FORSVARETS FORSKNINGSINSTITUTT
Norwegian Defence Research Establishment
P O Box 25, NO-2027 Kjeller, Norway

 3

FORSVARETS FORSKNINGSINSTITUTT (FFI) UNCLASSIFIED
Norwegian Defence Research Establishment _______________________________

P O BOX 25 SECURITY CLASSIFICATION OF THIS PAGE
N0-2027 KJELLER, NORWAY (when data entered)
REPORT DOCUMENTATION PAGE
1) PUBL/REPORT NUMBER 2) SECURITY CLASSIFICATION 3) NUMBER OF

 FFI/RAPPORT-2002/00575 UNCLASSIFIED PAGES

1a) PROJECT REFERENCE 2a) DECLASSIFICATION/DOWNGRADING SCHEDULE 46
 FFIBM/766/130 -
4) TITLE

RAPID AUTODYN-3D PENETRATION SIMULATIONS USING A VIRTUAL TARGET

5) NAMES OF AUTHOR(S) IN FULL (surname first)

 OLSEN Åge Andreas Falnes, TELAND Jan Arild

6) DISTRIBUTION STATEMENT

 Approved for public release. Distribution unlimited. (Offentlig tilgjengelig)

7) INDEXING TERMS
 IN ENGLISH: IN NORWEGIAN:

 a) Autodyn a) Autodyn

 b) Cavity expansion b) Hulromsekspansjon

 c) User subroutines c) Brukersubrutiner

 d) Virtual target d) Virtuelt mål

 e) e)

THESAURUS REFERENCE:

8) ABSTRACT

By taking advantage of the possibilities for developing user subroutines in Autodyn-3D, we implement a method that
uses a virtual target to decrease runtimes for 3D problems by several orders of magnitude. The new method uses results
from analytical penetration theory based on cavity expansion to estimate the stress on the projectile. This eliminates the
need to model the target explicitly. In this way we combine the Autodyn user interface and computational algorithms
with analytical theory to create a very powerful tool.

9) DATE AUTHORIZED BY POSITION

 This page only
27. August 2002 Bjarne Haugstad Director of Research

ISBN-82-464-0762-7 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
(when data entered)

 5

CONTENTS
 Page

1 INTRODUCTION 7

2 PROJECTILE DEFINITION 8

3 TARGET DEFINITION 9

3.1 Input from the Autodyn menu system 9

3.2 Matlab preprocessor 10
3.2.1 Target material model 10
3.2.2 Target geometry 11
3.2.3 Wrap-up condition 12

3.3 Target orientation 13

4 THE MODIFIED AUTODYN PROGRAM 13

4.1 An overview of the program 13

4.2 The various subtasks 15
4.2.1 Normal vector 15
4.2.2 Normal velocity 15
4.2.3 Distance to a free surface 15
4.2.4 Cell position relative to target 17
4.2.5 Pressure in a semi-infinite target 17
4.2.6 Decay function 17
4.2.7 Final pressure 18

5 COMPARISON WITH EXPERIMENTS AND OTHER METHODS 19

5.1 Comparison with semi-analytic expressions for normal impact 19

5.2 Oblique impact 20

5.3 Perforation 23

6 CONCLUSION AND FURTHER WORK 24

A SOURCE CODE 25

A.1 Subroutine exstr 25

A.2 Subroutines exedit, exsave and exload 28

A.3 The subroutine exval 32

A.4 Sundry modules 34

A.5 Module maths_funcs2 35
A.5.1 real function surface_reduction 36
A.5.2 subroutine unit_normal 36
A.5.3 subroutine cube 37
A.5.4 subroutine perforation 38
A.5.5 subroutine cylinder 39

 6

A.5.6 subroutine sphere 40
A.5.7 real function normal_component 42
A.5.8 real function surface_area 42

A.6 The pressure subroutine 42

B COMPILATION AND LINKING 43

B.1 Makefile commands 43

B.2 The Makefile 44

 Distribution list 46

 7

RAPID AUTODYN-3D PENETRATION SIMULATIONS USING A VIRTUAL
TARGET

1 INTRODUCTION

3D hydrocode simulations of impact problems are extremely time consuming. Typical
runtimes for such simulations in Autodyn range from a couple of days to several weeks on our
current server (750 MHz processors) at FFI. The parallellisation feature in the most recent
version of Autodyn seems to reduce the problem with long runtimes. However, for parameter
sensitivity studies there is hardly any difference between running distinct simulations in
parallell on different processors, or running distinct simulations sequentially in parallell on
several processors. A tool that gives good results in a shorter time is therefore very much
desirable.

Recently, Warren and Poormon (1) presented a scheme which combines hydrocode
simulations with analytical expressions. In their approach, only the projectile was simulated
using a finite element code, whereas the target response was found from analytical expressions
and were implemented in the simulation as a pressure boundary condition on the projectile
surface (see Figure 1.1). In addition to reducing the number of cells in the simulations, this
approach also eliminates the need for a time consuming interaction logic between the projectile
and the target.

� � � �

Figure 1.1 The projectile is modelled using a finite element mesh, whereas the target is

modelled as a pressure boundary on the projectile surface elements.

Building on (1), we have implemented a similar scheme in the hydrocode Autodyn (2,3). User
subroutines were programmed in Fortran 90 to define the pressure boundary condition, and

 8

were linked with the Autodyn code through the standard Fortran 90 linker. In this way we
retained the Autodyn user interface, which saved us a significant amount of work compared
with creating our own hydrocode from scratch.

The new approach depends on the penetration model based on cavity expansion theory (4).
This theory is valid for undeformed penetrators, which means that in principle the new
approach is not applicable if the penetrator deforms significantly during the penetration
process. However, it is believed to work well even for situastions when the projectile body
bends, as long as there is no deformation of the nose.

This report explains how to use the extended Autodyn version as well as documenting the
implemented user subroutines. It is assumed that the reader has some familiarity with both
Fortran 90 and Autodyn. An elementary textbook may be useful as a reference for Fortran 90
illiterate readers.

2 PROJECTILE DEFINITION

After having started the extended Autodyn executable, the first step is to define the projectile
mesh, which is most conveniently done using the Lagrangian processor. The projectile can be
defined using two separate subgrids for the body and the nose, but it is quicker to use only one
subgrid, and restrict the ijk-range during nose definition. This also makes it easier to later
apply the pressure boundary condition to the surface cells, as one then gets away with only five
boundary-commands instead of nine for two subgrids.

The most efficient way to define the projectile is thus the following:

• Define the ijk-range in the normal way.
• Enter the Zoning—ijk-range command and redefine the ijk-range so that only the

upper k-range is used for zoning.
• Define the nose geometry within the redefined ijk-range.
• Redefine the ijk-range to include only the range that was not included in the nose

definition.
• Enter the Zoning—Generate—Block command, and define the projectile body.

After having defined the projectile subgrid, it only remains to fill it with some kind of material.
This is done in the usual way, except that the user is also prompted the following question:
“Use actual radius?”.

This refers to the projectile radius which is a factor in the analytical calculation. A more
detailed explanation will be given later, but basically reponding “no” means the radius of the
main body is used in the calculations, even at the nose, whereas “yes” implies that the smaller
radius at the projectile nose is accounted for (i.e. a radius is calculated for each cell).

 9

The radius is stored in the user variable var01, which before execution should be initialised
from the Autodyn menu Global—Options—UserVar. It is very important that the user
variable is assigned a non-zero value before the problem is run. If a *.000 file is loaded and ran
without entering the fill session to initialise var01, the variable will be assigned the value 0.
The calculations of distance involve division by this number, which will result in NaN (not-a-
number). The most likely outcome is then that the calculation apparently proceeds normally,
but without boundary effects being calculated. The result is thus a calculation for a semi-
infinite target.

3 TARGET DEFINITION

As mentioned, the target is not modelled explicitly in the new approach, but accounted for
through an analytical model. In this chapter we explain how to provide input for this analytical
model.

3.1 Input from the Autodyn menu system

The target is modelled through a so-called user stress boundary condition, which is defined by
selecting: Global – Boundary. As usual, the name of the boundary condition must first be
specified. However, unlike in normal Autodyn this name is not arbitrary as it will define the
target geometry. One of the reserved names shown in Table 3.1 must therefore be used.

Table 3.1 Boundary condition names and reserved user inputs.

Target geometry

Boundary condition name

Prism CUBE
Cylindrical target CYLINDER
Spherical target SPHERE
Infinite slab PERFORATE
Semi-infinite target Arbitrary (except for the above names)

Autodyn then asks for the type of boundary condition, where stress and then user must be
selected, after which Autodyn prompts for the values of five constants, named RBC(1) through
RBC(5). The constants RBC(1) through RBC(3) define the stress on a cell as a function of
velocity, while the two last constants are not used here. More details are given in Chapter
4.2.5.

After having defined the boundary conditions, the next step is to asssign them to the projectile
nose surface cells. This is done with the menu choice Subgrid – Boundary. The user can for
instance define one or more planes in the ijk-space. An example is shown in Figure 3.1 for an
ogive subgrid, where the boundary condition ”PERFORATE” has been defined on the five
planes i=1, j=1, i=imax, j=jmax and k=kmax, thereby covering the complete outer nose surface.

 10

� � � � � � � � 	 � �
 �

� � � � � � � �

Figure 3.1 The boundary condition ”PERFORATE” has been defined for the planes i=1,

j=1, i=imax, j=jmax and k=kmax on the ogive subgrid.

So far we have only defined the type of geometry for the target. It is also necessary to specify
the values that define the target in the coordinate system, e.g. the radius of a cylindrical target
and the position of the front face of the target. Such specifications are made using a Matlab
preprocessor described in the next section.

