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English summary

An important aspect of simulation and autonomous planning of military operations is to find good
and realistic posititions for observation and attack. Essential to this is the ability to identify the set of
positions from which a target can be observed and where it can be attacked from. In mathematics, a
generalization of this notion is referred to as the viewshed. An algorithm for computing the viewshed
is therefore an important part of an autonomous system for finding good positions for observation
and attack.

A range of algorithms exists for finding the viewshed, from slow exact algorithms to fast approxima-
tions. In this thesis we consider how to empirically compare the performance of viewshed algorithms
and establish a framework for finding the best algorithm for a specific use case. Leveraging this
framework we identify a set of algorithms suitable for integration with a planning algorithm on
terrain types typically encountered in military land scenarios.

Our testing procedure identifies some weaknesses in the R2 algorithm originally described by Ray et.
al., and we propose a few modifications which significantly improve its accuracy on typical terrains
with little or no cost in terms of speed.

Finally, we propose a generalization of the R2 algorithm with anytime behavior which allows us
to compute viewsheds with far greater accuracy than R2, but at the expense of increased running-
times.
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Sammendrag

I simulering og autonom planlegging av militære operasjoner er det viktig å kunne finne gode og
realistiske observasjons- og angrepsposisjoner. Essensielt for dette er å kunne identifisere hvor et
mål kan observeres fra og hvor det kan angripes fra. En generalisering av slike posisjoner omfattes
av begrepet viewshed fra matematikk. Algoritmer for å finne viewshedet er derfor en viktig del av et
autonomt system for å finne gode observasjons- og angrepsposisjoner.

Det finnes en rekke algoritmer for å finne viewshedet, fra trege men eksakte algoritmer til raske
tilnærmingsalgoritmer. I denne oppgaven undersøker vi hvordan man kan empirisk vurdere ytelsen
til viewshedalgoritmer, og etablerer et rammeverk for hvordan man bør velge algoritme til en gitt
anvendelse. Dette rammeverket anvender vi for å finne et utvalg algoritmer som egner seg til bruk i
planlegging på typiske terrengtyper fra militære landscenarioer.

Testprosedyren vår avdekker noen svakheter i R2-algoritmen opprinnelig beskrevet av Ray et. al.,
og vi foreslår noen endringer til algoritmen som gir betydelig høyere nøyaktighet på typiske terreng
med liten eller ingen økning i kjøretid.

Til slutt foreslår vi en avbrytbar generalisering av R2-algoritmen som gjør det mulig beregne viewshed
med langt høyere nøyaktighet enn R2, i bytte med økt kjøretid.
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1 Introduction

Simulation and autonomous planning has become an important part of military preparations. Using
modern computers we can now produce simulations with realism that simply was not possible just a
few years ago. We can also create tools that help strategists making plans of unprecedented detail
and quality.

In this thesis we will use a problem from military autonomous planning as motivation for looking
into visibility analysis. We consider the scenario of a platoon of vehicles attacking some hostile
group of vehicles. Simulating such a scenario poses several challenges. How should the platoon
position themselves in order to have the best chance of defeating their enemy? Where do the hostiles
position themselves in the first place, and how do they react to the attack? These are just a few issues
that must be carefully handled in order for the simulation to have any value for real world use.

Studying the scenario further we find that visibility analysis, specifically viewshed calculations,
is essential to any reasonable procedure attempting to solve these challenges. With the military
application in mind we consider existing theory developed by Franklin et al., de Floriani et al., Cole
et al., Ben-Moshe et al. and Izraelewitz et al. Building on ideas originally proposed by Franklin et al.
we establish a robust procedure for comparing viewshed algorithms for specific applications. Using
this scheme we compare the performance of existing algorithms in conditions typically encountered
when used as part of a military planning system.

Based on these comparisons we find that the R2 algorithm due to Ray et al. is the best fit for our
application, and use it as a starting point for further improvements. Analyzing some unsatisfactory
performance on certain terrain types, we discover two simple modifications to the original R2
algorithm. One of the modifications reduce the error by 50%, whithout siginificantly affecting the
running time. The other modification reduces the error by 75%, while only increasing the running
time with 30%.

In the quest for even more accurate approximations in a more flexible algorithm that can deliver high
precision on demand in exchange for increased running times, we further analyze the error committed
by our improved R2 algorithm. Based on the results of this analysis we develop a multi-pass hybrid
algorithm that exploits patterns in the error for predicting where the extra evaluation cycles are best
spent. We show that the resulting algorithm is capable of calculating viewsheds with more than
three orders of magnitude the accuracy of the original R2 algorithm, using barely ten times the
running time. Combined with the tunability, this level of performance makes the algorithm fill the
gap between approximate and accurate algorithms.

Contributions

In section 3 we formalize the framework used Franklin et al. in [FRM94]. We prove the correctness
of the R3 algorithm in theorem 3.1 and corollary 3.4. Additionally we formalize the steps in the
development of the R2 algorithm in corollary 3.6 and corollary 3.7, clearly separating the accurate
and approximate parts of the algorithm.
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We greatly extend some ideas proposed in [FRM94], making a robust testing framework for viewshed
algorithms in section 4. This includes an automated procedure for selecting test observation positions,
in addition to robust statistic procedures for quantifying the relative performance of algorithms.
Although other authors have put some thought into this, proper testing procedures are absent in most
of the existing literature on the subject.

In section 5 we propose two improvements to the R2 algorithm from [FRM94]. First we develop a
variant of R2, which greatly reduces the error with only minor increases in running time. Secondly
we propose an efficient tunable algorithm based on the improved version of R2, capable of reducing
the error on demand in exchange for prolonged running times.

2 Finding good strategic positions

Our primary motivation for looking into visibility calculations in this thesis can be found in the
general scenario where a platoon is attacking an enemy group of vehicles. The overall goal is to
develop some automatic procedure for planning the whole maneuver, so it can be used for simulations
and in real world scenarios. This problem is, however, rather complex. For each enemy unit the
procedure should carefully select attacking positions for each friendly unit, maximizing the likelihood
of incapacitating the enemy without casualties. These positions depend on many factors, such as
distance, relative elevation, terrain type and accessibility, just to name a few. With multiple enemies,
the procedure must also find the optimal order in which to attack each unit. This order in turn affects
which attack positions are optimal. The enemy is assumed to react to attack, which means that the
plan must dynamically be updated as the scenario unfolds. Additionally the procedure must take the
starting position of the friendly units, and how fast they move into account.

Instead of tackling this problem head-on, we will turn our focus to the subproblem of finding good
attack positions against a single target. At this point it is natural to also consider the problem of
finding good positions for observing some target, as these problems are very similar. As we shall
see, visibility calculations are essential to solving these problems. But first, we need some military
background on the matter.

2.1 The anatomy of an attack

The basic principles of an attack in land-based warfare are the same for most types of units on the
battlefield, be it infantry or vehicles.

Suppose a blue unit is mounting an attack on a red unit. An attack is typically considered to consist
of three separate positions. Initially blue should be completely covered, i.e. invisible and not in
danger of being attacked by red. Before being able to attack, blue must move to a position where he
has visual contact in order to lock his target systems onto red. Finally, when the target systems are
set, blue must move to a position from which he can fire upon red. Typically these three positions are
referred to as the cover-, observation- and attack position, respectively.
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The distinction between the two latter positions becomes apparent in the case of main battle tanks.
For this type of vehicle, we model projectile trajectories as straight lines, although this is not entirely
accurate. Assume that red is initially hidden behind a hill, and that blue is driving up this hill. This is
indicated by point 1 in figure 2.1a. At some point as blue moves up the hill, his sights, which sit high
on the vehicle, will have an uninterrupted line of sight (LOS) to red. From this position blue engages
the targeting systems, and prepares to fire upon red. This is point 2 in the figure. Finally, as soon as
the targeting systems are ready, blue moves forward until there is an uninterrupted LOS from the
barrel to a critical point on red. This is the position blue should fire from, illustrated by point 3 in the
figure. On most terrains there are significantly fewer attacking positions than there are observation
positions. A typical real world example can be seen in figure 2.1b, which clearly shows that the set
of attack positions is smaller than that of observation positions.

Essential to the effectiveness of the attack is how quickly blue can move from cover to observation
and attack. Blue is vulnerable to attack as soon as he leaves cover, so it is important the attack
position is easily accessible, while maintaining all escape options available. Naturally a swift attack
means that blue can catch red by surprise, increasing the overall likelihood of success.

In the observation- and attacking positions, blue must of course accept to be vulnerable to attack
from red. A good attacking position should, however, limit blue’s exposure to the remainder of the
terrain, where other enemies potentially might be hiding. Therefore these positions should ideally be
selected in such a way that they primarily have a view in the direction of red, or areas controlled by
blue units.

2.2 Observation tactics

The tactics involved in observing a point of interest are by and large the same as for attack, except
that we never move into attack position. If blue is to observe some point, he wants to be able to move
quickly from a position of complete cover to the observation position where he has an uninterrupted
LOS to the target. As for attacks it is beneficial if blue is visible only from a small region, as this
reduces the risk of being spotted.

2.3 Relevant visibility calculations

By now it should be clear that performing some type of visibility calculations will be essential in
identifying good candidates for attack- and observation positions. Specifically we need to find the
regions of the terrain from which there is an uninterrupted LOS to some known target point. The
reverse of this problem is to find the viewshed of the target, i.e. finding the points that can be seen
from the target. In practice it is not necessarily the case that red can see blue even though blue can
see red. For instance, red might not be able to spot blue if he is hiding in a tree line. In this thesis
however, we will assume that a LOS always can be used in both directions. This means that finding
the viewshed of a target point, is the same as finding the set of points from which the target point is
visible.
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1.

2.
3.

(a) A blue vehicle attacking red. Positions 1-3 indicate the cover-, observation- and attacking positions,
respectively.

(b) A terrain with imposed viewsheds. Red is positioned in the small white square. Points from which blue can
observe and attack red are colored yellow and red, respectively. The blue circle highlights a promising
region.

Figure 2.1
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Say that blue’s sights are situated at a height above the ground, and that the highest visible point
of red is at b height above the ground. This means that we are really interested in points x, such
that there is an uninterrupted LOS from the point that is a above x to the point that is b above red’s
position. Similarly for attack, we follow the same procedure, but use the height of blue’s cannon and
some critical point of red for a and b. This is a generalization of the viewshed, where the observer
height, in this case b, and the target height, in this case a, are extra parameters.

The higher the target and/or observer height, the larger the viewshed. As a result, there typically
are fewer potential attack points than observation points. This can be seen in figure 2.1b which
shows both the attack- and observation viewsheds in a typical situation. As can be seen in the figure
the attack viewshed is contained inside the observation viewshed due to lower observer- and target
heights.

2.4 Viewshed boundary points

When it comes to finding good attack and observation positions, we are particularly interested in
the boundaries of the relevant viewsheds. Typically the best observation positions lie only barely
inside the observation viewshed. Outside this viewshed blue cannot be seen by red, and therefore has
cover. Blue can observe red regardless of how deep he is inside the viewshed, so staying close to the
boundary means that he has a short route to cover.

The principle is the same in an attack scenario, but here blue also needs to have a short route to cover
when in the attack position. This implies that the observation- and attack positions should be chosen
in a region where the boundaries of the observation- and attack viewshed are close. Such a position
is highlighted by the blue circle in figure 2.1b. Here blue can stay in cover before moving just inside
the observation viewshed to prepare his targeting systems. When the systems are set he can move
quickly inside the attack viewshed and fire. If something unexpected is to occur blue can at any time
abort and retreat quickly back into cover.

2.5 Summary

There are many important factors that affect the quality of observation- and attack positions that we
have not discussed. We know, however, that accessibility, vegetation, distance and relative elevation
to the target are just a few other important factors that can render even the best candidate points
useless. This is, however, beyond the scope of this thesis. Regardless, it is clear that visibility
calculations, especially viewshed calculations, are at the core of any system capable of finding
realistic strategic positions. This is our motivation to investigate viewshed algorithms further, and
how they should be used for our application.

The goal is to use this in an even bigger system, capable of planning how an entire platoon should
attack a group of targets. This is a typical two-player scenario, which might have to be explored
using some variant of the minimax algorithm. If the targets are mobile, which they typically are, they
will respond to the actions undertaken by the platoon. This means that each new state in the state tree
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requires updated knowledge about new viewsheds. It is therefore likely that such an approach will
require the calculation of a large number of viewsheds.

It turns out that a brute-force approach to this is not feasible, as it is simply too slow. On terrain
data sets of realistic size the running time of a brute force solution is on the order of minutes, which
is not practical if it is to be used in a procedure which requires the calculation of thousands of
viewsheds.

There are a few practical considerations that might cause approximate viewsheds to be acceptable.
First of all, the terrain data are not an accurate depiction of the real world. This means that even using
completely accurate viewshed algorithms, we might come up with an attack position from which the
enemy in reality is not even visible, making it impossible to attack. This can potentially be dangerous
for the unit performing the attack, since it might end up in a compromising position without any
opportunity to fight back. As long as the terrain data are approximate, there is no way to fully prevent
such errors. Secondly, it is generally not essential that the viewshed boundary is 100% accurate, as
long as it is within a few meters. If this is the case we might still come up with impossible attack
positions, but there is like to be a viable position within few meters. In the case of figure 2.1a this
corresponds to simply moving a few more meters up the hill. This means that good approximations
can be used, without any larger risk than accurate algorithms. It is, however, clear that the quality of
the resulting positions will be benefit from being based on viewsheds with low error. Therefore, there
is reason to have as accurate approximations as possible within the available time frame.

3 Overview of visibility calculations

For solving our military scenario we have seen that we will need to perform some visibility calcula-
tions, specifically viewshed calculations. Before we can do that, we need a theoretical framework
which allows us to represent a terrain and precisely define what we mean by visibility.

We will build a general framework, which gives us the tools we need for proving properties of the
algorithms we will consider. Our definition of visibility has the intuitive property that it is symmetric.
That is, if a point a is visible from a point b, then b must also be visible from a. Building on this we
will also define the viewshed, which is the set of points, called targets, that are visible from a given
point, called the observer.

In order to use these definitions in practice, we need an efficient way to represent terrain. We will
therefore consider several terrain models, and discuss how they fit our application. We will primarily
focus on regular square grids (RSGs) and triangulated irregular networks (TINs), which are two
commonly used terrain models.

Finally we will consider several algorithms for calculating viewsheds on these terrain models. We start
by studying the brute force algorithm described in [FRM94]. Then we consider several approximate
algorithms for both for RSGs and TINs, among others the R2 algorithm due to Franklin et al., which
will be the focus of section 5. Empirical tests of these algorithms follow in section 4.
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3.1 Definition of visibility

We assume that the terrain at hand can be represented as a subset of R3. This is a definition that is
general enough to contain all the various terrain representations we will consider, yet specific enough
to be meaningful in our context.

We will now define the notion of visibility and what we mean by the term viewshed.

Definition 3.1.

Let U ⊂ R3 be some terrain, and u ∈ R3 be a point.

We say that two points u and v are intervisible wrt. U iff. the interior of the line segment between
them does not contain any points from U :

{λu + (1− λ)v|λ ∈ (0, 1)} ∩ U = ∅

The viewshed of U wrt. u, V (u), is given by the set of points in U that are intervisible to u.

The only candidates for visible points in a terrain are the ones on the terrain surface. We show that
this is also the case for our formal definition.

Corollary 3.1.

Let U ⊂ R3 be some terrain, and u ∈ R3 be a point.

All viewshed points of U are boundary points of U .

Proof.

Let v ∈ V (u), and let ∂U denote the boundary points of U .

Since v ∈ U then obviously B(v, ε) ∩ U 6= ∅ for any ε > 0.

Furthermore we have that:

λu + (1− λ)v ∈ UC ∀λ ∈ (0, 1)

⇓

B(v, ε) ∩ UC 6= ∅ ∀ ε > 0

Thus v ∈ ∂U . �

Next, we define the elevated viewshed which is the viewshed we will be using in practice.
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Definition 3.2.

Let U ⊂ R3 be some terrain, and denote the terrain surface by ∂U . Let u ∈ R3 be a point, and k

denote the unit vector in the vertical direction.

Given an observer height ψ and a target height ω. The elevated viewshed of U wrt. u, Vψ,ω(u), is
given by the points in v ∈ ∂U such that u + ψk and v + ωk are intervisible.

For almost all practical applications we will be interested in the visibility of points that have some
height above the ground. For this reason we always use the elevated viewshed, and not the basic
viewshed. In the remainder of this thesis we will therefore refer to the elevated viewshed simply as
the viewshed.

Next, we show that viewsheds are symmetric. That is, if a point u is in the viewshed of a point v,
then v must also be in the viewshed of u.

Corollary 3.2 (Elevated viewshed symmetry).

v ∈ Vψ,ω(u) iff. u ∈ Vω,ψ(v).

Proof. Let v ∈ V ψ,ω(u). Then by definition, the line between u and v does not intersect U :

{λ(u + ψk) + (1− λ)(v + ωk) |λ ∈ (0, 1)} ∩ U = ∅

Let γ = 1− λ. Then we have,

{(1− γ)(u + ψk) + γ(v + ωk) | γ ∈ (0, 1)} ∩ U = ∅

m

{λ(v + ωk) + (1− λ)(u + ψk) |λ ∈ (0, 1)} ∩ U = ∅

By definition we now have that u ∈ V ω,ψ(v). �

This definition is flexible in that it allows us to represent a terrain as an infinite set of points. This
would allow us to represent the world in infinite resolution as it actually is. However, this is of course
not possible on a computer. This is where a terrain model comes into play, in that it provides us with
an approximation of the world, based on a workable set of data points.

3.2 Terrain modeling

In order to work with terrain in a meaningful way on a computer, we need a model for representing
it. Digital elevation models (DEM) are typically divided into two main categories; raster models
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and vector models. Raster models are the most intuitive and rely on elevation measurements at
regular intervals that form a grid in the surface plane. Vector models operate on a higher level
with mathematical objects such as lines, triangles or volumes. This can lead to a more efficient
representation which better represents the features of a terrain than a simple raster model.

Typically, the source data for a terrain model is a set of elevation measurements with corresponding
lateral coordinates. The purpose of the model is to provide an approximation of the entire terrain,
based on these data.

In this thesis we will be using RSGs for our terrain model. The reasons for this are discussed
throughout this chapter. But first we will take a closer look at how some of the models work, and
discuss the benefits and draw-backs of the various models.

3.2.1 Triangulation

Triangulations are perhaps the most used model for representing objects in three dimensions. They
consist of a set of vertices and a set of triplets, connecting the vertices in triangles. The resulting
surface of triangles then represents the surface of the object. This extends trivially to terrains, where
the set of data points can be used as vertices, and then the vertices can be grouped together e.g. using
Delaunay triangulation. Typically, triangulations are referred to as triangulated irregular networks
(TINs).

The resulting terrain surface matches the real world at the vertices, while it is only approximate
elsewhere. That being said, triangulations make for an efficient way to represent good terrain
approximations. In flat regions a triangle will approximate the surface very well. Thus by using a few
large triangles in flat regions, and many small triangles in complex regions, we get more accuracy
where it is actually needed. Triangulations also make for a flexible terrain model, in that they can
represent complex structures that fold over, such as tunnels.

It is the case, however, that many of the viewshed algorithms we could consider using on TINs,
such as the ones described in [CS89] and [FM94], actually work on monotonic polyhedral surfaces.
Polyhedral surfaces are surfaces consisting of conjoined flat polygons. Thus TINs are polyhedral
surfaces. Monotonic polyhedral surfaces, on the other hand, have the property that any vertical line
must intersect the terrain in at most a single point. In other words, these algorithms do not allow the
terrain tunnels or complex structures even though TINs technically can represent them.

3.2.2 Regular square grid

Assume that the terrain can be expressed as a function f : [a, b]×[c, d]→ R, where a ≤ b, c ≤ d ∈ R.
An intuitive way to model an approximation to this terrain is to sample the elevation at regular intervals
that form squares in the [a, b] × [c, d]-plane, and store the result in a two-dimensional array. This
is the basis for the family of raster models known as RSGs. We shall refer to the points where the
terrain is sampled as grid points. Four neighboring points and the space between make up what we
shall call grid cells. The line between two adjacent grid points will be referred to as a grid line.
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Figure 3.1

In their most basic form, RSGs do not provide any information about what the terrain looks like
on the interior of the grid cells. Therefore they are typically accompanied by some interpolation
scheme, in order to provide a well defined terrain surface. There are several interpolation methods
that can be used for this, from crude piecewise constant interpolation to higher order interpolation
with polynomial or spline basis. We will compare a few schemes and make the case why we will
prefer a simple interpolation scheme to a more complex one.

In this section we will denote the elevation of the grid point (s1, s2) by es1,s2 . The set of grid points
will be denoted by S. To avoid confusion, we will denote the model approximated elevation in a point
(x1, x2) by e(x1, x2). In other words the function e : [a, b]× [c, d]→ R is our model approximation
of the real world terrain given by f .

3.2.2.1 Piecewise constant interpolation

The simplest interpolation schemes are the ones based on piecewise constant interpolation. There
are several ways to define them, but they all have in common that they assign the same elevation for
neighborhoods in the terrain, and that the resulting model is discontinuous.

The simplest example of piecewise constant is nearest-neighbor interpolation. As the name suggests,
each point in the model is assigned the same elevation as the nearest data point, that is,

e(x1, x2) = eargmin(s1,s2)∈S ||(x1,x2)−(s1,s2)||

Other similar piecewise constant schemes assign each point the maximum, minimum or average
elevation of the four nearest data points.

The nearest-neighbor interpolation schemes provide for a simple implementation, but give a result
that does not resemble the real world. Compare for instance nearest-neighbor interpolation to
a triangulation of a simple terrain in figure 3.1. Although they share the same data points, the
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triangulation does a much better job of representing something that we recognize as terrain. A key
issue is that the piecewise constant model is discontinuous, while real world terrain is continuous, at
least approximately.

3.2.2.2 Bilinear interpolation

In order to get a continuous model, we have to use a slightly more sophisticated interpolation scheme.
Bilinear interpolation works by linearly interpolating a point from the four closest data in both
dimensions; first along one axis on the two pairs of data points, and then between the two results
along the other axis. Bilinear interpolation can be defined as follows:

Definition 3.3 (Bilinear interpolation).

Given a point (x1, x2) which is contained in the grid cell spanned by (a1, a2) and (b1, b2) (i.e.
a1 ≤ x1 ≤ b1 and a2 ≤ x2 ≤ b2). Then the elevation at (x1, x2) is given by:

e(x1, x2) =
b1 − x1
b1 − a1

(
b2 − x2
b2 − a2

ea1,a2 +
x2 − a2
b2 − a2

ea1,b2

)
+
x1 − a1
b1 − a1

(
b2 − x2
b2 − a2

eb1,a2 +
x2 − a2
b2 − a2

eb1,b2

)

This ensures a nice continuous surface which has a reasonable shape for a terrain. Due to their
non-linear nature, bilinearly interpolated terrains make line of sight (LOS) calculations less efficient.
Figure 3.2 shows a single grid cell with a bilinearly interpolated surface and a LOS that is to be
tested. Given just the four grid points it is not obvious that the line should not intersect the surface.
In order to check whether the line intersects the terrain, we must take the interior of the cell into
account. The mathematics behind this is manageable, but it is a lot more comprehensive than for a
piecewise linear model.

Although bilinear- and higher order interpolation schemes produce nice models, it is not given that
they contribute to the accuracy of the model. Without more knowledge about the terrain, or more data
points, there is no reason to prefer these to lower order interpolation schemes for accuracy. However,
as discussed above, we typically consider real world terrain to be continuous, which suggests that a
piecewise linear model is preferable to a piecewise constant one.

3.2.2.3 The FRM terrain model

Franklin, Ray and Mehta describe in [FRM94] a model which combines the computational simplicity
of piecewise linear models with simple the representation of RSGs. For lack of a better name we will
simply refer to it as the FRM model.

Generally, it is not possible to represent squares linearly (as illustrated in figure 3.2). In fact, the
only primitive, other than points and lines, that is planar for arbitrary vertices, is the triangle. Planar
primitives, such as triangles, have nice properties when it comes to LOS calculations. Deciding
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Figure 3.2 Grid cell with bilinear interpolation. The dashed line represents some LOS that is to be
tested if it intersects the terrain.

whether a LOS is obstructed by a triangle can always be done by comparing the LOS to two evaluating
points on the boundary of the triangle. This is contrasted by, for instance, bilinear interpolation,
where also the interior must be considered. The same issue occurs using higher order interpolations;
the computations become more complicated, without obvious gains in accuracy.

