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RAPID AUTODYN-3D PENETRATION SIMULATIONS USING A VIRTUAL 
TARGET 

 

1 INTRODUCTION 

3D hydrocode simulations of impact problems are extremely time consuming. Typical 
runtimes for such simulations in Autodyn range from a couple of days to several weeks on our 
current server (750 MHz processors) at FFI. The parallellisation feature in the most recent 
version of Autodyn seems to reduce the problem with long runtimes. However, for parameter  
sensitivity studies there is hardly any difference between running distinct simulations in 
parallell on different processors, or running distinct simulations sequentially in parallell on 
several processors.  A tool that gives good results in a shorter time is therefore very much 
desirable.  
 
Recently, Warren and Poormon (1) presented a scheme which combines hydrocode 
simulations with analytical expressions.   In their approach, only the projectile was simulated 
using a finite element code, whereas the target response was found from analytical expressions 
and were implemented in the simulation as a pressure boundary condition on the projectile 
surface (see Figure 1.1). In addition to reducing the number of cells in the simulations, this 
approach also eliminates the need for a time consuming interaction logic between the projectile 
and the target.  

� � � �

 
Figure 1.1 The projectile is modelled using a finite element mesh, whereas the target is 

modelled as a pressure boundary on the projectile surface elements. 

 
Building on (1), we have implemented a similar scheme in the hydrocode Autodyn (2,3).  User 
subroutines were programmed in Fortran 90 to define the pressure boundary condition, and 
 
   



 8  
 
were linked with the Autodyn code through the standard Fortran 90 linker. In this way we 
retained the Autodyn user interface, which saved us a significant amount of work compared 
with creating our own hydrocode from scratch.  
 
The new approach depends on the penetration model based on cavity expansion theory (4).  
This theory is valid for undeformed penetrators, which means that in principle the new 
approach is not applicable if the penetrator deforms significantly during the penetration 
process.  However, it is believed to work well even for situastions when the projectile body 
bends, as long as there is no deformation of the nose. 
 
This report explains how to use the extended Autodyn version as well as documenting the 
implemented user subroutines.  It is assumed that the reader has some familiarity with both 
Fortran 90 and Autodyn.   An elementary textbook may be useful as a reference for Fortran 90 
illiterate readers. 

2 PROJECTILE DEFINITION 

After having started the extended Autodyn executable, the first step is to define the projectile 
mesh, which is most conveniently done using the Lagrangian processor.  The projectile can be 
defined using two separate subgrids for the body and the nose, but it is quicker to use only one 
subgrid, and restrict the ijk-range during nose definition. This also makes it easier to later 
apply the pressure boundary condition to the surface cells, as one then gets away with only five 
boundary-commands instead of nine for two subgrids.  
 
The most efficient way to define the projectile is thus the following: 
 

• Define the ijk-range in the normal way. 
• Enter the Zoning—ijk-range command and redefine the ijk-range so that only the 

upper k-range is used for zoning. 
• Define the nose geometry within the redefined ijk-range. 
• Redefine the ijk-range to include only the range that was not included in the nose 

definition. 
• Enter the Zoning—Generate—Block command, and define the projectile body. 

 
After having defined the projectile subgrid, it only remains to fill it with some kind of material.  
This is done in the usual way, except that the user is also prompted the following question: 
“Use actual radius?”. 
 
This refers to the projectile radius which is a factor in the analytical calculation.  A more 
detailed explanation will be given later, but basically reponding “no”  means the radius of the 
main body is used in the calculations, even at the nose, whereas “yes” implies that the smaller 
radius at the projectile nose is accounted for (i.e. a radius is calculated for each cell). 
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The radius is stored in the user variable var01, which before execution should be initialised 
from the Autodyn menu Global—Options—UserVar.  It is very important that the user 
variable is assigned a non-zero value before the problem is run. If a *.000 file is loaded and ran 
without entering the fill session to initialise var01, the variable will be assigned the value 0. 
The calculations of distance involve division by this number, which will result in NaN (not-a-
number).  The most likely outcome is then that the calculation apparently proceeds normally, 
but without boundary effects being calculated. The result is thus a calculation for a semi-
infinite target. 

3 TARGET DEFINITION 

As mentioned, the target is not modelled explicitly in the new approach, but accounted for 
through an analytical model.  In this chapter we explain how to provide input for this analytical 
model. 

3.1 Input from the Autodyn menu system 

The target is modelled through a so-called user stress boundary condition, which is defined by 
selecting: Global – Boundary.  As usual, the name of the boundary condition must first be 
specified.  However, unlike in normal Autodyn this name is not arbitrary as it will define the 
target geometry.   One of the reserved names shown in Table 3.1 must therefore be used.  
  

Table 3.1 Boundary condition names and reserved user inputs. 

Target geometry 
 

Boundary condition name 

Prism CUBE 
Cylindrical target CYLINDER 
Spherical target SPHERE 
Infinite slab PERFORATE 
Semi-infinite target Arbitrary (except for the above names) 
 
Autodyn then asks for the type of boundary condition, where stress and then user must be 
selected, after which Autodyn prompts for the values of five constants, named RBC(1) through 
RBC(5).   The constants RBC(1) through RBC(3) define the stress on a cell as a function of 
velocity, while the two last constants are not used here.  More details are given in Chapter 
4.2.5. 
 
After having defined the boundary conditions, the next step is to asssign them to the projectile 
nose surface cells. This is done with the menu choice Subgrid – Boundary. The user can for 
instance define one or more planes in the ijk-space. An example is shown in Figure 3.1 for an 
ogive subgrid, where the boundary condition ”PERFORATE” has been defined on the five 
planes i=1, j=1, i=imax, j=jmax  and k=kmax, thereby covering the complete outer nose surface.   
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� � � � � � � � 	 � � 
 �

� � �  � � � � �

 
Figure 3.1 The boundary condition ”PERFORATE” has been defined for the planes i=1, 

j=1, i=imax, j=jmax  and k=kmax  on the ogive subgrid.   

 
So far we have only defined the type of geometry for the target. It is also necessary to specify 
the values that define the target in the coordinate system, e.g. the radius of a cylindrical target 
and the position of the front face of the target. Such specifications are made using a Matlab 
preprocessor described in the next section.  

3.2 Matlab preprocessor 

The Matlab preprocessor generates two input files called material_data.dat and geometry.dat, 
which must be present in the Autodyn bin-directory during execution.  It is, of course, also 
possible to generate these files using a text editor. 
 
It is very important to be aware that all input parameters must be given in the same units as 
used in the relevant Autodyn model.  Thus, if lengths are measured in centimeters, all 
geometrical parameters must be given in centimeters etc.  

3.2.1 Target material model 

The first four target input parameters concern the target material model: 
 
• Yield limit 
• Shear modulus 
• Young’s modulus 
• Density 
 
These variables are only used in the calculation of boundary effects.  If an infinite target is 
considered, the values of these variables are not used and it is sufficient to define RBC(1)-
RBC(3) in the Autodyn user interface.   
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3.2.2 Target geometry 

The next seven inputs deal with the target geometry: 
 
• Radius 
• Front coordinate 
• Rear coordinate 
• Top coordinate 
• Bottom coordinate 
• Left coordinate 
• Right coordinate 
 
The meaning of these input parameters depend on the target geometry, which was chosen by 
the name of the boundary condition. 
 
The simplest case is the sphere: radius is obviously the radius of the sphere, and the centre of 
the sphere has the coordinates (left, top, front), i.e. x=left, y=top, and z=front. 
 
The cylinder radius is obviously given by the radius constant. For a cylinder, the top and 
bottom is defined by front and rear: zmin=front and zmax=rear. The axis is always along the z-
axis, with x=y=0. Figure 3.2 shows a sketch of a cylindrical target with the three required 
constants. 
 

�

� � � � � � � � � � � � � � � � � � �

�

�

�

 
Figure 3.2 Definition of a cylindrical target.  

Finally, a prism is defined from six surface planes. Note that the radius parameter is not used 
in this case and that the target does not have to be cubical (the name of the boundary condition 
might then be slightly confusing).  In Figure 3.3 an example of a prism target is shown. The 
definition is straightforward as long as one remembers that the terms ”front”, ”rear”, ”left” and 
so on, refer to a viewpoint at a z-value smaller than zmin.  The side defined by ”left” will 
therefore appear as the left side of the target, ”front” will appear as the front face, and so on. 
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Figure 3.3 A prism with the 6 constants needed to define it.  

3.2.3 Wrap-up condition 

Finally, the last input lines in the preprocessor defines a wrap-up condition.  It is possible to 
specify one of four wrap-up conditions, three of which are non-standard and are probably only 
useful in impact simulations. The conditions are as follows: 
 

• kin.energy: wrap up when the kinetic energy is very small 
• momentum: wrap up when the momentum is reversed 
• on perf.: wrap up when the kinetic energy has ceased to change in time  
• cycle: wrap-up when the simulation reaches a certain cycle 

 
The kin.energy criterion is the following: If the initial kinetic energy is denoted Ki and the 
present kinetic energy is denoted Kp, then the calculation ends when 
 

p

i

K
r

K
<  

where r is the value specified by the user. 
 