3.2 Matlab preprocessor

The Matlab preprocessor generates two input files called material_data.dat and geometry.dat,
which must be present in the Autodyn bin-directory during execution. It is, of course, also
possible to generate these files using a text editor.

It is very important to be aware that all input parameters must be given in the same units as
used in the relevant Autodyn model. Thus, if lengths are measured in centimeters, all
geometrical parameters must be given in centimeters etc.

3.2.1 Target material model

The first four target input parameters concern the target material model:

• Yield limit
• Shear modulus
• Young’s modulus
• Density

These variables are only used in the calculation of boundary effects. If an infinite target is
considered, the values of these variables are not used and it is sufficient to define RBC(1)-
RBC(3) in the Autodyn user interface.

 11

3.2.2 Target geometry

The next seven inputs deal with the target geometry:

• Radius
• Front coordinate
• Rear coordinate
• Top coordinate
• Bottom coordinate
• Left coordinate
• Right coordinate

The meaning of these input parameters depend on the target geometry, which was chosen by
the name of the boundary condition.

The simplest case is the sphere: radius is obviously the radius of the sphere, and the centre of
the sphere has the coordinates (left, top, front), i.e. x=left, y=top, and z=front.

The cylinder radius is obviously given by the radius constant. For a cylinder, the top and
bottom is defined by front and rear: zmin=front and zmax=rear. The axis is always along the z-
axis, with x=y=0. Figure 3.2 shows a sketch of a cylindrical target with the three required
constants.

�

� � � � � � � � � � � � � � � � � � �

�

�

�

Figure 3.2 Definition of a cylindrical target.

Finally, a prism is defined from six surface planes. Note that the radius parameter is not used
in this case and that the target does not have to be cubical (the name of the boundary condition
might then be slightly confusing). In Figure 3.3 an example of a prism target is shown. The
definition is straightforward as long as one remembers that the terms ”front”, ”rear”, ”left” and
so on, refer to a viewpoint at a z-value smaller than zmin. The side defined by ”left” will
therefore appear as the left side of the target, ”front” will appear as the front face, and so on.

 12

�

�

� � � � � � 	 � � � � � � � � � � 	 � � � �

� � � � � 	
 � � � � �

� � � � � 	 � � �

� � � � � 	 � � � �

� � � � � 	 � � � �

Figure 3.3 A prism with the 6 constants needed to define it.

3.2.3 Wrap-up condition

Finally, the last input lines in the preprocessor defines a wrap-up condition. It is possible to
specify one of four wrap-up conditions, three of which are non-standard and are probably only
useful in impact simulations. The conditions are as follows:

• kin.energy: wrap up when the kinetic energy is very small
• momentum: wrap up when the momentum is reversed
• on perf.: wrap up when the kinetic energy has ceased to change in time
• cycle: wrap-up when the simulation reaches a certain cycle

The kin.energy criterion is the following: If the initial kinetic energy is denoted Ki and the
present kinetic energy is denoted Kp, then the calculation ends when

p

i

K
r

K
<

where r is the value specified by the user.

The momentum criterion is similar. Letting pi and pp denote initial and present momentum, the
calculation wraps up at the condition

0≤⋅ pi pp .

The criterion on perf. is also a kinetic energy criterion. It works like this: let Kp be the present
kinetic energy again, and let Kp-1 be the kinetic energy in the previous “cycle”. Then the
simulation wraps up when

 13

r
K
K

p

p ≥
−1

Note that Kp-1 is not literally the kinetic energy in the previous cycle, but the kinetic energy the
last time exedit was called. The user sets the frequency at which this subroutine is called
from the menu selection Global—Edit—User.

The cycle criterion is obviously the maximum cycle number in the calculation. If a standard
Autodyn wrap-up criterion is desired, this can be achieved simply by never calling the
exedit subroutine except in cycle 0.

3.3 Target orientation

Since the target is not modelled explicitly, the target orientation is always fixed relative to the
Autodyn coordinate system with planes along the coordinate axes. In order to vary the impact,
yaw and pitch angles, the projectile must be moved about instead of the target.

4 THE MODIFIED AUTODYN PROGRAM

After having defined the simulation set-up according to the instructions in Chapters 2 and 3, it
is executed as a normal Autodyn simulation. In this chapter we explain how things actually
work internally in the extended Autodyn code. We will not be concerned with the source code
itself, but will rather examine the general idea, see how the calculations are divided into
subtasks, and explain how each of them are carried out.

4.1 An overview of the program

In Autodyn, the user subroutine exstr allows the user to define a pressure boundary. This
subroutine is called at every cycle in the computation for certain predefined cells, defined from
the Autodyn menu under Global—Subgrid—Boundary.

The pressure boundary condition is defined on the surface and Autodyn automatically
distributes it as a force on the four corner nodes of a cell face. The disturbance that results
from this pressure is then advanced through the subgrid in the normal way.

Figure 4.1 shows a sketch of the modified Autodyn program structure. The subroutine
exedit is called in the initialisation cycle (i.e. cycle 0), and a file containing initialisation
data is opened and read. Some simple preliminary calculations are then performed to convert
the input parameters into constants that are easier to work with internally.

The variables are stored in the modules savevar, geometry, static_constants and
constants_def. The use of modules is the only way to make the variables available to

 14

other subroutines. The final initialisations are executed from the exstr subroutine in cycle 1,
setting the variable that determines the type of boundary condition used. The initialisation data
are saved and loaded in the exsave and exload subroutines, respectively.

The essential part of the program is the calculation of the pressure boundary condition. The
pressure will be a function of the cell velocity, the distance to any free surfaces in the target,
and the diameter of the projectile. The task of finding this pressure is divided into seven
subtasks, each of which must be performed on all surface cells in every cycle.

� � � � � � � � � � � � � � �

� � � � � � �

� � � � 	 � � � � � � � 	

� � � � 	 � � � �

� � � � � � � � � 	

� � � � � � � � �

� � � � � �

� � � � � � � � 	

 � � � � � � � 	 � � � �

	 � �
 � � � � � � � � � � � � �

� � � � � � 	 � � � � �

� � � � � � 	 � � � � � �

 � � � � � � � 	 � � � � � � �

� � � � � � � 	 � � 	 � � � �

 � � � � 	 � � � 	 � � � � � �

� � � � � � � �

Figure 4.1 A coarse overview of the program.

The subtasks are as follows:

1. Calculate the outward pointing normal vector of the cell face
2. Calculate the node velocity in the direction of the normal vector for each of the four

corner nodes, and find the average value
3. Find the distance to any free surfaces in the target
4. Find the fraction of the cell inside the target
5. Calculate the pressure on the projectile in an infinite target
6. Use the results from the above computations to calculate the decay function
7. Find the final pressure

Most of these calculations are carried out using other subroutines and functions placed in
separate files or modules. In particular, the module math_funcs2 contains several functions
used to compute the normal vector, the decay function and so on.

In the remaining part of this chapter, each of the seven steps are explained in more detail. The
focus is on the algorithms, the theoretical background, and the problems we need to consider in
each step. The detailed source code can be found in Appendix A.

 15

4.2 The various subtasks

4.2.1 Normal vector

The normal vector of an element is found from a straightforward cross product between the
diagonals of the cell. However, care is required to make sure it points away from the projectile
surface. Therefore we have to take care of the order of the vectors as well as their directions.

The subroutine exstr is called with the ijk-indices of two diagonally opposite nodes. These
nodes define the surface that is subject to the pressure boundary. As an example, consider
Figure 4.2 which shows a cell surface. When exstr is called, the indices of the nodes (i1,j1)
and (i2,j2) are passed to the subroutine as formal parameters. Using this information we can
access the positions of each node via the xn, yn and zn-arrays, and once the positions are
known it is a simple task to find the diagonal vectors v1 and v2. Their direction is chosen with
care to eventually give a normal vector pointing away from the projectile.

 ! " # $

 ! " # ! $ " # !

 $ " # $

 !
 $

Figure 4.2 Cell face with either k=1 or k=kmax, viewed from outside the subgrid. The

vectors v1 and v2 are the diagonal vectors.

A normal vector n in the direction coming out of the plane is then:

12 vvn ×=

4.2.2 Normal velocity

Once we have calculated the normal vector, it is straightforward to find the normal velocity.
The inner product of the unit normal vector and the velocity vector for each node gives the
component of the node velocity vector along the normal vector. We then compute a cell
velocity by finding the mean velocity of the four corner nodes.

4.2.3 Distance to a free surface

The calculation of the distance between the projectile and the target boundary is actually less
trivial than it may seem initially. In fact, even the definition of distance to a free boundary is
not obvious, as shown in Figure 4.3.

 16

If we are to take the cavity expansion formalism literally, we should use the distance along the
projectile surface normal vector, which is the radius of the medium in which the “cavity”
expands. This method has been implemented in the present program. Another possibility is to
use the shortest distance to the surface. To implement this, only a trivial change in the source
code is needed.

�

Figure 4.3 The distance to a free boundary may be defined in many ways. In this figure the
two possibilites discussed in the text are shown.

A second issue is how to carry out the actual calculation. One possible method is to employ
basic geometry to find a mathematical expression for the distance to a free boundary. This
works well for simple geometries (objects consisting of one surface only, such as semi-infinite
targets), and if the distance we want to find is the shortest possible. However, the calculations
are more tedious for the implemented definition of d, whereas objects consisting of several
surfaces (such as cubes) complicate the programming enormously.

Instead we have implemented a binary search algorithm. In this case we define a cutoff
distance, beyond which it is known that boundary effects can safely be neglected. This
provides us with an interval which represents the search range. The following algorithm is
then applied:

1. Find the midpoint of the search range.
2. Check if this midpoint is inside or outside the target.
3. Redefine the search range: if the midpoint was inside the target, then use the upper

half of the search range and in the opposite case use the lower half of the search
range.