Ideally we want to be able to check for LOS intersections by evaluating the LOS at each point it
crosses above a grid line, and see if it intersects the terrain. To understand the implications of using
this method, we will now define the FRM terrain model, which ensures its correctness. The resulting
model thus allows us to work with LOSs in a highly efficient manner. Naturally, this guarantee of
correctness only holds within the context of the model, as we do not know how well it matches the
real world terrain. Later, we will use the FRM model due to its practical properties. There is no
reason to believe that it models the real world more accurately than other models, however.

We will base our model on the idea of triangulating the grid, and use this triangulation as the terrain
surface. In principle, each grid cell can be triangulated in two ways. For grid cells where the corners
lie in a single plane, the terrain surface for the two triangulations are exactly the same. When this
is not the case, however, the two triangulations represent two different terrain surfaces. This is
illustrated in figure 3.3, which shows the two triangulations of a grid cell where the grid points lie in
separate planes.

In the particular case of figure 3.3b it is clear that the simplified LOS tests will fail, as a LOS
can easily intersect the terrain on the interior without intersecting it on the boundary of the cell.

FFI-rapport 2015/01300 19



A

B

C

D

(a)

A

B

C

D

(b)

Figure 3.3 Two possible triangulations of a grid cell. The union of these triangulations is the
surface of the tetrahedron spanned by the four grid points.

Looking at figure 3.3a, on the other hand, this method will work, as the cell boundary contains the
most protruding features of the terrain. By using this “lower" triangulation in each grid cell as a
representation of the terrain surface, we ensure that the simplified LOS tests are accurate.

We now give this terrain model a formal definition in terms of the tetrahedron spanned by the grid
points of each grid cell. We will see why this is useful in the proof of theorem 3.1.

Definition 3.4 (The FRM terrain model).

The surface of the terrain above a grid cell G is given by the bottom of the tetrahedron spanned by
the grid points of G.

In particular, the elevation at a point x = (x1, x2) on the boundary of G between grid points s and s′

is given by:

e(x1, x2) = es
||x− s′||
||s− s′||

+ es′
||s− x||
||s− s′||

This is an alternative, but equivalent, formulation of the terrain model used by Franklin et al. in
[FRM94]. As suggested, this model has the property that LOSs can be tested for terrain intersections
by evaluating the grid boundaries only. For completeness we will now provide a proof of this
property.

Theorem 3.1 (The FRM theorem).

Given a line ` ⊂ R3 and a grid cell G representing a terrain using definition 3.4. Then ` intersects the
terrain above G iff. there is a point (x1, x2, x3) ∈ ` such that (x1, x2, 0) ∈ ∂G and x3 ≤ e(x1, x2).

Proof. ` clearly intersects the terrain above G if the conditions above are satisfied. It remains to
show the converse.

Assume that ` has no points meeting the requirement from the theorem. Let us now consider points
where (`)xy intersects ∂G. If there are zero, one or infinitely many such points, ` does not pass over
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the interior of the grid cell, and the result is evident.

If there are exactly two such points, a and b, then there are points a′ = (a1, a2, e(a1, a2)) and
b′ = (b1, b2, e(b1, b2)) that lie on the terrain surface. Due to our assumption ` lies strictly above
the line through a′ and b′. As we know the terrain surface is upward bounded by the bottom of the
tetrahedron spanned by the four grid points of G. Tetrahedra are convex, so the line segment between
a′ and b′ is therefore on or above the terrain surface. Thus ` must lie strictly above the surface. �

This theorem proves the correctness of the simplified LOS test on the model. Note that we do not
use the notion of triangulations when implementing the model. In practice the FRM model behaves
like a normal RSG, where we just consider the grid lines when testing for LOS intersections. The
triangulations are merely a tool for understanding the implications of assuming this type of LOS
testing is correct.

With the FRM model we get a terrain mode with the benefits of both nearest neighbor- and bilinear
interpolation. First of all we get a continuous surface that matches what we expect a terrain should
look like for a given set of grid points. Secondly we get the fast LOS calculations needed for making
efficient viewshed algorithms.

3.2.3 Contour line representation

Another vector-based terrain model uses contour lines to represent the terrain. The contour lines
are typically represented as closed curves. Often these are represented as piecewise linear curves or
splines. The contour lines themselves do not provide any information about the terrain between the
contour lines, so some interpolation is needed in order to make a complete terrain model.

The accuracy of such a model primarily depends on the resolution along the vertical axis, but also on
the density of the data samples the curves are based on. Similarly to TINs this representation gives
us flexibility for higher accuracy in areas of the terrain where this is needed.

Kartverket uses this type of format for much of their openly available data, as it is convenient for the
purpose of rendering maps. The data sets seem to require little storage space compared to TINs and
RSGs of comparable quality.

Although contour lines have some nice properties with regards to storage efficiency they are not partic-
ularly suited for visibility calculations, and hardly any of the well-known viewshed algorithms operate
on contour line-based models. We will therefore not consider them further for this purpose.

3.2.4 Summary

In practice RSGs and TINs are the only viable families of terrain models for visibility applications.
Contour line representation and vector models using higher order geometric objects fall short due to
more complicated visibility calculations resulting in algorithms that cannot compete with their RSG
and TIN counterparts.
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TINs have two advantages over RSGs. The first is the ability to use varying densities of data points,
which means that the model can provide higher precision where it is actually needed. In practice this
typically results in a smaller memory footprint of the model, compared to a similar RSG. The second
advantage is greater flexibility in what it can represent, such as tunnels or overhanging structures. As
discussed, however, the algorithms we consider cannot handle such structures, which means that this
is not an advantage in practice.

When implementing viewshed algorithms the inherent structure of RSGs is a huge asset in that
it allows many key operations to be executed in constant time. This involves operations such as
finding where a LOS intersects a grid line, or finding neighboring nodes of a LOS. On a TIN these
operations typically either require logarithmic time lookups, or some preprocessing step. This means
that the resulting viewshed algorithms typically run slower or use as much memory on TINs as on
RSGs.

The advantages of using TINs over RSGs are therefore invalidated in viewsheds applications, which
is also why RSGs are so popular in viewshed literature. For this reason we focus on RSGs throughout
this thesis. More specifically we will use RSGs with the FRM model as discussed above.

3.3 Viewshed algorithms

In this section we consider several algorithms for finding elevated viewsheds on a modeled terrain.
For reasons discussed in the previous section we focus on algorithms that work on the FRM model,
but we will also take a quick look at a few TIN-algorithms as well for completeness. We consider
both algorithms that are accurate and approximate. By approximate we mean that the algorithm
might mislabel two points u and v as intervisible, even though the LOS between them intersects the
terrain, or vice versa. Later in the thesis we also empirically compare the performance of some of
these algorithms, and discuss which of them that are suitable for our application.

Common for all of the algorithms presented here is that they take as input the terrain either as an
RSG or a TIN, the lateral position of the observer and the observer- and target height. Most of the
algorithms classify each grid point visible or not visible, while some of them also are capable of
classifying arbitrary points on the terrain. A few of the algorithms classify regions of the terrain
instead of single points.

We will look at three types of algorithms for RSGs, starting with a brute force algorithm which
calculates the accurate viewshed. We consider two approximate algorithms that estimate visibility
by evaluating the terrain along rays spread out across the terrain. These are the R2 and radar-like
algorithms. We also consider XDraw and the expanding circular horizon (ECH) algorithm, that
estimate the visibility by propagating an approximation of the horizon across the terrain. The radar-
like- and the ECH algorithms also work for triangulations. Additionally we will briefly consider the
two accurate linearithmic-time TIN-based algorithms described in [CS89] and [FM94].

Before we start, however, we need some notation. For RSG-based algorithms we will denote the
set of data points by S ⊂ R3, and refer to them as grid points. The line between two adjacent grid
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points we call a grid line, and the area spanned by four neighboring grid points we call a grid cell.
The set of all grid cells we shall denote by G, and the set of all grid lines, i.e. the boundaries of all
grid cells, will be denoted ∂G. When discussing LOSs, we will often consider the points on grid
lines which the LOS passes over. These we will refer to as grid line crossings. We will be looking at
points projected onto the vertical axis and the grid plane. For a point p we will denote this by pz and
pxy, respectively. We will also use notation like ||p||xy to denote the norm of some projection of a
point, in this particular case the projection of p onto the grid plane.

3.3.1 A brute force algorithm

The obvious brute force viewshed algorithm for any RSG-based terrain model is to iterate through
each grid point in the grid, and test whether the LOS back to the observer intersects the terrain.
Franklin et al. [FRM94] refers to this type of algorithm as the R3 algorithm. A similar variant is also
proposed by [BMCK08]. On the FRM model this algorithm has a relatively efficient implementation,
while remaining accurate. For this reason we will use it as a baseline for evaluating the accuracy and
speed of the other algorithms.

Theorem 3.1 provides us with the tools we need to make an efficient implementation of this algorithm
on the FRM model. To test if a LOS intersects the terrain, we only need to compare it to the terrain
whenever it crosses a grid line. The idea is illustrated in figure 3.4, where a LOS is drawn between
the observer o and a target point t. The grid cells in play are shaded, and the grid line crossings are
marked with crosses. These crosses are the only six points we have to compare the LOS to the terrain
at in order to establish whether or not they intersect.

First, we give an efficient algorithm for finding all grid line crossings of an LOS. For the purpose of
simplicity, we confine ourselves here to LOSs that have endpoints in the grid points, but this could be
generalized to arbitrary points.

Algorithm 3.1 (Finding grid line crossings).

Given an LOS ` between points o, t ∈ R3, where oxy, txy ∈ U . The following algorithm returns the
set of grid line crossings, i.e. ` ∩ ∂G \ o, as a list sorted from o to t.

d = t− o

θ = atan2(dy, dx)

xdir =


1 if |θ| > π

2

−1 if |θ| < π
2

0, otherwise

ydir =


1 if θ > 0

−1 if θ < 0

0, otherwise
xmax = |dx| − |xdir|
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ymax = |dy| − |ydir|
x, y = 0

while x < xmax ∧ y < ymax

if x+1
| cos θ| <

y+1
| sin θ|

x+ = 1

p = (xdir · x, ydir · x| tan θ|)
else

y+ = 1

p = (xdir · y| cot θ|, ydir · y)

yield p + o

A sample implementation of this algorithm can be seen in listing 4. This implementation is a
somewhat modified version of the algorithm above, in order to interface efficiently with the various
viewshed algorithms.

Corollary 3.3.

Algorithm 3.1 runs in O(
√
n) time on a square grid with O(n) points.

Proof.

Given any two points a,b ∈ R3 on a square grid withO(n) points, then clearly ||b−a||x, ||b−a||y =

O(
√
n). Each iteration in the while-loop executes in O(1) time, and moves from a to b one grid unit

along one of the axes, so there are at most b||b− a||xc+ b||b− a||yc = O(
√
n) such steps. �

Next, we state the complete brute force algorithm.

Algorithm 3.2 (R3).

Let o ∈ R3 be the observer on the terrain surface, and let ψ and ω be the observer and target height
respectively. Let S denote the set of grid points.

for all s ∈ S
let ` be the LOS from o + ψk to s + ωk

label s as visible

for all grid line crossings (x1, x2) of `
if e(x1, x2) ≥ `(x1, x2)

label s as not visible
break
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Figure 3.4 LOS with grid line crossings

We will now proof the correctness of this algorithm on the FRM model, using some of the previous
results.

Corollary 3.4.

The R3 algorithm calculates the accurate viewshed.

Proof. First assume that the point t is intervisible with the observer o. Then the LOS from o to t

does not intersect the terrain in any of the grid cells between o and t. Then by theorem 3.1 there
exists no points (x1, x2, x3) ∈ `, where (x1, x2) is on a grid line, such that e(x1, x2) ≥ `(x1, x2).
Thus the algorithm will correctly classify t visible.

Next assume that t is not intervisible with o. Then there exists a point p = (p1, p2, p3)` where
` intersects terrain. Let G be a grid cell that contains p. By theorem 3.1 there must then exist a
point (x1, x2, x3) ∈ `, such that (x1, x2) ∈ ∂G and e(x1, x2) ≥ x3. Hence, t will be classified not
visible. �

We also show the asymptotic running time of the algorithm.

Corollary 3.5. The R3 algorithm executes in O(n
3
2 ) time.

Proof.

We can find all of the grid line crossings of any LOS in O(
√
n) time using algorithm 3.1. In a square

grid with O(n) points there are at most O(
√
n) such crossings underneath any LOS. The remaining

operations in the inner loop clearly execute in O(1) time, so the LOS can be accepted or rejected in
O(
√
n) time.
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Figure 3.5 Overview of a terrain with LOSs to some of the perimeter points, which are drawn as
solid circles. The idea behind R2 is to estimate the visibility of the grid points drawn
with crosses from the intermediate results of these LOSs.

We evaluate one LOS for each of the O(n) points in the grid, so the overall time complexity for this
algorithm is O(n

3
2 ). �

3.3.2 R2

In order to improve the efficiency of the brute force algorithm, we simply have to evaluate fewer
LOSs. When evaluating LOSs to targets that are far away from the observer, most of these LOSs pass
through or nearby closer targets. This is illustrated in figure 3.5. If we accept approximate results,
we can use intermediate results, obtained when calculating LOSs to the far targets, to estimate the
visibility of targets closer to the observer. The resulting algorithm proposed by Franklin et al. in
[FRM94] is typically referred to as the R2 algorithm.

When deciding the visibility of a point v in R3, we simply compare the elevation of the corresponding
LOS to the terrain at each grid line crossing. A side-view illustration of this is given in figure 3.6,
where the LOS does not intersect the terrain anywhere. These calculations cannot be reused for
deciding the visibility of other points, unless they happen to lie on the exact same LOS as v. If
we instead look at the slope of the LOS going to each of the grid line crossings, we can reuse the
calculations. In figure 3.6 for instance, the slope of the LOS going through t is higher than for
u. Since u is further away from the observer, we know that u is not visible. It turns out that by
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Figure 3.6 Cross section of a terrain with the observer, o, and some grid points. Visible points are
drawn with solid discs, while invisible points are drawn with crosses.

accumulating the maximum slope as we move away from the observer, we can easily decide the
visibility of the grid line crossings as we go.

We will now formalize these ideas, and use them to make a proper algorithm. First we define exactly
what we mean by slope, and show that we can use it as a replacement for elevation in our visibility
calculations.

Definition 3.5.

The angle between between the horizontal plane and the LOS from the observer to a point p we call
the slope of p, so(p).

so(p) = arctan

(
||p− o||z
||p− o||xy

)
Corollary 3.6 (The FRM theorem for slope).

Given a LOS ` from o to t, and a grid cell g. Then ` intersects the terrain above g iff. there is a point
p = (p1, p2, p3) ∈ ` such that (p1, p2, 0) ∈ ∂g with a corresponding point p′ = (p1, p2, e(p1, p2))

such that so(t) ≤ so(p′).

Proof.

Given an LOS ` from o to t, and a grid cell G. Let p ∈ `. First observe that so(p) = so(t), since
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both t,p ∈ `. Next we have the following:

so(t) ≤ so(p′)

s m

io(p) ≤ so(p′)

m

arctan

(
||p||z

||p− o||xy

)
≤ arctan

(
||p′||z

||p′ − o||xy

)
m

arctan

(
p3

||p− o||xy

)
≤ arctan

(
e(p1, p2)

||p− o||xy

)
m

p3 ≤ e(p1, p2)

Where we use that arctan is strictly increasing in the last step. The result now follows from
theorem 3.1. �

Next we define the notion of the horizon at a point, which is the property we will ultimately use to
classify each grid point.

Definition 3.6.

The horizon at a point p wrt. some observer o, ŝo(p), is the maximum slope a point p′ with the
same lateral coordinates as p can have, such that the LOS from o to p′ intersects the terrain in at
least one point.

p is thus visible iff. so(p) > ŝo(p).

The next results shows that in order to decide the visibility of a point, we can simply compare its
slope point to the maximum slope of the grid line crossings between it and the observer.

Corollary 3.7.

Let o be the observer and p a point. Also let X be the set of grid line crossings of the LOS from o to
p. When using the FRM terrain model, the following two inequalities are equivalent.

so(p) > ŝo(p)

so(p) > max
x∈X

so(x)

Proof.

From the definition of the horizon it is obvious that so(p) > maxx∈X so(x) if so(p) > ŝo(p).
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Let ` be the LOS from o to p. Assume that so(p) ≤ ŝo(p). Then there exists a point x ∈ ` on the
terrain that intersects `. Then by corollary 3.6 there is also a grid line point, x′, that lies on or above
` such that so(p) ≤ so(x′). Thus so(p) ≤ maxx∈X so(x). �

We already know that we can decide the visibility of any point by comparing its slope to the horizon.
Corollary 3.7 shows that when making such comparison, we can use the maximum slope of LOS grid
line crossings instead of the horizon, without risk of making any misclassifications. As suggested
this maximum can be accumulated as we move away from the observer, giving us an efficient method
for classifying the grid line crossings. From now on we will refer to this maximum simply as the
horizon, since they are equivalent for our purposes.

In order to classify grid points, which after all is what we are interested in, we can use the horizon of
the nearest grid line crossing as an estimate of the horizon at the grid point. This forms the basis
for the R2 algorithm as formulated by Franklin et al. in [FRM94]. The R2 algorithm works in two
passes. First the algorithm calculates horizons by evaluating LOSs to points along the perimeter of
the grid. The results are stored as estimates of the horizon for the corresponding grid points. In the
second pass the algorithm classifies each point by comparing the estimated horizon to the actual
slope.

Algorithm 3.3 (R2).

Let o′ ∈ R3 be the observer on the terrain surface, and let ψ and ω be the observer and target height
respectively. Let S denote the set of grid points. If x is a point on a grid line, then neig(x) denotes
the two grid points at the ends of said grid line.

for all s ∈ S
set s.dist =∞

let o = o′ + ψk

for all p ∈ S, st. p is on the perimeter of S
let ` be the LOS from o to p

h = −∞

for all grid line crossings (x1, x2) of `
x = (x1, x2, e(x1, x2))

for all s ∈ neig(x)

if ||x− s||xy < s.dist

s.dist = ||x− s||xy
s.h = h
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h = max {h, so(x)}

for all s ∈ S
if so(s + ωk) > s.h

label s as visible
else

label s as not visible

As a final result we also show the asymptotic running time of the R2 algorithm.

Corollary 3.8.

The R2 algorithm runs in O(n) time on a square grid with O(n) points.

Proof.

The perimeter of a square grid with O(n) points consists of O(4
√
n− 4) = O(

√
n) points. neig(x)

contains at most two grid points for any x, so the procedure of evaluating an LOS and updating each
neighborhood point still only takes O(

√
n) time. Thus the first step of the algorithm runs in O(n)

time.

The second step of the algorithm consists of simply iterating through each grid point and performing
a simple comparison of two numbers, which obviously can be done in O(n) time. �

As we see the R2 algorithm should be considerably faster than R3. As discussed this algorithm will
give us an approximation of the viewshed. Thanks to corollary 3.7 we know that any grid points
intersecting a LOS always will be classified correctly. In particular this means that the grid points on
the axes and diagonals relative to the observer are correctly classified. For the remaining grid points
we can offer no such guarantee, but as we shall see in section 4 the estimates work well in practice.
In section 5 we will also consider some modifications of this algorithm for further improving the
accuracy.

3.3.3 The radar-like algorithm

One of the algorithms proposed by Ben-Moshe et al. in [BMCK08] is referred to as the radar-like
algorithm, and it shares several similarities with the R2 algorithm. This algorithm is originally
proposed used on TINs, but has a trivial extension to RSGs. Like R2, this algorithm works by
evaluating the terrain along a set of LOSs. Instead of sending a LOS to each grid point on the
perimeter of the terrain, the radar-like algorithm first sends a set of LOSs in evenly distributed
directions, dividing the terrain into sectors. The cross sections of the terrain is compared in each pair
of adjacent LOSs, and the sector is subdivided until all adjacent cross sections are sufficiently similar.
Once the sectors have been settled, the algorithm estimates the visibility of their interior using a
special interpolation technique. We will not go into the specifics of this interpolation technique
here, other than referring to the original article and our implementation listing 21. The primary

30 FFI-rapport 2015/01300



difference is, however, that the radar-like algorithm first classifies the points along each LOS, and
then interpolates using the classification result itself. Whereas R2 calculates the horizon for points
along each LOS, interpolates these values, and then classifies the grid points.

Ben-Moshe et al. also suggests a variant of this algorithm, referred to as the fixed radar-like algorithm.
In this case the sector subdivision is omitted, and only the predefined uniformly distributed LOSs are
considered. The only difference between this algorithm and R2, apart from the interpolation schemes,
is that the R2 directs LOSs points, while the fixed radar-like algorithm sends them in uniformly
distributed directions, not necessarily hitting any points. A nice feature of this algorithm is that
its accuracy can easily be adjusted by changing the number of evaluated LOSs. For time-critical
applications we can reduce the running time by evaluating fewer LOSs, and we can also boost the
accuracy in exchange for running time, should that be desirable.

In principle this algorithm has a similar complexity as R2, so there is reason to believe that it is
possible to create comparably efficient implementations the two algorithms. Our implementation of
R2 has received a lot more attention in terms of optimization for speed, so we have not been able to
make a fair comparison in terms of running time. Our primary interest in this algorithm is, however,
its ability to boost the accuracy on demand.

A secondary interest is to compare the two interpolation schemes. As we shall see in section 4, R2 is
more accurate than the radar-like algorithm when evaluating the same number of LOSs. However,
this is not a fair comparison of the interpolation schemes. The radar-like algorithm typically evaluates
fewer grid line crossings than R2 for the same number of LOSs. This is because a smaller portion of
the area covered by the LOSs used by radar-like lie inside the terrain. Instead we should compare the
two interpolation schemes on the exact same LOSs, in which case it turns out that we are not able
to show any statistically significant difference in performance between the two schemes. We shall
see in section 5, however, that with minor modifications to the R2 scheme, we get an interpolation
scheme that outperforms the scheme proposed by Ben-Moshe et al.

3.3.4 XDraw

As we have seen with the R2 algorithm, there is a close relationship between the horizon of points
far away from and close to the observer. In R2 we exploit this relationship out-to-in, by evaluating
LOSs from the distant points, and then leveraging the intermediate results to estimate the horizon for
points on the interior of the grid.

Another natural approach to this is to evaluate the horizons in-to-out. We do this by establishing
the horizon of the grid points closest to the observer, and then propagating outwards, estimating the
horizon of each new grid point from the horizon of the neighboring grid points between itself and the
observer. Algorithms based on this notion belong to a family typically referred to as XDraw in the
literature, e.g. by [Ray94], [Izr03], [XY09] and [KZ02] to name a few.

We shall now turn to figure 3.7 for an illustration of how the XDraw algorithm works. As we saw
with R2, we can calculate the accurate horizon of all points along any of the four diagonals and axes
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Figure 3.7 XDraw estimates the horizon of t using only the estimated horizon at n1 and n2.

by evaluating a total of eight LOSs; one to each corner and midpoint of the grid perimeter. In the
figure all of these points are marked with crosses and have a white background. For the majority of
points, however, the horizon must be estimated. Therefore we will in this algorithm work with an
horizon estimate, denoted s̃o.

We begin estimating the horizon of the points that are closest to the observer, i.e. the points on light
gray background in the figure. For the point t we see that the horizon depends on the horizon of x.
Since x is on the grid line between n1 and n2, we will estimate its horizon, s̃o(x), from the horizons
of n1 and n2. As we shall see, this estimation can be done in several ways.

Once we have estimated the horizon of all points in the light gray area, we repeat this process on
each “shell" of grid points, moving further away from the observer. Each of these shells will have
their horizon estimated from the previous shell. So in order to estimate the horizon of the points in
the dark gray area, we use the estimated horizons of the points in the light gray area.

We now give a formal description of the XDraw algorithm.

Algorithm 3.4 (XDraw).

Let o ∈ R3 be the observer on the terrain surface, and let ψ and ω be the observer and target height
respectively. Let S denote the set of grid points, and let s̃o be some function that estimates the
horizon of a point.

let o = o′ + ψk
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for all p ∈ S
let ` be the LOS from o to p

let n1,n2 ∈ S be the endpoints of the grid line that intersects ` closest to p at some point x

p.h = max{so(p), s̃o(x,n1,n2)}

if so(p + ωk) > p.h

label p as visible
else

label p as not visible

Next, we also show that the running time of XDraw is, as expected, O(n).