The momentum criterion is similar.  Letting pi and pp denote initial and present momentum, the 
calculation wraps up at the condition  
 

0≤⋅ pi pp . 

 
The criterion on perf. is also a kinetic energy criterion. It works like this: let Kp be the present 
kinetic energy again, and let Kp-1 be the kinetic energy in the previous “cycle”.  Then the 
simulation wraps up when  
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r
K
K

p

p ≥
−1

 

 
Note that Kp-1 is not literally the kinetic energy in the previous cycle, but the kinetic energy the 
last time exedit was called. The user sets the frequency at which this subroutine is called 
from the menu selection Global—Edit—User.  
 
The cycle criterion is obviously the maximum cycle number in the calculation. If a standard 
Autodyn wrap-up criterion is desired, this can be achieved simply by never calling the 
exedit subroutine except in cycle 0. 

3.3 Target orientation 

Since the target is not modelled explicitly, the target orientation is always fixed relative to the 
Autodyn coordinate system with planes along the coordinate axes.  In order to vary the impact, 
yaw and pitch angles, the projectile must be moved about instead of the target. 

4 THE MODIFIED AUTODYN PROGRAM 

After having defined the simulation set-up according to the instructions in Chapters 2 and 3, it 
is executed as a normal Autodyn simulation.  In this chapter we explain how things actually 
work internally in the extended Autodyn code.  We will not be concerned with the source code 
itself, but will rather examine the general idea, see how the calculations are divided into 
subtasks, and explain how each of them are carried out.  

4.1 An overview of the program 

In Autodyn, the user subroutine exstr allows the user to define a pressure boundary. This 
subroutine is called at every cycle in the computation for certain predefined cells, defined from 
the Autodyn menu under Global—Subgrid—Boundary.  
 
The pressure boundary condition is defined on the surface and Autodyn automatically 
distributes it as a force on the four corner nodes of a cell face. The disturbance that results 
from this pressure is then advanced through the subgrid in the normal way. 
 
Figure 4.1 shows a sketch of the modified Autodyn program structure. The subroutine 
exedit is called in the initialisation cycle (i.e. cycle 0), and a file containing initialisation 
data is opened and read. Some simple preliminary calculations are then performed to convert 
the input parameters into constants that are easier to work with internally. 
 
The variables are stored in the modules savevar, geometry, static_constants and 
constants_def. The use of modules is the only way to make the variables available to 
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other subroutines. The final initialisations are executed from the exstr subroutine in cycle 1, 
setting the variable that determines the type of boundary condition used. The initialisation data 
are saved and loaded in the exsave and exload subroutines, respectively. 
 
The essential part of the program is the calculation of the pressure boundary condition. The 
pressure will be a function of the cell velocity, the distance to any free surfaces in the target, 
and the diameter of the projectile. The task of finding this pressure is divided into seven 
subtasks,  each of which must be performed on all surface cells in every cycle. 
 

� � � � � � � � � � � � � � �

� � � � � � �

� � � � 	 � � � � �  � � 	

� � � � 	 �  � � �

� � � � � � � � � 	

� � � � � � � � �

� � � � � �

� � � � � �  � � 	


 � � � � � � � 	 � � � �

	 � � 
 � � � � � � � � �  � � � �

� � � � � � 	  � � � � �

� � � � � � 	  � � � �  � �


 � � � � � � � 	 � � � � � � �

� � � � �  � � 	 � � 	 � � � �

 � �  � � 	 � � � 	 � � � � � �

� � � � � � � �

 
Figure 4.1 A coarse overview of the program. 

 
The subtasks are as follows: 
 

1. Calculate the outward pointing normal vector of the cell face 
2. Calculate the node velocity in the direction of the normal vector for each of the four 

corner nodes, and find the average value 
3. Find the distance to any free surfaces in the target 
4. Find the fraction of the cell inside the target 
5. Calculate the pressure on the projectile in an infinite target  
6. Use the results from the above computations to calculate the decay function 
7. Find the final pressure 

 
Most of these calculations are carried out using other subroutines and functions placed in 
separate files or modules. In particular, the module math_funcs2 contains several functions 
used to compute the normal vector, the decay function and so on.  
 
In the remaining part of this chapter, each of the seven steps are explained in more detail. The 
focus is on the algorithms, the theoretical background, and the problems we need to consider in 
each step. The detailed source code can be found in Appendix A. 
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4.2 The various subtasks 

4.2.1 Normal vector 

The normal vector of an element is found from a straightforward cross product between the 
diagonals of the cell. However, care is required to make sure it points away from the projectile 
surface.  Therefore we have to take care of the order of the vectors as well as their directions.  
 
The subroutine exstr is called with the ijk-indices of two diagonally opposite nodes. These 
nodes define the surface that is subject to the pressure boundary. As an example, consider 
Figure 4.2 which shows a cell surface. When exstr is called, the indices of the nodes (i1,j1) 
and (i2,j2) are passed to the subroutine as formal parameters. Using this information we can 
access the positions of each node via the xn, yn and zn-arrays, and once the positions are 
known it is a simple task to find the diagonal vectors v1 and v2.  Their direction is chosen with 
care to eventually give a normal vector pointing away from the projectile. 
 

 ! " # $

 ! " # !  $ " # !

 $ " # $

 !
 $

 
Figure 4.2 Cell face with either k=1 or k=kmax, viewed from outside the subgrid. The 

vectors v1 and v2 are the diagonal vectors.   

A normal vector n in the direction coming out of the plane is then: 
 

12 vvn ×=  
 

4.2.2 Normal velocity 

Once we have calculated the normal vector, it is straightforward to find the normal velocity. 
The inner product of the unit normal vector and the velocity vector for each node gives the 
component of the node velocity vector along the normal vector.  We then compute a cell 
velocity by finding the mean velocity of the four corner nodes. 

4.2.3 Distance to a free surface 

The calculation of the distance between the projectile and the target boundary is actually less 
trivial than it may seem initially. In fact, even the definition of distance to a free boundary is 
not obvious, as shown in Figure 4.3.  
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If we are to take the cavity expansion formalism literally, we should use the distance along the 
projectile surface normal vector, which is the radius of the medium in which the “cavity” 
expands.  This method has been implemented in the present program.  Another possibility is to 
use the shortest distance to the surface.  To implement this, only a trivial change in the source 
code is needed. 

�

 

 

Figure 4.3 The distance to a free boundary may be defined in many ways. In this figure the 
two possibilites discussed in the text are shown. 

A second issue is how to carry out the actual calculation.  One possible method is to employ 
basic geometry to find a mathematical expression for the distance to a free boundary. This 
works well for simple geometries (objects consisting of one surface only, such as semi-infinite 
targets), and if the distance we want to find is the shortest possible.  However, the calculations 
are more tedious for the implemented definition of d, whereas objects consisting of several 
surfaces (such as cubes) complicate the programming enormously.   
 
Instead we have implemented a binary search algorithm. In this case we define a cutoff 
distance, beyond which it is known that boundary effects can safely be neglected. This 
provides us with an interval which represents the search range.  The following algorithm is 
then applied: 
 

1. Find the midpoint of the search range. 
2. Check if this midpoint is inside or outside the target. 
3. Redefine the search range: if the midpoint was inside the target, then use the upper 

half of the search range and in the opposite case use the lower half of the search 
range. 

 
This procedure brings us closer and closer to the actual boundary, although it is never found 
exactly.  If we loop n times, the resulting value is accurate to within 1/2n-1 of the cutoff 
distance.  In the present version of the program we have used 100 projectile diameters as the 
cutoff value.  As an example, assume the diameter is 7.5 cm and that we loop 11 times. The 
distance is then found to within  
 

10

7.5 100 0.73
2

cm cm×
= . 

 

 
   



 17  
 
A higher accuracy can be obtained by increasing the number of iterations. Obviously, too 
many iterations will increase the runtime, but provided the number of iterations is kept at a 
reasonable level (i.e. between 10 and 20) the effect on the total runtime is small.  In the current  
subroutine a default value of 13 iterations is used.  It is trivial to change the source code to 
another number of iterations. 

4.2.4 Cell position relative to target 

When a projectile cell first enter the target, the pressure should be turned on gradually 
depending on how far the cell has penetrated.  This can be achieved by multiplying the 
pressure with a factor depending on how much of the cell is inside the target.  The simplest 
factor is just the number of nodes inside the target divided by four, which is the approach used  
in the current subroutine.  This leads to a stepwise rise in the pressure, which should be a close 
enough approximation. 
 
Another possibility would have been to actually calculate the relative cell face area inside the 
target.  Although this gives a smooth transition between zero pressure and full pressure, it is a 
much more involved method, which have therefore not yet been implemented. 

4.2.5 Pressure in a semi-infinite target 

In a wide range of cases, the cavity expansion theory gives the cavity pressure as a function of 
expansion velocity as a quadratic velocity function: 
 

( ) 2CvBvAvp ++=     (4.1) 
          

The constants A, B and C in this expression depend on material behaviour, and are the 
constants input as RBC(1)-RBC(3).  When applied to penetration problems, the expansion 
velocity is taken as the normal component of the velocity vector.  In many cases the linear 
term is small and can be safely neglected. 