This procedure brings us closer and closer to the actual boundary, although it is never found
exactly. If we loop n times, the resulting value is accurate to within 1/2n-1 of the cutoff
distance. In the present version of the program we have used 100 projectile diameters as the
cutoff value. As an example, assume the diameter is 7.5 cm and that we loop 11 times. The
distance is then found to within

10

7.5 100 0.73
2

cm cm×
= .

 17

A higher accuracy can be obtained by increasing the number of iterations. Obviously, too
many iterations will increase the runtime, but provided the number of iterations is kept at a
reasonable level (i.e. between 10 and 20) the effect on the total runtime is small. In the current
subroutine a default value of 13 iterations is used. It is trivial to change the source code to
another number of iterations.

4.2.4 Cell position relative to target

When a projectile cell first enter the target, the pressure should be turned on gradually
depending on how far the cell has penetrated. This can be achieved by multiplying the
pressure with a factor depending on how much of the cell is inside the target. The simplest
factor is just the number of nodes inside the target divided by four, which is the approach used
in the current subroutine. This leads to a stepwise rise in the pressure, which should be a close
enough approximation.

Another possibility would have been to actually calculate the relative cell face area inside the
target. Although this gives a smooth transition between zero pressure and full pressure, it is a
much more involved method, which have therefore not yet been implemented.

4.2.5 Pressure in a semi-infinite target

In a wide range of cases, the cavity expansion theory gives the cavity pressure as a function of
expansion velocity as a quadratic velocity function:

() 2CvBvAvp ++= (4.1)

The constants A, B and C in this expression depend on material behaviour, and are the
constants input as RBC(1)-RBC(3). When applied to penetration problems, the expansion
velocity is taken as the normal component of the velocity vector. In many cases the linear
term is small and can be safely neglected.

4.2.6 Decay function

The decay function α(v,d) has a value between 0 and 1. It is calculated from cavity expansion
theory as the ratio between the radial stress in a finite and infinite medium. The function
depends on the distance d to the free boundaries, the projectile velocity, and possibly more
parameters.

We must emphasise that the decay function is usually not an exact solution, but an
approximation based on a simplified material model. Several alternative decay functions exist
depending on the approximation used. However, in practise the difference between the various
expressions is usually small. In our implementation we have used a dynamic expression
derived in (1). The various geometrical parameters are defined in Figure 4.4.

 18

�

� � � �

% � � � � � 	 � � � � � � �

� � � � � � 	 � � � � � � �

�
	

Figure 4.4 The physical problem in cavity expansion is to find the pressure at the cavity
surface (r=a) as the cavity expands, while boundary conditions apply at the
elastic-plastic boundary (r=b) and the elastic boundary (r=d).

For a plastic zone smaller than the target diameter, we have:

()

3 3 3 42

3 2

2 4ln 1 3
3 2

, , ,
2 31 ln
3 2

Y b b a v a a
a a d d d

d a v d b
Y b v

a

ρ

α
ρ

 + − + + − = ≥
 + +

 (4.2)

whereas when the whole target is plastic, we use

()

42

3 2

42 ln 3
2

, , ,
2 31 ln
3 2

d v a aY
a d d

d a v d b
Y b v

a

ρ

α
ρ

 + + − = <
 + +

 (4.3)

The elastic-plastic boundary is given by:

3

1
2

=

Y
G

a
b (4.4)

4.2.7 Final pressure

The final pressure is found by multiplying the semi-infinite resistive pressure described in
Chapter 4.2.5 with the decay function from Chapter 4.2.6:

 19

() () ()vpdvdvpred ,, α= (4.5)

Further details about the calculation of boundary effects can be found in (6).

5 COMPARISON WITH EXPERIMENTS AND OTHER METHODS

In this chapter we apply our method to several different situations. In addition to
demonstrating the capabilities of the approach, this enables us to check that the subroutine has
been correctly implemented.

First we look at the simple case of penetration into a semi-infinite target with no boundary
effects, and compare the results with the semi-analytical expressions from cavity expansion
theory. Then we compare with results of Warren and Poormon (1) for the case of oblique
impact and finally we look at some perforation experiments.

The projectile variables are explained in Figure 5.1.

�

$ �

Figure 5.1 Definition of the projectile dimensions.

5.1 Comparison with semi-analytic expressions for normal impact

We start by making a direct comparison with semi-analytical theory, in which case we would
expect to obtain the same result both from Autodyn and theory.

For this example we use projectile dimensions of L=50 mm, l=30 mm, mass=0.162 kg, and
2a=20 mm. The impact velocity was 400 m/s and the standard Autodyn Johnson-Cook library
4340 steel model was employed.

The target material was arbitrarily chosen, with material constants roughly corresponding to a
rather low-strength concrete of 48 MPa. The constants in the pressure function of Equation
(4.1) are calculated from an empirical formula by Forrestal (6):

 20

0,43

649.5
10

0

c
cA

B
C

σσ

ρ

−
 =

=
=

The final input values are given in Table 5.1. (Keep in mind that Autodyn units are mm, ms
and mg, so density is expressed in g/cm3 and stress in kPa):

Table 5.1 Material parameters for the concrete target.

Yield stress Y 236 MPa
Youngs modulus E 62.5 GPa
Poisson ratio 0.25
Density 2.44 g/cm3
RBC(1) 4.5·105
RBC(2) 0.0
RBC(3) 2.44
RBC(4) 0.0
RBC(5) 0.0

Note that since RBC(4) and RBC(5) are not used by Autodyn, we could have entered
whichever value we wanted for these parameters.

Mesh sensitivity was investigated by running two different simulations, one with a projectile
consisting of 640 cells and one with 12000 cells making up the projectile.

The Autodyn results are presented in Table 5.2 along with the result of an analytical
calculation. The small disagreement can be explained by the phase when a cell face is partly
embedded in the target. Notice that meshing appears to have no effect on the results, which is a
good sign.

Table 5.2 Penetration depths for three calculations.

Type of calculation Penetration depth
Analytical 100.1 mm
Simulation, 640 cells 100.8 mm
Simulation, 12000 cells 100.8 mm

5.2 Oblique impact

A more challenging problem is the oblique impact of a projectile on a target. This would
normally require a full 3D-simulation, which is very timeconsuming, and was part of the
original motivation for implementing the cavity expansion algorithm in Autodyn.
One specific situation has been studied carefully, both numerically and experimentally by
Warren and Poormon (1), using their own implementation of the cavity expansion algorithm in
a different code.

 21

A complete description of the simulations and experiments can be found in the original article,
but the basic details are included here for completeness. The dimensions of the projectile were
L=59.3 mm, l=11.8 mm, and 2a = 7.11 mm and it was modelled using a steel model that
differed slightly from the standard Autodyn Johnson-Cook model, one of the differences being
a higher value for the bulk and Young moduli and yield strength. Furthermore, a different
strain hardening model was applied:

n

p

pYY

1

0
0 1

+=

ε
ε

where Y is the yield stress, Y0 is the initial yield stress (or input yield stress), εp is the effective
plastic strain, and εp0 and n are input constants. This has been implemented in Autodyn using
the subroutine exyld. Table 5.3 shows the input data used in the simulations.

Table 5.3 Input material data for the steel model.

Material model: Von mises plasticity with strain dependence in subroutine exyld
Density 8025 kg/m3
Bulk modulus 206 GPa
Shear modulus 76 GPa
Yield stress Y0 1.481 GPa
 n 25.0
 εp0 7.189·10-3

The projectile body did bend during the penetration process, which means that it was not rigid
and in principle CET theory was not valid. However, since the nose remained undeformed at
all times, this was not expected to be a serious problem.

The target was a 6061-T6511 aluminium cylinder. Using the material model in (1), we have

(1) 5.0394RBC Y= , (2) 0.983RBC Yρ= and (3) 0.9402RBC ρ= . Table 5.4 shows the input
values used.

Table 5.4 Material parameters for the aluminium target

Yield stress Y 276 MPa
Youngs modulus E 69 GPa
Poisson ratio 0.33
Density 2.71 gc/m3
RBC(1) 1.3909·106
RBC(2) 8.5014·102
RBC(3) 2.5479
RBC(4) 0,0
RBC(5) 0,0

Four simulations were selected for comparison. Unfortunately, Warren and Poormon had used
a target geometry consisting of a “skewed” cylinder, which was impossible to model with our
current implementation of the user subroutine. Instead we used a cylinder target with a radius
of 254 mm and a length of 217 mm. Since this is not exactly the same as Warren and

 22

Poormon, we would not expect to exactly reproduce their results, although they ought to be
quite similar. The various results are presented in Table 5.5, with the name of each simulation
corresponding to the experiment number in Warren and Poormon’s (WP) article. The Y and Z
values are the coordinates of the nose tip after the projectile has come to rest.

Table 5.5 Comparison between Autodyn, WP and experiments for four selected
simulations.

Simula
tion

Impact
velocity

Impact
angle

Y (AD) Z (AD) Y (WP) Z (WP) Y(exp) Z (exp)

1-0453 1156 30 91,5 -118,8 88,7 138.1 113.2 149.5
1-0461 759 15 32,7 -94,2 30,4 95.5 34.4 85.0
1-0466 802 45 Ricochet (Y= 54) 104,3 8,9 Ricochet (Y= 38)
1-0468 1184 45 Ricochet (Y= 169) 190,0 5,4 203.3 7.25

Figure 5.2: Pressure distribution in the projectile for impact at 45 degrees and velocity of
 802 m/s (Simulation 1-0466).