Corollary 3.9.

Provided that s̃o runs in O(1) time, algorithm 3.4 runs in O(n) time on a square grid with n points.

Proof.

E.g. using ideas from algorithm 3.1 we can find n1 and n2 in O(1) time. The rest of the operations
in the loop are clearly O(1) time operations. �

When it comes to the choice of estimator, s̃o, there are several possibilities. Some exotic variants
exist, such as the one proposed in [Izr03], but the four standard estimators used in the literature
are:

s̃max
o (x,n1,n2) = max{n1.h,n2.h} (3.1)

s̃min
o (x,n1,n2) = min{n1.h,n2.h} (3.2)

s̃mean
o (x,n1,n2) =

n1.h+ n2.h

2
(3.3)

s̃int
o (x,n1,n2) = ||x− n2||xyn1.h+ ||x− n1||xyn2.h (3.4)

As our analysis will show, the linearly interpolated estimator described in equation (3.4) has superior
classification accuracy compared to the other three. Although the max and min estimators may seem
crude, we shall see in section 5 that these have the special property that they hardly commit any type
1 and type 2 errors, respectively. That is, XDraw with the max estimator almost never classifies a
point as visible if it is not. Vice versa for the min variant. [Ray94] suggest the max, min and mean
estimators have an advantage in terms of efficiency over the interpolated estimator. In our analysis,
however, we shall see that this advantage is negligible.

We shall also see that XDraw is significantly less accurate than the R2 algorithm. It does have the
same time complexity as R2, but it is a simpler algorithm which has a significantly more streamlined
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implementation. The actual running time is typically around a third of that of R2. This, combined
with the nice properties of the max and min estimators, means that XDraw might have an advantage
over R2 in some applications.

3.3.5 The ECH algorithm

Ben-Moshe et al. proposes another algorithm in [BMCK08] that in some sense is similar to the
XDraw algorithm. This is referred to as the ECH algorithm, or ECH for short. Similarly to XDraw,
it works by propagating an estimate of the horizon outward, classifying the terrain as it moves by.
Instead of doing this at each grid point, ECH does maintains an approximation to the horizon of the
terrain inside a circle that is expanded in a series of steps.

More specifically this is done by considering the horizon along rays in a predefined set of headings
{αi}ki=0. In each step, the algorithm tries to increase the radius of the current horizon from rold to
rnew. The slope of the terrain at rnew is compared to the horizon in order to determine the visibility in
rnew for each azimuth direction αi. The visibility of the remaining points on the circle, i.e. the ones
with a heading different from all αi, is then interpolated using nearest-neighbor interpolation. The
visibility of the terrain along rnew is then compared to the visibility along rold. If there is sufficient
correspondence in visibility along these to circles, the visibility of the points on the interior of the
annulus between the circles is interpolated using a similar correlation scheme as in the radar-like
algorithm. If the visibility along the two circle is too inconsistent the algorithm retries with an rnew

that is closer to rold.

This algorithm is designed to be used on TINs, but there is nothing that prevents it from working
on RSGs as well. The article provides no theoretical time- nor accuracy analysis of this algorithm.
The authors do provide some empirical tests, however, indicating that ECH is outmatched by the
radar-like algorithm both in terms of running time and accuracy. For this reason, and since ECH is
rather similar to XDraw, which is significantly faster than the radar-like algorithm, we will not study
this algorithm further.

3.3.6 The Cole-Sharir algorithm

Cole and Sharir present in [CS89] a data structure that can be used to calculate accurate viewsheds
in O(nα(n) log n) time on TINs with n faces. α(n) here is the inverse of the Ackerman function,
which in practice is no larger than 4, so this algorithm runs in O(n log n) time for any case that
is feasible to solve on a computer. The proposed data structure, referred to as an horizon tree in
the literature, can be built in O(nα(n) log n), and allows us to query the first intersection between
a ray from the given observer and the terrain in O(log n) time. By comparing the distance to the
first intersection to the distance to some target point along the given ray, we can easily establish
the visibility of the target point. By repeating this process for each of the O(n) target points in the
terrain, we can obtain the full viewshed in a total of O(nα(n) log n) time.

This type of algorithm works on what the authors refer to as polyhedral terrains or monotonic
polyhedral surfaces. A polyhedral surface is a surface consisting of flat polygons. By monotonic they
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mean surfaces where any vertical line intersects the surface in at most one point. TINs are polyhedral
surfaces, so the algorithm will work on those as long as the monotonicity criterion is met. RSGs
in general are not polyhedrons, since the face of each primitive is not necessarily flat. However,
RSGs based on FRM model will work with this algorithm. The key to this algorithm is that we can
find partial horizons simply by considering the edges in the terrain. For the FRM model we have
established that this is the case.

As [FM94] points out, due to a complicated implementation this algorithm is mostly of theoretical
interest. Attempts at efficient implementations have failed to execute faster than the brute force
algorithm for typical test cases. Thus we will not consider this algorithm further, other than giving a
quick overview of how it works. The algorithm is thoroughly described in [CS89], so we will only
go through the essentials here with an emphasis on special considerations that must be made in order
to use it with RSGs.

If we consider the edges in a terrain with distance less than r, and project them onto the unit sphere
centered at the observer, the partial horizon at r is given by the upper envelope of these projected
edges. The resulting envelope consist of at most O(n) non-overlapping smooth segments. Thus we
can check if a ray lies above or below a given envelope in O(log n) time by binary searching for the
relevant segment, and then comparing it to the ray. The primary idea behind this algorithm is to store
a carefully selected set of such horizons in a binary tree, aptly named horizon tree, such that we can
search the binary tree to decide which edge in the terrain that block the ray in question. Doing so
allows us to find this edge in O(log2 n) time. A technique reducing the running time of this search is
described in [CS89], but we will not describe it here.

Before building the horizon tree, we need a particular ordering of the edges in the terrain. The
ordering can be defined partially as follows, where o denotes the observer. If an edge A comes before
an edge B, then there exists no point where (B)xy is closer to (o)xy than (A)xy. It requires some
work to obtain such an ordering for TINs, but it can be done in O(n log n) time. For RSGs, however,
this corresponds to, loosely speaking, ordering the edges by distance from the observer. This ordering
can be obtained in O(n) time by iterating the edges breadth-first, starting at the observer.

Once an ordering of the edges {ei}ni=1 has been obtained, we can build the horizon tree. We start by
assigning a subset of the edges to each node. The root gets the full set of nodes, the left node gets
the first half of this set, and the right gets the second half. This process is repeated until we reach
nodes that are assigned only two edges. For each node we calculate the horizon of the first half of the
corresponding set of edges. An illustration of this can be seen in figure 3.8. These partial horizons
happen to be the intermediary steps of the algorithm due to Atallah for finding the upper envelope
of n smooth curves. This algorithm was first described in [Ata85], and runs in O(nα(n) log n)

time.

Assume that we want to find the first edge intersecting a specific LOS. On the unit sphere around the
observer this LOS corresponds to a single point. We can now search the horizon tree for the edge in
the following manner. Starting at the root, we move right if the LOS lies above the horizon of the
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h(e1, ..., e8)

h(e9, ..., e12)

h(e13, e14)
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h(e9, e10)
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h(e1, ..., e4)

h(e5, e6)

e7e5

h(e1, e2)

e3e1

Figure 3.8 The structure of an horizon tree for n = 16.

current node, left otherwise. We continue in this manner until a leaf node is reached. The leaf node
contains a single edge, ei. If the LOS lies below ei, then ei is the first intersecting edge. Otherwise it
is ei+1.

Using this technique for finding the viewshed is straight-forward. For each grid point we find the
LOS to the observer. We then find the first edge intersecting the LOS. The grid point is visible iff.
this edge lies further away from the observer than the point itself.

3.3.7 Summary

We have presented a wide range of algorithms, most of which are approximate, while some are
accurate. We have seen how the accurate Cole-Sharir algorithm can be used on RSGs, capable of
calculating the viewshed in essentially O(n log n) time on a grid with n points. This algorithm has
a rather complicated implementation, however, so in practice we will use the standard brute force
algorithm for obtaining accurate viewsheds. The brute force algorithm runs in O(n

3
2 ) time, and will

be useful for validating the results produced by the approximate algorithms.

As discussed, these algorithms are likely to be used as part of a more complex algorithm which
might require evaluating a large number of viewsheds. This warrants the use of fast approximate
algorithms, as the brute force algorithm will be too slow. We will compare the performance of three
such algorithms; R2, XDraw and the radar-like algorithm. Based on existing literature we expect
R2 and the radar-like algorithm to be the most accurate of the three, while XDraw is expected to be
significantly faster.

4 Benchmarking viewshed algorithms

In this chapter we first aim to establish a method for empirical comparison of viewshed algorithms.
Once we have such a robust method in place we will use it for comparing the various viewshed
algorithms, both in general and for our specific application. Later, in section 5, we shall also apply
these techniques in order to improve the original R2-algorithm.
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4.1 A motivating example

An intuitive and straight-forward approach to evaluating the performance of some viewshed algorithm
can be summed up as follows:

1. Select some relevant terrain data

2. Select some observation point randomly

3. Run both the algorithm in question and R3 from the observation point

4. Quantify the error made by the algorithm

The steps 2-4 can be repeated in order to increase the accuracy of the performance estimate.

To see why this might be a bad idea, we will try this testing procedure on a sample regular square grid
(RSG) terrain consisting of 1024× 1024 points. The goal of the test is to compare the performance
of two algorithms A and B, to decide which is better.

First we run the algorithms on 36 randomly chosen observation points. The relative error obtained
in each run is shown as a boxplot in figure 4.1a. Algorithm B seems to perform slightly better
better than A, but the figure does a really poor job illustrating the difference. This can to some
extent be mended by using a paired t-test. In this particular test, however, the apparent difference is
insignificant, as it fails the t-test with a p-value of 0.81.

Next we run the algorithms on a test set consisting of 36 hand-picked points. The points are selected
as local peaks in the terrain. In this case the figure shows clearly that algorithm A is more accurate
thanB. The t-test also successfully assertsA as more accurate thanB with a p-value of 10−11.

This example illustrates two problems using randomly selected observation points. Firstly the
results obtained from such tests tend to differentiate algorithms poorly, which means we do not
get statistically significant results. Secondly, we could have arrived at opposite conclusions about
whether A or B is better, depending on which of the two tests we chose to emphasize. What makes
the algorithms perform so differently in the two tests? How should we test to ensure we get robust
results?

4.2 Error metrics

The most straight-forward metric for viewshed accuracy is the misclassification metric. Using e.g. the
R3 algorithm we can find the accurate viewshed for a particular test case. The absolute classification
error of some approximate viewshed can then be obtained by counting the number of misclassified
points. By dividing by the total number of points in the grid, we obtain the relative error. This metric
is widely used in the literature, e.g. [Ray94], [BMCK08] and [Izr03].

Another metric proposed by Franklin et al. in [FRM94] is to measure the error of the estimated
horizon at each point. By horizon we here mean the figure defined in definition 3.6. We can obtain
this error by comparing the estimate to the horizon calculated by the R3 algorithm. This metric clearly
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Figure 4.1 The relative classification error of two viewshed algorithms (lower is better).
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only applies to algorithms that operate with some notion of horizon. This includes the algorithms
proposed by Franklin et al., but also some horizon-based algorithms, such as the randomized
algorithm due to de Floriani described in [FM94]. Other algorithms, such as the expanding circular
horizon (ECH) and the radar-like algorithm from [BMCK08] do not provide any estimate of the
horizon, and thus cannot be used with this metric.

All we ultimately care about is whether we can trust that the classification produced is sufficiently
correct. An algorithm can produce quite good horizon estimates, and still misclassify a large number
of points. This suggests that the misclassification metric better quantifies what we are interested
in. The horizon metric, however, can provide some valuable insights to the inner workings of an
algorithm. It can also help us understand why a given algorithm performs well or poorly on particular
test cases.

Since we are primarily interested in the resulting viewshed, and because we want to compare several
types of algorithms, we will use the misclassification metric as our primary metric of viewshed
accuracy.

4.3 Statistically robust performance measures

We are primarily interested in comparing algorithms in terms of how accurate they are, and how
fast they execute. These data will be obtained by running the algorithms on a series of test cases,
resulting in a set of error- and running time measurements for each algorithm. This section addresses
how we should compare these results in a robust manner.

4.3.1 Comparison of accuracy

When comparing the accuracy of two algorithms on a test set, it might seem natural to just use the
mean or median error to establish which algorithm is better. In the case of figure 4.1a, however,
the weaknesses of this method become apparent. Here algorithm A has a lower mean error than
B, while the opposite is true for the median. We need a more robust way to compare algorithm
performance.

The error produced by an algorithm can be viewed as a random variable, and we can therefore use
standard statistic methods to test for the significance of a given test result. We will not assume that
the error results have the normal distribution, but instead rely on theory that does not require this
property.

Given test results for two algorithms from the same test set, the error measurements have a natural
pairing on each test case. This enables us to use paired t-tests for deciding which algorithm is better.
The t-test assumes that sample means have the normal distribution. Due to the central limit theorem,
this is the case if we use sufficiently large samples.

The paired t-test provides us with a much more robust tool for asserting one of two algorithms as
better. In the case of figure 4.1a, using the one-sided paired t-test to see if A is better than B, the test
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fails with a p-value of 0.41. This means that assuming A is not in fact better than B, there would
still be a 41% chance of observing the results we just did. In other words, the given results were not
significant in showing that A is better than B. Similarly, asserting B as better fails with a p-value of
0.59.

Most of the algorithms we will compare, however, will not have similar performance. There will
be no question which algorithm is better, but rather how much better it is. Once again it might be
tempting to use the ratio of the mean or median errors to make claims like "algorithm A makes only
x% of the error B does". Unfortunately, this is just as weak a result as using the mean or median to
decide which algorithm is better. Instead we should one-sided confidence intervals to make sure we
underestimate how good the better of the two actually is. This way, we avoid overoptimistic claims
about the performance of the algorithms.

Specifically, the conservative estimate of the improved error can obtained as follows.

Let Aerr and Berr be the error of algorithms A and B represented as random variables. Next,
define

R =
Aerr

Berr

µR = E

(
Aerr

Berr

)

Let {ai}ni=1 and {bi}ni=1 be two samples from Aerr and Berr respectively, such that ai and bi come
from the same test case. Next consider the mean of the paired ratio:

R =
1

n

n∑
i=1

ai
bi

Assume n sufficiently large. Then by the central limit theorem R ∼ N(µR,
σ√
n

).

Thus

Z =
R− µR

σ√
n

∼ N(0, 1)

This allows us to find an upper limit of µR with p confidence.

P (Z ≥ z) = p

m
R− µR

σ√
n

≥ Φ−1(1− p)

m

µR ≤ R−
s√
n

Φ−1(1− p)
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Thus the upper limit for µR with p confidence is:

µ̂R = R− s√
n

Φ−1(1− p)

We will use µ̂R as a measure of the ratio of the error made by two algorithms, A and B. If we see
that A is more accurate than B, then we will say that the expected error ratio (EER) of A and B is
µ̂R with p confidence. Of course, what we really should say is that the expected error ratio of A
and B is no larger than µ̂R with p confidence, but this seems somewhat tedious. It is common to
use confidence levels of 95% or 99%. Since we easily can generate as much test data as we need,
we will use the 99% confidence level throughout this thesis. The EER claim will therefore almost
certainly be an understatement, so in practice the observed error ratio will typically be lower. This
conservative behavior is, however, exactly what we want.

A good example of this conservative behavior can be found in the data behind figure 4.1b. In this
case the mean relative error of algorithm A and B is 16.3% and 21.6%, respectively. From this one
might jump to the conclusion that A makes only about 75% of the error of B. However, using the
method above, we see that the EER of A and B is around 82%. Applying the method to the dataset
behind figure 4.1a this falls apart with an EER of A and B of more than 400%, giving us a clear
indication that the test results are insignificant.

4.3.2 Comparison of running time

In contrast to the error measurements, running time measurements are not deterministic. Although
paired on each test case, running time measurements are affected by the state of the computer at the
time they were executed, which adds some noise to the results. This is, however, exactly what we
aim to handle with the methods established for the accuracy measurements. The only effect of the
noise added to the timing results is that the significance of the t-test and the EER become smaller
and larger, respectively. This means that the results might be less impressive, but they are indeed
valid.

4.4 Choosing observation points

As figure 4.1 illustrates, the choice of test observation positions clearly affects the performance of
the algorithms. To get an understanding of why this happens, consider figure 4.2 which shows a 3D-
rendering of the viewsheds of two observer points, figure 4.2a uses one of the observer points from
the randomized test, while figure 4.2b uses one of the observer points from the scenario. Figure 4.2a
illustrates an issue that arises surprisingly often when using randomly selected points; the viewshed
becomes very small.

Some points in any given viewshed are trivial to classify correctly for most algorithms, because they
are so obviously visible or invisible. If a viewshed consists mostly of such points, then it will fail to
properly differentiate algorithms, which is exactly what happens in figure 4.1a. It turns out that the
majority of small viewsheds have this property, making them less suited for testing purposes.
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(a) Randomly chosen observer

(b) Observer from scenario

Figure 4.2 R2-estimated viewsheds of two selected observer points from the tests. Points that are
visible to the observer are colored red, and the invisible points are colored green.
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b1 b2
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Figure 4.3 Observer in a pit. The solid lines depict the actual horizon, while the dashed lines show
the horizon as estimated by R2 and XDraw.

4.4.1 Properties of trivial viewsheds

For performance comparison it seems to be good idea to avoid observers with small viewsheds. We
will now try to understand exactly what it is about small viewsheds that make them unsuitable for
benchmarking viewshed algorithms.

The number of points in the viewshed is the same as the number of points from which the observer
in question is visible, and is a measure of how visible the observer is in general. The size of the
viewshed of a point, and sometimes also the relative size, is referred to as the visibility index in the
literature.

Consider first an observer situated in a deep pit, like the one in figure 4.3. The points around the
perimeter of the pit, b1 and b2 in the figure, force the horizon up very close to the observer, which
means that most of the remaining points in the terrain will be classified as invisible and do not affect
the horizon any further. As soon as the difference between the horizon and the slope of the remaining
points on the terrain becomes large, the error in the estimate of the horizon produced by algorithms
such as R2 and XDraw is negligible. In fact, the only points in this figure that risk being misclassified
are the points on the perimeter of the pit, b1 and b2. In general this means that except for a very
small number of points, the viewshed is trivial for most algorithms to calculate, which allows minor
details in the terrain to tip the conclusion of benchmark tests in either direction.

Next consider an observer situated on top of a hump above an otherwise flat terrain, as illustrated
in figure 4.4. In this case the horizon is strictly increasing with distance from the observer. Here
the visibility index is 100%, but the viewshed can still be trivially determined by most algorithms.
It is important to point out that real-world terrains seldomly contain points with a ground-level
visibility index of 100%. Even a visibility index of 50% is rare. However, many applications use
the elevated viewshed, where the observer is situated at some height above the ground. For instance
when working with aircraft, this height can be substantial. In these cases highly visible observers
with trivial viewsheds are much more common.
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Figure 4.4 Observer on a hump. The dashed lines show the horizon at b1 and b2 as estimated by
R2 and XDraw.

4.4.2 A method for finding hard viewsheds

To avoid observers yielding this type of trivial viewsheds, Ray suggests in [Ray94] as a rule of thumb
that observers should be placed at points with high visibility index. This, in combination with some
sampling pattern that ensures observation points that are spread out across the terrain, should form a
good basis for evaluating algorithm performance. Ray suggests to do this by dividing the terrain into
a coarse grid of cells, and then select the point with the highest visibility index within each such cell.
As figure 4.4 illustrates however, this is not always enough, because in some applications many of
the highly visible observers have trivial viewsheds nevertheless.

Looking at figure 4.3 and figure 4.4, we see that it is typically in the transition from visible to invisible
or vice versa that the estimation accuracy of these algorithms is put to the test. The points that are
situated well inside or outside the viewshed and thus far away from a visibility transition are typically
much easier to classify. Additionally, the interpolation techniques used in the various algorithms
typically struggle in areas where the viewshed is inhomogeneous. This suggests that we should
look for observers with viewsheds that have complex shapes, and that ideally have several visibility
transitions along any ray.

To meet these criteria we shall use a similar approach to that of Ray. But instead of using the area
of the viewshed, we will use the circumference, i.e. the area of the boundary. This preserves the
first criterion of having a large viewshed, since small viewsheds also have short boundaries. It
also preserves the criterion of a complex viewshed, as viewsheds with large homogeneous areas
have relatively short boundaries. Once we have a relatively complex viewshed we also have several
visibility transitions along most rays.

In general our procedure for selecting n test observation points is then as follows:

1. Divide the terrain into n cells

2. Select the point in each cell which has the largest viewshed circumference

Following this procedure using the R3 algorithm for finding the circumference of the viewshed for
each point in a terrain is typically not feasable. A much more practical approach is to randomly select
k points in each cell, and choose the best fit from that selection. Since we are interested in finding
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points that make for reasonable test candidates, it is also perfectly acceptable to use a fast algorithm
like XDraw for finding the viewshed circumferences.

We will sketch this as an algorithm.

Algorithm 4.1 (Finding observation points with hard viewsheds).

Let n be the number of observation points
Let k the number of viewshed evaluations per observation point

Divide the terrain into n cells

for all such cells c
Select k points randomly within c
Use the point with the largest estimated circumference as an observation point

Figure 4.5 illustrates the effect of using this method compared to that proposed by Ray. Each plot
shows the error made by R2 on 16 observation points chosen using the two methods at various
observer and target heights. For both methods the terrain is divided into 16 cells, then 16 points
are randomly selected in each cell, and the one with the largest viewshed area and circumference is
selected for the two methods respectively. Note that the selection of the 16 points within each cell is
the same for both methods.

As we see in figure 4.5a, the difference between the two methods is insignificant for the low
observer/target height at 3m. At an observer- and target height of 20m, as shown in figure 4.5b, we
see indications that the error at the observers chosen using the circumference method is higher. At
50m, as shown in figure 4.5c, the difference is clearly significant with the viewsheds of the observation
points selected using the circumference method being considerably harder to classify.

These test results are consistent with the observation that the situation illustrated in figure 4.4
seldomly occurs in real world terrains unless a high observer height is used. In the case of low
observer heights the circumference method seems to perform at least as good as the visibility index
method. In terms of computational complexity calculating the circumference of the viewshed is
analogous to calculating the area of the viewshed.

4.4.3 A method for finding average viewsheds

It is not always meaningful to only use the points with the hardest viewsheds. Therefore we would like
to have a method for finding observation points with viewsheds of arbitrary difficulty. Generalizing
the method for finding hard viewsheds, we can instead of choosing the point with the largest viewshed
circumference in each cell, pick the one closest to some percentile.

Algorithm 4.2 (Finding observation points with average viewsheds).

Let n be the number of observation points
Let k the number of viewshed evaluations per observation point
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Figure 4.5 The relative error of R2 on 16 observers chosen with maximum viewshed area and
circumference, at three different observer- and target heights. Higher means means
more difficult test cases, which is what we try to achieve.
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Let i be some percentile

Divide the terrain into n cells

for all such cells c
Select k points randomly within c
Use the point nearest the ith percentile wrt. estimated circumference as an observation point

4.4.4 Assembling a complete testset of observation points

If the goal of the benchmark is to establish the average performance of the algorithm in some sense,
then the selection of observation points should reflect the population of observation points in the
intended application. This is rarely the case for some selection consisting only of observation points
with hard viewsheds. A reasonable testing population of observation points for a general average
performance benchmarking should therefore contain meaningful portions of each of the following
categories of points:

• Points with medium viewsheds
• Points with hard viewsheds
• Points that are typical for the application

Here, the medium and hard points can be found using algorithm 4.2 around the 50th and 100th
percentile respectively. The application-specific points must be found by hand.

Remember that points with trivial viewsheds in general should be avoided. As discussed they
are rarely able to differentiate most of the algorithms in any meaningful manner, and thus do
not contribute to the accuracy of the benchmarking. Even in applications that involve finding
points with low visibility index, points with trivial viewsheds should not be leveraged in algorithm
benchmarking.

Emphasis should be put on the points that are typical for the application. But points with medium
and hard viewsheds are important for establishing a baseline of viewshed algorithm performance, as
well as for uncovering flaws in algorithm implementation that might be present.