4.2.6 Decay function 

The decay function α(v,d) has a value between 0 and 1.  It is calculated from cavity expansion 
theory as the ratio between the radial stress in a finite and infinite medium.  The function 
depends on the distance d to the free boundaries, the projectile velocity, and possibly more 
parameters.  
 
We must emphasise that the decay function is usually not an exact solution, but an 
approximation based on a simplified material model.  Several alternative decay functions exist 
depending on the approximation used.  However, in practise the difference between the various 
expressions is usually small.  In our implementation we have used a dynamic expression 
derived in (1).  The various geometrical parameters are defined in Figure 4.4. 
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Figure 4.4 The physical problem in cavity expansion is to find the pressure at the cavity 
surface (r=a) as the cavity expands, while boundary conditions apply at the 
elastic-plastic boundary (r=b) and the elastic boundary (r=d). 

 
For a plastic zone smaller than the target diameter, we have: 
 

( )

3 3 3 42
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         (4.2) 

 
whereas when the whole target is plastic, we use 
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                                            (4.3) 

 
The elastic-plastic boundary is given by: 
 

     
3

1
2







=

Y
G

a
b                                                                      (4.4) 

4.2.7 Final pressure 

The final pressure is found by multiplying the semi-infinite resistive pressure described in 
Chapter 4.2.5 with the decay function from Chapter 4.2.6: 
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( ) ( ) ( )vpdvdvpred ,, α=     (4.5)  
 
Further details about the calculation of boundary effects can be found in (6). 

5 COMPARISON WITH EXPERIMENTS AND OTHER METHODS 

 
In this chapter we apply our method to several different situations.  In addition to 
demonstrating the capabilities of the approach, this enables us to check that the subroutine has 
been correctly implemented. 
 
First we look at the simple case of penetration into a semi-infinite target with no boundary 
effects, and compare the results with the semi-analytical expressions from cavity expansion 
theory.  Then we compare with results of Warren and Poormon (1) for the case of oblique 
impact and finally we look at some perforation experiments. 
 
The projectile variables are explained in Figure 5.1. 
 


�

$ �

 
Figure 5.1 Definition of the projectile dimensions.  

5.1  Comparison with semi-analytic expressions for normal impact 

We start by making a direct comparison with semi-analytical theory, in which case we would 
expect to obtain the same result both from Autodyn and theory. 
 
For this example we use projectile dimensions of L=50 mm, l=30 mm, mass=0.162 kg, and 
2a=20 mm.  The impact velocity was 400 m/s and the standard Autodyn Johnson-Cook library 
4340 steel model was employed.  
 
The target material was arbitrarily chosen, with material constants roughly corresponding to a 
rather low-strength concrete of 48 MPa.  The constants in the pressure function of Equation 
(4.1) are calculated from an empirical formula by Forrestal (6): 
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The final input values are given in Table 5.1. (Keep in mind that Autodyn units are mm, ms 
and mg, so density is expressed in g/cm3   and stress in kPa): 

Table 5.1 Material parameters for the concrete target. 

Yield stress Y 236 MPa 
Youngs modulus E 62.5 GPa 
Poisson ratio   0.25 
Density 2.44 g/cm3 
RBC(1) 4.5·105 
RBC(2) 0.0 
RBC(3) 2.44 
RBC(4) 0.0 
RBC(5) 0.0 

 
Note that since RBC(4) and RBC(5) are not used by Autodyn, we could have entered 
whichever value we wanted for these parameters.   
 
Mesh sensitivity was investigated by running two different simulations, one with a projectile 
consisting of 640 cells and one with 12000 cells making up the projectile.   
 
The Autodyn results are presented in Table 5.2 along with the result of an analytical 
calculation. The small disagreement can be explained by the phase when a cell face is partly 
embedded in the target. Notice that meshing appears to have no effect on the results, which is a 
good sign. 

Table 5.2 Penetration depths for three calculations. 

Type of calculation Penetration depth 
Analytical 100.1 mm 
Simulation, 640 cells 100.8 mm 
Simulation, 12000 cells 100.8 mm 

5.2 Oblique impact 

A more challenging problem is the oblique impact of a projectile on a target.  This would 
normally require a full 3D-simulation, which is very timeconsuming, and was part of the 
original motivation for implementing the cavity expansion algorithm in Autodyn.   
One specific situation has been studied carefully, both numerically and experimentally by 
Warren and Poormon (1), using their own implementation of the cavity expansion algorithm in 
a different code. 
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A complete description of the simulations and experiments can be found in the original article, 
but the basic details are included here for completeness.  The dimensions of the projectile were 
L=59.3 mm, l=11.8 mm, and 2a =  7.11 mm and it was modelled using a steel model that 
differed slightly from the standard Autodyn Johnson-Cook model, one of the differences being 
a higher value for the bulk and Young moduli and yield strength.  Furthermore, a different 
strain hardening model was applied:   
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where Y is the yield stress, Y0 is the initial yield stress (or input yield stress), εp is the effective 
plastic strain, and εp0 and n are input constants.  This has been implemented in Autodyn using 
the subroutine exyld.  Table 5.3 shows the input data used in the simulations.  

Table 5.3 Input material data for the steel model.  

Material model: Von mises plasticity with strain dependence in subroutine exyld 
Density 8025 kg/m3 
Bulk modulus 206 GPa 
Shear modulus 76 GPa 
Yield stress Y0 1.481 GPa 
 n  25.0 
 εp0  7.189·10-3 
  
The projectile body did bend during the penetration process, which means that it was not rigid 
and in principle CET theory was not valid.  However, since the nose remained undeformed at 
all times, this was not expected to be a serious problem. 
 
The target was a 6061-T6511 aluminium cylinder.  Using the material model in (1), we have 

(1) 5.0394RBC Y= , (2) 0.983RBC Yρ=  and (3) 0.9402RBC ρ= . Table 5.4 shows the input 
values used. 

Table 5.4 Material parameters for the aluminium target 

Yield stress Y 276 MPa 
Youngs modulus E 69 GPa 
Poisson ratio   0.33 
Density 2.71 gc/m3 
RBC(1) 1.3909·106 
RBC(2) 8.5014·102 
RBC(3) 2.5479 
RBC(4) 0,0 
RBC(5) 0,0 

 
Four simulations were selected for comparison.  Unfortunately, Warren and Poormon had used 
a target geometry consisting of a “skewed” cylinder,  which was impossible to model with our 
current implementation of the user subroutine.  Instead we used a cylinder target with a radius 
of 254 mm and a length of 217 mm.  Since this is not exactly the same as Warren and 
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Poormon, we would not expect to exactly reproduce their results, although they ought to be 
quite similar.  The various  results are presented in Table 5.5, with the name of each simulation 
corresponding to the experiment number in Warren and Poormon’s (WP) article.  The Y and Z 
values are the coordinates of the nose tip after the projectile has come to rest. 

Table 5.5 Comparison between Autodyn, WP and experiments for four selected 
simulations. 

Simula
tion 

Impact 
velocity 

Impact 
angle 

Y (AD) Z (AD) Y (WP) Z (WP) Y(exp) Z (exp) 

1-0453 1156 30 91,5 -118,8 88,7 138.1 113.2 149.5 
1-0461 759 15 32,7 -94,2 30,4 95.5 34.4 85.0 
1-0466 802 45 Ricochet (Y= 54) 104,3 8,9 Ricochet (Y= 38) 
1-0468 1184 45 Ricochet (Y= 169) 190,0 5,4 203.3 7.25 

Figure 5.2:   Pressure distribution in the projectile for impact at 45 degrees and velocity of
 802 m/s (Simulation 1-0466). 

Each simulation is completed within half an hour, which is at least 99% faster than a full  In 
Figure 5.2 we show a contour plot of the pressure distribution in the projectile at various stages 
during the penetration process for Simulation 1-0466.   
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For the simulations 1-0453 and 1-0461, the correspondence between our results, WP and 
experiments is reasonably close.  This is to be expected since these simulations have the 
smallest impact angle and boundary effects should therefore be less important.   For simulation 
1-0466 and 1-0468 with a larger impact angle, the results appear slightly different, though.  
However, this is not a reason for concern since these simulations are quite sensitive to 
boundary effects, which are different since we are unable to model exactly the same situation 
as Warren and Poormon.    

5.3 Perforation 

Finally, we compare with perforation experiments by Hanchak et al (8).  They launched steel 
projectiles normally at concrete slabs for two very different concrete qualities. We have tried 
to simulate the experiments for the weakest concrete, having a compression strength of       
48 MPa.  
 
The projectile had dimensions L=101,6 mm, l=42,1 mm and 2a=25,4 mm, and the steel model 
was standard Johnson-Cook 4340 steel from the Autodyn material library.  
 
The target thickness was 17.8 cm.  Inputs to the target material model are shown in Table 5.6. 
The yield stress for the concrete should be pressure-dependent, but in order to use a simple 
Mises material model, we selected a constant “average” value for this parameter. 
 
Simulations were run for two different ways of calculating the distance to free boundaries.  We 
used both the standard CUBE stress boundary condition, which calculates the distance along 
the projectile surface normal vector, and the PERFORATE stress boundary condition which 
finds the shortest distance to free boundaries in a semi-infinite slab. 
 

Table 5.6 Target data for the perforation simulations. 