Each simulation is completed within half an hour, which is at least 99% faster than a full In
Figure 5.2 we show a contour plot of the pressure distribution in the projectile at various stages
during the penetration process for Simulation 1-0466.

 23

For the simulations 1-0453 and 1-0461, the correspondence between our results, WP and
experiments is reasonably close. This is to be expected since these simulations have the
smallest impact angle and boundary effects should therefore be less important. For simulation
1-0466 and 1-0468 with a larger impact angle, the results appear slightly different, though.
However, this is not a reason for concern since these simulations are quite sensitive to
boundary effects, which are different since we are unable to model exactly the same situation
as Warren and Poormon.

5.3 Perforation

Finally, we compare with perforation experiments by Hanchak et al (8). They launched steel
projectiles normally at concrete slabs for two very different concrete qualities. We have tried
to simulate the experiments for the weakest concrete, having a compression strength of
48 MPa.

The projectile had dimensions L=101,6 mm, l=42,1 mm and 2a=25,4 mm, and the steel model
was standard Johnson-Cook 4340 steel from the Autodyn material library.

The target thickness was 17.8 cm. Inputs to the target material model are shown in Table 5.6.
The yield stress for the concrete should be pressure-dependent, but in order to use a simple
Mises material model, we selected a constant “average” value for this parameter.

Simulations were run for two different ways of calculating the distance to free boundaries. We
used both the standard CUBE stress boundary condition, which calculates the distance along
the projectile surface normal vector, and the PERFORATE stress boundary condition which
finds the shortest distance to free boundaries in a semi-infinite slab.

Table 5.6 Target data for the perforation simulations.

Yield stress Y 273 MPa
Poisson ratio 0.25
Young’s modulus E 6.25·104 MPa
Density ρ 2440 kg/m3
RBC(1) 4.6·105
RBC(2) 0
RBC(3) 2.44
RBC(4) 0
RBC(5) 0

 24

0

200

400

600

800

1000

0 200 400 600 800 1000 1200

Initial velocity (m/s)

R
es

id
ua

l v
el

oc
ity

 (m
/s

)

Surface normal
Shortest distance
Experiments

Figure 5.3 Comparison of perforation experiments by Hanchak et.al. (8) with results from
the new Autodyn algorithm.

The results are plotted in Figure 5.3 along with the experimental results. The plot suggests that
there is little difference between the two methods for large impact velocities. Since the target
material model is a very crude approximation of the experimental concrete, these simulations
can not determine whether the CUBE or PERFORATE boundary condition is the best, but still
it is nice to see that both seem to give reasonable results.

6 CONCLUSION AND FURTHER WORK

We have implemented a combined analytical and numerical method for 3D penetration
simulations of rigid projectiles. The approach takes advantage of the possibilities for
developing user subroutines in Autodyn. After these new subroutines have been linked to
Autodyn, a new executable file with extended capabilities is created.

The new method gives runtimes of less than 1% of a corresponding full 3D simulation. This
makes it possible to perform sensitivity studies on very complex problems, something which
was out of reach with normal Autodyn-3D.

Suggestions for further work include:

• Investigate the importance of projectile meshing when boundary effects are

important and, if possible, optimise it.
• Validate the use of the decay function on concrete targets. If necessary and possible,

implement improvements.
• Implement more complicated target geometries, e.g. boulder targets in the form of spheres

stacked on top of each other.

 25

 References

(1) Warren T L, Poormon K L, Penetration of 6061-T6511 aluminum targets by ogive-nosed

VAR 4340 steel projectiles at oblique angles: experiments and simulations, Int. J. Imp.
Engng. Vol 25, pp. 993-1022, 2001

(2) Autodyn Release Notes v4.2, Century Dynamics, 2001
(3) Autodyn Theory Manual, Century Dynamics
(4) Teland J A, A review of penetration mechanics, FFI/RAPPORT-99/01264
(5) Littlefield D L, Anderson Jr C E, Partom Y, Bless S J, The penetration of steel targets

finite in radial extent, Int J. Impact Engng. Vol 19 No 1, pp. 49 - 62, 1997
(6) Teland J A, Sjøl H, Boundary Effects in Penetration into Concrete, FFI/RAPPORT-

2000/05414
(7) Hopkins H G, Dynamic expansion of spherical cavities in metals, in I. Sneddon and R. Hill

(eds): Progress in solid mechanics, vol 1, New York: North Holland, 1960, pp. 85-164
(8) Hanchak S J, Forrestal M J, Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa

(20 ksi) unconfined compressive strength, Int. J. Imp. Engng., Vol 12, No. 1, pp. 1-7, 1992

A SOURCE CODE

All user subroutines in the present versions of Autodyn are written in Fortran 90. Readers who
are unfamiliar with this programming language will find a textbook useful. In addition, the
Autodyn User Subroutine Tutorial may shed some light on parts of the code. Mostly, however,
it should be rather straightforward to follow the program lines, albeit a bit tedious at times.

In the source code there are a few program lines that have been commented. This happens in
the subroutine surface_reduction, for example, in the calculation of the decay function.
Both the static and the dynamic expressions have been programmed, and choosing between the
two is done at compile time by commenting the lines for the undesired expression.

Furthermore, in the subroutine exyld a three-line modification to the yield criterion has been
defined. This modification was introduced to comply with the material model of Warren and
Poormon, which was slightly different from the standard Autodyn material library model. A
recompilation of the program is needed to use this special yield model.

A description of the various parts of the code follows in the next chapters.

A.1 Subroutine exstr
SUBROUTINE EXSTR (NAMSTR1,RBC,I1,J1,K1,I2,J2,K2,PRES)

 USE kindef
 USE bnddef
 USE ijknow
 USE cycvar
 USE wrapup
 USE mdgrid

 26

The two following modules are documented below.

 USE maths_funcs
 use savevar

We start out by declaring some variables.

 IMPLICIT NONE

 INTEGER (INT4) :: I1, I2, J1, J2, K1, K2
 REAL (REAL8) :: PRES
 REAL (REAL8), DIMENSION(5) :: RBC
 CHARACTER (LEN=10) :: NAMSTR1
 real, dimension(1:3) :: normal_vector, diag1, diag2
 real, dimension(1:12) :: corner_positions
 real :: normal_velocity, smearing, area, normal_distance
 integer :: n1
 integer, dimension(1:4) :: ijk_array

Initialisations:

if (ncycle==1) then
 if (namstr1=='CUBE') then
 boundary_type_int=1
 else if (namstr1=='CYLINDER') then
 boundary_type_int=2
 else if (namstr1=='SPHERE') then
 boundary_type_int=3
 else
 write(6,*) 'No known boundary type specified. Target is infinite.'
 boundary_type_int=0
 end if
end if
end if

Now we have set the integer variable boundary_type_int to a value which corresponds
to the type of boundary chosen by the user.

Next, we find the ijk-index of each of the four corner nodes:
 if (i1==i2) then
 ijk_array(1)=ijkset(i1,j1,k1)
 ijk_array(2)=ijkset(i1,j1,k2)
 ijk_array(3)=ijkset(i1,j2,k2)
 ijk_array(4)=ijkset(i1,j2,k1)
 else if (j1==j2) then
 ijk_array(1)=ijkset(i2,j1,k1)
 ijk_array(2)=ijkset(i2,j1,k2)
 ijk_array(3)=ijkset(i1,j1,k2)
 ijk_array(4)=ijkset(i1,j1,k1)
 else if (k1==k2) then
 ijk_array(1)=ijkset(i1,j1,k1)
 ijk_array(2)=ijkset(i1,j2,k1)
 ijk_array(3)=ijkset(i2,j2,k1)
 ijk_array(4)=ijkset(i2,j1,k1)
 end if

And now we are ready to find the positions of the corner nodes:

 27

 do n1=0,3
 corner_positions(n1*3+1)=xn(ijk_array(n1+1))
 corner_positions(n1*3+2)=yn(ijk_array(n1+1))
 corner_positions(n1*3+3)=zn(ijk_array(n1+1))
 end do

When the positions are known, we can calulate an area close to the actual area of the cell face.
The subroutine surface_area which accomplishes this is explained below. Usually this
area is not needed, so the relevant part of the code is commented at present.

 area=surface_area(&
 corner_positions(4:6)-corner_positions(1:3), &
 corner_positions(10:12)-corner_positions(1:3),&
 corner_positions(4:6)-corner_positions(7:9),&
 corner_positions(10:12)-corner_positions(7:9))

Now we find the diagonals of the cell face, defined as the vectors between two opposing
corner nodes. Later, these are used in the calculation of a normal vector. Hence, to ensure it
always points outwards, the direction of the diagonals must be chosen with care.

 diag1=corner_positions(7:9)-corner_positions(1:3)
 if ((i1==i2 .and. i1==1) .or. (j1==j2 .and. j1==1) .or. &
 (k1==k2 .and. k1==1)) then
 diag2=corner_positions(4:6)-corner_positions(10:12)
 else
 diag2=corner_positions(10:12)-corner_positions(1:3)
 end if

We calculate the outward pointing unit normal, and find the average velocity of the four corner
nodes.

 call unit_normal(diag2,diag1,normal_vector)
 normal_velocity=0.0
 diag2=0.0
 do n1=1,4
 diag2(1)=uxn(ijk_array(n1))+diag2(1)
 diag2(2)=uyn(ijk_array(n1))+diag2(2)
 diag2(3)=uzn(ijk_array(n1))+diag2(3)
 end do
 diag2=diag2/4

The function normal_component is simply calculating the inner product of two vectors.

 normal_velocity=normal_component(diag2,normal_vector)