4.4.5 The role of the observer- and target height

The difficulty of a viewshed also seems to be affected by the observer- and target height. From
figure 4.5 it appears as if the difficulty decreases when the observer- and target height is increased.
This is consistent with our discussion of figure 4.4, since a large observer height mimics a situation
where the observer is on the top of a narrow peak. Similarly, a very low observer height to some
extent mimics the situation in figure 4.3, where the observer is down in a pit. This might suggest that
extreme observer- and target heights make it more difficult to find good observation points.

Although the results clearly are affected by the choice of observer- and target height, the effect
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is much smaller than what we saw when choosing observers randomly. As long as these heights
are kept within a reasonable range, this does not seem to compromise the benchmarking result.
There is, however, no reason to use extreme observer/target heights unless it is required by the
application.

4.5 Choosing test terrain

As discussed, both the choice of test terrain and observation points can affect the benchmark results
in ways that can be hard to predict. In general this means that it is always recommendable to choose
terrains that mimic those encountered in the actual application. However, some types of artificial
terrains are interesting from a theoretical point of view, and can provide valuable insights when
analyzing viewshed algorithm behavior.

4.5.1 Synthesizing a hard terrain

In an attempt to get an impression of how much the terrain affects the performance of viewshed
algorithms, we will try to create a terrain that is especially difficult to classify using approximate
methods. To do this we will analyze the R2 algorithm, and look at some situations where it performs
particularly bad. Hopefully the resulting terrain will also be somewhat hard to classify for the other
algorithms as well.

As we know, R2 works by sending a line of sight (LOS) to each point on the perimeter of the terrain.
Along each LOS we obtain the accurate horizon, and therefore also an accurate classification for all
grid points that intersect any of these LOSs. Erroneous classifications can only occur at grid points
that do not fall on any LOSs, since the horizon at these is estimated using the nearest LOS.

Figure 4.6 illustrates this situation, where a point p falls between two adjacent LOSs, as shown in
figure 4.6a. When using the FRM terrain model we know that the horizon at p depends only on the
grid lines within the gray sector of figure 4.6a. We can now plot the slope of each point on these
lines as a function of azimuth. This is done in figure 4.6c and figure 4.6b for two different terrains.
The image of a line under this projection is a smooth curve that typically is almost linear. The upper
envelope of these piecewise smooth functions is drawn in bold red on the plots. From corollary 3.7
we know that this is the horizon of the points along the red arc in figure 4.6a.

The dashed lines in figure 4.6 indicate the nearest neighbor estimate R2 obtains for each point. As
the plots show, this can cause R2 to both over- and underestimate the horizon, which can potentially
lead to classification errors. These estimates seems to be worse when the horizon is complex and
irregular. Intuitively this occurs more frequently in terrains with large numbers of narrow spikes.
Large changes in elevation tend to reduce this effect, however. This is illustrated in figure 4.6d,
which shows an horizon plot of the same terrain as figure 4.6c, but extending all the way to p′ and
the blue line in figure 4.6a. Here, one of the grid lines between p and p′ completely dominates the
horizon, in effect "resetting" the complexity of the horizon. Without these large elevation changes,
the complexity of the horizon accumulates with distance from the observer.
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In order to maximize the chance of misclassifications, the terrain should therefore contain a large
number of spikes, but overall no large elevation changes, such as a hill. Gaussian white noise has
both of these properties, and as we shall see, it is a good basis for generating difficult terrains. It
should be duly noted that since the white noise terrain is specifically designed to be difficult for R2,
it is useless for making unbiased comparisons. We will, however, use it for illustrating the difference
in performance between easy and difficult terrains.

4.5.2 The effect of different terrain types

In order to illustrate the effect different terrain types has on the performance of some of the algorithms,
consider figure 4.8. The figure shows the error of R2, radar and XDraw run on the terrain near Larvik,
Alta and on the white noise terrain.

Figure 4.7 shows a 3D rendering of the Larvik and Alta terrains. As the figure illustrates, these
terrains are quite different. The Larvik dataset has a total elevation range of 107m, and is overall
relatively flat. The Alta dataset has an elevation range of 875m, due to several high mountains. The
white noise terrain is as we know extremely rough with lots of sharp peaks. In this test we have used
Gaussian noise with µ = 0 and σ = 0.5. This means that approximately 95% of all points lie in the
range -1m to 1m.

Considering the overall performance of the three algorithms, Larvik and Alta seem to be of com-
parable difficulty. Looking at the white noise terrain, on the other hand, all three algorithms seem
to perform significantly worse. Perhaps even more interesting is that the algorithms are affected
differently by the different terrains. On Larvik, the radar-like algorithm performs clearly better than
XDraw, while on the white noise terrain, XDraw is clearly better. Similarly R2 is better than radar by
a margin on Larvik, but on Alta the difference is much less obvious.

From this we can only conclude that some algorithms perform better on certain types of terrain, and
that the effect is not always easy to predict. Therefore it is important to test algorithms on terrain that
is similar to that they will face when in use.

4.6 Benchmarking running times

Benchmarking the running time of viewshed algorithms require much of the same consideration
for picking test data as the accuracy testing. Some algorithms, like R3 and the non-fixed version of
the radar-like algorithm, have an obvious running time dependency on the complexity of the terrain
and/or resulting viewshed. Other algorithms like R2 and XDraw do not. Therefore it is key to test
using terrains and observation points that yield realistic viewsheds. This is achieved by following the
procedure discussed in the previous sections.

4.7 Evaluation of existing algorithms

We will now put the above theory into practice by benchmarking a set of algorithms for use in the
military scenario discussed in section 2. For this we need to create a suitable test setup by selecting
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Figure 4.6 Overview of a situation that typically leads to errors in R2-type algorithms is illustrated
in figure 4.6a, where the point p lies far away from the nearest ray. Figure 4.6b and
figure 4.6c plots some of the grid lines in the grey sector of figure 4.6a, for two different
terrains. Figure 4.6d is a plot of the same terrain as in figure 4.6c, but also includes
some of the grid lines from the sector between p and p′. The slope of the points on
the lines, as defined in definition 3.5, is plotted as a function of azimuth. The upper
envelope of the projections, plotted in bold color, is thus the horizon of the points along
the red and blue arcs in figure 4.6a respectively. The dashed lines show the estimated
horizon as obtained by R2 using nearest neighbor interpolation.
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(a) Larvik

(b) Alta

Figure 4.7 3D renderings of the Larvik and Alta data sets.
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Figure 4.8 Comparison of terrains. The plots show the relative error obtained by the R2, radar-like
and XDraw algorithms on the Larvik, Alta and white noise terrains (lower is better). 16

observers are chosen using algorithm 4.2 with n = k = 16, and i = 100. The tests are
run with an observer- and target height of 1m.
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terrain data and observation points.

The goal of these tests are two-fold: We want to determine which algorithm works best for this type
of application. Also, we want to compare the results of using observation points that are hand-picked
by experts to those selected automatically.

4.7.1 Terrain data

We want to find an algorithm that performs well on a variety terrain types that can be found in
Norway, ranging from the flat-land to mountainous regions. Therefore we will perform the tests on
both the Larvik and Alta datasets.

Both terrains are represented as RSGs of size 1024×1024 and a vertical resolution of 1m. The Larvik
dataset has a horizontal resolution of approximately 4.9m, while the Alta dataset has a resolution of
15m.

4.7.2 Observation points

Looking back to the military background from section 2, we are particularly interested in two types
of viewsheds: We want to know where we can observe an enemy from, and where we can attack it
from.

Assume that both the sights and the highest visible point on the enemy are situated 3m above ground.
Then the points we can observe from are given by the viewshed with the enemy as observer, and
both an observer- and target height of 3m. Similarly, assume that both the barrel and the highest
critical point on the enemy are situated 1m above the ground. Then we can attack from any point in
the viewshed with the enemy as observer, and an observer- and target height of 1m. These heights
are chosen somewhat arbitrary as they depend on vehicle type, but the principle remain clear.

Since all relevant observers in this scenario are enemy positions, we should leverage points where an
enemy unit typically would be positioned, when benchmarking the algorithms.

The enemy positions are typically situated in such a way that they are only vulnerable to attack from
few directions, while maintaining a good view. The enemies never position themselves such that they
can be seen from far away in many directions at once. This means that the points with the largest
viewsheds are unlikely choices in this context. The viewsheds as described here will be medium in
size, with a few narrow "fans" extending in the directions the unit is set to watch over.

According to the method established above we should therefore test with a selection of observers
where the majority have medium difficult viewsheds. We should include hand-picked observers that
are known to be typical, and we should also include some difficult viewsheds. Since the hardest
viewsheds don’t occur in the application, we will choose the hardest in the test at the 80th percentile
instead of the 100th. Additionally, experts will select some points that are typical positions that
enemies will take. These will make up the hand-picked portion of the test set.

In summary we will use the following recipe for choosing observers:
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• 9 hand-picked observers with height 1m
• 9 hand-picked observers with height 3m
• 9 observers with height 1m, from 50th percentile
• 9 observers with height 3m, from 50th percentile
• 9 observers with height 1m, from 80th percentile

4.7.3 Algorithms

The algorithms we will be testing are some of the ones discussed in section 3:

• R2
• XDraw interpolated
• XDraw maximized
• XDraw minimized
• XDraw averaged
• Fixed radar-like

The XDraw variants are obtained using the corresponding estimators described in equation (3.4).

Throughout the tests we will be using the fixed version of the radar-like algorithm proposed by
Ben-Moshe et al., although we will refer to it simply as the radar algorithm.

The R2 and XDraw implementations are optimized for speed to a comparable level. The implementa-
tion of the radar algorithm, however, is not optimized to the same level. This algorithm can evaluate
an adjustable number of LOSs. Since R2 and radar have relatively similar modes of operation we
will set the radar algorithm to evaluate the same number of LOSs as R2 does, and consider them as
comparable in terms of speed.

4.7.4 Expectations

The results of Franklin et al. indicate that the interpolated version is the most accurate of the XDraw
variants. [Ray94] and [Izr03] consider R2 to be significantly more accurate than XDraw. Therefore
it is natural to expect that we will see the same trends.

No known prior comparisons of R2 and the radar algorithm have been made. Except for the
interpolation techniques used, these algorithms have a relatively similar mode of operation, so it
seems reasonable to assume that they should have similar performance.

As for the case of running times the results of Franklin et al. indicate that XDraw is significantly
faster than R2, sometimes as much as an order of magnitude. As discussed, the radar implementation
has not been optimized as much for speed, so it should be expected to run considerably slower than
the other algorithms.
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Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 8.0× 10−4 5.4× 10−4 1.1× 10−3 107.6 ms

Radar 1.6× 10−3 1.0× 10−3 2.5× 10−3 327.2 ms

XDraw interp. 6.1× 10−3 3.2× 10−3 1.0× 10−2 32.8 ms

XDraw max 4.8× 10−2 3.4× 10−2 8.0× 10−2 31.1 ms

XDraw mean 4.4× 10−2 2.5× 10−2 6.7× 10−2 31.4 ms

XDraw min 1.6× 10−1 1.0× 10−1 2.5× 10−1 31.2 ms

Table 4.1 Larvik, full set of observers

Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 1.3× 10−3 8.3× 10−4 1.9× 10−3 117.3 ms

Radar 1.6× 10−3 1.0× 10−3 2.6× 10−3 342.7 ms

XDraw interp. 4.1× 10−3 2.7× 10−3 5.8× 10−2 35.6 ms

XDraw max 6.8× 10−2 3.4× 10−2 7.4× 10−2 32.7 ms

XDraw mean 3.8× 10−2 2.9× 10−2 4.8× 10−2 33.9 ms

XDraw min 1.1× 10−1 8.5× 10−2 1.5× 10−1 33.3 ms

Table 4.2 Alta, full set of observers

4.7.5 Results

We first ran the tests using the full set of observation points as described above. The results are
shown in table 4.1 and table 4.2. Figure 4.9a and figure 4.9b show the relative error of the full test as
a boxplot.

We also ran a test using only the hand-picked observation points for each terrain. The results
can be seen in tabular form in table 4.3 and table 4.4. Boxplots are shown in figure 4.10a and
figure 4.10b.

Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 7.1× 10−4 1.5× 10−4 1.1× 10−3 117.0 ms

Radar 1.5× 10−3 3.2× 10−4 2.1× 10−3 370.9 ms

XDraw interp. 6.1× 10−3 2.3× 10−3 1.2× 10−2 35.1 ms

XDraw max 4.0× 10−2 1.4× 10−2 7.5× 10−2 32.6 ms

XDraw mean 3.8× 10−2 1.4× 10−2 6.4× 10−2 34.7 ms

XDraw min 2.0× 10−1 8.2× 10−2 2.5× 10−1 33.2 ms

Table 4.3 Larvik, hand-picked observers
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Figure 4.9 Comparison of the relative error of some existing algorithms (lower is better). Results
are obtained using the full set of observers described in section 4.7.2.
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Figure 4.10 Comparison of the relative error of some existing algorithms (lower is better). Results
are obtained using only the hand-picked set of observers described in section 4.7.2.
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Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 1.6× 10−3 1.3× 10−3 2.3× 10−3 116.5 ms

Radar 2.2× 10−3 1.4× 10−3 3.2× 10−3 339.7 ms

XDraw interp. 4.1× 10−3 3.3× 10−3 5.8× 10−3 35.4 ms

XDraw max 7.4× 10−2 6.8× 10−2 8.2× 10−2 32.7 ms

XDraw mean 4.2× 10−2 3.7× 10−2 5.0× 10−2 32.3 ms

XDraw min 1.4× 10−1 9.6× 10−2 1.6× 10−1 33.4 ms

Table 4.4 Alta, hand-picked observers

4.7.6 Verifying the implementations

Since several similar experiments have been made by others, it is natural to compare our results to
the available data. In order to verify the correctness of our implementations we should expect that
our results are not drastically worse than others, unless differences in the testing procedures should
warrant weaker results.

4.7.6.1 XDraw

The authors do not provide measurements of the accuracy of XDraw in the original article [FRM94].
Fortunately, Izraelevitz proposes a variant of interpolated XDraw in [Izr03], in which he includes
empirical tests comparing it to the original algorithm. The tests consist of 16 samples, obtained using
uniformly spaced observers on a terrain data set that seems comparable to our Alta set in terms of
resolution and terrain type.

The results obtained by Izraelevitz match ours very well. In his tests the relative error lies in the
range of about 1× 10−3 - 1× 10−2. Our results for interpolated XDraw lie in the range of about
5× 10−4 - 1× 10−2. Thus there is no reason to suspect our implementation is any less correct than
that of Izraelevitz.

The difference in code between the other variants of XDraw is trivial, as can be seen in e.g. listing 18.
It is therefore unlikely that these have errors the interpolated version does not have.

4.7.6.2 R2

Franklin et al. only briefly describes the relative error of R2 in [FRM94], as their primary concern is
running time. The full details of their testing procedure used are somewhat difficult to make out, but
[Ray94] contains a slightly more thorough description.

The terrain used in the tests is referred to as the south-west quadrant of DTED level 1 cell N37E127.
This is a terrain data set centered at 37◦N and 127◦E, which is in the mainland of South Korea.
DTED level 1 terrain is sampled at a resolution of 3 arc secs, which corresponds to about 83m in this
area. The test is executed by choosing a single observer close to the center of the south-west quadrant.
The observer is chosen to have high visibility, which means that it should have a difficult viewshed as
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Figure 4.11 Parts of the terrain from DTED cell N37E127

we have previously discussed. There is no description of the observer or target height used.

In the test R2 has a relative error of 1.2%, which is significantly worse than any of our real-world
terrain tests. Therefore there is no reason to believe that our implementation is any less correct
than that of Franklin et al. However, as we have seen, the test terrain can significantly impact the
performance of the algorithms. We should therefore investigate this closer.

Unfortunately, DTED cell N37E127 does not seem to be openly available anymore. However, the
USGS GTOPO30 model covers the desired area with 30m resolution, and can be obtained freely
through the USGS earth explorer. We can then produce a data set of a region to the south west of
37◦N and 127◦E with 83m resolution using interpolation and decimation on the GTOPO30 data set.
The resulting region has a size of 600 × 600 points, matching fairly well the region described in
[Ray94]. A 3D rendering of parts of this terrain can be seen in figure 4.11. This illustration provides
an immediate explanation for the poor results of Franklin et al. The terrain has a large amount of
spikes, possibly an artifact due to the low resolution, making it resemble the white noise terrain.
From what we have discussed earlier, it should therefore come as no surprise that the algorithms
perform worse on this terrain.

A full test of R2, among other algorithms, on this terrain can be found in section 5. The worst
samples have a relative error of about 0.8%, which is not too dissimilar to that seen by Franklin et al.
We therefore consider our implementation of R2 to be validated.
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4.7.6.3 The radar-like algorithm

The only source of empirical data for the radar-like algorithm is the original article by Ben-Moshe et al.
[BMCK08]. These results are based on a triangulated irregular network (TIN) terrain model, making
it close to impossible to reproduce the results with similar LOS density and terrain characteristics.
Additionally, since the radar-like algorithm is able to classify regions and not only points, the
provided results give relative error of the viewshed area, which is not easily translated to our error
measures.

For the radar-like algorithm we must therefore rely on hand-crafted test cases for validating the
implementation.

4.7.7 Evaluating the results

The trend in all four tests is that R2 is more accurate than radar, which in turn is more accurate that
XDraw. The interpolated version is by far the most accurate of the XDraw variants, and is the only of
the XDraw algorithms that is comparable to R2 and radar in terms of accuracy. This is consistent
with our predictions based on earlier work.

We must keep in mind, however, that we here use the fixed version of the radar-like algorithm. As we
know, the non-fixed version of radar typically obtains a lower error rate for a given number of LOS
evaluations. Therefore it seems fair to conclude that R2 and non-fixed radar are roughly comparable
in terms of accuracy for this use, albeit with a slight edge to R2.

Turning to running time the radar algorithm is by far the slowest, as expected. As discussed this
is an implementation that is not optimized for speed, so this result should not be emphasized. An
interesting point is that the running time of the interpolated version of XDraw is negligibly slower
than the other versions. This in contrast to the results of Franklin et al. in [FRM94], which suggest
that the interpolated version should be considerably slower. Based on these results there is no reason
to choose the averaged version over the interpolated version of XDraw.

Comparing the R2 algorithm to interpolated XDraw it is clear that R2 is significantly more accurate,
while XDraw is significantly faster. In time-critical applications requiring real-time performance,
XDraw might therefore be only option. If this is not the case, R2 should generally be preferred.

Combining the full Larvik and Alta data sets, we can use EER from section 4.3 to further analyze
the data. Since the max- and min-variants of XDraw are not of particular interest in this context, we
focus on the averaged and interpolated variants, in addition to radar and R2. The result can be seen
in table 4.5.

The EER analysis shows that interpolated XDraw makes less than 14% of the error averaged XDraw
does. R2 and radar are more than 3.3 and 2.3 times as accurate as interpolated XDraw, respectively.
Finally, we also see that R2 makes less than 78% of the error radar does. Although we expect the non-
fixed version of radar to perform better, it seems reasonable to prefer R2 for our application.
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XDraw mean XDraw int Radar
XDraw int 1.4× 10−1

Radar 5.0× 10−2 4.3× 10−1

R2 3.3× 10−2 3.0× 10−1 7.8× 10−1

Table 4.5 EER analysis of four existing algorithms. The cell in column i and row j contains the
EER of algorithms i and j with 99% confidence. Blank cells indicate that the test to show
that algorithm i is significantly better than algorithm j failed.

5 Improving the R2 algorithm

Based on the results obtained in section 4 the R2 algorithm stands out as a good choice in terms
of accuracy for our application. In this chapter we aim to improve the R2 algorithm, making it
even more suitable for our application. First we conduct a more thorough analysis of some of the
weaknesses of R2, and propose how to mend them through simple modifications of the original
algorithm.

Next, we propose a more flexible variant of R2, inspired by the radar-like algorithm. We want to be
able to increase the accuracy of R2 on demand, in exchange for increased running time, as we can
with radar. A natural way to achieve higher accuracy in R2, while accepting longer running times is
to evaluate more lines of sight (LOSs). By letting the number of evaluated LOSs be a parameter of
the algorithm, we get the adjustable behavior we want. In this chapter we analyze the properties of
this algorithm, and investigate further where the extra LOSs should be sent in order to increase the
potential of correcting errors.

5.1 R2 side slope performance

By carefully comparing some of the test results from section 4, it seems that R2 performs worse
compared to the other algorithms on the Alta terrain than Larvik. This is especially clear in the
Larvik and Alta plots from figure 4.8.

Focusing on one of the Alta test cases where R2 performs especially bad compared to the other
algorithms, we can investigate further what is going on. Figure 5.1 shows both the correct viewshed
and the viewshed computed by R2 for such a test case. Inside the red circle the R2 viewshed has
some obvious artifacts. Looking at the region between the observer and the red circle there are no
obstructions that would suggest the lines of invisible terrain in the red circle. As we see from the
correct viewshed, most of these points are well inside the boundary of the viewshed, and should
therefore be relatively easy to classify. It seems as if the side slope itself is enough to R2 make errors
on these trivial points.

To test this hypothesis we can synthesize a terrain with a deep and smooth valley, and run the
algorithm on an observer situated on the bottom of the valley. We will generate the terrain as
follows.
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(a) Correct viewshed

(b) Viewshed computed by R2

Figure 5.1 The viewshed of some observer on a side slope. Yellow represents points that are visible.
The observer is indicated by the white square in the lower left corner of the figures.
Inside the red circle the viewshed computed by R2 has some obvious artifacts.
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Let k denote the center coordinate of the terrain on the x-axis. Then the elevation of each grid point
s1, s2 is given by:

es1,s2 = (s1 − k)2 (5.1)

A 3D rendering of this terrain with the result from R2 can be seen in figure 5.2, where the observer is
situated at the bottom of the valley. Since the valley is convex, all points are visible to the observer.
However, as the figure shows, R2 misclassifies many of the points on the side slope. This viewshed
should be trivial to classify, as demonstrated by XDraw in figure 5.2b, which classifies all points
without error.

A more detailed view of this situation can be seen in figure 5.3. Since the surface of the terrain is
convex, the horizon is strictly increasing as R2 propagates each ray outward. The horizon between
two such rays, therefore always takes the shape of a smooth curve with at most one kink. Figure 5.3b
shows a typical such horizon as it occurs along the gray arc in figure 5.3a. As the figure shows, the
nearest neighbor interpolation used by R2 does a particularly bad job at estimating the horizon at the
point p, as the error ε gets really large. The lines with artifacts we see in figure 5.2a and in the red
circle in figure 5.1b are results of round-off errors in R2’s nearest neighbor interpolation.

Comparing Alta to the Larvik terrain, we know that Larvik has no high mountains or severe slopes.
This explains why R2 performs so much better on Larvik, since these side slope estimation errors
seldom occur.

5.2 The generalized R2 algorithm

A natural way to mend the issues with side slopes is to replace the nearest neighbor interpolation
with some higher order estimation leveraging several of the rays passing through the neighborhood
of a point. In order to test the effect of this we will make a generalized version of the R2-algorithm
allowing us to replace the nearest neighbor interpolation with some other estimation scheme.

Algorithm 5.1 (R2 generalized).

Let est be some estimator, o be some observer point, and let ψ and ω denote the observer- and
target height, respectively.

for all p ∈ S, p perimeter point of S
let ` be the LOS from o + ψk to p + ωk

h = −∞

for all grid line crossings (x1, x2) of `
x = (x1, x2, e(x1, x2))

est.train(x, h)

h = max {h, so(x)}
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(a) R2

(b) XDraw

Figure 5.2 The viewsheds at a smooth valley as calculated by R2 and XDraw. Green and red points
indicate invisible and visible points respectively. The observer is represented by the
white spot situated at the bottom of the valley in the bottom of the figure.
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Figure 5.3 Overview of the side slope situation from figure 5.2. Since the terrain is convex the
horizon is at all times given as a single smooth curve, or as a curve that has exactly
one kink. A typical horizon between two rays of R2 is depicted in figure 5.3b, where ε
denotes the error in the horizon estimate made by R2.

for all s ∈ S
if so(s + ωk) > est.estimate(s)

label s as visible
else

label s as not visible

The only difference from algorithm 3.3 here being that we use a general object est referred to as an
estimator, that in some way estimates the horizon at each grid point. For nearest neighbor estimation
est must keep track of the nearest grid line crossing of each grid point. We refer to the first double
for-loop as the training step of the algorithm, while the second for-loop we call the classification
step.

Corollary 5.1.

If est.train and est.estimate runs in O(1) time algorithm 5.1 runs in O(n) time on a square grid with
n points.