Yield stress Y 273 MPa 
Poisson ratio 0.25 
Young’s modulus E 6.25·104 MPa 
Density ρ 2440 kg/m3 
RBC(1) 4.6·105 
RBC(2) 0 
RBC(3) 2.44 
RBC(4) 0 
RBC(5) 0 
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Figure 5.3 Comparison of perforation experiments by Hanchak et.al. (8) with results from      
the new Autodyn algorithm.  

The results are plotted in Figure 5.3 along with the experimental results.  The plot suggests that 
there is little difference between the two methods for large impact velocities.  Since the target 
material model is a very crude approximation of the experimental concrete, these simulations 
can not determine whether the CUBE or PERFORATE boundary condition is the best, but still 
it is nice to see that both seem to give reasonable results.   

6 CONCLUSION AND FURTHER WORK 

We have implemented a combined analytical and numerical method for 3D penetration 
simulations of rigid projectiles.  The approach takes advantage of the possibilities for 
developing user subroutines in Autodyn.  After these new subroutines have been linked to 
Autodyn, a new executable file with extended capabilities is created.  
 
The new method gives runtimes of less than 1% of  a corresponding full 3D simulation.  This 
makes it possible to perform sensitivity studies on very complex problems, something which 
was out of reach with normal Autodyn-3D. 
 
Suggestions for further work include: 
 
• Investigate the importance of projectile meshing when boundary effects are                

important and, if possible, optimise it. 
• Validate the use of the decay function on concrete targets. If necessary and possible,  

implement improvements. 
• Implement more complicated target geometries, e.g. boulder targets in the form of spheres 

stacked on top of each other. 
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A SOURCE CODE 

All user subroutines in the present versions of Autodyn are written in Fortran 90. Readers who 
are unfamiliar with this programming language will find a textbook useful. In addition, the 
Autodyn User Subroutine Tutorial may shed some light on parts of the code. Mostly, however, 
it should be rather straightforward to follow the program lines, albeit a bit tedious at times. 
 
In the source code there are a few program lines that have been commented. This happens in 
the subroutine surface_reduction, for example, in the calculation of the decay function. 
Both the static and the dynamic expressions have been programmed, and choosing between the 
two is done at compile time by commenting the lines for the undesired expression. 
 
Furthermore, in the subroutine exyld a three-line modification to the yield criterion has been 
defined. This modification was introduced to comply with the material model of Warren and 
Poormon, which was slightly different from the standard Autodyn material library model.  A 
recompilation of the program is needed to use this special yield model. 
 
A description of the various parts of the code follows in the next chapters. 

A.1 Subroutine exstr 
SUBROUTINE EXSTR (NAMSTR1,RBC,I1,J1,K1,I2,J2,K2,PRES) 
   
  USE kindef 
  USE bnddef 
  USE ijknow 
  USE cycvar 
  USE wrapup 
  USE mdgrid 
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The two following modules are documented below.  
 
  USE maths_funcs 
  use savevar 
   

We start out by declaring some variables.  
 
  IMPLICIT NONE 
   
  INTEGER (INT4) ::     I1,     I2,     J1,     J2,     K1,     K2 
  REAL (REAL8)   ::   PRES 
  REAL (REAL8), DIMENSION(5) :: RBC 
  CHARACTER (LEN=10) :: NAMSTR1 
  real, dimension(1:3) :: normal_vector, diag1, diag2 
  real, dimension(1:12) :: corner_positions 
  real :: normal_velocity, smearing, area, normal_distance 
  integer :: n1 
  integer, dimension(1:4) :: ijk_array 
   

Initialisations: 
 
if (ncycle==1) then 
   if (namstr1=='CUBE') then 
      boundary_type_int=1 
   else if (namstr1=='CYLINDER') then 
      boundary_type_int=2 
   else if (namstr1=='SPHERE') then 
      boundary_type_int=3 
   else 
      write(6,*) 'No known boundary type specified. Target is infinite.' 
      boundary_type_int=0 
   end if 
end if 
end if 
 

Now we have set the integer variable boundary_type_int to a value which corresponds 
to the type of boundary chosen by the user.  
 
Next, we find the ijk-index of each of the four corner nodes: 
  if (i1==i2) then 
     ijk_array(1)=ijkset(i1,j1,k1) 
     ijk_array(2)=ijkset(i1,j1,k2) 
     ijk_array(3)=ijkset(i1,j2,k2) 
     ijk_array(4)=ijkset(i1,j2,k1) 
  else if (j1==j2) then 
     ijk_array(1)=ijkset(i2,j1,k1) 
     ijk_array(2)=ijkset(i2,j1,k2) 
     ijk_array(3)=ijkset(i1,j1,k2) 
     ijk_array(4)=ijkset(i1,j1,k1) 
  else if (k1==k2) then 
     ijk_array(1)=ijkset(i1,j1,k1) 
     ijk_array(2)=ijkset(i1,j2,k1) 
     ijk_array(3)=ijkset(i2,j2,k1) 
     ijk_array(4)=ijkset(i2,j1,k1) 
  end if 
 

And now we are ready to find the positions of the corner nodes: 
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  do n1=0,3 
     corner_positions(n1*3+1)=xn(ijk_array(n1+1)) 
     corner_positions(n1*3+2)=yn(ijk_array(n1+1)) 
     corner_positions(n1*3+3)=zn(ijk_array(n1+1)) 
  end do 
 

When the positions are known, we can calulate an area close to the actual area of the cell face. 
The subroutine surface_area which accomplishes this is explained below. Usually this 
area is not needed, so the relevant part of the code is commented at present. 
 
  area=surface_area(& 
       corner_positions(4:6)-corner_positions(1:3), & 
       corner_positions(10:12)-corner_positions(1:3),& 
       corner_positions(4:6)-corner_positions(7:9),& 
       corner_positions(10:12)-corner_positions(7:9)) 
 

Now we find the diagonals of the cell face, defined as the vectors between two opposing 
corner nodes. Later, these are used in the calculation of a normal vector. Hence, to ensure it 
always points outwards, the direction of the diagonals must be chosen with care. 
 
  diag1=corner_positions(7:9)-corner_positions(1:3) 
  if ((i1==i2 .and. i1==1) .or. (j1==j2 .and. j1==1) .or. & 
       (k1==k2 .and. k1==1)) then 
     diag2=corner_positions(4:6)-corner_positions(10:12) 
  else 
     diag2=corner_positions(10:12)-corner_positions(1:3) 
  end if 
 

We calculate the outward pointing unit normal, and find the average velocity of the four corner 
nodes.  
 
  call unit_normal(diag2,diag1,normal_vector) 
  normal_velocity=0.0 
  diag2=0.0 
  do n1=1,4 
     diag2(1)=uxn(ijk_array(n1))+diag2(1) 
     diag2(2)=uyn(ijk_array(n1))+diag2(2) 
     diag2(3)=uzn(ijk_array(n1))+diag2(3) 
  end do 
  diag2=diag2/4 
 

The function normal_component is simply calculating the inner product of two vectors. 
 
  normal_velocity=normal_component(diag2,normal_vector) 
 

Now the main part of the subroutine starts, using boundary_type_int to choose between 
the different possible boundary conditions: one free surface, two free surfaces, with or without 
the linear term in the pressure function, and a corner. The variable smearing is used to 
reduce the pressure calculated from the subroutine pressure_function. 
 
  select case (boundary_type_int) 

case(0) 
     smearing=real(ncycle)/rbc(3) 

 
   

     if (smearing>=1.0) smearing=1.0 
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case(1) 
     call cube(normal_vector,corner_positions,& 
          var01(ijk_now),smearing,normal_distance) 
     if (normal_distance<100.0 .and. normal_distance>0.0) then 
        normal_distance=2.0*normal_distance+1.0!Conversion to 
!radii, and translation to the zero point of the decay function 

      smearing=smearing*surface_reduction(normal_distance,& 
           normal_velocity, rbc(3)) 
    end if 

case(2) 
     call cylinder(normal_vector,corner_positions,& 

var01(ijk_now),smearing,normal_distance) 
     if (normal_distance<100.0 .and. normal_distance>0.0) then 
        normal_distance=2.0*normal_distance+1.0!Conversion to 
!radii 

      smearing=smearing*surface_reduction(normal_distance,& 
             normal_velocity, rbc(3)) 
     end if 

case(3) 
     call sphere(normal_vector,corner_positions,& 

var01(ijk_now),smearing,normal_distance) 
     if (normal_distance<100.0 .and. normal_distance>0.0) then 
        normal_distance=2.0*normal_distance+1.0!Conversion to 
!radii 

      smearing=smearing*surface_reduction(normal_distance,& 
             normal_velocity, rbc(3)) 
     end if 
    case(4) 

call perforation(normal_vector,corner_positions,& 
var01(ijk_now),smearing,normal_distance) 

     if (normal_distance<100.0 .and. normal_distance>0.0) then 
        normal_distance=2.0*normal_distance+1.0!Conversion to 
!radii 

      smearing=smearing*surface_reduction(normal_distance,& 
             normal_velocity, rbc(3)) 
     end if 
 
 
  end select 
  call pressure_function(rbc,normal_velocity,pres) 
  pres=smearing*pres 
   
  RETURN 
   
END SUBROUTINE EXSTR 
 

A.2 Subroutines exedit, exsave and exload 

The subroutine exedit reads the material data file in cycle 0, as well as doing some 
calculations of static variables.  Results are stored to avoid doing the same computation in 
every cycle, for every relevant cell.  In addition, a wrap-up criterion is programmed, and it is 
possible to write values of the decay function for five different velocities to a file called 
alpha_values.dat.  (This was implemented for debugging and the user will probably 
never need to do this). 
 