Now the main part of the subroutine starts, using boundary_type_int to choose between
the different possible boundary conditions: one free surface, two free surfaces, with or without
the linear term in the pressure function, and a corner. The variable smearing is used to
reduce the pressure calculated from the subroutine pressure_function.

 select case (boundary_type_int)

case(0)
 smearing=real(ncycle)/rbc(3)

 if (smearing>=1.0) smearing=1.0

 28

case(1)
 call cube(normal_vector,corner_positions,&
 var01(ijk_now),smearing,normal_distance)
 if (normal_distance<100.0 .and. normal_distance>0.0) then
 normal_distance=2.0*normal_distance+1.0!Conversion to
!radii, and translation to the zero point of the decay function

 smearing=smearing*surface_reduction(normal_distance,&
 normal_velocity, rbc(3))
 end if

case(2)
 call cylinder(normal_vector,corner_positions,&

var01(ijk_now),smearing,normal_distance)
 if (normal_distance<100.0 .and. normal_distance>0.0) then
 normal_distance=2.0*normal_distance+1.0!Conversion to
!radii

 smearing=smearing*surface_reduction(normal_distance,&
 normal_velocity, rbc(3))
 end if

case(3)
 call sphere(normal_vector,corner_positions,&

var01(ijk_now),smearing,normal_distance)
 if (normal_distance<100.0 .and. normal_distance>0.0) then
 normal_distance=2.0*normal_distance+1.0!Conversion to
!radii

 smearing=smearing*surface_reduction(normal_distance,&
 normal_velocity, rbc(3))
 end if
 case(4)

call perforation(normal_vector,corner_positions,&
var01(ijk_now),smearing,normal_distance)

 if (normal_distance<100.0 .and. normal_distance>0.0) then
 normal_distance=2.0*normal_distance+1.0!Conversion to
!radii

 smearing=smearing*surface_reduction(normal_distance,&
 normal_velocity, rbc(3))
 end if

 end select
 call pressure_function(rbc,normal_velocity,pres)
 pres=smearing*pres

 RETURN

END SUBROUTINE EXSTR

A.2 Subroutines exedit, exsave and exload

The subroutine exedit reads the material data file in cycle 0, as well as doing some
calculations of static variables. Results are stored to avoid doing the same computation in
every cycle, for every relevant cell. In addition, a wrap-up criterion is programmed, and it is
possible to write values of the decay function for five different velocities to a file called
alpha_values.dat. (This was implemented for debugging and the user will probably
never need to do this).

SUBROUTINE EXEDIT

 29

USE kindef
USE wrapup
USE subdef
USE mdgrid
USE cycvar

use savevar
use constants_def
use static_constants
use maths_funcs

IMPLICIT NONE

integer, dimension(1:8) :: values
character(len=8) :: date
character(len=10) :: time1
character(len=5) :: zone
integer :: previous,ivel
character :: create_plot
real, dimension(1:5) :: velocities

if (ncycle==0) then

First, read the material data file:

 open(15,file='material_data.dat',form='formatted')
 read(15,*)
 read(15,*) yld
 read(15,*)
 read(15,*) shrmd
 read(15,*)
 read(15,*) youngmd
 read(15,*)
 read(15,*) exp_n, exp_m
 read(15,*)
 read(15,*) epsdot_user, eps_user
 read(15,*)
 read(15,*) wrap_up_condition
 read(15,*)
 read(15,*) create_plot
 read(15,*)
 read(15,*) velocities
 close(15)
 read(15,*) top
 read(15,*)
 read(15,*) bottom
 read(15,*)
 read(15,*) left
 read(15,*)
 read(15,*) right
 close(15)

Calculate some constants to be used later, and place the values in variables stored in modules
so that these values are accessible from all subroutines:

 exp_n=1/exp_n
 plastic_boundary=(2*youngmd)/(3*yld)
 plastic_boundary=plastic_boundary**0.333333333
 red_yld=2*yld/3
 log_constant=red_yld+red_yld*log((2*youngmd)/(3*yld))

 30

 previous=0
 poisson=youngmd/(2*shrmd)-1
 static2=(1+poisson)/(4*(1-poisson))
 static3=1+log(2*shrmd/yld)
 static4=4*shrmd/(static2*yld)
 static1=2*shrmd*(1+poisson)/(yld*(3-poisson))
 static1=static1**0.333333333

If the user has requested it, create a file containing value pairs of the decay function, one value
being a distance from a free boundary and the other the calculated decay function value. Do
this for five velocities.

 if (create_plot=='y') then
 open(83,file='alpha_values.dat',form='formatted')
 do ivel=1,5
 write(83,*) 'Velocity=',velocities(ivel)
 do previous=20,120
 write(83,'(f20.10,3x,f20.10)') real(previous)/20.0, &
 surface_reduction(real(previous)/20.0, &
 velocities(ivel), 2.8)
 end do
 do previous=61,261
 write(83,'(f20.10,3x,f20.10)') real(previous)/10.0, &
 surface_reduction(real(previous)/10.0, &
 velocities(ivel), 2.8)
 end do
 do previous=150,250
 write(83,'(f20.10,3x,f20.10)') real(previous)/5.0, &
 surface_reduction(real(previous)/5.0, &
 velocities(ivel), 2.8)
 end do
 end do
 close(83)
 end if
 else

Wrap the calculation up either when the projectile stops, or turns around. The stop condition is
calculated by calculating the ratio between the starting kinetic energy and the present kinetic
energy. If the ratio is less than a user specified small value then the calculation is wrapped up.
The turning condition is that the inner product between the starting momentum and the present
momentum is negative.

 if (wrap_up_condition>0.0) then
 if (subke(1)/subkeb(1)<wrap_up_condition) then
 nswrap=99
 end if
 else if (wrap_up_condition<0.0) then
 if (subxmb(1)*subxm(1)+subymb(1)*subym(1)+subzmb(1)*subzm(1)<0.0)&
 then
 nswrap=99
 end if
 end if
end if

RETURN

 31

END SUBROUTINE EXEDIT

The subroutines exsave and exload are included to handle the saving of the non-standard
variables. With them, we may stop the execution of the program and still be able to remember
the initialisations (which are only called if the cycle number is 0 and 1, depending on the
variable). The variables in question are defined in the module savevar.

SUBROUTINE EXSAVE (NTYPE)

USE kindef
USE fildef

use savevar
use geometry

IMPLICIT NONE

INTEGER (INT4) :: NTYPE
integer :: writestat

if (ntype==1) then
 write(nut1,iostat=writestat) shrmd, yld, detection_distance, &
 displacement,boundary_type_int, exp_n, exp_m, epsdot_user, &
 eps_user, youngmd, front, rear, top, bottom, right, left, &
 radius, wrap_up_condition
else if (ntype==2) then
 write(nut2,'(4(es13.6),i4,13(es13.6))',iostat=writestat) shrmd, yld, &
 detection_distance, displacement,boundary_type_int, exp_n, &
 exp_m, epsdot_user, eps_user, youngmd , radius, top, bottom, &
 right, left, front, rear, wrap_up_condition
end if
if (writestat/=0) write(6,*) 'Error writing custom data to file.'

RETURN
END SUBROUTINE EXSAVE

SUBROUTINE EXLOAD (NTYPE)

USE kindef
USE fildef

use savevar
use constants_def
use static_constants
use geometry

IMPLICIT NONE

INTEGER (INT4) :: NTYPE
integer :: readstat

if (ntype==1) then
 read(nut1,iostat=readstat) shrmd, yld, detection_distance, &
 displacement,boundary_type_int, exp_n, exp_m, epsdot_user, &
 eps_user, youngmd, front, rear, top, bottom, right, left, &
 radius, wrap_up_condition
else if (ntype==2) then
 read(nut2,'(4(es13.6),i4,13(es13.6))',iostat=readstat) shrmd, yld, &

 32

 detection_distance, displacement,boundary_type_int, exp_n, &
 exp_m, epsdot_user, eps_user, youngmd , radius, top, bottom, &
 right, left, front, rear, wrap_up_condition
end if
if (readstat/=0) write(6,*) 'Error reading custom data from file.'
plastic_boundary=(2*youngmd)/(3*yld)
plastic_boundary=plastic_boundary**0.333333333
red_yld=2*yld/3
log_constant=red_yld+red_yld*3*log(plastic_boundary)
poisson=youngmd/(2*shrmd)-1
static2=(1+poisson)/(4*(1-poisson))
static3=1/(1-log(2*shrmd/yld))
static4=16*shrmd*(1-poisson)/(yld*(1+poisson))
static1=2*shrmd*(1+poisson)/(yld*(3-poisson))
static1=static1**0.333333333

RETURN
END SUBROUTINE EXLOAD

A.3 The subroutine exval

The sole purpose of this subroutine is to calculate the diameter of the projectile for each
surface cell, and store the value in the user variable var01. The way this calculation is done is
shown in Figure A.1.

�

�
�

Figure A.1: Sketch of a projectile with the vectors needed to find the radius at any point on

the surface.

We first need to identify the axis vector, in other words the vector between the tip point and
the endpoint. The vector is shown as a in the figure. When this vector has been identified, we
can find the vector between the endpoint and any point on the surface. This vector is shown as
w in the figure. We want to find r, the normal vector from the axis to this point on the surface.
Simple geometry gives r expressed in terms of a and w as

a
a
wawr 2

⋅
−=

The radius is then taken as the length of this vector. We use this formula to calculate the radius
to the four corner nodes of each surface cell, and then taking the average distance as the value
stored in the var01 variable. The program assumes elsewhere that the value stored is the
diameter rather than the radius, so we finally multiply by 2.