Proof. This follows directly from corollary 3.8. �

5.3 Estimators for generalized R2

We will now consider a few possible implementations of the horizon estimator est discussed in the
previous section. In the original paper [FRM94], the authors simply use the horizon of the nearest
grid line crossing as the estimate for each grid point. Our primary goal is to replace this with some
higher order estimator that handles side slopes better than the original algorithm. For this purpose we
shall consider two first order estimators; what we shall call the weighted and the linear estimator. We
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p

Figure 5.4 Estimation of the horizon of some point s. The circles indicate all grid line crossings
in the neighborhood of s. The solid lines are the two rays used by the linear estimator,
est(linear). The crosses represent the grid line crossings it uses in the interpolation.

shall also consider the maximum and minimum estimators, to see if we can achieve similar behavior
as the max- and min-variants of XDraw.

Figure 5.4 shows an overview of the situation where the estimator comes into play. By evaluating
numerous LOSs radiating from the observer, we have obtained the horizon at several grid line
crossings in the neighborhood of a grid point s. These are highlighted by circles in the figure. The
purpose of the estimator is to make an estimate of ŝo(p) using this data.

5.3.1 Candidate estimators

The max- and min- and nearest neighbor estimators simply choose a single grid line crossing within
the neighborhood of s, and use its horizon as an estimate for that of s. Unsurprisingly the max- and
min estimators here choose the grid line crossing with the highest or lowest horizons, respectively.
The nearest neighborhood estimator chooses the grid line crossing closest to s.

One way to obtain a first order estimate of ŝo(s) is to weigh each grid line crossing by some function
of its distance to s. The estimate can then be calculated as a weighted average of the horizons of
grid line crossings in the neighborhood. This type of estimator we call weighted estimators. Since
the neighboring grid line crossings have a distance to s of at most 1, a natural weighting function
is (1 − d), where d is the distance to s. As we shall see the weighted estimator has an efficient
implementation which is almost as fast as the nearest neighbor estimator, while performing much
better on side slopes.
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Another way to obtain first order estimates is to linearly interpolate the horizons of the nearest ray
on both sides of s. These are the solid rays in figure 5.4. Ideally we should use the horizon of the
points along the rays that have the same distance to o as s has. However, as we know the horizon is
constant between grid lines. Therefore, we will use the horizon of the nearest grid line crossing on
both sides of s. These two points are marked with crosses in the figure.

We will now give a precise definition of the estimate-method of these estimators.

Definition 5.1 (R2 visibility threshold estimators). Let o be some observer, Xs be the set of grid line
crossings in the neighborhood of s. Also let xs and xs be the two closest grid line crossings to s on
either side of the ray running through s and the observer.

est(near).estimate(s) = ŝo(argminx∈Xs
||x− s||) (5.2)

est(max).estimate(s) = max
x∈Xs

ŝo(x) (5.3)

est(min).estimate(s) = min
x∈Xs

ŝo(x) (5.4)

est(weight).estimate(s) =

∑
x∈Xs

(1− ||x− s||xy) ŝo(x)∑
x∈Xs

(1− ||x− s||xy)
(5.5)

est(linear).estimate(s) =
||xs − s||ŝo(xs) + ||xyxs − s||xy ŝo(xs)

||xs − s||xy + ||xs − s||xy
(5.6)

Note that using the generalized R2 algorithm with the nearest neighbor estimator is equivalent to
using the original R2 algorithm. To avoid confusion we will from now on call this R2 near.

5.3.2 Implementation notes

As suggested the estimators should accumulate information obtained through the train method, and
use this information for estimating the horizon. An efficient way to implement this is using one or
more two-dimensional arrays of the same size as the terrain.

Using this technique the max- and min estimators can be implemented using one such array, where
the value at index (i, j) represents the maximum or minimum horizon seen so far in the neighborhood
of the grid point si,j . See listing 14 for a sample implementation of this.

The nearest neighbor estimator needs two such arrays, one for storing the distance to the so far
nearest grid line crossing, and the other for storing its horizon. The weighted estimator also needs
two arrays, one each for accumulating the numerator and the denominator from equation (5.5).

The most complicated estimator is the linear one, which needs four two-dimensional arrays. As for
the nearest neighbor estimator two arrays is needed to keep track of the nearest grid line crossing, but
in this case we need to do it for crossings on both sides.

Based on this it seems fair to assume that the max- and min estimators will be the fastest. Also we
should expect the nearest neighbor- and weighted estimators to be comparable in terms of speed,
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Algorithm
Median rel.
err.

Median rel.
type 1 err.

Max rel. type 1
err.

Mean run.
time

R2 near 8.0× 10−4 4.1× 10−4 1.5× 10−3 116.0 ms

R2 max 4.9× 10−3 5.7× 10−6 3.1× 10−5 94.5 ms

XDraw max 4.8× 10−2 0 9.5× 10−7 32.6 ms

Table 5.1 R2 max and XDraw max performance on the Larvik full test set from section 4. For each
test run the number of points erroneously classified as visible is counted and divided by
the total number of points, giving the relative type 1 error. The test set consists of 45 runs,
and the result of worst of these runs is used for the max type 1 statistic.

Algorithm
Median rel.
err.

Median rel.
type 2 err.

Max rel. type 2
err.

Mean run.
time

R2 near 8.0× 10−4 3.9× 10−4 1.5× 10−3 116.0 ms

R2 min 4.0× 10−3 1.0× 10−5 5.7× 10−5 95.8 ms

XDraw min 1.7× 10−1 9.5× 10−7 1.3× 10−5 35.2 ms

Table 5.2 R2 min and XDraw min performance on the Larvik full test set from section 4. For each
test run the number of points erroneously classified as not visible is counted and divided
by the total number of points, giving the relative type 2 error. The test set consists of 45
runs, and the result of worst of these runs is used for the max type 2 statistic.

while the linear estimator should be the slowest estimator.

5.3.3 Max- and min estimator performance

We will now assess the performance of the max- and min estimators for the generalized R2 algorithm.
The purpose of these estimators is not to improve overall classification accuracy, so we do not expect
them to perform better than the nearest neighbor estimator. Instead the goal of the max- and min
estimators is to obtain an inner and outer boundary, respectively, for the actual viewshed.

Since the max estimator has a bias towards overestimating the horizon, it is less likely to commit
false positives. That is, wrongfully label a point as visible. Similarly we expect the min estimator to
commit fewer false negatives.

It cannot be shown that the max- and min estimators commit no false positives and negatives,
respectively. Figure 4.6b and figure 4.6c illustrate why this is not case. Regardless of how we
estimate the horizon, we do not know what it is like between the two nearest LOSs we have evaluated.
Even though we take the maximum of the horizon at the two LOSs in the max estimator, we cannot
guarantee that the horizon is no higher between the LOSs. Similarly, we cannot give any guarantees
for the min estimator either.

The results of a performance test of these estimators on the Larvik test set from section 4 can be seen
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in table 5.1 and table 5.2. In the tests both the R2 max- and min estimators perform reasonably well,
although the XDraw variants perform significantly better in terms of one-sided accuracy. One might
ask why we should even consider to use the R2 variants, when the corresponding XDraw variants
have higher one-sided accuracy, and are close to three times faster. The reason for this is that the
XDraw variants are much more conservative in their estimates. Looking at the median overall error
committed by these, we see that they are more than an order of magnitude less precise than the R2
variants. If the XDraw bounds are nowhere near tight, it greatly affects their usefulness.

The effect of this is illustrated in figure 5.5, where the max- and min viewsheds are compared to the
correct one. As the figure clearly shows, the viewsheds produced by the R2 variants coincide very
closely with the correct viewshed. The viewsheds produced by XDraw are on the other hand either
much smaller or much larger than the corresponding correct viewshed.

From these results it is clear that the R2 variants are much more useful for identifying a small region
where the boundary of the actual viewshed is likely to be.

5.3.4 First order estimator performance

We have reason to believe that the weighted and linear estimators should improve the performance of
the R2 algorithm, due to the shortcomings of the nearest neighbor estimator we have pointed out. It
is now time to put these estimators to the test, by running through the test procedure we established
in section 4.

In order to verify that these estimators actually solve the side slope issues, we first re-run the test from
figure 5.2. The result of this can be seen in figure 5.6. As the figure shows, these estimators perform
much better than the nearest neighbor estimator. The linear estimator calculates this viewshed without
error. The weighted estimator misclassifies a total of eight points, although not visible in the figure.
This in stark contrast to the nearest neighbor estimator which misclassifies a total of 284 345 points
in this test. From this it seems fair to conclude that both the weighted and the linear estimators solve
the side slope issues.

Next we repeat the full testing procedure used in section 4 in order to see how the weighted and the
linear estimators perform on more realistic terrains. The results can be seen in figure 5.7, table 5.3
and table 5.4.

As the plots show, both the weighted and linear estimators perform significantly better than the
original nearest neighbor estimator in terms of accuracy. R2 linear performs by far the best of the
three, with a median relative error close to a quarter of R2 near, and roughly half of R2 weight.

Observe that R2 weight is only barely slower than R2 near. In both the Larvik- and Alta tests the
difference fails to be significant with a one-sided paired t-test p-value of 8.9% and 12.2%, respectively.
Keeping in mind that the only real difference between these estimators are minor details in how the
estimate is calculated, it is perhaps not surprising that the difference is this small. R2 linear seems to
run 10− 20% slower than the other two, as expected due to the increased memory usage.
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(a) R2 max (b) XDraw max

(c) R2 min (d) XDraw min

Figure 5.5 Max- and min viewsheds of some observer on the Larvik terrain. The correct viewsheds
are colored yellow, while the estimated viewsheds are colored red. In the max figures
the estimated viewshed is smaller than the correct viewshed, so the estimated viewshed
is rendered on top of the correct one. Opposite on the min figures.
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(a) R2 weighted

(b) R2 linear

Figure 5.6 The viewsheds at a smooth valley as calculated by R2 using the weighted and linear
estimators, respectively. Green and red points indicate invisible and visible points
respectively. The observer is represented by the white spot situated at the bottom of the
valley in the bottom of the figure. The viewshed calculated by the linear estimator is
perfect, i.e. all points colored red. The viewshed from the weighted estimator has eight
misclassified points, although not visible in this figure.
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Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 near 8.0× 10−4 5.5× 10−4 1.1× 10−3 126.2 ms

R2 weighted 4.3× 10−4 3.1× 10−4 5.7× 10−4 128.7 ms

R2 linear 2.3× 10−4 1.3× 10−4 2.9× 10−4 150.0 ms

Table 5.3 Larvik first order estimator performance test

Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 near 1.3× 10−3 8.3× 10−4 1.9× 10−3 127.7 ms

R2 weighted 5.3× 10−4 3.8× 10−4 7.5× 10−4 129.8 ms

R2 linear 2.5× 10−4 1.7× 10−4 3.5× 10−4 146.7 ms

Table 5.4 Alta first order estimator performance test

Also, note that the linear estimator has very similar performance on the Larvik and Alta terrains. This
is contrasted by the nearest neighbor estimator, whose median relative error is about 50% larger on
Alta than on Larvik. The median relative error of the weighted estimator is slightly less than 25%

larger on Alta than on Larvik, which might indicate that it is also somewhat affected by side slopes
on the Alta terrain.

Using the techniques discussed in section 4 we obtain from these results that the expected error ratio
(EER) of the linear estimator and the nearest neighbor estimator is 0.24 with 99% confidence. For
the weighted- and nearest neighbor estimator the EER is 0.53. Based on these results it is fair to
claim that the weighted- and linear estimators are respectively twice and four times as accurate as
the nearest neighbor estimator on these types of terrains and observer points. Since these boosts
in accuracy come with modest increases in running time, there is no reason to test further with the
nearest neighbor estimator.

5.4 The uniform R2 algorithm

As discussed in the beginning of this chapter, the next step is now to modify the R2 algorithm to
evaluate an adjustable number of LOSs. The emphasis in this section is more on accuracy than
efficiency, so we will consider algorithms that run several times slower than the original R2 algorithm.
However, we do have a brute force algorithm from which we can obtain an upper bound on the
running times of useful algorithms.

We will first consider the most obvious way to modify R2 for evaluating more LOSs. For this
algorithm our primary interest is to investigate how the error changes as a function of running
time.

The easiest way to handle any number of LOSs, is to evaluate LOSs at fixed angle intervals, instead
of send a LOS to each point on the boundary of the terrain. The result is an algorithm that in
some sense is similar to the fixed radar algorithm, in that it evaluates LOSs in uniformly distributed
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Figure 5.7 The relative error of the viewsheds as calculated using R2 with nearest neighbor-,
weighted- and linear estimators. The observers used in this test are the same as the
ones used in the full set tests in section 4.
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directions. Unlike the radar algorithm we still use the horizon of nearby LOSs for estimating the
horizon of each grid point. As before we can use any type of estimator that fits into the generalized
R2 scheme, but we will focus on the weighted- and the linear estimator as these seem to have superior
performance.

Algorithm 5.2 (R2 uniform).

Let est be some estimator, o be some observer point, C the number of LOSs the algorithm is
allowed to evaluate, and let ψ and ω denote the observer- and target height, respectively.

Set δ = 2π
C

for all i = 1...C − 1

let ` be some LOS from o + ψk with horizontal direction iδ
h = −∞

for all grid line crossings (x1, x2) of `
x = (x1, x2, e(x1, x2))

est.train(x, h)

h = max {h, so(x)}

for all s ∈ S
if so(s + ωk) > est.estimate(s)

label s as visible
else

label s as not visible

First we compare this algorithm to the generalized R2, with both the weighted- and the linear
estimator. As before we do this by running the Alta test from section 4. The results of this test can be
seen in figure 5.8 and in table 5.5. From the results we see that the two algorithms are comparably
fast, which is expected since they evaluate the same number of LOSs. What is more interesting
in these results is that the uniform variants of the R2 algorithm perform noticeably worse than the
original variants in terms of accuracy. As we know the R2 algorithm with both the weighted and
linear estimators make no error at points that lie exactly on an LOS. Some explanation to these results
might be offered by the fact that the uniform version of the algorithm matches fewer point exactly
with an LOS, resulting in more points with uncertain estimates.

Next we re-run the tests against a range of configurations of the uniform algorithm, to see how it
performs using a larger number of LOSs. Since our radar implementation is not properly optimized
for speed, we will use the number of evaluated LOSs as a measure of running time, in order to make
a fair comparison. We test the algorithms using 2, 3, 4, 6, 8, 10 and 16 times as many LOSs as the
original R2 algorithm. When evaluating arbitrary precision algorithms like these, the mean relative
error is actually a better measure of the performance than the median relative error. The reason
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Figure 5.8 Comparison of the generalized and the uniform R2 algorithm with the same number
of rays used on both algorithms. The tests are performed on the full Alta test set as
described in section 4.

Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 linear 2.5× 10−4 1.7× 10−4 3.5× 10−4 146.6 ms

Uniform R2 linear 3.1× 10−4 2.2× 10−4 8.3× 10−4 133.9 ms

R2 weighted 5.3× 10−4 3.8× 10−4 7.5× 10−4 131.8 ms

Uniform R2 weighted 1.0× 10−3 5.3× 10−4 2.8× 10−3 124.1 ms

Table 5.5 Generalized and uniform R2 performance test
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Figure 5.9 The performance of uniform R2 with the weighted estimator as a function of the number
of LOSs evaluated. The x-axis shows the number of LOSs in multiples of evaluations
used by the original R2 algorithm. The dashed line indicates the mean performance of
the generalized R2 algorithm using the weighted estimator.

for this is that when the precision is increased, typically only the hardest test cases see any error
improvement as the easy ones already are close to perfectly classified. At some point this means
that the median error stops improving, making it seem like the error reduction has converged. In
reality the algorithm might still be improving the error, but only on the hardest test cases. The mean
relative error, on the other hand, captures this very well. Therefore we will for each test find the
mean relative error, and plot it as a function of the number of evaluated LOSs.

As figure 5.9 illustrates, the uniform R2 with the weighted estimator does not perform as expected
in these tests. Instead of a steady improvement of the accuracy we see that the error rate quickly
stabilizes at about the same level as the standard version of weighted R2, regardless of how many
LOSs are evaluated. Based on this it seems that the weighted estimator fails completely to exploit
denser LOSs to increase the accuracy.

Upon closer inspection, the horizon estimates seem to fluctuate as the LOS density is increased.
Some estimates become better, but others become worse. For a possible explanation for this behavior
consider figure 5.10, where we look at the LOSs in the neighborhood of some grid point p. When
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Figure 5.10 The effect of denser LOS sampling in the uniform R2 algorithm. Figure 5.10a shows
the two LOSs passing through the neighborhood of a grid point p when the uniform
R2 algorithm is used with a low LOS density. Figure 5.10b shows the same situation
with higher LOS density, such that four LOSs pass through the neighborhood of p.
When using the weighted estimator, the solid lines, which are closer to p, improve the
accuracy of the estimate. The dashed lines, however, tend to affect the accuracy of the
estimate negatively.

the LOS density is increased, the distance from p to the closest LOS decreases, which is good for
the accuracy of the horizon estimate. These LOSs are indicated by the solid lines in the figure.
Additionally, more LOSs intersect the neighborhood of p, so the average distance from the LOSs to
p remains relatively unchanged. It is possible that the negative effect of adding the distant LOSs
zeroes out the positive effect of the closer LOSs.

In an attempt to mend this, we define the p-weighted estimator, which allows us to adjust the
estimators bias towards the nearest LOSs.

Definition 5.2 (The p-weighted estimator for R2).

Let o be some observer and Xs be the set of boundary crossings in the neighborhood of s.

est(p-weight).estimate(s) =

∑
x∈Xs

(1− ||x− s||xy)p ŝo(x)∑
x∈Xs

(1− ||x− s||xy)p
(5.7)

Experiments indicate that using a value for p that is too high hurts accuracy as much as using p = 1.
The best results seem to be achieved by letting p increase with LOS density. Therefore we re-run the
test from figure 5.9 with p = 2k, where k is LOS-count relative to that of the original R2 algorithm.
I.e. when the algorithm is run with four times as many LOSs as the original R2, p = 2 · 4 = 8.

The results of the full test can be seen in figure 5.11. As the plot shows, all three algorithm variants
now behave as expected, in that the error is significantly reduced as the number of LOSs evaluated
is increased. It is clear, however, that the linear variant is superior to the other two. Although the
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Figure 5.11 Algorithm performance as a function of the number of LOSs evaluated. The x-axis
shows the number of LOSs in multiples of LOSs used by the original R2 algorithm.
The dashed- and dotted line indicate the mean performance of the generalized R2
algorithm using the weighted- and linear estimators respectively.

78 FFI-rapport 2015/01300



p-weighted estimator performs clearly better than the radar algorithm, the choice of p = 2k is here
somewhat arbitrary, and it is unlikely that this is the optimal setting for p. However, it does not
seem fruitful to optimize the weighted estimator further when the linear estimator performs so much
better.

With the uniform R2 algorithm and the linear estimator we have successfully made an algorithm that
is significantly more accurate than the generalized R2 algorithm. Using a LOS density that is 16

times higher than that of the original algorithm, we have reduced the median error to only a handful
points. Therefore we will consider this level of accuracy to be satisfactory for terrains of this size
and difficulty.

5.5 A tunable hybrid algorithm

With the uniform R2 algorithm we have established a baseline for highly accurate, albeit slow,
algorithms. Next we consider a different approach for achieving the same level of accuracy while
evaluating fewer LOSs. We do this by putting more knowledge about the nature of terrains and
viewsheds into the algorithm. In order to make sure we do not overfit the algorithm to some specific
terrain, we will develop our algorithm using the Larvik terrain only, and then validate its performance
on the seemingly tougher Alta terrain.

5.5.1 Targeting high uncertainty points

Looking at figure 5.11 we see that the uniform R2 performs worse than the generalized R2 when
evaluating the same number of LOSs. Comparing the LOS-patterns of the two variants, illustrated in
figure 5.12, we will try to understand why this is the case. First of all, we see that uniform R2 sends
more of its LOSs “outside" of the grid than generalized R2. In practice this means that generalized R2
evaluates more grid line intersections. Secondly, every LOS of generalized R2 runs exactly through
at least one grid point. This is good, because R2 makes no estimation errors along the LOS, so these
points are always classified correctly. Uniform R2 hits a few grid points by chance, but not nearly as
many as generalized R2.

Based on this, it seems like a good starting point to use the same scheme as generalized R2, and then
add more LOSs that run through points when higher accuracy is needed. Since any error at points
that intersect a LOS is guaranteed to be corrected, we want to send the supplementary LOSs through
points that are likely to be misclassified in the first place. As discussed in section 4 the points with
the highest probability of being misclassified are typically the ones that are close to the boundary
of the viewshed. A simple count of the errors made by R2 linear on the Larvik test set shows that
typically 99− 100% of the errors lie just inside or just outside the correct viewshed. Naturally, we
do not know the exact boundary of the viewshed, but we can obtain decent estimates using variants
of the generalized R2 algorithm.

The most obvious estimate of the exact viewshed boundary can be obtained simply by using the
boundary of the viewshed as estimated by generalized R2 with linear estimator. On the test cases from
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Figure 5.12 Overview of the distribution of LOSs for generalized- and uniform R2 on a 6 × 6

regular square grid (RSG). Notice how generalized R2 better covers the grid, and hits
through more grid points than the uniform variant.

the Larvik test set 91− 96% of the errors made lie on the boundary of the estimated viewshed. The
boundary on these test cases contain 1.5− 2.5% of the points of the entire terrain, which corresponds
to about 4− 6 times as many LOSs as generalized R2.

As suggested earlier we can also use max- and min variants of generalized R2 for obtaining a limited
region which contains most of the boundary of the exact viewshed. In the Larvik tests this region
contains 90− 93% of the error and spans 0.5− 1% of the terrain.

According to these numbers we have isolated most of the error to a very limited region of the terrain.
Thus on Larvik it seems we typically should be able to improve the error one order of magnitude by
evaluating less than ten times as many LOSs. We will have to test to see how this holds up on other
terrains, however.

We now define more precise algorithms based on these ideas.

Algorithm 5.3 (Hybrid bound).

Let o be the observer and ψ be the observer height. Let est be the linear estimator. If V is a viewshed,
then V denotes the boundary of V , which is defined as follows: Let s be a grid point, then s ∈ V iff.
s has at least one grid point 8-neighbor with a different classification than s itself.

Execute the training step of algorithm 5.1 on est
Find Vlinear using the classification step of algorithm 5.1 on est

for all s ∈ V linear

Train est on the LOS running from o + ψk through s

Execute the classification step of algorithm 5.1 using est
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Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 linear 2.2× 10−4 1.3× 10−4 2.9× 10−4 134.2 ms

Boundary 0 0 9.5× 10−7 958.4 ms

Min/max 2.8× 10−6 9.5× 10−7 6.0× 10−6 678.2 ms

Table 5.6 Larvik fixed hybrid performance test.

Algorithm 5.4 (Hybrid min/max).

Let o be the observer and ψ be the observer height. Let est, est(max) and est(min) be the linear-, max-
and min estimators, respectively.

Execute the training step of algorithm 5.1 on est, est(max) and est(min)

Find Vmax and Vmin using the classification step of algorithm 5.1 on est(max) and est(min)

for all s ∈ Vmin \ Vmax

Train est on the LOS running from o + ψk through s

Execute the classification step of algorithm 5.1 using est

Figure 5.13 and table 5.6 shows the performance of these two algorithms compared to the generalized
R2 algorithm with linear estimator. In terms of accuracy the improvement is tremendous for both
techniques. The accuracy of the min/max hybrid variant seems to be close to two orders of magnitude
better than R2, while the boundary variant makes almost no error at all. As expected the running
times have increased, but by less than one order of magnitude.

The EER of the min/max hybrid and linear R2 is less than 2.3% with a confidence of 99%. Similarly
the EER of bounded hybrid and linear R2 is less than 0.5%. So these algorithms do indeed increase
the accuracy by two orders of magnitude on this test set. The error ratio measure is not well-defined
for comparing the two hybrid variants, as they both make 0 error on several test cases. Using a
one-sided paired t-test we can, however, assert that the boundary variant is the most accurate with a
p-value of 2× 10−8.

5.5.2 Limiting the running time

Having achieved performance that is at least on par with the uniform R2 algorithm in terms of
accuracy, and significantly faster in terms of speed, we will now attempt to make tunable versions of
the fixed hybrid algorithms.