SUBROUTINE EXEDIT 
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USE kindef 
USE wrapup 
USE subdef 
USE mdgrid 
USE cycvar 
 
use savevar 
use constants_def 
use static_constants 
use maths_funcs 
 
IMPLICIT NONE 
 
integer, dimension(1:8) :: values 
character(len=8) :: date 
character(len=10) :: time1 
character(len=5) :: zone 
integer :: previous,ivel 
character :: create_plot 
real, dimension(1:5) :: velocities 
 
if (ncycle==0) then 
 
First, read the material data file: 
 
   open(15,file='material_data.dat',form='formatted') 
   read(15,*)  
   read(15,*) yld 
   read(15,*)  
   read(15,*) shrmd 
   read(15,*)  
   read(15,*) youngmd 
   read(15,*)  
   read(15,*) exp_n, exp_m 
   read(15,*)  
   read(15,*) epsdot_user, eps_user 
   read(15,*)  
   read(15,*) wrap_up_condition 
   read(15,*) 
   read(15,*) create_plot 
   read(15,*)  
   read(15,*) velocities 
   close(15) 
   read(15,*) top 
   read(15,*)  
   read(15,*) bottom 
   read(15,*)  
   read(15,*) left 
   read(15,*)  
   read(15,*) right 
   close(15) 
 

Calculate some constants to be used later, and place the values in variables stored in modules 
so that these values are accessible from all subroutines: 
 
   exp_n=1/exp_n 
   plastic_boundary=(2*youngmd)/(3*yld) 
   plastic_boundary=plastic_boundary**0.333333333 
   red_yld=2*yld/3 
   log_constant=red_yld+red_yld*log((2*youngmd)/(3*yld)) 
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   previous=0 
   poisson=youngmd/(2*shrmd)-1 
   static2=(1+poisson)/(4*(1-poisson)) 
   static3=1+log(2*shrmd/yld) 
   static4=4*shrmd/(static2*yld) 
   static1=2*shrmd*(1+poisson)/(yld*(3-poisson)) 
   static1=static1**0.333333333 
 

If the user has requested it, create a file containing value pairs of the decay function, one value 
being a distance from a free boundary and the other the calculated decay function value. Do 
this for five velocities. 
 
   if (create_plot=='y') then 
 open(83,file='alpha_values.dat',form='formatted') 
 do ivel=1,5 
         write(83,*) 'Velocity=',velocities(ivel) 
       do previous=20,120 
  write(83,'(f20.10,3x,f20.10)') real(previous)/20.0, & 
         surface_reduction(real(previous)/20.0, & 
         velocities(ivel), 2.8) 
      end do 
       do previous=61,261 
  write(83,'(f20.10,3x,f20.10)') real(previous)/10.0, & 
          surface_reduction(real(previous)/10.0, & 
          velocities(ivel), 2.8) 
      end do 
      do previous=150,250 
  write(83,'(f20.10,3x,f20.10)') real(previous)/5.0, & 
          surface_reduction(real(previous)/5.0, & 
          velocities(ivel), 2.8) 
      end do 
     end do 
     close(83) 
     end if 
   else 
 

Wrap the calculation up either when the projectile stops, or turns around. The stop condition is 
calculated by calculating the ratio between the starting kinetic energy and the present kinetic 
energy. If the ratio is less than a user specified small value then the calculation is wrapped up. 
The turning condition is that the inner product between the starting momentum and the present 
momentum is negative. 
 
     if (wrap_up_condition>0.0) then 
  if (subke(1)/subkeb(1)<wrap_up_condition) then 
     nswrap=99 
     end if 
   else if (wrap_up_condition<0.0) then 
 if (subxmb(1)*subxm(1)+subymb(1)*subym(1)+subzmb(1)*subzm(1)<0.0)& 
       then 
    nswrap=99  
      end if 
   end if 
end if 
 
 
 
RETURN 
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END SUBROUTINE EXEDIT 

 
The subroutines exsave and exload are included to handle the saving of the non-standard 
variables. With them, we may stop the execution of the program and still be able to remember 
the initialisations (which are only called if the cycle number is 0 and 1, depending on the 
variable). The variables in question are defined in the module savevar. 
 
SUBROUTINE EXSAVE (NTYPE) 
 
USE kindef 
USE fildef 
 
use savevar 
use geometry 
 
IMPLICIT NONE 
 
INTEGER (INT4) ::  NTYPE 
integer :: writestat 
 
if (ntype==1) then 
   write(nut1,iostat=writestat) shrmd, yld, detection_distance, & 
        displacement,boundary_type_int, exp_n, exp_m, epsdot_user, & 
        eps_user, youngmd, front, rear, top, bottom, right, left,  & 
        radius, wrap_up_condition 
else if (ntype==2) then 
   write(nut2,'(4(es13.6),i4,13(es13.6))',iostat=writestat) shrmd, yld, & 
        detection_distance, displacement,boundary_type_int, exp_n, & 
        exp_m, epsdot_user, eps_user, youngmd , radius, top, bottom, & 
        right, left, front, rear, wrap_up_condition 
end if 
if (writestat/=0) write(6,*) 'Error writing custom data to file.' 
 
RETURN 
END SUBROUTINE EXSAVE 
 
 
SUBROUTINE EXLOAD (NTYPE) 
 
USE kindef 
USE fildef 
 
use savevar 
use constants_def 
use static_constants 
use geometry 
 
IMPLICIT NONE 
 
INTEGER (INT4) ::  NTYPE 
integer :: readstat 
 
if (ntype==1) then 
   read(nut1,iostat=readstat) shrmd, yld, detection_distance, & 
        displacement,boundary_type_int, exp_n, exp_m, epsdot_user, & 
        eps_user, youngmd, front, rear, top, bottom, right, left,  & 
        radius, wrap_up_condition 
else if (ntype==2) then 
   read(nut2,'(4(es13.6),i4,13(es13.6))',iostat=readstat) shrmd, yld, & 
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        detection_distance, displacement,boundary_type_int, exp_n, & 
        exp_m, epsdot_user, eps_user, youngmd , radius, top, bottom, & 
        right, left, front, rear, wrap_up_condition 
end if 
if (readstat/=0) write(6,*) 'Error reading custom data from file.' 
plastic_boundary=(2*youngmd)/(3*yld) 
plastic_boundary=plastic_boundary**0.333333333 
red_yld=2*yld/3 
log_constant=red_yld+red_yld*3*log(plastic_boundary) 
poisson=youngmd/(2*shrmd)-1 
static2=(1+poisson)/(4*(1-poisson)) 
static3=1/(1-log(2*shrmd/yld)) 
static4=16*shrmd*(1-poisson)/(yld*(1+poisson)) 
static1=2*shrmd*(1+poisson)/(yld*(3-poisson)) 
static1=static1**0.333333333 
 
RETURN 
END SUBROUTINE EXLOAD 
 

A.3 The subroutine exval 

The sole purpose of this subroutine is to calculate the diameter of the projectile for each 
surface cell, and store the value in the user variable var01. The way this calculation is done is 
shown in Figure A.1. 
 

�
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Figure A.1:   Sketch of a projectile with the vectors needed to find the radius at any point on 

the surface.  

We first need to identify the axis vector, in other words the vector between the tip point and 
the endpoint. The vector is shown as a in the figure. When this vector has been identified, we 
can find the vector between the endpoint and any point on the surface. This vector is shown as 
w in the figure. We want to find r, the normal vector from the axis to this point on the surface. 
Simple geometry gives r expressed in terms of a and w as 
 

a
a
wawr 2

⋅
−=  

 
The radius is then taken as the length of this vector. We use this formula to calculate the radius 
to the four corner nodes of each surface cell, and then taking the average distance as the value 
stored in the var01 variable. The program assumes elsewhere that the value stored is the 
diameter rather than the radius, so we finally multiply by 2. 
 