SUBROUTINE EXVAL (NS,I,J,K,IJK,MATI,NP,RHOI,RREF,SIEI,UXI,UYI,UZI,URI)

USE kindef
USE bnddef

 33

USE subdef
USE mdgrid

IMPLICIT NONE

INTEGER (INT4) :: IJK,I,J,K, MATI, NP
INTEGER (INT4) :: NS
REAL (REAL8) :: RHOI, RREF, SIEI, URI, UXI, UYI, UZI
real, dimension(1:3) :: axis_vec, radius_vec, pos_vec
real :: length_axis, angle
character :: yon
integer :: axis_i, axis_j, n1
integer, dimension(1:4) :: corner_ijk

After the declarations we start out by prompting the user whether to calculate the actual radius
for every surface cell, or just calculate the maximum radius. We also find the axis vector as the
vector between nodes ((imax+1)/2,(jmax+1)/2,2) and
((imax+1)/2,(jmax+1)/2,kmax). Since these tasks only need to be performed once,
we do them only in the first cell, that is, for ijk-index (2,2,2).

if (i==2 .and. j==2 .and. k==2) then
 call getyon(yon, '$Use actual radius$')
 axis_i=(imax+1)/2
 axis_j=(jmax+1)/2
 axis_vec(1)=xn(ijkset(axis_i,axis_j,2))-xn(ijkset(axis_i,axis_j,kmax))
 axis_vec(2)=yn(ijkset(axis_i,axis_j,2))-yn(ijkset(axis_i,axis_j,kmax))
 axis_vec(3)=zn(ijkset(axis_i,axis_j,2))-zn(ijkset(axis_i,axis_j,kmax))
 length_axis=axis_vec(1)**2+axis_vec(2)**2+axis_vec(3)**2
 length_axis=sqrt(length_axis)
end if

The following if-branching is needed to correctly identify the corner nodes in each surface
cell face. The exval subroutine is only called for cells. Since Autodyn cells are identified by
their upper corner cell (see the Autodyn theory manual (3)), the surface cells for the lower
values of i and j have indices (2,2,k) or similarly. If we just use the i,j,k-indices that are formal
parameters in the subroutine, we do not use the surface nodes to calculate the radius, and the
value is thus wrong. We need the following branches to use the correct nodes in the calculation
of the radius.

if (yon=='Y') then
 if (i==2) then
 corner_ijk(1)=ijkset(1,j,k)
 corner_ijk(2)=ijkset(1,j-1,k)
 corner_ijk(3)=ijkset(1,j,k-1)
 corner_ijk(4)=ijkset(1,j-1,k-1)
 else if (i==imax) then
 corner_ijk(1)=ijkset(i,j,k)
 corner_ijk(2)=ijkset(i,j-1,k)
 corner_ijk(3)=ijkset(i,j,k-1)
 corner_ijk(4)=ijkset(i,j-1,k-1)
 else if (j==2) then
 corner_ijk(1)=ijkset(i,1,k)
 corner_ijk(2)=ijkset(i-1,1,k)
 corner_ijk(3)=ijkset(i,1,k-1)
 corner_ijk(4)=ijkset(i-1,1,k-1)
 else if (j==jmax) then

 34

 corner_ijk(1)=ijkset(i,j,k)
 corner_ijk(2)=ijkset(i-1,j,k)
 corner_ijk(3)=ijkset(i,j,k-1)
 corner_ijk(4)=ijkset(i-1,j,k-1)
 else if (k==kmax) then
 corner_ijk(1)=ijkset(i,j,k)
 corner_ijk(2)=ijkset(i-1,j,k)
 corner_ijk(3)=ijkset(i,j-1,k)
 corner_ijk(4)=ijkset(i-1,j-1,k)
 else
 corner_ijk(1)=ijkset(i,j,k)
 corner_ijk(2)=ijkset(i,j,k)
 corner_ijk(3)=ijkset(i,j,k)
 corner_ijk(4)=ijkset(i,j,k)
 end if

The ijk-indices of the corner nodes have now been identified correctly. We then proceed to
calculate the w vector and the radius for each of the four nodes. The user variable is assigned
the average value, and finally converted to a diameter by multiplication with 2.

 var01(ijk)=0.0
 do n1=1,4
 pos_vec(1)=xn(ijkset(axis_i,axis_j,2))-xn(corner_ijk(n1))
 pos_vec(2)=yn(ijkset(axis_i,axis_j,2))-yn(corner_ijk(n1))
 pos_vec(3)=zn(ijkset(axis_i,axis_j,2))-zn(corner_ijk(n1))
 angle=pos_vec(1)*axis_vec(1)+pos_vec(2)*axis_vec(2)+&
 pos_vec(3)*axis_vec(3)
 angle=angle/(length_axis**2)
 radius_vec=pos_vec-angle*axis_vec
 var01(ijk)=var01(ijk)+2.0*sqrt(radius_vec(1)**2+&
 radius_vec(2)**2+radius_vec(3)**2)
 end do
 var01(ijk)=var01(ijk)/4
else
 pos_vec(1)=xn(ijkset(axis_i,axis_j,2))-xn(ijkset(imax,jmax,2))
 pos_vec(2)=yn(ijkset(axis_i,axis_j,2))-yn(ijkset(imax,jmax,2))
 pos_vec(3)=zn(ijkset(axis_i,axis_j,2))-zn(ijkset(imax,jmax,2))
 angle=pos_vec(1)*axis_vec(1)+pos_vec(2)*axis_vec(2)+&
 pos_vec(3)*axis_vec(3)
 angle=angle/(length_axis**2)
 radius_vec=pos_vec-angle*axis_vec
 var01(ijk)=2.0*sqrt(radius_vec(1)**2+radius_vec(2)**2+&
 radius_vec(3)**2)
end if

RETURN
END SUBROUTINE EXVAL

A.4 Sundry modules

These modules contain various variables, as well as a function, needed by several different
subroutines. The constants contained in these modules could be passed to subroutines as
arguments, but the reason for placing them in modules is the much simpler programming this
entails.

module savevar

 35

 real :: shrmd, yld, detection_distance, displacement, youngmd, side_face
 integer :: boundary_type_int, body_number
 real :: exp_n, exp_m, epsdot_user, eps_user, front_face, upper_face
 real :: wrap_up_condition, poisson
end module savevar

module constants_def
 real :: red_yld, log_constant, plastic_boundary
end module constants_def

module static_constants
 real :: static1, static2, static3, static4
contains
 real function plastic_b(var)
 real :: var
 plastic_b=static2*(sqrt(1+static4/(var**3))-1)
 end function plastic_b
end module static_constants

module geometry
 real :: radius, front, rear, top, bottom, left, right
end module geometry

A.5 Module maths_funcs2

This module contains a number of different subroutines and functions used in the program.
Firstly, the following is an overview of the module with the names of all functions and
subroutines defined, along with the call variables in each case.

module maths_funcs2
contains

real function surface_reduction(d,velocity,dens)
 ...
end function surface_reduction

subroutine unit_normal(vec1,vec2,result_vector)
 ...
end subroutine unit_normal

subroutine cube(norm_vec,corner_pos,diam,fraction,distance)
 ...
end subroutine cube

subroutine cube(norm_vec,corner_pos,diam,present_time, snd_spd,&
fraction,distance)
 ...
end subroutine cube

 subroutine cylinder(norm_vec,corner_pos,diam,fraction,distance)
 ...
end subroutine cylinder

subroutine sphere(norm_vec,corner_pos,diam,fraction,distance)
 ...
end subroutine sphere

real function normal_component(vec1,unit_vec)
 ...

 36

end function normal_component

real function surface_area(span1,span2,span3,span4)
 ...
end function surface_area

end module maths_funcs

In more detail, the contents of each of these routines are shown below.

A.5.1 real function surface_reduction
real function surface_reduction(d,velocity, dens)
!d is in units of projectile radii

! STATIC EXPRESSION FOR THE REDUCTION OF PRESSURE AS FUNCTION OF DISTANCE
! TO FREE BOUNDARIES
 use static_constants
 real :: d, velocity, dens

 if (d>=static1) then
 surface_reduction=(1-
plastic_b(d)+log(plastic_b(d))+log(d**3))/static3
 else
 surface_reduction=3*log(d)/static3
 end if

! DYNAMIC SPHERICAL CAVITY EXPANSION
!!$ use constants_def
!!$ real :: d, velocity, dens, dens2
!!$
!!$ dens2=dens/2
!!$ if (plastic_boundary<=d) then
!!$ d=1/d
!!$ surface_reduction=(log_constant-&
!!$ red_yld*(plastic_boundary**3)*(d**3)+&
!!$ (dens2*velocity**2)*(3+d**4-4*d))/&
!!$ (log_constant+3*dens2*(velocity**2))
!!$ else
!!$ surface_reduction=(3*red_yld*log(d)+&
!!$ dens2*velocity*velocity*(3+1/(d**4)-4/d))/&
!!$ (log_constant+3*dens2*velocity*velocity)
!!$ end if
 if (surface_reduction>1.0) surface_reduction=1.0
 if (surface_reduction<0.0) surface_reduction=0.0

 return
 end function surface_reduction

A.5.2 subroutine unit_normal
 implicit none
 real, dimension(1:3), intent(in) :: vec1,vec2
 real, dimension(1:3), intent(inout) :: result_vector
 real :: length_vec

 result_vector(1)=vec1(2)*vec2(3)-vec1(3)*vec2(2)
 result_vector(2)=vec1(3)*vec2(1)-vec1(1)*vec2(3)

 result_vector(3)=vec1(1)*vec2(2)-vec1(2)*vec2(1)