At this point we know that the misclassified points are relatively dense on the estimated boundary
and in the difference between the R2 min- and max viewsheds. For brevity we will refer to these as
highlighted points. The only way to reduce the running time of the proposed algorithms is to reduce
the number of evaluated LOSs. This means that we have to select a portion of the highlighted points.
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Figure 5.13 The relative error of R2 and the boundary- and min/max hybrid variants on the Larvik
test set.
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Figure 5.14 The density of viewshed boundary points by orientation wrt. the observer for a typical
Larvik test case.

Ideally we would have some way to prioritize these points, which reflects their respective likelihood
of being misclassified. We could try to find a set of easily obtained features that highlight points that
typically are misclassified. For a point p this might be features such as so(p)− est.estimate(p), or
the distance to the nearest LOS from p. Finding such a set of features should be done using some
machine learning algorithm, and is beyond the scope of this thesis.

A trivial procedure to reduce the number of LOSs is simply to select a subset of the highlighted
points at random. Inspecting how the points from the boundary of the viewshed are oriented wrt. the
observer, it seems this is far from uniformly distributed. A typical plot of the density of orientations
can be seen in figure 5.14, which has several narrow peaks. This is a good thing, since we then by
sending a single LOS in the direction where the boundary points are dense potentially can correct
multiple errors. By randomly sampling the set of highlighted points, we effectively sample the
distribution of orientations. This means that we are likely to send LOSs in the directions where this
distribution has peaks, which is exactly what we want.

The highlighted points are typically found in no particular order. Thus we can sample approximately
uniformly simply by picking each kth point. By sorting the points by orientation before doing this
we get a truly uniform sampling. In practice the latter method actually seems to be faster, despite the
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extra effort needed to sort the highlighted points.

These steps can be summed up as the following algorithm:

Algorithm 5.5 (Constrained Hybrid). Let o be the observer and C the number of LOSs the algorithm
is allowed to evaluate in addition to the ones evaluated by a single R2 pass.

Execute the first training steps of one of the Hybrid algorithms
Let M be the resulting set of highlighted points

Sort M by orientation relative to o

Set c = |M |
C

for all i = 1...C
Train est on the LOS running from o + ψk through Mci

Execute the classification step of R2

We will now evaluate the performance of this algorithm, both using the boundary and min/max
variants. We test it with a range of LOS-counts, and see how the accuracy changes as a function of
running time. For each LOS-count we will run the algorithm against the full Larvik test set, and
use the mean error of all those tests as a performance measure for the respective configuration. For
these algorithms the mean error is a better measure than the median error. This is because when the
LOS-count reaches above some level, only the hardest viewsheds are improved by increasing the
LOS density further, and the median might fail to pick up on this change.

The results of the test can be seen in figure 5.15. The figure shows that uniform R2 outperforms the
hybrid variants for low LOS-counts. It is, however, clear that both of the hybrid variants converge
much faster to higher accuracy than uniform R2. Observe also that for any given amount of running
time, hybrid bound outperforms hybrid min/max in terms of accuracy. For this reason we abandon the
min/max scheme, and will refer to the boundary variant as the hybrid algorithm from now on.

5.5.3 Verifying the results

With the techniques we have developed in this section we have been able to drastically reduce the
error of the estimated viewshed, with moderate increases in running time. In the process we have
used some properties of the viewshed that might depend on the terrain, such as the spacial distribution
of misclassified points. As discussed in the beginning of the section it is therefore important that we
verify the results on some different terrain, in order to make sure we have created an algorithm that
not only performs well on the Larvik test case.

We therefore repeat the tests once more, using the full Alta test set. In the test we include R2
linear to see the improvement from our baseline. We test a configuration of hybrid running without
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Figure 5.15 The mean relative error of the two hybrid variants and uniform R2 as a function
of running time. The dashed lines indicate the accuracy and running time of the
generalized R2 using the linear estimator.
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Figure 5.16 Alta hybrid performance test. The lo variant of hybrid is constrained to evaluating
three times as many LOSs as R2. The hi variant is unconstrained. The median of
hybrid_hi is 0, which is why its box appears cut on the log scale.

running time limitations, as well as a configuration running approximately three times slower than
R2 linear.

The results of this test can be seen in figure 5.16 and table 5.7. It is clear that these results comply
with what we have already seen from the Larvik tests. Since these terrains represent two extremes in
the range of terrain types used in our application, it seems fair to assume that the hybrid algorithm
should perform well on any terrain type that is realistic for us to use.

As discussed in section 4 we shall also evaluate these algorithms on the South Korea test set, similar
to the one used by Franklin et al. in [FRM94]. This terrain has more spikes than Larvik and Alta, as
can be seen in figure 4.11, thus resembling the white noise terrain somewhat. A detailed description
of this terrain can be found in section 4. The test is executed using 32 hard observers, to best match
the one used in the original test. We will evaluate the performance of R2 using both nearest neighbor-
and linear estimator, as well as the same hi and lo versions of the hybrid algorithm.

The results of this test can be seen in figure 5.17 and table 5.8. As the results show, R2 linear is here
only barely more accurate than the original version. The EER of R2 linear and R2 near is less than
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Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 linear 2.5× 10−4 1.7× 10−4 3.5× 10−4 137.7 ms

Hybrid low 1.3× 10−5 5.7× 10−6 2.1× 10−5 411.4 ms

Hybrid high 0 0 9.5× 10−7 1057.9 ms

Table 5.7 Alta hybrid performance test. The low variant of hybrid is constrained to evaluating
three times as many LOSs as R2. The high variant is unconstrained.

Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 near 4.0× 10−3 2.8× 10−3 5.3× 10−3 39.8 ms

R2 linear 3.8× 10−3 1.9× 10−3 4.6× 10−3 47.7 ms

Hybrid low 2.5× 10−4 9.4× 10−5 4.4× 10−4 128.2 ms

Hybrid high 1.1× 10−5 5.6× 10−6 2.1× 10−5 478.6 ms

Table 5.8 South Korea hybrid performance test. The low variant of hybrid is constrained to
evaluating three times as many LOSs as R2. The high variant is unconstrained.

89.8% so the improvement is statistically significant. This is, however, a lot weaker than the 25%

EER we saw in the Larvik and Alta tests. The primary problem we wanted to solve with the linear
estimator, was R2’s weak performance on side slopes. As we saw, the linear variant handles this
much better. Considering the 3D rendering of the South Korea terrain in figure 4.11, there are almost
no side slopes, only narrow peaks. Therefore it is not a surprise that being good at side slopes has a
limited effect on this terrain. It is possible that the spikes in the South Korea terrain are artifacts of
the low resolution of this test set. If this is the case, then this test is not relevant for our application,
as we will use data sets with high resolution.

Turning to the hybrid variants, we see that these also perform worse on this terrain. Due to the
similarities between the South Korea- and white noise terrains, this is explained in our discussion of
the white noise terrain. The trend we have seen on Larvik and Alta exists here as well; the hybrid
variants greatly outperform the R2 variants in terms of accuracy.

5.5.4 Limitations and asymptotic behavior

With the hybrid algorithm we have introduced three additions to the general R2 scheme. First we find
the set of boundary points of the estimated viewshed, then we sort it by orientation to the observer,
and finally we evaluate extra LOSs through some or all of these points. The running time of the
algorithm is therefore a function of three parameters; the number of grid points, the number of
boundary points and the number of extra LOSs, denoted n, b and k, respectively.

The cardinality of the boundary points is essential to the asymptotic behavior of the algorithm.
The experiments conducted in section 5.5.1 suggest that b typically is less than a few percent of n.
However, repeating the same experiments on the white noise terrain we see test cases where b is as
large as 40% of n. Therefore, we clearly cannot generally claim that b� n. Thus b = O(n).
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Figure 5.17 South Korea performance test. The lo variant of hybrid is constrained to evaluating
three times as many LOSs as R2. The hi variant is unconstrained.
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As before, we can find the first viewshed in O(n) time. Identifying the boundary points also takes
O(n) time, as we have to iterate through each grid point. The sorting step takes O(b log b) =

O(n log n) time, and the extra LOSs take O(k
√
n) time to evaluate. Finally we re-classify each grid

point in O(n) time. Thus, the worst-case running time of the algorithm is O(n log n+ k
√
n).

There is, however, a considerable gap between the worst-case performance and what we will typically
see in practice. On typical test cases, it seems we can assume b � n. Additionally, most decent
sorting algorithms are much more streamlined than R2, so there is a hidden constant term in the
O(n) of R2 that will eclipse the log n-factor for most practical sizes of n. The running time is thus
in practice closer to O(n + k

√
n). As long as k = O(

√
n) we therefore expect to get the same

asymptotic behavior as R2; O(n).

The primary weakness of the algorithm is viewsheds with large boundaries. As discussed in the
beginning of section 4, these are also the ones we are interested in. We have seen, however, that this
typically translates to b being no more than a few percent of n. For certain applications, this is not
the case, but it seems we must have artificially large boundaries for this to be a real issue.

5.6 Summary

We started out this chapter investigating the results from section 4, which showed that R2 performs
weaker than expected on the Alta terrain. Upon closer inspection of some of the test cases we
discovered some strange artifacts in the R2 viewsheds. This led us to the hypothesis that R2 struggles
with side slopes. The artificial valley test in figure 5.2 showed that this is indeed the case.

In an attempt to mend these issues we proposed the generalized R2 algorithm which uses some
arbitrary horizon estimator, instead of the nearest neighbor scheme used in the original algorithm.
We tested the weighted- and linear estimators, and saw that both solved the issues with side slopes.
As expected this led to a significant improvement in accuracy on the Alta terrain. More surprising
was that there was also significant improvement on the flat Larvik terrain, which has few prominent
side slopes.

Inspired by the radar-like algorithm with adjustable performance we wanted an algorithm that could
increase the performance on demand. Our tests indicated that R2 with the new estimators outperforms
radar when using the same LOS-count. This being a feature we wanted to retain, we made a crossover
of the two algorithms, combining the uniformly spaced LOS-sampling of the radar-like algorithm,
with R2’s horizon estimation. The resulting algorithm was the uniform R2 algorithm, which the tests
show outperforms the radar-like algorithm when using the same LOS-count.

Our motivating scenario from section 2 sparked a particular interest for the boundary of the viewshed.
Investigating the error patterns of R2 we saw that most of the error is made on or very close to the
boundary of the correct viewshed. With this in mind we developed the hybrid algorithm which
estimates this boundary using linear R2, and then trains the estimator further by evaluating extra
LOSs to the boundary points. The result was an algorithm with exceptional accuracy and reasonable
running times. By letting the number of extra LOSs be a parameter of the algorithm, we could once
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again adjust the accuracy as a function of running time. By sending the extra LOSs where they
are actually needed, this algorithm achieves much higher accuracy than uniform R2 in the same
configuration.

6 Conclusions and future work

We will now review all the results we have obtained in this thesis and discuss whether they solve the
problems we sat out to solve. First we review our proposed improvements, before comparing the
corresponding algorithms to their original counterparts. This is done by using the test methods and
statistic measures we have developed in section 4. Finally we discuss aspects of these methods that
are worth studying further.

6.1 Summary of results

In section 5 we have gone through a series of steps, each introducing new improvements to the
original R2 algorithm proposed by Franklin et al. We now review these steps and compare them
to the original algorithm as well as two configurations of the radar algorithm. We evaluate the
performance of the algorithms by using both the Alta and Larvik terrains. On both terrains we select
45 observation points according to the recipe in section 4, resulting in a total of 90 test cases.

The results of the test are shown in figure 6.1 and table 6.1. In table 6.2 we have conducted an
expected error ratio (EER) analysis, as described in section 4.3. Most of the algorithms in the test
should be familiar by now, but a few need some clarification. The lo-variants of hybrid and radar are
run using three times as many lines of sight (LOSs) as R2. The hi-variant of hybrid is unconstrained,
but does not evaluate more than ten times as many LOSs as R2 on any of the test cases. The hi-variant
of radar is run with twelve times as many LOSs as R2. R2 near is the original R2 algorithm.

Our improvements started with the generalized R2 algorithm using the weighted- and linear estimators.
The EER analysis in table 6.2 shows that these reduce the error of R2 with at least 56% and 78%,
respectively. Table 6.1 shows that the weighted variant of R2 is measurably slower than the original.
However, this difference is normally considered significant, as it has a t-test p-value of 0.089. The
linear variant of R2 is clearly slower than the original, seemingly inflicting a 30% increase in running
time.

Comparing the generalized R2 variants to radar, we see that both the weighted- and the linear
versions have higher accuracy than radar in the lo configuration. This in spite of the fact that radar in
this configuration evaluates three times as many LOSs. The hi version of radar is better than both
R2 variants, but this is hardly a fair comparison, since radar here evaluates twelve times as many
LOSs.

The next step we made was analyzing the uniform variant of R2, which allowed us to increase the
accuracy by increasing the running time. This led to the hybrid algorithm which works by estimating
the boundary of the viewshed using R2 linear, before training the estimator further on an adjustable
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Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
XDraw interpolated 4.5× 10−3 3.1× 10−3 6.9× 10−3 35.4 ms

Radar low 5.0× 10−4 3.4× 10−4 8.1× 10−4 729.1 ms

Radar high 1.5× 10−4 1.1× 10−4 2.5× 10−4 2458.2 ms

R2 near 1.1× 10−3 6.7× 10−4 1.5× 10−3 105.6 ms

R2 weight 4.3× 10−4 2.7× 10−4 5.8× 10−4 107.1 ms

R2 linear 2.2× 10−4 1.5× 10−4 3.2× 10−4 138.5 ms

Hybrid low 6.7× 10−6 1.9× 10−6 1.3× 10−5 408.2 ms

Hybrid high 0 0 9.5× 10−7 1025.4 ms

Table 6.1 Alta and Larvik combined performance test. The low variants of hybrid and radar are
run with three times as many LOSs as R2. The high variant of hybrid is unconstrained,
but typically does not evaluate more than seven times as many LOSs as R2. The high
variant of radar is run with twelve times as many LOSs as R2.

number of extra LOSs through points on the estimated boundary. As we can see from the plot,
these algorithms have accuracy that lie orders of magnitude ahead of the others. Looking at the
EER analysis we see that hybrid lo produces less than 0.82% of the error of R2 near. This is an
astonishing result given the comparably small increase in running time. Applying the EER method to
the running time, we find that hybrid lo increases the running time by less than a factor 4.0. This
seems reasonable as it evaluates three times as many LOSs, in addition to the overhead of estimating
the viewshed boundary. Compared to the weighted- and linear variants of R2, hybrid lo reduces the
error by more than 98% and 95.9%, respectively.

The hi variant of hybrid runs without constraints, but as we can see the running times are still
acceptable. Using the EER technique on the running time, we see that this variant increases the
running time with less than a factor 11.1. In table 6.1 we see that the hybrid algorithm in this
configuration classifies the majority of viewsheds correctly. The EER analysis is therefore of limited
interest, since no algorithm can do better than 0 error. We do see, however, that hybrid hi makes less
than 0.083%, 0.20% and 0.39% of the error of R2 near, -weighted and -linear, respectively.

Following up on the discussions and examples from section 4 we know that these results are not
necessarily universal for all terrain types. We have also seen examples that indicate that this might
not be the case. At the end of section 5 we saw that R2 linear and hybrid did not perform as well on
the South Korea data set, as they have done in our other tests. It should, however, be noted that the
improvement was still significant by a margin. We can therefore only claim the above results to hold
on real world terrain data sets with relatively high resolution and that are reasonably smooth. Our
proposed algorithms seem to be significantly better on terrains with lower resolutions as well, but
with a smaller gain in accuracy.
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Figure 6.1 The relative error of various algorithms on the combined Alta and Larvik test set. R2
near is the original R2 algorithm.

R2 near Radar lo R2 weight R2 linear Radar hi
R2 weight 4.4× 10−1 9.0× 10−1

R2 linear 2.2× 10−1 4.5× 10−1 5.2× 10−1

Hybrid lo 8.2× 10−3 1.6× 10−3 2.0× 10−2 4.1× 10−2 5.2× 10−2

Hybrid hi 8.3× 10−4 1.5× 10−4 2.0× 10−3 3.9× 10−3 5.4× 10−3

Table 6.2 EER analysis of the proposed algorithms. The cell in column i and row j contains the
EER of algorithms i and j with 99% confidence. Blank cells indicate that the test to show
that algorithm i is significantly better than algorithm j failed.
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6.2 Conclusions

The motivation for this thesis was to investigate viewshed algorithms that are suitable for being used
as part of a larger algorithm for planning military operations. We saw in section 2 that we need
to establish the boundary of the viewshed with reasonable accuracy, as the boundary is essential
in attack and observation maneuvers. It is also likely that we have to evaluate a large number of
viewsheds, so the algorithms need to be reasonably fast to be usable.

In section 4 we discussed how to evaluate the performance of such algorithms, specifically the
importance of using relevant test cases. Using these techniques we established that the R2 algorithm
originally proposed by Franklin et al. in [FRM94], gives reasonably good performance both in terms
of accuracy and speed for our needs. Adding the weighted- or linear estimator proposed in section 5,
we get even higher accuracy with no to modest increases in running time.

Should the R2 algorithm be too slow, then the interpolated variant of XDraw should be chosen, as
this is much faster, albeit with a significant drop in accuracy. In case we have running time to spare,
the hybrid algorithm gives us the flexibility to boost the accuracy, spending the remaining running
time.

We have therefore filled the full specter of algorithms in terms of speed and accuracy. Ranging
from the fast but inaccurate XDraw, via R2 with the weighted estimator, to the hybrid algorithm, we
can obtain good accuracy for any amount of running time. Regardless of what the needs are in the
planning algorithm, one of these three candidates should therefore be usable.

6.3 Future work

We have seen that leveraging a priori available knowledge about terrains and viewsheds, specifically
that viewshed boundary points seem to be the hardest to classify correctly, can help us greatly improve
the efficiency of approximate viewshed algorithms. Although it is beyond the scope of this thesis, it
seems natural to investigate whether some terrain features can help us identify points that are likely
misclassified. We discussed potential features in section 5 that can help us quantify the likelihood
for misclassifying each grid point. This can be used in the hybrid algorithm to better prioritize the
highlighted points, thus improving the accuracy for a given LOS-count.

The perhaps most natural way to improve the running time of these algorithms, is parallelization.
The original R2 algorithm itself is well suited for parallelization since each of the LOSs can be
evaluated independently of each other. This can potentially bring down the running time to O(

√
n).

Turning to the generalized version of R2 and the way estimators typically are implemented, some
care must be taken when operating on the underlying data structures. The potential for improvement
is significant.
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Appendix A Implementations

Listing 1 VisibilityFinder.hpp

/ /
/ / V i s i b i l i t y F i n d e r B a s e . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 1 7 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f _ _ T e r r a i n T e s t _ _ V i s i b i l i t y F i n d e r _ _
# d e f i n e _ _ T e r r a i n T e s t _ _ V i s i b i l i t y F i n d e r _ _

# i n c l u d e < i o s t r e a m >
# i n c l u d e " macros . hpp "
# i n c l u d e " t y p e s . hpp "

c l a s s V i s i b i l i t y F i n d e r {
p u b l i c :

V i s i b i l i t y F i n d e r ( s i z e _ t m, s i z e _ t n ) : m(m) , n ( n ) { } ;
void s e t _ h e i g h t _ d a t a ( c o n s t d o u b l e _ g r i d &h e i g h t _ d a t a ) ;
v i r t u a l b o o l _ g r i d v i s i b i l i t y ( pos o b s e r v e r , double o b s e r v e r _ h e i g h t , double ←↩

t a r g e t _ h e i g h t ) = 0 ;

s t a t i c b o o l _ g r i d o u t e r _ b o u n d a r y ( c o n s t b o o l _ g r i d &a r e a ) ;
s t a t i c b o o l _ g r i d i n n e r _ b o u n d a r y ( c o n s t b o o l _ g r i d &a r e a ) ;
s t a t i c b o o l _ g r i d boundary ( c o n s t b o o l _ g r i d &a r e a ) ;
s t a t i c b o o l _ g r i d d i f f ( c o n s t b o o l _ g r i d &l h s , c o n s t b o o l _ g r i d &r h s ) ;
s t a t i c b o o l _ g r i d g r i d _ u n i o n ( c o n s t b o o l _ g r i d &l h s , c o n s t b o o l _ g r i d &r h s ) ;

p r o t e c t e d :
d o u b l e _ g r i d h e i g h t _ d a t a ;
c o n s t s i z e _ t m, n ;

i n l i n e double b a s e _ h e i g h t ( c o n s t pos o b s e r v e r , c o n s t double o b s e r v e r _ h e i g h t )
{

re turn h e i g h t _ d a t a [ o b s e r v e r . i ] [ o b s e r v e r . j ] + o b s e r v e r _ h e i g h t ;
} ;

i n l i n e s t a t i c double t a r g e t _ d i s t ( c o n s t pos o b s e r v e r , c o n s t pos t a r g e t )
{

c o n s t i n t d i = t a r g e t . i − o b s e r v e r . i ;
c o n s t i n t d j = t a r g e t . j − o b s e r v e r . j ;

re turn s q r t ( d i ∗ d i + d j ∗ d j ) ;
}

i n l i n e s t a t i c bool i n t e r s e c t s ( double h o r i z o n , double s l o p e )
{

re turn h o r i z o n > s l o p e − EPS ;
} ;

i n l i n e double s l o p e ( c o n s t pos o b s e r v e r , c o n s t double b a s e _ h e i g h t , c o n s t pos t a r g e t , ←↩
c o n s t double t a r g e t _ h e i g h t )

{
c o n s t double h = t a r g e t _ h e i g h t + h e i g h t _ d a t a [ t a r g e t . i ] [ t a r g e t . j ] ;
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re turn ( h − b a s e _ h e i g h t ) / t a r g e t _ d i s t ( o b s e r v e r , t a r g e t ) ;
} ;

} ;

# e n d i f /∗ d e f i n e d ( _ _ T e r r a i n T e s t _ _ V i s i b i l i t y F i n d e r _ _ ) ∗ /

Listing 2 VisibilityFinder.cpp

/ /
/ / V i s i b i l i t y F i n d e r B a s e . cpp
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 1 7 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i n c l u d e <cmath >

# i n c l u d e " macros . hpp "
# i n c l u d e " V i s i b i l i t y F i n d e r . hpp "

void V i s i b i l i t y F i n d e r : : s e t _ h e i g h t _ d a t a ( c o n s t d o u b l e _ g r i d &h e i g h t _ d a t a )
{

t h i s−>h e i g h t _ d a t a = h e i g h t _ d a t a ;
}

b o o l _ g r i d V i s i b i l i t y F i n d e r : : i n n e r _ b o u n d a r y ( c o n s t b o o l _ g r i d &a r e a )
{

s i z e _ t m = a r e a . s i z e ( ) ;
s i z e _ t n = a r e a [ 0 ] . s i z e ( ) ;
b o o l _ g r i d boundary = v e c t o r < v e c t o r <bool > >(m, v e c t o r <bool >( n ) ) ;

f o r ( i n t i = 1 ; i < m−1; ++ i ) {
f o r ( i n t j = 1 ; j < n−1; ++ j ) {

i f ( ! a r e a [ i ] [ j ] ) {
c o n t i nu e ;

}

boundary [ i ] [ j ] =
! a r e a [ i −1][ j ]
| | ! a r e a [ i ] [ j −1]
| | ! a r e a [ i ] [ j +1]
| | ! a r e a [ i + 1 ] [ j ]
| | ! a r e a [ i −1][ j −1]
| | ! a r e a [ i −1][ j +1]
| | ! a r e a [ i + 1 ] [ j −1]
| | ! a r e a [ i + 1 ] [ j + 1 ] ;

}
}

re turn boundary ;
} ;

b o o l _ g r i d V i s i b i l i t y F i n d e r : : o u t e r _ b o u n d a r y ( c o n s t b o o l _ g r i d &a r e a )
{

s i z e _ t m = a r e a . s i z e ( ) ;
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s i z e _ t n = a r e a [ 0 ] . s i z e ( ) ;
b o o l _ g r i d boundary = v e c t o r < v e c t o r <bool > >(m, v e c t o r <bool >( n ) ) ;

f o r ( i n t i = 1 ; i < m−1; ++ i ) {
f o r ( i n t j = 1 ; j < n−1; ++ j ) {

i f ( a r e a [ i ] [ j ] ) {
c o n t i nu e ;

}

boundary [ i ] [ j ] =
a r e a [ i −1][ j ]
| | a r e a [ i ] [ j −1]
| | a r e a [ i ] [ j +1]
| | a r e a [ i + 1 ] [ j ]
| | a r e a [ i −1][ j −1]
| | a r e a [ i −1][ j +1]
| | a r e a [ i + 1 ] [ j −1]
| | a r e a [ i + 1 ] [ j + 1 ] ;