SUBROUTINE EXVAL (NS,I,J,K,IJK,MATI,NP,RHOI,RREF,SIEI,UXI,UYI,UZI,URI) 
 
USE kindef 
USE bnddef 
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USE subdef 
USE mdgrid 
 
IMPLICIT NONE 
 
INTEGER (INT4) ::    IJK,I,J,K,   MATI,     NP 
INTEGER (INT4) ::     NS 
REAL (REAL8)   ::   RHOI,   RREF,   SIEI,    URI,    UXI,    UYI,   UZI 
real, dimension(1:3) :: axis_vec, radius_vec, pos_vec 
real :: length_axis, angle 
character :: yon 
integer :: axis_i, axis_j, n1 
integer, dimension(1:4) :: corner_ijk 
 

After the declarations we start out by prompting the user whether to calculate the actual radius 
for every surface cell, or just calculate the maximum radius. We also find the axis vector as the 
vector between nodes ((imax+1)/2,(jmax+1)/2,2) and 
((imax+1)/2,(jmax+1)/2,kmax). Since these tasks only need to be performed once, 
we do them only in the first cell, that is, for ijk-index (2,2,2).  
 
if (i==2 .and. j==2 .and. k==2) then 
   call getyon(yon, '$Use actual radius$') 
   axis_i=(imax+1)/2 
   axis_j=(jmax+1)/2 
   axis_vec(1)=xn(ijkset(axis_i,axis_j,2))-xn(ijkset(axis_i,axis_j,kmax)) 
   axis_vec(2)=yn(ijkset(axis_i,axis_j,2))-yn(ijkset(axis_i,axis_j,kmax)) 
   axis_vec(3)=zn(ijkset(axis_i,axis_j,2))-zn(ijkset(axis_i,axis_j,kmax)) 
   length_axis=axis_vec(1)**2+axis_vec(2)**2+axis_vec(3)**2 
   length_axis=sqrt(length_axis) 
end if 
 

The following if-branching is needed to correctly identify the corner nodes in each surface 
cell face. The exval subroutine is only called for cells. Since Autodyn cells are identified by 
their upper corner cell (see the Autodyn theory manual (3)), the surface cells for the lower 
values of i and j have indices (2,2,k) or similarly. If we just use the i,j,k-indices that are formal 
parameters in the subroutine, we do not use the surface nodes to calculate the radius, and the 
value is thus wrong. We need the following branches to use the correct nodes in the calculation 
of the radius.   
 
if (yon=='Y') then 
   if (i==2) then 
      corner_ijk(1)=ijkset(1,j,k) 
      corner_ijk(2)=ijkset(1,j-1,k) 
      corner_ijk(3)=ijkset(1,j,k-1) 
      corner_ijk(4)=ijkset(1,j-1,k-1) 
   else if (i==imax) then 
      corner_ijk(1)=ijkset(i,j,k) 
      corner_ijk(2)=ijkset(i,j-1,k) 
      corner_ijk(3)=ijkset(i,j,k-1) 
      corner_ijk(4)=ijkset(i,j-1,k-1) 
   else if (j==2) then 
      corner_ijk(1)=ijkset(i,1,k) 
      corner_ijk(2)=ijkset(i-1,1,k) 
      corner_ijk(3)=ijkset(i,1,k-1) 
      corner_ijk(4)=ijkset(i-1,1,k-1) 
   else if (j==jmax) then 
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      corner_ijk(1)=ijkset(i,j,k) 
      corner_ijk(2)=ijkset(i-1,j,k) 
      corner_ijk(3)=ijkset(i,j,k-1) 
      corner_ijk(4)=ijkset(i-1,j,k-1) 
   else if (k==kmax) then 
      corner_ijk(1)=ijkset(i,j,k) 
      corner_ijk(2)=ijkset(i-1,j,k) 
      corner_ijk(3)=ijkset(i,j-1,k) 
      corner_ijk(4)=ijkset(i-1,j-1,k) 
   else  
      corner_ijk(1)=ijkset(i,j,k) 
      corner_ijk(2)=ijkset(i,j,k) 
      corner_ijk(3)=ijkset(i,j,k) 
      corner_ijk(4)=ijkset(i,j,k) 
   end if 
 

The ijk-indices of the corner nodes have now been identified correctly. We then proceed to 
calculate the w vector and the radius for each of the four nodes. The user variable is assigned 
the average value, and finally converted to a diameter by multiplication with 2. 
 
   var01(ijk)=0.0 
   do n1=1,4 
      pos_vec(1)=xn(ijkset(axis_i,axis_j,2))-xn(corner_ijk(n1)) 
      pos_vec(2)=yn(ijkset(axis_i,axis_j,2))-yn(corner_ijk(n1)) 
      pos_vec(3)=zn(ijkset(axis_i,axis_j,2))-zn(corner_ijk(n1)) 
      angle=pos_vec(1)*axis_vec(1)+pos_vec(2)*axis_vec(2)+& 
           pos_vec(3)*axis_vec(3) 
      angle=angle/(length_axis**2) 
      radius_vec=pos_vec-angle*axis_vec 
      var01(ijk)=var01(ijk)+2.0*sqrt(radius_vec(1)**2+& 
           radius_vec(2)**2+radius_vec(3)**2) 
   end do 
   var01(ijk)=var01(ijk)/4 
else 
   pos_vec(1)=xn(ijkset(axis_i,axis_j,2))-xn(ijkset(imax,jmax,2)) 
   pos_vec(2)=yn(ijkset(axis_i,axis_j,2))-yn(ijkset(imax,jmax,2)) 
   pos_vec(3)=zn(ijkset(axis_i,axis_j,2))-zn(ijkset(imax,jmax,2)) 
   angle=pos_vec(1)*axis_vec(1)+pos_vec(2)*axis_vec(2)+& 
        pos_vec(3)*axis_vec(3) 
   angle=angle/(length_axis**2) 
   radius_vec=pos_vec-angle*axis_vec 
   var01(ijk)=2.0*sqrt(radius_vec(1)**2+radius_vec(2)**2+& 
        radius_vec(3)**2) 
end if 
 
RETURN 
END SUBROUTINE EXVAL 
 

A.4 Sundry modules  

These modules contain various variables, as well as a function, needed by several different 
subroutines. The constants contained in these modules could be passed to subroutines as 
arguments, but the reason for placing them in modules is the much simpler programming this 
entails. 
 
module savevar 
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  real :: shrmd, yld, detection_distance, displacement, youngmd, side_face 
  integer :: boundary_type_int, body_number 
  real :: exp_n, exp_m, epsdot_user, eps_user, front_face, upper_face 
  real :: wrap_up_condition, poisson 
end module savevar 
 
module constants_def 
  real :: red_yld, log_constant, plastic_boundary 
end module constants_def 
 
module static_constants 
  real :: static1, static2, static3, static4 
contains 
  real function plastic_b(var) 
    real :: var 
    plastic_b=static2*(sqrt(1+static4/(var**3))-1) 
  end function plastic_b 
end module static_constants 
 
module geometry 
   real :: radius, front, rear, top, bottom, left, right 
end module geometry 

A.5 Module maths_funcs2 

This module contains a number of different subroutines and functions used in the program.  
Firstly, the following is an overview of the module with the names of all functions and 
subroutines defined, along with the call variables in each case.  
 
module maths_funcs2 
contains 
 

real function surface_reduction(d,velocity,dens) 
 ... 
end function surface_reduction 
 
subroutine unit_normal(vec1,vec2,result_vector) 
 ... 
end subroutine unit_normal 
 
subroutine cube(norm_vec,corner_pos,diam,fraction,distance) 
 ... 
end subroutine cube 
 
subroutine cube(norm_vec,corner_pos,diam,present_time, snd_spd,& 
fraction,distance) 
 ... 
end subroutine cube 
 

      subroutine cylinder(norm_vec,corner_pos,diam,fraction,distance) 
 ... 
end subroutine cylinder 
 
subroutine sphere(norm_vec,corner_pos,diam,fraction,distance) 
 ... 
end subroutine sphere 
 
real function normal_component(vec1,unit_vec) 
 ... 
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end function normal_component 
 
real function surface_area(span1,span2,span3,span4) 
 ... 
end function surface_area 
 

end module maths_funcs 
 

In more detail, the contents of each of these routines are shown below. 

A.5.1 real function surface_reduction 
real function surface_reduction(d,velocity, dens) 
!d is in units of projectile radii 
     
! STATIC EXPRESSION FOR THE REDUCTION OF PRESSURE AS FUNCTION OF DISTANCE   
! TO FREE BOUNDARIES 
    use static_constants 
    real :: d, velocity, dens 
 
     
    if (d>=static1) then 
       surface_reduction=(1-
plastic_b(d)+log(plastic_b(d))+log(d**3))/static3 
    else 
       surface_reduction=3*log(d)/static3 
    end if 
 
! DYNAMIC SPHERICAL CAVITY EXPANSION     
!!$    use constants_def 
!!$    real :: d, velocity, dens, dens2 
!!$ 
!!$    dens2=dens/2 
!!$    if (plastic_boundary<=d) then 
!!$       d=1/d 
!!$       surface_reduction=(log_constant-& 
!!$            red_yld*(plastic_boundary**3)*(d**3)+& 
!!$            (dens2*velocity**2)*(3+d**4-4*d))/& 
!!$            (log_constant+3*dens2*(velocity**2)) 
!!$    else  
!!$       surface_reduction=(3*red_yld*log(d)+& 
!!$            dens2*velocity*velocity*(3+1/(d**4)-4/d))/& 
!!$            (log_constant+3*dens2*velocity*velocity) 
!!$    end if 
    if (surface_reduction>1.0) surface_reduction=1.0 
    if (surface_reduction<0.0) surface_reduction=0.0 
 
    return 
  end function surface_reduction 
 

A.5.2   subroutine unit_normal 
    implicit none 
    real, dimension(1:3), intent(in) :: vec1,vec2 
    real, dimension(1:3), intent(inout) :: result_vector 
    real :: length_vec 
     
    result_vector(1)=vec1(2)*vec2(3)-vec1(3)*vec2(2) 
    result_vector(2)=vec1(3)*vec2(1)-vec1(1)*vec2(3)   