 37

 length_vec=sqrt(result_vector(1)**2+result_vector(2)**2+&
 result_vector(3)**2)
 result_vector=result_vector/length_vec

 return
 end subroutine unit_normal

A.5.3 subroutine cube

This subroutine calculates the smearing factor and the distance from free boundaries in the
case of a prism-shaped target. The smearing factor is used to reduce the pressure on a cell face
when that cell is only partially embedded in the target. The factor is calculated in the simplest
possible way: when only one node is inside the target, the factor is 0.25, when two nodes are
inside it is 0.5, and so on.

subroutine cube(norm_vec, nodes, diam, fraction, distance)
 use geometry
!The variables front, left, right, top etc refers to the target as seen
along
!the positive z-axis. These variables are defined in the module.
 implicit none

 real, dimension(1:3), intent(in) :: norm_vec
 real, dimension(1:12), intent(in) :: nodes
 real, intent(in) :: diam
 real, intent(out) :: fraction, distance
 integer :: no_nodes, i
 real, dimension(1:3) :: distance_vec
 real :: distance, nodex, nodey, nodez, minimum, maximum

 !Check how many nodes are within the target, compute fraction
 no_nodes=0
 accuracy=0.0
 distance_vec=0.0
 do i=0,3!The target is _always_ along coordinate axes
 nodex=nodes(i*3+1)
 nodey=nodes(i*3+2)
 nodez=nodes(i*3+3)
 if (nodex<left .and. nodex>right .and. nodey<top .and. &
 nodey>bottom .and. nodez>front .and. nodez<rear) then
 no_nodes=no_nodes+1
 end if
 distance_vec(1)=distance_vec(1)+nodex
 distance_vec(2)=distance_vec(2)+nodey
 distance_vec(3)=distance_vec(3)+nodez
 end do!distance_vec is now the vector sum of all four corner node
positions
!relative to the absolute coordinate system in the calculation
 distance_vec=distance_vec/4
 nodex=distance_vec(1)
 nodey=distance_vec(2)
 nodez=distance_vec(3)!calculation of geometric mean of cell face.
 if (no_nodes>0) then
!Binaersoek-algoritmen
 maximum=100.0*diam
 minimum=0.0
 distance_vec=maximum*norm_vec

 if (nodex+distance_vec(1)<left .and. nodex+distance_vec(1)>right&

 38

 .and. nodey+distance_vec(2)<top .and. &
 nodey+distance_vec(2)>bottom .and. &
 nodez+distance_vec(3)>front .and. &
 nodez+distance_vec(3)<rear) then
 distance=101.0*diam
 else
 do i=1,13
 distance=(minimum+maximum)/2
 distance_vec=distance*norm_vec
 if (nodex+distance_vec(1)<left .and.
nodex+distance_vec(1)>right&
 .and. nodey+distance_vec(2)<top .and. &
 nodey+distance_vec(2)>bottom .and. &
 nodez+distance_vec(3)>front .and. &
 nodez+distance_vec(3)<rear) then
 minimum=distance
 else
 maximum=distance
 end if
 end do
 distance=(minimum+maximum)/(2*diam)
 end if
 fraction=real(no_nodes)/4.0
 else if (no_nodes==0) then
 distance=-1.0
 fraction=0.0
 end if

 return
 end subroutine cube

A.5.4 subroutine perforation

This subroutine only needs two geometry inputs: the front and the rear faces of the target. It
calculates the shortest distance to the rear face, but only after enough time has passed that
elastic waves can travel across the target thickness and back to the projectile. It also calculates
the shortest distance to the front face for oblique impacts. The target is infinite in the other two
directions.

subroutine perforation(norm_vec, nodes, present_time, snd_spd, &
 diam, fraction, distance)
 use geometry
!The variables front, left, right, top etc refers to the target as seen
!along the positive z-axis. These variables are defined in the module.
 implicit none

 real, dimension(1:3), intent(in) :: norm_vec
 real, dimension(1:12), intent(in) :: nodes
 real, intent(in) :: diam, present_time, snd_spd
 real, intent(out) :: fraction, distance
 integer :: no_nodes, i
 real, dimension(1:3) :: distance_vec
 real :: distance, nodex, nodey, nodez, minimum, maximum

 !Check how many nodes are within the target, compute fraction
 no_nodes=0
 distance_vec=0.0
 do i=0,3!The target is _always_ along coordinate axes

 nodex=nodes(i*3+1)

 39

 nodey=nodes(i*3+2)
 nodez=nodes(i*3+3)
 if (nodex<left .and. nodex>right .and. nodey<top .and. &
 nodey>bottom .and. nodez>front .and. nodez<rear) then
 no_nodes=no_nodes+1
 end if
 distance_vec(1)=distance_vec(1)+nodex
 distance_vec(2)=distance_vec(2)+nodey
 distance_vec(3)=distance_vec(3)+nodez
 end do
!distance_vec is now the vector sum of all four corner node positions
!relative to the absolute coordinate system in the calculation
 distance_vec=distance_vec/4
 nodex=distance_vec(1)
 nodey=distance_vec(2)
 nodez=distance_vec(3)!calculation of geometric mean of cell face.
 if (no_nodes>0) then
 if (norm_vec(3)>=0.0) then
 if (present_time>(rear-front+nodez)/snd_spd) then
 distance=(rear-nodez)/diam
 else
 distance=101.0
 end if
 fraction=real(no_nodes)/4.0
 else
 distance=(nodez-front)/diam
 fraction=real(no_nodes)/4.0
 if (distance>100.0) distance=101.0
 end if
 else if (no_nodes==0) then
 distance=-1.0
 fraction=0.0
 end if

 return
 end subroutine perforation

A.5.5 subroutine cylinder

In case of a cylindrical target, the following subroutine is needed:

subroutine cylinder(norm_vec, nodes, diam, fraction, distance)
 use geometry
!The radius is the radius of the cylindrical target. The axis is along
!the positive z-axis, through the origin (x=0 y=0). These variables are
!defined in the module.
 implicit none

 real, dimension(1:3), intent(in) :: norm_vec
 real, dimension(1:12), intent(in) :: nodes
 real, intent(in) :: diam
 real, intent(out) :: fraction, distance
 integer :: no_nodes, i
 real, dimension(1:3) :: distance_vec
 real :: distance, nodex, nodey, nodez, minimum, maximum, act_rad

 !Check how many nodes are within the target, compute fraction
 no_nodes=0
 distance_vec=0.0

 40

 do i=0,3!The target is _always_ along coordinate axes
 nodex=nodes(i*3+1)
 nodey=nodes(i*3+2)
 nodez=nodes(i*3+3)
 act_rad=nodex**2+nodey**2
 if (act_rad<radius**2 .and. nodez>front .and. nodez<rear) then
 no_nodes=no_nodes+1
 end if
 distance_vec(1)=distance_vec(1)+nodex
 distance_vec(2)=distance_vec(2)+nodey
 distance_vec(3)=distance_vec(3)+nodez
 end do!distance_vec is now the vector sum of all four corner node
positions
!relative to the absolute coordinate system in the calculation
 distance_vec=distance_vec/4
 nodex=distance_vec(1)
 nodey=distance_vec(2)
 nodez=distance_vec(3)!calculation of geometric mean of cell face.
 if (no_nodes>0) then
maximum=100.0*diam
 minimum=0.0
 distance_vec=maximum*norm_vec
 act_rad=(nodex+distance_vec(1))**2+(nodey+distance_vec(2))**2
 if (act_rad<radius**2 .and. &
 nodez+distance_vec(3)>front .and. &
 nodez+distance_vec(3)<rear) then
 distance=101.0*diam
 else
 do i=1,13
 distance=(minimum+maximum)/2
 distance_vec=distance*norm_vec
 act_rad=(nodex+distance_vec(1))**2+(nodey+distance_vec(2))**2
 if (act_rad<radius**2 .and. &
 nodez+distance_vec(3)>front .and. &
 nodez+distance_vec(3)<rear) then
 minimum=distance
 else
 maximum=distance
 end if
 end do
 distance=(maximum+minimum)/(2*diam)
 end if
 fraction=real(no_nodes)/4.0
 else if (no_nodes==0) then
 distance=-1.0
 fraction=0.0
 end if

 return
 end subroutine cylinder

A.5.6 subroutine sphere

Finally, the same calculations are performed for a spherical target using the subroutine
sphere:

subroutine sphere(norm_vec, nodes, diam, fraction, distance)
 use geometry

 41

!The radius is the radius of the spherical target. The variable is defined
in
!the module. The centre of the sphere is at (x=left, y=top, z=front).
 implicit none

 real, dimension(1:3), intent(in) :: norm_vec
 real, dimension(1:12), intent(in) :: nodes
 real, intent(in) :: diam
 real, intent(out) :: fraction, distance
 integer :: no_nodes, i
 real, dimension(1:3) :: distance_vec
 real :: distance, nodex, nodey, nodez, minimum, maximum, act_rad

 !Check how many nodes are within the target, compute fraction
 no_nodes=0
 distance_vec=0.0
 do i=0,3!The target is _always_ along coordinate axes
 nodex=nodes(i*3+1)
 nodey=nodes(i*3+2)
 nodez=nodes(i*3+3)
 act_rad=(nodex-left)**2+(nodey-top)**2+(nodez-front)**2
 if (act_rad<=radius**2) then
 no_nodes=no_nodes+1
 end if
 distance_vec(1)=distance_vec(1)+nodex
 distance_vec(2)=distance_vec(2)+nodey
 distance_vec(3)=distance_vec(3)+nodez
 end do!distance_vec is now the vector sum of all four corner node
positions
!relative to the absolute coordinate system in the calculation
 distance_vec=distance_vec/4
 nodex=distance_vec(1)
 nodey=distance_vec(2)
 nodez=distance_vec(3)!calculation of geometric mean of cell face.
 if (no_nodes>0) then
maximum=100.0*diam
 minimum=0.0
 distance_vec=maximum*norm_vec
 act_rad=(nodex+distance_vec(1))**2+(nodey+distance_vec(2))**2+&
 (nodez+distance_vec(3))**2
 if (act_rad<radius**2) then
 distance=101.0*diam
 else
 do i=1,13
 distance=(minimum+maximum)/2
 distance_vec=distance*norm_vec
 act_rad=(nodex+distance_vec(1))**2+(nodey+distance_vec(2))**2+&
 (nodez+distance_vec(3))**2
 if (act_rad<radius**2) then
 minimum=distance
 else
 maximum=distance
 end if
 end do
 distance=(maximum+minimum)/(2*diam)
 end if
 fraction=real(no_nodes)/4.0
 else if (no_nodes==0) then
 distance=-1.0
 fraction=0.0
 end if