}
}

re turn boundary ;
} ;

b o o l _ g r i d V i s i b i l i t y F i n d e r : : boundary ( c o n s t b o o l _ g r i d &a r e a )
{

s i z e _ t m = a r e a . s i z e ( ) ;
s i z e _ t n = a r e a [ 0 ] . s i z e ( ) ;
b o o l _ g r i d boundary = v e c t o r < v e c t o r <bool > >(m, v e c t o r <bool >( n ) ) ;

f o r ( i n t i = 1 ; i < m−1; ++ i ) {
f o r ( i n t j = 1 ; j < n−1; ++ j ) {

i f ( a r e a [ i ] [ j ] ) {
boundary [ i ] [ j ] =
! a r e a [ i −1][ j ]
| | ! a r e a [ i ] [ j −1]
| | ! a r e a [ i ] [ j +1]
| | ! a r e a [ i + 1 ] [ j ]
| | ! a r e a [ i −1][ j −1]
| | ! a r e a [ i −1][ j +1]
| | ! a r e a [ i + 1 ] [ j −1]
| | ! a r e a [ i + 1 ] [ j + 1 ] ;

} e l s e {
boundary [ i ] [ j ] =
a r e a [ i −1][ j ]
| | a r e a [ i ] [ j −1]
| | a r e a [ i ] [ j +1]
| | a r e a [ i + 1 ] [ j ]
| | a r e a [ i −1][ j −1]
| | a r e a [ i −1][ j +1]
| | a r e a [ i + 1 ] [ j −1]
| | a r e a [ i + 1 ] [ j + 1 ] ;

}
}

}

re turn boundary ;
} ;

98 FFI-rapport 2015/01300



b o o l _ g r i d V i s i b i l i t y F i n d e r : : d i f f ( c o n s t b o o l _ g r i d &l h s , c o n s t b o o l _ g r i d &r h s )
{

s i z e _ t m = l h s . s i z e ( ) ;
s i z e _ t n = l h s [ 0 ] . s i z e ( ) ;

b o o l _ g r i d d i f f (m, v e c t o r <bool >( n ) ) ;

f o r ( i n t i = 0 ; i < m; ++ i ) {
f o r ( i n t j = 0 ; j < n ; ++ j ) {

d i f f [ i ] [ j ] = l h s [ i ] [ j ] != r h s [ i ] [ j ] ;
}

}

re turn d i f f ;
}

b o o l _ g r i d V i s i b i l i t y F i n d e r : : g r i d _ u n i o n ( c o n s t b o o l _ g r i d &l h s , c o n s t b o o l _ g r i d &r h s )
{

s i z e _ t m = l h s . s i z e ( ) ;
s i z e _ t n = l h s [ 0 ] . s i z e ( ) ;

b o o l _ g r i d u n i (m, v e c t o r <bool >( n ) ) ;

f o r ( i n t i = 0 ; i < m; ++ i ) {
f o r ( i n t j = 0 ; j < n ; ++ j ) {

u n i [ i ] [ j ] = l h s [ i ] [ j ] | | r h s [ i ] [ j ] ;
}

}

re turn u n i ;
}

Listing 3 LOSVisibilityFinder.hpp

/ /
/ / V i s i b i l i t y F i n d e r B a s e . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 1 7 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f _ _ T e r r a i n T e s t _ _ L O S V i s i b i l i t y F i n d e r _ _
# d e f i n e _ _ T e r r a i n T e s t _ _ L O S V i s i b i l i t y F i n d e r _ _

# i n c l u d e < i o s t r e a m >
# i n c l u d e " macros . hpp "
# i n c l u d e " t y p e s . hpp "
# i n c l u d e " V i s i b i l i t y F i n d e r . hpp "

c l a s s L O S V i s i b i l i t y F i n d e r : p u b l i c V i s i b i l i t y F i n d e r {
p u b l i c :

L O S V i s i b i l i t y F i n d e r ( s i z e _ t m, s i z e _ t n ) : V i s i b i l i t y F i n d e r (m, n ) { } ;
p r o t e c t e d :

void e v a l _ l o s ( pos o b s e r v e r , double b a s e _ h e i g h t , double t h e t a , f u n c t i o n < bool ( pos , pos←↩
, double , double ) > cb ) ;
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void e v a l _ l o s ( pos o b s e r v e r , double b a s e _ h e i g h t , pos t a r g e t , f u n c t i o n < bool ( pos , pos , ←↩
double , double ) > cb ) ;

} ;

# e n d i f /∗ d e f i n e d ( _ _ T e r r a i n T e s t _ _ V i s i b i l i t y F i n d e r _ _ ) ∗ /

Listing 4 LOSVisibilityFinder.cpp

/ /
/ / V i s i b i l i t y F i n d e r B a s e . cpp
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 1 7 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i n c l u d e <cmath >

# i n c l u d e " macros . hpp "
# i n c l u d e " L O S V i s i b i l i t y F i n d e r . hpp "

void L O S V i s i b i l i t y F i n d e r : : e v a l _ l o s ( pos o b s e r v e r , double b a s e _ h e i g h t , c o n s t pos t a r g e t , ←↩
f u n c t i o n < bool ( pos , pos , double , double ) > cb )

{
c o n s t i n t d i = t a r g e t . i − o b s e r v e r . i ;
c o n s t i n t d j = t a r g e t . j − o b s e r v e r . j ;

e v a l _ l o s ( o b s e r v e r , b a s e _ h e i g h t , a t a n 2 ( di , d j ) , cb ) ;
}

void L O S V i s i b i l i t y F i n d e r : : e v a l _ l o s ( pos o b s e r v e r , double b a s e _ h e i g h t , c o n s t double t h e t a ,←↩
f u n c t i o n < bool ( pos , pos , double , double ) > cb )

{
c o n s t double c t = abs ( cos ( t h e t a ) ) ;
c o n s t double s t = abs ( s i n ( t h e t a ) ) ;

c o n s t double i _ s t e p = 1 / s t ;
c o n s t double j _ s t e p = 1 / c t ;

c o n s t i n t i _ d i r = ( t h e t a == 0 | | t h e t a == M_PI ) ? 0 : ( t h e t a > 0 ? 1 : −1) ;
c o n s t i n t j _ d i r = ( t h e t a == −M_PI_2 | | t h e t a == M_PI_2 ) ? 0 : ( abs ( t h e t a ) < M_PI_2 ?←↩

1 : −1) ;
c o n s t bool d i r = i _ d i r ∗ j _ d i r >= 0 ;

c o n s t s i z e _ t i_max = ( i _ d i r == 1 ? m − o b s e r v e r . i − 1 : o b s e r v e r . i ) − abs ( i _ d i r ) ;
c o n s t s i z e _ t j_max = ( j _ d i r == 1 ? n − o b s e r v e r . j − 1 : o b s e r v e r . j ) − abs ( j _ d i r ) ;

f o r ( i n t i = 0 , j = 0 ; i <= i_max && j <= j_max ; ) {
double i _ d i s t = ( i + 1 )∗ i _ s t e p ;
double j _ d i s t = ( j + 1 )∗ j _ s t e p ;

double l , d i s t ;
pos a , b ;
bool v e r t i c a l ;

i f ( j _ d i s t < i _ d i s t ) {
++ j ;
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d i s t = j _ d i s t ;
v e r t i c a l = f a l s e ;
l = s t ∗ d i s t − i ;

a = { . i = i _ d i r ∗ i + o b s e r v e r . i , . j = j _ d i r ∗ j + o b s e r v e r . j } ;
b = { . i = i _ d i r ∗ ( i +1) + o b s e r v e r . i , . j = j _ d i r ∗ j + o b s e r v e r . j } ;

} e l s e {
++ i ;
d i s t = i _ d i s t ;
v e r t i c a l = t rue ;
l = c t ∗ d i s t − j ;

a = { . i = i _ d i r ∗ i + o b s e r v e r . i , . j = j _ d i r ∗ j + o b s e r v e r . j } ;
b = { . i = i _ d i r ∗ i + o b s e r v e r . i , . j = j _ d i r ∗ ( j +1) + o b s e r v e r . j } ;

}

c o n s t double h = (1 − l ) ∗ h e i g h t _ d a t a [ a . i ] [ a . j ] + l ∗ h e i g h t _ d a t a [ b . i ] [ b . j ] ;
c o n s t double s l o p e = ( h − b a s e _ h e i g h t ) / d i s t ;
bool c o n t ;

i f ( d i r ^ v e r t i c a l ) {
c o n t = cb ( a , b , l , s l o p e ) ;

} e l s e {
c o n t = cb ( b , a , 1 − l , s l o p e ) ;

}

i f ( ! c o n t ) {
re turn ;

}
}

}

Listing 5 macros.hpp

/ /
/ / macros . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 1 6 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f T e r r a i n T e s t _ m a c r o s _ h
# d e f i n e T e r r a i n T e s t _ m a c r o s _ h

# d e f i n e EPS 1e−7
# d e f i n e INFTY n u m e r i c _ l i m i t s < f l o a t > ( ) . max ( ) / 2

# e n d i f

Listing 6 types.cpp

/ /
/ / t y p e s . h
/ / T e r r a i n T e s t
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/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 1 6 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f T e r r a i n T e s t _ t y p e s _ h
# d e f i n e T e r r a i n T e s t _ t y p e s _ h

# i n c l u d e < v e c t o r >

us ing namespace s t d ;

s t r u c t pos {
i n t i , j ;

bool operator ==( c o n s t pos &r h s ) c o n s t
{

re turn i == r h s . i && j == r h s . j ;
}

} ;

s t r u c t vec2 {
double x , y ;

bool operator ==( c o n s t vec2 &r h s ) c o n s t
{

re turn x == r h s . x && y == r h s . y ;
}

} ;

t y p e d e f v e c t o r < v e c t o r <bool > > b o o l _ g r i d ;
t y p e d e f v e c t o r < v e c t o r < f l o a t > > f l o a t _ g r i d ;
t y p e d e f v e c t o r < v e c t o r <double > > d o u b l e _ g r i d ;

# e n d i f

Listing 7 R3VisibilityFinder.hpp

/ /
/ / R 3 V i s i b i l i t y F i n d e r . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 1 6 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f _ _ T e r r a i n T e s t _ _ R 3 V i s i b i l i t y F i n d e r _ _
# d e f i n e _ _ T e r r a i n T e s t _ _ R 3 V i s i b i l i t y F i n d e r _ _

# i n c l u d e <cmath >

# i n c l u d e " L O S V i s i b i l i t y F i n d e r . hpp "
# i n c l u d e " t y p e s . hpp "

c l a s s R 3 V i s i b i l i t y F i n d e r : p u b l i c L O S V i s i b i l i t y F i n d e r {
p u b l i c :

R 3 V i s i b i l i t y F i n d e r ( s i z e _ t m, s i z e _ t n ) : L O S V i s i b i l i t y F i n d e r (m, n ) { } ;
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b o o l _ g r i d v i s i b i l i t y ( pos o b s e r v e r , double o b s e r v e r _ h e i g h t , double t a r g e t _ h e i g h t )
{

b o o l _ g r i d v i s i b l e = v e c t o r < v e c t o r <bool > >(m, v e c t o r <bool >( n ) ) ;
c o n s t double b a s e _ h e i g h t = V i s i b i l i t y F i n d e r : : b a s e _ h e i g h t ( o b s e r v e r , ←↩

o b s e r v e r _ h e i g h t ) ;

f o r ( i n t i = 0 ; i < m; ++ i ) {
f o r ( i n t j = 0 ; j < n ; ++ j ) {

v i s i b l e [ i ] [ j ] = e v a l _ t a r g e t ( o b s e r v e r , b a s e _ h e i g h t , { . i = i , . j = j } , ←↩
t a r g e t _ h e i g h t ) ;

}
}

v i s i b l e [ o b s e r v e r . i ] [ o b s e r v e r . j ] = t rue ;

re turn v i s i b l e ;
} ;

p r i v a t e :
i n l i n e bool e v a l _ t a r g e t ( c o n s t pos &o b s e r v e r , c o n s t double b a s e _ h e i g h t , c o n s t pos &←↩

t a r g e t , c o n s t double t a r g e t _ h e i g h t )
{

c o n s t double t a r g e t _ s l o p e = s l o p e ( o b s e r v e r , b a s e _ h e i g h t , t a r g e t , t a r g e t _ h e i g h t ) ;
bool v i s i b l e = f a l s e ;

e v a l _ l o s ( o b s e r v e r , b a s e _ h e i g h t , t a r g e t , [&] ( c o n s t pos a , c o n s t pos b , c o n s t ←↩
double l , c o n s t double s l o p e ) mutable −> bool

{
i f ( a == t a r g e t | | b == t a r g e t ) {

v i s i b l e = t rue ;

re turn f a l s e ;
}

re turn ! i n t e r s e c t s ( s l o p e , t a r g e t _ s l o p e ) ;
} ) ;

re turn v i s i b l e ;
} ;

} ;

# e n d i f /∗ d e f i n e d ( _ _ T e r r a i n T e s t _ _ R 3 V i s i b i l i t y F i n d e r _ _ ) ∗ /

Listing 8 R2VisibilityFinder.hpp

/ /
/ / R 3 V i s i b i l i t y F i n d e r . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 1 6 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f _ _ T e r r a i n T e s t _ _ R 2 V i s i b i l i t y F i n d e r _ _
# d e f i n e _ _ T e r r a i n T e s t _ _ R 2 V i s i b i l i t y F i n d e r _ _

# i n c l u d e " L O S V i s i b i l i t y F i n d e r . hpp "
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# i n c l u d e " R 2 E s t i m a t o r . hpp "
# i n c l u d e " macros . hpp "
# i n c l u d e " t y p e s . hpp "

template < c l a s s E s t i m a t o r >
c l a s s R 2 V i s i b i l i t y F i n d e r : p u b l i c L O S V i s i b i l i t y F i n d e r {
p u b l i c :

R 2 V i s i b i l i t y F i n d e r ( s i z e _ t m, s i z e _ t n ) : L O S V i s i b i l i t y F i n d e r (m, n ) , e s t i m a t o r (m, n ) ,←↩
s l o p e s (m, v e c t o r <double >( n ) ) { } ;

b o o l _ g r i d v i s i b i l i t y ( pos o b s e r v e r , double o b s e r v e r _ h e i g h t , double t a r g e t _ h e i g h t )
{

e s t i m a t o r . r e s e t ( ) ;

c o n s t double b a s e _ h e i g h t = h e i g h t _ d a t a [ o b s e r v e r . i ] [ o b s e r v e r . j ] + o b s e r v e r _ h e i g h t←↩
;

p r e c a l c _ s l o p e s ( o b s e r v e r , b a s e _ h e i g h t , t a r g e t _ h e i g h t ) ;
e v a l _ b o u n d a r y _ t a r g e t s ( o b s e r v e r , b a s e _ h e i g h t ) ;

re turn v i s i b l e ( ) ;
} ;

p r o t e c t e d :
E s t i m a t o r e s t i m a t o r ;
d o u b l e _ g r i d s l o p e s ;

void e v a l _ b o u n d a r y _ t a r g e t s ( c o n s t pos o b s e r v e r , c o n s t double b a s e _ h e i g h t )
{

f o r ( i n t i = 0 ; i < m; ++ i ) {
e v a l _ t a r g e t ( o b s e r v e r , b a s e _ h e i g h t , ( pos ) { . i = i , . j = 0} ) ;
e v a l _ t a r g e t ( o b s e r v e r , b a s e _ h e i g h t , ( pos ) { . i = i , . j = ( i n t ) n−1}) ;

}

f o r ( i n t j = 0 ; j < n ; ++ j ) {
e v a l _ t a r g e t ( o b s e r v e r , b a s e _ h e i g h t , ( pos ) { . i = 0 , . j = j } ) ;
e v a l _ t a r g e t ( o b s e r v e r , b a s e _ h e i g h t , ( pos ) { . i = ( i n t )m−1, . j = j } ) ;

}
} ;

i n l i n e v i r t u a l vo id e v a l _ t a r g e t ( c o n s t pos o b s e r v e r , c o n s t double b a s e _ h e i g h t , c o n s t ←↩
pos t a r g e t )

{
double h o r i z o n = −INFTY ;

e v a l _ l o s ( o b s e r v e r , b a s e _ h e i g h t , t a r g e t , [ = ] ( c o n s t pos l h s , c o n s t pos rhs , c o n s t ←↩
double l , c o n s t double s l o p e ) mutable −> bool

{
e s t i m a t o r . t r a i n ( l h s , l , true , h o r i z o n ) ;
e s t i m a t o r . t r a i n ( rhs , 1 − l , f a l s e , h o r i z o n ) ;

h o r i z o n = max ( h o r i z o n , s l o p e ) ;

re turn true ;
} ) ;

} ;

i n l i n e v i r t u a l vo id e v a l _ t a r g e t ( c o n s t pos o b s e r v e r , c o n s t double b a s e _ h e i g h t , c o n s t ←↩
double t h e t a )

{
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double h o r i z o n = −INFTY ;

e v a l _ l o s ( o b s e r v e r , b a s e _ h e i g h t , t h e t a , [ = ] ( c o n s t pos l h s , c o n s t pos rhs , c o n s t ←↩
double l , c o n s t double s l o p e ) mutable −> bool

{
e s t i m a t o r . t r a i n ( l h s , l , true , h o r i z o n ) ;
e s t i m a t o r . t r a i n ( rhs , 1 − l , f a l s e , h o r i z o n ) ;

h o r i z o n = max ( h o r i z o n , s l o p e ) ;

re turn true ;
} ) ;

} ;

void p r e c a l c _ s l o p e s ( c o n s t pos o b s e r v e r , c o n s t double b a s e _ h e i g h t , c o n s t double ←↩
t a r g e t _ h e i g h t )

{
f o r ( i n t i = 0 ; i < m; ++ i ) {

f o r ( i n t j = 0 ; j < n ; ++ j ) {
s l o p e s [ i ] [ j ] = s l o p e ( o b s e r v e r , b a s e _ h e i g h t , { . i = i , . j = j } , ←↩

t a r g e t _ h e i g h t ) ;
}

}

s l o p e s [ o b s e r v e r . i ] [ o b s e r v e r . j ] = INFTY ;
} ;

b o o l _ g r i d v i s i b l e ( )
{

b o o l _ g r i d v = v e c t o r < v e c t o r <bool > >(m, v e c t o r <bool >( n ) ) ;

f o r ( i n t i = 0 ; i < m; ++ i ) {
f o r ( i n t j = 0 ; j < n ; ++ j ) {

v [ i ] [ j ] = v i s i b l e ( { . i = i , . j = j } ) ;
}

}

re turn v ;
} ;

i n l i n e bool v i s i b l e ( c o n s t pos p )
{

re turn ! i n t e r s e c t s ( e s t i m a t o r . e s t i m a t e ( p ) , s l o p e s [ p . i ] [ p . j ] ) ;
} ;

} ;

# e n d i f /∗ d e f i n e d ( _ _ T e r r a i n T e s t _ _ R 2 V i s i b i l i t y F i n d e r _ _ ) ∗ /

Listing 9 R2Estimator.hpp

/ /
/ / R 2 E s t i m a t i o n P o l i c y . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 1 6 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /
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# i f n d e f _ _ T e r r a i n T e s t _ _ R 2 E s t i m a t i o n P o l i c y _ _
# d e f i n e _ _ T e r r a i n T e s t _ _ R 2 E s t i m a t i o n P o l i c y _ _

# i n c l u d e " t y p e s . hpp "

c l a s s R 2 E s t i m a t o r {
p u b l i c :

R 2 E s t i m a t o r ( s i z e _ t m, s i z e _ t n ) : m(m) , n ( n ) { } ;

/∗ ∗ T r a i n s t h e e s t i m a t o r w i th t h e h o r i z o n o f a g r i d l i n e
i n t e r s e c t i o n o f some LOS i n t h e n e i g h b o r h o o d of a g r i d
p o i n t ‘p ‘ .

‘ d i s t ‘ i s t h e d i s t a n c e from t h e g r i d l i n e i n t e r s e c t i o n t o ‘p ‘
‘ i s _ l e f t ‘ i n d i c a t e s whe the r t h e LOS i s l e f t o r r i g h t o f ‘p ‘
‘ h o r i z o n ‘ i s t h e h o r i z o n a t t h e g r i d l i n e i n t e r s e c t i o n

∗ /
v i r t u a l vo id t r a i n ( c o n s t pos p , c o n s t double d i s t , c o n s t bool i s _ l e f t , c o n s t double ←↩

h o r i z o n ) = 0 ;

/∗ ∗ E s t i m a t e s t h e h o r i z o n a t some g r i d p o i n t ‘p ‘ ∗ /
v i r t u a l double e s t i m a t e ( c o n s t pos p ) = 0 ;

p r o t e c t e d :
s i z e _ t m, n ;

} ;

# e n d i f /∗ d e f i n e d ( _ _ T e r r a i n T e s t _ _ R 2 E s t i m a t i o n P o l i c y _ _ ) ∗ /

Listing 10 R2BasicEstimator.hpp

/ /
/ / R 2 E s t i m a t i o n P o l i c y . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 1 6 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f _ _ T e r r a i n T e s t _ _ R 2 B a s i c E s t i m a t o r _ _
# d e f i n e _ _ T e r r a i n T e s t _ _ R 2 B a s i c E s t i m a t o r _ _

# i n c l u d e " t y p e s . hpp "
# i n c l u d e " R 2 E s t i m a t o r . hpp "

c l a s s R 2 B a s i c E s t i m a t o r : p u b l i c R 2 E s t i m a t o r {
p u b l i c :

R 2 B a s i c E s t i m a t o r ( s i z e _ t m, s i z e _ t n )
: R 2 E s t i m a t o r (m, n ) , i n i t ( 0 ) , e s t i m a t e d _ h o r i z o n (m, v e c t o r <double >( n ) ) { } ;

void r e s e t ( )
{

f o r ( i n t i = 0 ; i < m; ++ i ) {
f i l l ( e s t i m a t e d _ h o r i z o n [ i ] . b e g i n ( ) , e s t i m a t e d _ h o r i z o n [ i ] . end ( ) , i n i t ) ;

}
} ;

106 FFI-rapport 2015/01300



i n l i n e double e s t i m a t e ( c o n s t pos p )
{

re turn e s t i m a t e d _ h o r i z o n [ p . i ] [ p . j ] ;
} ;

p r o t e c t e d :
R 2 B a s i c E s t i m a t o r ( s i z e _ t m, s i z e _ t n , double i n i t )
: R 2 E s t i m a t o r (m, n ) , i n i t ( i n i t ) , e s t i m a t e d _ h o r i z o n (m, v e c t o r <double >( n , i n i t ) ) { } ;

d o u b l e _ g r i d e s t i m a t e d _ h o r i z o n ;
double i n i t ;

} ;

# e n d i f /∗ d e f i n e d ( _ _ T e r r a i n T e s t _ _ R 2 E s t i m a t i o n P o l i c y _ _ ) ∗ /

Listing 11 R2NearestNeighborEstimator.hpp

/ /
/ / R 2 N e a r e s t N e i g h b o r E s t i m a t o r . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 1 6 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f _ _ T e r r a i n T e s t _ _ R 2 N e a r e s t N e i g h b o r E s t i m a t o r _ _
# d e f i n e _ _ T e r r a i n T e s t _ _ R 2 N e a r e s t N e i g h b o r E s t i m a t o r _ _

# i n c l u d e " R 2 B a s i c E s t i m a t o r . hpp "
# i n c l u d e " macros . hpp "

c l a s s R 2 N e a r e s t N e i g h b o r E s t i m a t o r : p u b l i c R 2 B a s i c E s t i m a t o r {
p u b l i c :

R 2 N e a r e s t N e i g h b o r E s t i m a t o r ( s i z e _ t m, s i z e _ t n )
: R 2 B a s i c E s t i m a t o r (m, n ) , m i n _ d i s t (m, v e c t o r <double >( n , INFTY ) ) { } ;

void r e s e t ( )
{

R 2 B a s i c E s t i m a t o r : : r e s e t ( ) ;

f o r ( i n t i = 0 ; i < m; ++ i ) {
f i l l ( m i n _ d i s t [ i ] . b e g i n ( ) , m i n _ d i s t [ i ] . end ( ) , INFTY ) ;