 
   

    result_vector(3)=vec1(1)*vec2(2)-vec1(2)*vec2(1) 



 37  
 
    length_vec=sqrt(result_vector(1)**2+result_vector(2)**2+& 
         result_vector(3)**2) 
    result_vector=result_vector/length_vec 
 
    return 
  end subroutine unit_normal 
 

A.5.3   subroutine cube 

This subroutine calculates the smearing factor and the distance from free boundaries in the 
case of a prism-shaped target. The smearing factor is used to reduce the pressure on a cell face 
when that cell is only partially embedded in the target. The factor is calculated in the simplest 
possible way: when only one node is inside the target, the factor is 0.25, when two nodes are 
inside it is 0.5, and so on. 
 
subroutine cube(norm_vec, nodes, diam, fraction, distance) 
    use geometry 
!The variables front, left, right, top etc refers to the target as seen 
along 
!the positive z-axis. These variables are defined in the module. 
    implicit none 
     
    real, dimension(1:3), intent(in) :: norm_vec 
    real, dimension(1:12), intent(in) :: nodes 
    real, intent(in) :: diam 
    real, intent(out) :: fraction, distance 
    integer :: no_nodes, i 
    real, dimension(1:3) :: distance_vec 
    real :: distance, nodex, nodey, nodez, minimum, maximum 
 
    !Check how many nodes are within the target, compute fraction 
    no_nodes=0 
    accuracy=0.0 
    distance_vec=0.0 
    do i=0,3!The target is _always_ along coordinate axes 
       nodex=nodes(i*3+1) 
       nodey=nodes(i*3+2) 
       nodez=nodes(i*3+3) 
       if (nodex<left .and. nodex>right .and. nodey<top .and. & 
            nodey>bottom .and. nodez>front .and. nodez<rear) then 
          no_nodes=no_nodes+1 
       end if 
       distance_vec(1)=distance_vec(1)+nodex 
       distance_vec(2)=distance_vec(2)+nodey 
       distance_vec(3)=distance_vec(3)+nodez 
    end do!distance_vec is now the vector sum of all four corner node 
positions 
!relative to the absolute coordinate system in the calculation 
    distance_vec=distance_vec/4 
    nodex=distance_vec(1) 
    nodey=distance_vec(2) 
    nodez=distance_vec(3)!calculation of geometric mean of cell face. 
    if (no_nodes>0) then 
!Binaersoek-algoritmen 
       maximum=100.0*diam 
       minimum=0.0 
       distance_vec=maximum*norm_vec 

 
   

       if (nodex+distance_vec(1)<left .and. nodex+distance_vec(1)>right& 
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               .and. nodey+distance_vec(2)<top .and. & 
               nodey+distance_vec(2)>bottom .and. & 
               nodez+distance_vec(3)>front .and. & 
               nodez+distance_vec(3)<rear) then 
          distance=101.0*diam 
       else 
          do i=1,13 
             distance=(minimum+maximum)/2 
             distance_vec=distance*norm_vec 
             if (nodex+distance_vec(1)<left .and. 
nodex+distance_vec(1)>right& 
               .and. nodey+distance_vec(2)<top .and. & 
               nodey+distance_vec(2)>bottom .and. & 
               nodez+distance_vec(3)>front .and. & 
               nodez+distance_vec(3)<rear) then 
  minimum=distance 
             else 
  maximum=distance 
             end if 
          end do 
          distance=(minimum+maximum)/(2*diam) 
       end if 
       fraction=real(no_nodes)/4.0 
    else if (no_nodes==0) then 
       distance=-1.0 
       fraction=0.0 
    end if 
 
    return 
  end subroutine cube 

A.5.4 subroutine perforation 

This subroutine only needs two geometry inputs: the front and the rear faces of the target. It 
calculates the shortest distance to the rear face, but only after enough time has passed that 
elastic waves can travel across the target thickness and back to the projectile. It also calculates 
the shortest distance to the front face for oblique impacts. The target is infinite in the other two 
directions.  
 
subroutine perforation(norm_vec, nodes, present_time, snd_spd, & 
       diam, fraction, distance) 
    use geometry 
!The variables front, left, right, top etc refers to the target as seen 
!along the positive z-axis. These variables are defined in the module. 
    implicit none 
     
    real, dimension(1:3), intent(in) :: norm_vec 
    real, dimension(1:12), intent(in) :: nodes 
    real, intent(in) :: diam, present_time, snd_spd 
    real, intent(out) :: fraction, distance 
    integer :: no_nodes, i 
    real, dimension(1:3) :: distance_vec 
    real :: distance, nodex, nodey, nodez, minimum, maximum 
 
    !Check how many nodes are within the target, compute fraction 
    no_nodes=0 
    distance_vec=0.0 
    do i=0,3!The target is _always_ along coordinate axes 

 
   

       nodex=nodes(i*3+1) 
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       nodey=nodes(i*3+2) 
       nodez=nodes(i*3+3) 
       if (nodex<left .and. nodex>right .and. nodey<top .and. & 
            nodey>bottom .and. nodez>front .and. nodez<rear) then 
          no_nodes=no_nodes+1 
       end if 
       distance_vec(1)=distance_vec(1)+nodex 
       distance_vec(2)=distance_vec(2)+nodey 
       distance_vec(3)=distance_vec(3)+nodez 
    end do 
!distance_vec is now the vector sum of all four corner node positions 
!relative to the absolute coordinate system in the calculation 
    distance_vec=distance_vec/4 
    nodex=distance_vec(1) 
    nodey=distance_vec(2) 
    nodez=distance_vec(3)!calculation of geometric mean of cell face. 
    if (no_nodes>0) then 
       if (norm_vec(3)>=0.0) then 
          if (present_time>(rear-front+nodez)/snd_spd) then 
             distance=(rear-nodez)/diam 
          else  
             distance=101.0 
          end if 
          fraction=real(no_nodes)/4.0 
       else 
          distance=(nodez-front)/diam 
          fraction=real(no_nodes)/4.0 
          if (distance>100.0) distance=101.0 
       end if 
    else if (no_nodes==0) then 
       distance=-1.0 
       fraction=0.0 
    end if 
 
    return 
  end subroutine perforation 

 

A.5.5   subroutine cylinder 

In case of a cylindrical target, the following subroutine is needed: 
 
subroutine cylinder(norm_vec, nodes, diam, fraction, distance) 
    use geometry 
!The radius is the radius of the cylindrical target. The axis is along 
!the positive z-axis, through the origin (x=0 y=0). These variables are  
!defined in the module. 
    implicit none 
     
    real, dimension(1:3), intent(in) :: norm_vec 
    real, dimension(1:12), intent(in) :: nodes 
    real, intent(in) :: diam 
    real, intent(out) :: fraction, distance 
    integer :: no_nodes, i 
    real, dimension(1:3) :: distance_vec 
    real :: distance, nodex, nodey, nodez, minimum, maximum, act_rad 
 
    !Check how many nodes are within the target, compute fraction 
    no_nodes=0 
    distance_vec=0.0 

 
   



 40  
 
    do i=0,3!The target is _always_ along coordinate axes 
       nodex=nodes(i*3+1) 
       nodey=nodes(i*3+2) 
       nodez=nodes(i*3+3) 
       act_rad=nodex**2+nodey**2 
       if (act_rad<radius**2 .and.  nodez>front .and. nodez<rear) then 
          no_nodes=no_nodes+1 
       end if 
       distance_vec(1)=distance_vec(1)+nodex 
       distance_vec(2)=distance_vec(2)+nodey 
       distance_vec(3)=distance_vec(3)+nodez 
    end do!distance_vec is now the vector sum of all four corner node 
positions 
!relative to the absolute coordinate system in the calculation 
    distance_vec=distance_vec/4 
    nodex=distance_vec(1) 
    nodey=distance_vec(2) 
    nodez=distance_vec(3)!calculation of geometric mean of cell face. 
    if (no_nodes>0) then 
maximum=100.0*diam 
       minimum=0.0 
       distance_vec=maximum*norm_vec 
       act_rad=(nodex+distance_vec(1))**2+(nodey+distance_vec(2))**2 
       if (act_rad<radius**2 .and.  & 
            nodez+distance_vec(3)>front .and. & 
            nodez+distance_vec(3)<rear) then 
          distance=101.0*diam 
       else 
          do i=1,13 
             distance=(minimum+maximum)/2 
             distance_vec=distance*norm_vec 
             act_rad=(nodex+distance_vec(1))**2+(nodey+distance_vec(2))**2 
             if (act_rad<radius**2 .and.  & 
                  nodez+distance_vec(3)>front .and. & 
                  nodez+distance_vec(3)<rear) then 
  minimum=distance 
             else 
  maximum=distance 
             end if 
          end do 
          distance=(maximum+minimum)/(2*diam) 
       end if 
       fraction=real(no_nodes)/4.0 
    else if (no_nodes==0) then 
       distance=-1.0 
       fraction=0.0 
    end if 
 
    return 
  end subroutine cylinder 
  

A.5.6 subroutine sphere 

Finally, the same calculations are performed for a spherical target using the subroutine 
sphere: 
 
subroutine sphere(norm_vec, nodes, diam, fraction, distance) 
    use geometry 
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!The radius is the radius of the spherical target. The variable is defined 
in  
!the module. The centre of the sphere is at (x=left, y=top, z=front). 
    implicit none 
     
    real, dimension(1:3), intent(in) :: norm_vec 
    real, dimension(1:12), intent(in) :: nodes 
    real, intent(in) :: diam 
    real, intent(out) :: fraction, distance 
    integer :: no_nodes, i 
    real, dimension(1:3) :: distance_vec 
    real :: distance, nodex, nodey, nodez, minimum, maximum, act_rad 
 