 42

 return
 end subroutine sphere

A.5.7 real function normal_component
 implicit none
 real, dimension(1:3),intent(in) :: vec1,unit_vec

 normal_component=vec1(1)*unit_vec(1)+vec1(2)*unit_vec(2)+&
 vec1(3)*unit_vec(3)
 return
 end function normal_component

A.5.8 real function surface_area
 implicit none
 real, dimension(1:3),intent(in) :: span1,span2,span3,span4
 real :: area

 area=sqrt((span1(2)*span2(3)-span1(3)*span2(2))**2+&
 (span1(3)*span2(1)-span1(1)*span2(3))**2+&
 (span1(1)*span2(2)-span1(2)*span2(1))**2)+&
 sqrt((span3(2)*span4(3)-span3(3)*span4(2))**2+&
 (span3(3)*span4(1)-span3(1)*span4(3))**2+&
 (span3(1)*span4(2)-span3(2)*span4(1))**2)
 surface_area=area/2
 return
 end function surface_area

A.6 The pressure subroutine

Although it is not necessary, the actual pressure calculation has been placed in a separate
subroutine in a separate file. The idea behind this is that it will be easier to find and alter the
pressure function this way. Whether this is sensible from efficiency considerations has not
been tested, but any loss in efficiency should not be important compared with all the other
calculations that are performed in each cycle.

A different issue regards the layout of the subroutine. As it stands, the constants in the
quadratic formula are determined from user input, i.e. the array called rbc in the exstr
subroutine. This array only contains five constants, and we need more to completely define the
target material. As the program now stands, the remaining constants (yield limit, elastic moduli
and geometry) are all input to the program via files. It would perhaps be simpler to use the
program if all the target material data were input via the same file, including also the constants
in the pressure function. Such an improvement to the code can be written by the diligent
reader.

subroutine pressure_function(user_inputs,velocity,distance,pressure)
 implicit none
 real, dimension(1:5), intent(in) :: user_inputs
 real ,intent(in) :: velocity, distance
!The variable "velocity" is the normal component of velocity
 real, intent(out) :: pressure

 43

 if (velocity<=0) then
 pressure=0.0
 else

pressure=user_inputs(1)+user_inputs(2)*velocity+user_inputs(3)*velocity**2
 end if

 return
end subroutine pressure_function

B COMPILATION AND LINKING

The compilation and linking can be done with the Makefile discussed here. To use it, one
needs to copy the source code files and the Makefile to a directory
usrsub/forcing_function. The standard Autodyn directory hierarchy should also be
used, that is, the usrsub directory should reside in the same folder as bin and data. With
alterations to the Makefile, it is of course possible to change this folder structure.

The first line in the Makefile defines the path to the Autodyn directory, a path referred to as
PATH1. This path must be changed to the appropriate name. For instance, if you have the
autodyn files in a directory called autodyn in your home directory, 3D version 4.2 in a
directory called 3dv42, with bin, data and usrsub in this directory, then PATH1 is
/user/<username>/autodyn/3dv42.

In addition to compiling and linking, the makefile can be used to generate examples of input
files.

B.1 Makefile commands

The following commands are possible:

make:

The command compiles the necessary .f90-files and links them with the standard
Autodyn program. The name of the output file is defined in the Makefile.

make $(SLAVE):

The command is as above, but generates the slave process for 3D parallell runs. The
$(SLAVE) symbol is defined in the Makefile, and is the name of the slave process. The
input name must be identical to the name in the Makefile.

make example:

The command generates a program called input_examples, and runs the program. The
program generates examples of the material_data.dat-file and the geometry.dat-file.

make clean:

 44

The command removes all files except the *.f90-files. It also removes all executables
generated with the Makefile.

make zipclean:

This command is the same as the clean command, except that in addition it uses gzip to
compress the *.f90-files.

B.2 The Makefile
.SUFFIXES: .f90 .o .a .mod

PATH1= /user/aao/autodyn/3dv42
FILES1= $(PATH1)/usrsub/admain3.o $(PATH1)/usrsub/autodyn3.a
ADSLAVES= $(PATH1)/usrsub/adslav3.o $(PATH1)/usrsub/autodyn3.a
FILES2= variables.f90 math_funcs.f90 pressure_function.f90 $(F90FILE).f90
OBJFILES= ${FILES2:.f90=.o}
#MODFILES= ${FILES3:.f90=.mod}
GKSDIR= $(gksdir)
PVM_DIR= $(PVM_ROOT)/lib/HPPA/
PROGRAM= forcing_dynamic_binary
DATADIR= testruns
SLAVE= adslav3
FLAGS= -L$(GKSDIR) -lgksflb -lgksw5300 \
 -lgksw1900 -lgkswiss \
 -lgksgksm -lgksmsc -L$(PVM_ROOT)/libfpvm/HPPA -lX11 -lm
FLAGS2= +save +noshared +O2 +DA2.0 -I $(PATH1)/usrsub \
 -I $(PATH1)/usrsub/forcing_function
FLAGS3= -Wl,-a,shared -lnsl -ldld -I $(PATH1)/usrsub \
 -I $(PATH1)/usrsub/forcing_function
DEBUG= +gprof
PVM_LIB1= $(PVM_ROOT)/libfpvm/HPPA/libfpvm3.a
PVM_LIB2= $(PVM_DIR)libpvm3.a $(PVM_DIR)libgpvm3.a

.f90.o : $(FILES2)
 f90 -c $< $(FLAGS2)

$(PROGRAM) : $(OBJFILES)
 f90 -o $(PROGRAM) $(FLAGS3) $(OBJFILES) $(FILES1) $(FLAGS)\
 $(PVM_LIB1) $(PVM_LIB2)
 cp $(PROGRAM) $(PATH1)/bin/.

$(SLAVE) : $(OBJFILES)
 f90 -o $(SLAVE) $(FLAGS3) $(OBJFILES) $(ADSLAVES) $(FLAGS) \
 $(PVM_LIB1) $(PVM_LIB2)
 cp $(SLAVE) $(PATH1)/bin/.

input_example : example.f90
 f90 -o input_example example.f90

example : input_example
 input_example
 mv geometry.dat material_data.dat $(PATH1)/bin/.

clean :
 rm -f *~ *.o *.mod *.dat
 rm -f $(PROGRAM) $(PATH1)/bin/$(PROGRAM)
 rm -f $(SLAVE) $(PATH1)/bin/$(SLAVE)

 45

zipclean : clean
 gzip *.f90
 gzip input_examples

 46

DISTRIBUTION LIST

 FFIBM Dato: 27 august 2002
RAPPORTTYPE (KRYSS AV) RAPPORT NR. REFERANSE RAPPORTENS DATO

X RAPP NOTAT RR 2002/00575 FFIBM/766/130 27 august 2002
RAPPORTENS BESKYTTELSESGRAD ANTALL EKS

UTSTEDT
ANTALL SIDER

Unclassified 28 46

RAPPORTENS TITTEL FORFATTER(E)

RAPID AUTODYN-3D PENETRATION
SIMULATIONS USING A VIRTUAL TARGET

OLSEN Åge Andreas Falnes, TELAND Jan Arild

FORDELING GODKJENT AV FORSKNINGSSJEF FORDELING GODKJENT AV AVDELINGSSJEF:

Bjarne Haugstad Jan Ivar Botnan

 EKSTERN FORDELING INTERN FORDELING

ANTALL EKS NR TIL ANTALL EKS NR TIL
1 Eirik Svinsås 9 FFI-Bibl
 Paulus Plass 5 1 Adm direktør/stabssjef
 0554 Oslo 1 FFIE
 1 FFISYS

1 Åge Andreas Falnes Olsen 1 FFIBM
 Fysisk institutt 2 Jan Arild Teland, FFIBM
 Postboks 1048 – Blindern 1 Henrik Sjøl, FFIBM
 0316 Oslo 1 Ove Dullum, FFIBM
 1 John F Moxnes, FFIBM

1 Otto Munthe 5 Restopplag til Bibliotket
 Anker Zemer Engineering
 Grindbakken 1 Elektronisk fordeling:
 0764 Oslo FFI-veven

1 Jim Sheridan Lars Kvifte (LKv), FFIBM
 DSTL Bjarne Haugstad (BjH), FFIBM
 Missiles and Countermeasures Dept. Svein Rollvik (SRo), FFIS
 Room G056, Building A2
 Ively Road
 Farnborough, Hants., Gu14 0LX
 England

1 Jaap Weerheijm
 TNO
 Lange Kleiweg 137
 P. O. Box 45
 2280 AA Rijswijk
 Nederland

 FFI-K1 Retningslinjer for fordeling og forsendelse er gitt i Oraklet, Bind I, Bestemmelser om publikasjoner
 for Forsvarets forskningsinstitutt, pkt 2 og 5. Benytt ny side om nødvendig.