    !Check how many nodes are within the target, compute fraction 
    no_nodes=0 
    distance_vec=0.0 
    do i=0,3!The target is _always_ along coordinate axes 
       nodex=nodes(i*3+1) 
       nodey=nodes(i*3+2) 
       nodez=nodes(i*3+3) 
       act_rad=(nodex-left)**2+(nodey-top)**2+(nodez-front)**2 
       if (act_rad<=radius**2) then 
          no_nodes=no_nodes+1 
       end if 
       distance_vec(1)=distance_vec(1)+nodex 
       distance_vec(2)=distance_vec(2)+nodey 
       distance_vec(3)=distance_vec(3)+nodez 
    end do!distance_vec is now the vector sum of all four corner node 
positions 
!relative to the absolute coordinate system in the calculation 
    distance_vec=distance_vec/4 
    nodex=distance_vec(1) 
    nodey=distance_vec(2) 
    nodez=distance_vec(3)!calculation of geometric mean of cell face. 
    if (no_nodes>0) then 
maximum=100.0*diam 
       minimum=0.0 
       distance_vec=maximum*norm_vec 
       act_rad=(nodex+distance_vec(1))**2+(nodey+distance_vec(2))**2+& 
            (nodez+distance_vec(3))**2 
       if (act_rad<radius**2) then 
          distance=101.0*diam 
       else 
          do i=1,13 
             distance=(minimum+maximum)/2 
             distance_vec=distance*norm_vec 
             act_rad=(nodex+distance_vec(1))**2+(nodey+distance_vec(2))**2+& 
                  (nodez+distance_vec(3))**2 
             if (act_rad<radius**2) then 
  minimum=distance 
             else 
  maximum=distance 
             end if 
          end do 
          distance=(maximum+minimum)/(2*diam) 
       end if 
       fraction=real(no_nodes)/4.0 
    else if (no_nodes==0) then 
       distance=-1.0 
       fraction=0.0 
    end if 
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    return 
  end subroutine sphere 

A.5.7   real function normal_component 
    implicit none 
    real, dimension(1:3),intent(in) :: vec1,unit_vec 
     
    normal_component=vec1(1)*unit_vec(1)+vec1(2)*unit_vec(2)+& 
         vec1(3)*unit_vec(3) 
    return 
  end function  normal_component 

A.5.8   real function surface_area 
    implicit none 
    real, dimension(1:3),intent(in) :: span1,span2,span3,span4 
    real :: area 
     
    area=sqrt((span1(2)*span2(3)-span1(3)*span2(2))**2+& 
         (span1(3)*span2(1)-span1(1)*span2(3))**2+& 
         (span1(1)*span2(2)-span1(2)*span2(1))**2)+& 
         sqrt((span3(2)*span4(3)-span3(3)*span4(2))**2+& 
         (span3(3)*span4(1)-span3(1)*span4(3))**2+& 
         (span3(1)*span4(2)-span3(2)*span4(1))**2) 
    surface_area=area/2 
    return 
  end function surface_area 

A.6 The pressure subroutine 

Although it is not necessary, the actual pressure calculation has been placed in a separate 
subroutine in a separate file. The idea behind this is that it will be easier to find and alter the 
pressure function this way. Whether this is sensible from efficiency considerations has not 
been tested, but any loss in efficiency should not be important compared with all the other 
calculations that are performed in each cycle. 
 
A different issue regards the layout of the subroutine. As it stands, the constants in the 
quadratic formula are determined from user input, i.e. the array called rbc in the exstr 
subroutine. This array only contains five constants, and we need more to completely define the 
target material. As the program now stands, the remaining constants (yield limit, elastic moduli 
and geometry) are all input to the program via files. It would perhaps be simpler to use the 
program if all the target material data were input via the same file, including also the constants 
in the pressure function. Such an improvement to the code can be written by the diligent 
reader. 
 
subroutine pressure_function(user_inputs,velocity,distance,pressure) 
  implicit none 
  real, dimension(1:5), intent(in) :: user_inputs 
  real ,intent(in) :: velocity, distance 
!The variable "velocity" is the normal component of velocity 
  real, intent(out) :: pressure 
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  if (velocity<=0) then  
     pressure=0.0 
  else  
     
pressure=user_inputs(1)+user_inputs(2)*velocity+user_inputs(3)*velocity**2 
  end if 
 
  return 
end subroutine pressure_function 

B COMPILATION AND LINKING 

The compilation and linking can be done with the Makefile discussed here. To use it, one 
needs to copy the source code files and the Makefile to a directory 
usrsub/forcing_function. The standard Autodyn directory hierarchy should also be 
used, that is, the usrsub directory should reside in the same folder as bin and data. With 
alterations to the Makefile, it is of course possible to change this folder structure. 
 
The first line in the Makefile defines the path to the Autodyn directory, a path referred to as 
PATH1. This path must be changed to the appropriate name. For instance, if you have the 
autodyn files in a directory called autodyn in your home directory, 3D version 4.2 in a 
directory called 3dv42, with bin, data and usrsub in this directory, then PATH1 is 
/user/<username>/autodyn/3dv42. 
 
In addition to compiling and linking, the makefile can be used to generate examples of input 
files. 

B.1 Makefile commands 

The following commands are possible: 
 
make: 

The command compiles the necessary .f90-files and links them with the standard 
Autodyn program. The name of the output file is defined in the Makefile. 

 
make $(SLAVE): 

The command is as above, but generates the slave process for 3D parallell runs. The 
$(SLAVE) symbol is defined in the Makefile, and is the name of the slave process. The 
input name must be identical to the name in the Makefile. 

 
make example: 

The command generates a program called input_examples, and runs the program. The 
program generates examples of the material_data.dat-file and the geometry.dat-file. 

 
make clean: 
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The command removes all files except the *.f90-files. It also removes all executables 
generated with the Makefile. 

 
make zipclean:  

This command is the same as the clean command, except that in addition it uses gzip to 
compress the *.f90-files.  

B.2 The Makefile 
.SUFFIXES: .f90 .o .a .mod 
 
PATH1= /user/aao/autodyn/3dv42 
FILES1= $(PATH1)/usrsub/admain3.o $(PATH1)/usrsub/autodyn3.a 
ADSLAVES= $(PATH1)/usrsub/adslav3.o $(PATH1)/usrsub/autodyn3.a 
FILES2= variables.f90 math_funcs.f90 pressure_function.f90 $(F90FILE).f90 
OBJFILES= ${FILES2:.f90=.o}  
#MODFILES= ${FILES3:.f90=.mod} 
GKSDIR= $(gksdir) 
PVM_DIR= $(PVM_ROOT)/lib/HPPA/ 
PROGRAM= forcing_dynamic_binary 
DATADIR= testruns 
SLAVE= adslav3 
FLAGS= -L$(GKSDIR)  -lgksflb -lgksw5300 \ 
 -lgksw1900 -lgkswiss \ 
 -lgksgksm -lgksmsc -L$(PVM_ROOT)/libfpvm/HPPA -lX11 -lm  
FLAGS2= +save +noshared +O2 +DA2.0 -I $(PATH1)/usrsub \ 
 -I $(PATH1)/usrsub/forcing_function 
FLAGS3= -Wl,-a,shared -lnsl -ldld -I $(PATH1)/usrsub \ 
 -I $(PATH1)/usrsub/forcing_function 
DEBUG= +gprof 
PVM_LIB1= $(PVM_ROOT)/libfpvm/HPPA/libfpvm3.a 
PVM_LIB2= $(PVM_DIR)libpvm3.a $(PVM_DIR)libgpvm3.a 
 
.f90.o : $(FILES2)  
 f90 -c $< $(FLAGS2) 
 
$(PROGRAM) : $(OBJFILES) 
 f90  -o $(PROGRAM) $(FLAGS3) $(OBJFILES) $(FILES1) $(FLAGS)\ 
 $(PVM_LIB1) $(PVM_LIB2) 
 cp $(PROGRAM) $(PATH1)/bin/. 
 
$(SLAVE) : $(OBJFILES) 
 f90  -o $(SLAVE) $(FLAGS3) $(OBJFILES) $(ADSLAVES) $(FLAGS) \ 
 $(PVM_LIB1) $(PVM_LIB2) 
 cp $(SLAVE) $(PATH1)/bin/. 
 
input_example : example.f90 
 f90 -o input_example example.f90 
 
example : input_example 
 input_example 
 mv geometry.dat material_data.dat $(PATH1)/bin/. 
 
clean :  
 rm -f *~ *.o *.mod *.dat 
 rm -f $(PROGRAM) $(PATH1)/bin/$(PROGRAM) 
 rm -f $(SLAVE) $(PATH1)/bin/$(SLAVE) 
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zipclean : clean 
 gzip *.f90 
 gzip input_examples 
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