}
} ;

i n l i n e void t r a i n ( c o n s t pos p , c o n s t double d i s t , c o n s t bool i s _ l e f t , c o n s t double ←↩
h o r i z o n )

{
i f ( m i n _ d i s t [ p . i ] [ p . j ] <= d i s t ) {

re turn ;
}

m i n _ d i s t [ p . i ] [ p . j ] = d i s t ;
e s t i m a t e d _ h o r i z o n [ p . i ] [ p . j ] = h o r i z o n ;

} ;
p r o t e c t e d :

d o u b l e _ g r i d m i n _ d i s t ;
} ;
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# e n d i f /∗ d e f i n e d ( _ _ T e r r a i n T e s t _ _ R 2 N e a r e s t N e i g h b o r E s t i m a t o r _ _ ) ∗ /

Listing 12 R2PWeightedEstimator.hpp

/ /
/ / R2PWeigh tedEs t ima to r . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 2 7 / 0 3 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f _ _ T e r r a i n T e s t _ _ R 2 P W e i g h t e d E s t i m a t o r _ _
# d e f i n e _ _ T e r r a i n T e s t _ _ R 2 P W e i g h t e d E s t i m a t o r _ _

# i n c l u d e " R 2 E s t i m a t o r . hpp "
# i n c l u d e " macros . hpp "

c l a s s R2PWeigh tedEs t ima to r : p u b l i c R 2 E s t i m a t o r {
p u b l i c :

R2PWeigh tedEs t ima to r ( s i z e _ t m, s i z e _ t n )
: R 2 E s t i m a t o r (m, n ) , n u m e r a t o r (m, v e c t o r <double >( n ) ) , d e n o m i n a t o r (m, v e c t o r <double >(←↩

n ) ) {}

void r e s e t ( )
{

f o r ( i n t i = 0 ; i < m; ++ i ) {
f i l l ( n u m e r a t o r [ i ] . b e g i n ( ) , n u m e r a t o r [ i ] . end ( ) , 0 ) ;
f i l l ( d e n o m i n a t o r [ i ] . b e g i n ( ) , d e n o m i n a t o r [ i ] . end ( ) , 0 ) ;

}
} ;

i n l i n e void t r a i n ( c o n s t pos p , c o n s t double d i s t , c o n s t bool i s _ l e f t , c o n s t double ←↩
h o r i z o n )

{
c o n s t double we ig h t = d i s t < EPS ? 1 / EPS : pow (1 − d i s t , P ) ;

n u m e r a t o r [ p . i ] [ p . j ] += we i gh t ∗ h o r i z o n ;
d e n o m i n a t o r [ p . i ] [ p . j ] += we ig h t ;

} ;

i n l i n e double e s t i m a t e ( c o n s t pos p )
{

c o n s t double num = n u m e r a t o r [ p . i ] [ p . j ] ;
c o n s t double den = d e n o m i n a t o r [ p . i ] [ p . j ] ;

i f ( num == 0 && den == 0) {
re turn −INFTY ;

} e l s e i f ( den == 0) {
re turn INFTY ;

}

re turn num / den ;
} ;

double P = 2 ;
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p r o t e c t e d :
d o u b l e _ g r i d numera to r , d e n o m i n a t o r ;

} ;

# e n d i f /∗ d e f i n e d ( _ _ T e r r a i n T e s t _ _ R 2 P W e i g h t e d E s t i m a t o r _ _ ) ∗ /

Listing 13 R2LinearEstimator.hpp

/ /
/ / R 2 W e i g h t e d E s t i m a t i o n P o l i c y . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 1 6 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f _ _ T e r r a i n T e s t _ _ R 2 L i n e a r E s t i m a t o r _ _
# d e f i n e _ _ T e r r a i n T e s t _ _ R 2 L i n e a r E s t i m a t o r _ _

# i n c l u d e " R 2 E s t i m a t o r . hpp "
# i n c l u d e " macros . hpp "

c l a s s R 2 L i n e a r E s t i m a t o r : p u b l i c R 2 E s t i m a t o r {
p u b l i c :

R 2 L i n e a r E s t i m a t o r ( s i z e _ t m, s i z e _ t n )
: R 2 E s t i m a t o r (m, n ) , l _ d i s t (m, v e c t o r <double >( n ) ) , l _ h o r (m, v e c t o r <double >( n ) ) , ←↩

r _ d i s t (m, v e c t o r <double >( n ) ) , r _ h o r (m, v e c t o r <double >( n ) ) { } ;

void r e s e t ( )
{

f o r ( i n t i = 0 ; i < m; ++ i ) {
f i l l ( l _ d i s t [ i ] . b e g i n ( ) , l _ d i s t [ i ] . end ( ) , INFTY ) ;
f i l l ( r _ d i s t [ i ] . b e g i n ( ) , r _ d i s t [ i ] . end ( ) , INFTY ) ;

}
} ;

i n l i n e void t r a i n ( c o n s t pos p , c o n s t double d i s t , c o n s t bool i s _ l e f t , c o n s t double ←↩
h o r i z o n )

{
i f ( i s _ l e f t && d i s t < l _ d i s t [ p . i ] [ p . j ] ) {

l _ d i s t [ p . i ] [ p . j ] = d i s t ;
l _ h o r [ p . i ] [ p . j ] = h o r i z o n ;

} e l s e i f ( ! i s _ l e f t && d i s t < r _ d i s t [ p . i ] [ p . j ] ) {
r _ d i s t [ p . i ] [ p . j ] = d i s t ;
r _ h o r [ p . i ] [ p . j ] = h o r i z o n ;

}
} ;

i n l i n e double e s t i m a t e ( c o n s t pos p )
{

c o n s t double l = l _ d i s t [ p . i ] [ p . j ] / ( l _ d i s t [ p . i ] [ p . j ] + r _ d i s t [ p . i ] [ p . j ] ) ;

re turn (1 − l ) ∗ l _ h o r [ p . i ] [ p . j ] + l ∗ r _ h o r [ p . i ] [ p . j ] ;
}

p r o t e c t e d :
d o u b l e _ g r i d l _ d i s t , r _ d i s t , l _ h o r , r _ h o r ;

} ;
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# e n d i f /∗ d e f i n e d ( _ _ T e r r a i n T e s t _ _ R 2 W e i g h t e d E s t i m a t i o n P o l i c y _ _ ) ∗ /

Listing 14 R2MaxEstimator.hpp

/ /
/ / R2MaxEs t ima t ionPo l i cy . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 1 6 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f _ _ T e r r a i n T e s t _ _ R 2 M a x E s t i m a t i o n P o l i c y _ _
# d e f i n e _ _ T e r r a i n T e s t _ _ R 2 M a x E s t i m a t i o n P o l i c y _ _

# i n c l u d e " R 2 B a s i c E s t i m a t o r . hpp "
# i n c l u d e " macros . hpp "

c l a s s R2MaxEst imator : p u b l i c R 2 B a s i c E s t i m a t o r {
p u b l i c :

R2MaxEst imator ( s i z e _ t m, s i z e _ t n ) : R 2 B a s i c E s t i m a t o r (m, n , −INFTY ) { } ;
i n l i n e void t r a i n ( c o n s t pos p , c o n s t double d i s t , c o n s t bool i s _ l e f t , c o n s t double ←↩

h o r i z o n )
{

e s t i m a t e d _ h o r i z o n [ p . i ] [ p . j ] = max ( e s t i m a t e d _ h o r i z o n [ p . i ] [ p . j ] , h o r i z o n ) ;
} ;

} ;

# e n d i f /∗ d e f i n e d ( _ _ T e r r a i n T e s t _ _ R 2 M a x E s t i m a t i o n P o l i c y _ _ ) ∗ /

Listing 15 R2MinEstimator.hpp

/ /
/ / R 2 M i n E s t i m a t i o n P o l i c y . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 1 6 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f _ _ T e r r a i n T e s t _ _ R 2 M i n E s t i m a t i o n P o l i c y _ _
# d e f i n e _ _ T e r r a i n T e s t _ _ R 2 M i n E s t i m a t i o n P o l i c y _ _

# i n c l u d e " R 2 B a s i c E s t i m a t o r . hpp "
# i n c l u d e " macros . hpp "

c l a s s R2MinEst imator : p u b l i c R 2 B a s i c E s t i m a t o r {
p u b l i c :

R2MinEst imator ( s i z e _ t m, s i z e _ t n ) : R 2 B a s i c E s t i m a t o r (m, n , INFTY ) { } ;

i n l i n e void t r a i n ( c o n s t pos p , c o n s t double d i s t , c o n s t bool i s _ l e f t , c o n s t double ←↩
h o r i z o n )

{
e s t i m a t e d _ h o r i z o n [ p . i ] [ p . j ] = min ( e s t i m a t e d _ h o r i z o n [ p . i ] [ p . j ] , h o r i z o n ) ;
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} ;
} ;

# e n d i f /∗ d e f i n e d ( _ _ T e r r a i n T e s t _ _ R 2 M i n E s t i m a t i o n P o l i c y _ _ ) ∗ /

Listing 16 XDrawVisibilityFinder.hpp

/ /
/ / X D r a w V i s i b l i t y F i n d e r . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 2 0 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f _ _ T e r r a i n T e s t _ _ X D r a w V i s i b l i t y F i n d e r _ _
# d e f i n e _ _ T e r r a i n T e s t _ _ X D r a w V i s i b l i t y F i n d e r _ _

# i n c l u d e < v e c t o r >

# i n c l u d e " V i s i b i l i t y F i n d e r . hpp "
# i n c l u d e " macros . hpp "
# i n c l u d e " t y p e s . hpp "

us ing namespace s t d ;

template < c l a s s E s t i m a t o r >
c l a s s X D r a w V i s i b l i t y F i n d e r : p u b l i c V i s i b i l i t y F i n d e r {
p u b l i c :

X D r a w V i s i b l i t y F i n d e r ( s i z e _ t m, s i z e _ t n ) : V i s i b i l i t y F i n d e r (m, n ) , t h e t a (m, v e c t o r <←↩
double >( n ) ) { } ;

b o o l _ g r i d v i s i b i l i t y ( pos o b s e r v e r , double o b s e r v e r _ h e i g h t , double t a r g e t _ h e i g h t )
{

c a l c _ t h e t a ( o b s e r v e r , o b s e r v e r _ h e i g h t ) ;

double b a s e _ h e i g h t = ( h e i g h t _ d a t a [ o b s e r v e r . i ] [ o b s e r v e r . j ] + o b s e r v e r _ h e i g h t ) ;
b o o l _ g r i d v i s i b l e = v e c t o r < v e c t o r <bool > >(m, v e c t o r <bool >( n ) ) ;

f o r ( i n t i = 0 ; i < m; ++ i ) {
f o r ( i n t j = 0 ; j < n ; ++ j ) {

i f ( i == o b s e r v e r . i && j == o b s e r v e r . j ) {
v i s i b l e [ i ] [ j ] = t rue ;
c o n t in u e ;

}

i n t d i = o b s e r v e r . i − i ;
i n t d j = o b s e r v e r . j − j ;

double d l = s q r t ( d i ∗ d i + d j ∗ d j ) ;
double dh = h e i g h t _ d a t a [ i ] [ j ] + t a r g e t _ h e i g h t − b a s e _ h e i g h t ;
double t a r g e t _ t h e t a = dh / d l ;
double d i f f = t a r g e t _ t h e t a − t h e t a [ i ] [ j ] ;

v i s i b l e [ i ] [ j ] = d i f f > EPS ;
}
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}

re turn v i s i b l e ;
}

p r o t e c t e d :
d o u b l e _ g r i d t h e t a ;
E s t i m a t o r e s t i m a t o r ;

void c a l c _ t h e t a ( pos o b s e r v e r , double o b s e r v e r _ h e i g h t )
{

t h e t a [ o b s e r v e r . i ] [ o b s e r v e r . j ] = −INFTY ;

c a l c _ a x i s _ t h e t a ( o b s e r v e r , o b s e r v e r _ h e i g h t ) ;
c a l c _ d i a g _ t h e t a ( o b s e r v e r , o b s e r v e r _ h e i g h t ) ;
c a l c _ i n t e r n a l _ t h e t a ( o b s e r v e r , o b s e r v e r _ h e i g h t ) ;

} ;

void c a l c _ a x i s _ t h e t a ( pos o b s e r v e r , double o b s e r v e r _ h e i g h t )
{

double b a s e _ h e i g h t = ( h e i g h t _ d a t a [ o b s e r v e r . i ] [ o b s e r v e r . j ] + o b s e r v e r _ h e i g h t ) ;

/ / n o r t h
f o r ( i n t i = o b s e r v e r . i −1; i >= 0 ; −−i ) {

double d l = o b s e r v e r . i − i ;
double dh = h e i g h t _ d a t a [ i ] [ o b s e r v e r . j ] − b a s e _ h e i g h t ;

t h e t a [ i ] [ o b s e r v e r . j ] = max ( dh / dl , t h e t a [ i + 1 ] [ o b s e r v e r . j ] ) ;
}

/ / s o u t h
f o r ( i n t i = o b s e r v e r . i +1 ; i < h e i g h t _ d a t a . s i z e ( ) ; ++ i ) {

double d l = i − o b s e r v e r . i ;
double dh = h e i g h t _ d a t a [ i ] [ o b s e r v e r . j ] − b a s e _ h e i g h t ;

t h e t a [ i ] [ o b s e r v e r . j ] = max ( dh / dl , t h e t a [ i −1][ o b s e r v e r . j ] ) ;
}

/ / wes t
f o r ( i n t j = o b s e r v e r . j −1; j >= 0 ; −−j ) {

double d l = o b s e r v e r . j − j ;
double dh = h e i g h t _ d a t a [ o b s e r v e r . i ] [ j ] − b a s e _ h e i g h t ;

t h e t a [ o b s e r v e r . i ] [ j ] = max ( dh / dl , t h e t a [ o b s e r v e r . i ] [ j + 1 ] ) ;
}

/ / e a s t
f o r ( i n t j = o b s e r v e r . j +1 ; j < h e i g h t _ d a t a [ 0 ] . s i z e ( ) ; ++ j ) {

double d l = j − o b s e r v e r . j ;
double dh = h e i g h t _ d a t a [ o b s e r v e r . i ] [ j ] − b a s e _ h e i g h t ;

t h e t a [ o b s e r v e r . i ] [ j ] = max ( dh / dl , t h e t a [ o b s e r v e r . i ] [ j −1]) ;
}

} ;

void c a l c _ d i a g _ t h e t a ( pos o b s e r v e r , double o b s e r v e r _ h e i g h t )
{

double b a s e _ h e i g h t = ( h e i g h t _ d a t a [ o b s e r v e r . i ] [ o b s e r v e r . j ] + o b s e r v e r _ h e i g h t ) ;
i n t n o r t h = 0 ;
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i n t west = 0 ;
i n t s o u t h = ( i n t ) h e i g h t _ d a t a . s i z e ( ) − 1 ;
i n t e a s t = ( i n t ) h e i g h t _ d a t a [ 0 ] . s i z e ( ) − 1 ;

/ / n o r t h−west
f o r ( i n t k = 1 ; ; ++k ) {

i n t i = o b s e r v e r . i − k ;
i n t j = o b s e r v e r . j − k ;

i f ( i < n o r t h | | j < wes t ) {
break ;

}

double d l = s q r t (2∗ k∗k ) ;
double dh = h e i g h t _ d a t a [ i ] [ j ] − b a s e _ h e i g h t ;

t h e t a [ i ] [ j ] = max ( dh / dl , t h e t a [ i + 1 ] [ j + 1 ] ) ;
}

/ / n o r t h−e a s t
f o r ( i n t k = 1 ; ; ++k ) {

i n t i = o b s e r v e r . i − k ;
i n t j = o b s e r v e r . j + k ;

i f ( i < n o r t h | | j > e a s t ) {
break ;

}

double d l = s q r t (2∗ k∗k ) ;
double dh = h e i g h t _ d a t a [ i ] [ j ] − b a s e _ h e i g h t ;

t h e t a [ i ] [ j ] = max ( dh / dl , t h e t a [ i + 1 ] [ j −1]) ;
}

/ / sou th−e a s t
f o r ( i n t k = 1 ; ; ++k ) {

i n t i = o b s e r v e r . i + k ;
i n t j = o b s e r v e r . j + k ;

i f ( i > s o u t h | | j > e a s t ) {
break ;

}

double d l = s q r t (2∗ k∗k ) ;
double dh = h e i g h t _ d a t a [ i ] [ j ] − b a s e _ h e i g h t ;

t h e t a [ i ] [ j ] = max ( dh / dl , t h e t a [ i −1][ j −1]) ;
}

/ / sou th−west
f o r ( i n t k = 1 ; ; ++k ) {

i n t i = o b s e r v e r . i + k ;
i n t j = o b s e r v e r . j − k ;

i f ( i > s o u t h | | j < wes t ) {
break ;

}
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double d l = s q r t (2∗ k∗k ) ;
double dh = h e i g h t _ d a t a [ i ] [ j ] − b a s e _ h e i g h t ;

t h e t a [ i ] [ j ] = max ( dh / dl , t h e t a [ i −1][ j + 1 ] ) ;
}

} ;

void c a l c _ i n t e r n a l _ t h e t a ( pos o b s e r v e r , double o b s e r v e r _ h e i g h t )
{

double b a s e _ h e i g h t = ( h e i g h t _ d a t a [ o b s e r v e r . i ] [ o b s e r v e r . j ] + o b s e r v e r _ h e i g h t ) ;
i n t max_i = ( i n t ) h e i g h t _ d a t a . s i z e ( ) ;
i n t max_j = ( i n t ) h e i g h t _ d a t a [ 0 ] . s i z e ( ) ;

/ / n o r t h−n o r t h−west
f o r ( i n t d i = −2; o b s e r v e r . i + d i >= 0 ; −−d i ) {

f o r ( i n t d j = −1; d j > d i && o b s e r v e r . j + d j >= 0 ; −−d j ) {
i n t i = o b s e r v e r . i + d i ;
i n t j = o b s e r v e r . j + d j ;

double d l = s q r t ( d i ∗ d i + d j ∗ d j ) ;
double dh = h e i g h t _ d a t a [ i ] [ j ] − b a s e _ h e i g h t ;

t h e t a [ i ] [ j ] = max ( dh / dl , e s t i m a t o r . e s t i m a t e _ h o r i z o n ( t h e t a [ i + 1 ] [ j ] , t h e t a←↩
[ i + 1 ] [ j + 1 ] , d i , d j ) ) ;

}
}

/ / n o r t h−n o r t h−e a s t
f o r ( i n t d i = −2; o b s e r v e r . i + d i >= 0 ; −−d i ) {

f o r ( i n t d j = 1 ; d j < −d i && o b s e r v e r . j + d j < max_j ; ++ d j ) {
i n t i = o b s e r v e r . i + d i ;
i n t j = o b s e r v e r . j + d j ;

double d l = s q r t ( d i ∗ d i + d j ∗ d j ) ;
double dh = h e i g h t _ d a t a [ i ] [ j ] − b a s e _ h e i g h t ;

t h e t a [ i ] [ j ] = max ( dh / dl , e s t i m a t o r . e s t i m a t e _ h o r i z o n ( t h e t a [ i + 1 ] [ j ] , t h e t a←↩
[ i + 1 ] [ j −1] , d i , d j ) ) ;

}
}

/ / sou th−sou th−west
f o r ( i n t d i = 2 ; o b s e r v e r . i + d i < max_i ; ++ d i ) {

f o r ( i n t d j = −1; −d j < d i && o b s e r v e r . j + d j >= 0 ; −−d j ) {
i n t i = o b s e r v e r . i + d i ;
i n t j = o b s e r v e r . j + d j ;

double d l = s q r t ( d i ∗ d i + d j ∗ d j ) ;
double dh = h e i g h t _ d a t a [ i ] [ j ] − b a s e _ h e i g h t ;

t h e t a [ i ] [ j ] = max ( dh / dl , e s t i m a t o r . e s t i m a t e _ h o r i z o n ( t h e t a [ i −1][ j ] , t h e t a←↩
[ i −1][ j + 1 ] , d i , d j ) ) ;

}
}

/ / sou th−sou th−e a s t
f o r ( i n t d i = 2 ; o b s e r v e r . i + d i < max_i ; ++ d i ) {

f o r ( i n t d j = 1 ; d j < d i && o b s e r v e r . j + d j < max_j ; ++ d j ) {
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i n t i = o b s e r v e r . i + d i ;
i n t j = o b s e r v e r . j + d j ;

double d l = s q r t ( d i ∗ d i + d j ∗ d j ) ;
double dh = h e i g h t _ d a t a [ i ] [ j ] − b a s e _ h e i g h t ;

t h e t a [ i ] [ j ] = max ( dh / dl , e s t i m a t o r . e s t i m a t e _ h o r i z o n ( t h e t a [ i −1][ j ] , t h e t a←↩
[ i −1][ j −1] , d i , d j ) ) ;

}
}

/ / n o r t h−west−west
f o r ( i n t d j = −2; o b s e r v e r . j + d j >= 0 ; −−d j ) {

f o r ( i n t d i = −1; d i > d j && o b s e r v e r . i + d i >= 0 ; −−d i ) {
i n t i = o b s e r v e r . i + d i ;
i n t j = o b s e r v e r . j + d j ;

double d l = s q r t ( d i ∗ d i + d j ∗ d j ) ;
double dh = h e i g h t _ d a t a [ i ] [ j ] − b a s e _ h e i g h t ;

t h e t a [ i ] [ j ] = max ( dh / dl , e s t i m a t o r . e s t i m a t e _ h o r i z o n ( t h e t a [ i ] [ j +1 ] , t h e t a←↩
[ i + 1 ] [ j + 1 ] , d i , d j ) ) ;

}
}

/ / n o r t h−e a s t−e a s t
f o r ( i n t d j = 2 ; o b s e r v e r . j + d j < max_j ; ++ d j ) {

f o r ( i n t d i = −1; −d i < d j && o b s e r v e r . i + d i >= 0 ; −−d i ) {
i n t i = o b s e r v e r . i + d i ;
i n t j = o b s e r v e r . j + d j ;

double d l = s q r t ( d i ∗ d i + d j ∗ d j ) ;
double dh = h e i g h t _ d a t a [ i ] [ j ] − b a s e _ h e i g h t ;

t h e t a [ i ] [ j ] = max ( dh / dl , e s t i m a t o r . e s t i m a t e _ h o r i z o n ( t h e t a [ i ] [ j −1] , t h e t a←↩
[ i + 1 ] [ j −1] , d i , d j ) ) ;

}
}

/ / sou th−west−west
f o r ( i n t d j = −2; o b s e r v e r . j + d j >= 0 ; −−d j ) {

f o r ( i n t d i = 1 ; d i < −d j && o b s e r v e r . i + d i < max_i ; ++ d i ) {
i n t i = o b s e r v e r . i + d i ;
i n t j = o b s e r v e r . j + d j ;

double d l = s q r t ( d i ∗ d i + d j ∗ d j ) ;
double dh = h e i g h t _ d a t a [ i ] [ j ] − b a s e _ h e i g h t ;

t h e t a [ i ] [ j ] = max ( dh / dl , e s t i m a t o r . e s t i m a t e _ h o r i z o n ( t h e t a [ i ] [ j +1 ] , t h e t a←↩
[ i −1][ j + 1 ] , d i , d j ) ) ;

}
}

/ / sou th−e a s t−e a s t
f o r ( i n t d j = 2 ; o b s e r v e r . j + d j < max_j ; ++ d j ) {

f o r ( i n t d i = 1 ; d i < d j && o b s e r v e r . i + d i < max_i ; ++ d i ) {
i n t i = o b s e r v e r . i + d i ;
i n t j = o b s e r v e r . j + d j ;
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double d l = s q r t ( d i ∗ d i + d j ∗ d j ) ;
double dh = h e i g h t _ d a t a [ i ] [ j ] − b a s e _ h e i g h t ;

t h e t a [ i ] [ j ] = max ( dh / dl , e s t i m a t o r . e s t i m a t e _ h o r i z o n ( t h e t a [ i ] [ j −1] , t h e t a←↩
[ i −1][ j −1] , d i , d j ) ) ;

}
}

} ;
} ;

# e n d i f /∗ d e f i n e d ( _ _ T e r r a i n T e s t _ _ X D r a w V i s i b l i t y F i n d e r _ _ ) ∗ /

Listing 17 XDrawInterpolatedEstimator.hpp

/ /
/ / X D r a w I n t e r p o l a t e d E s t i m a t o r . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 2 0 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f _ _ T e r r a i n T e s t _ _ X D r a w I n t e r p o l a t e d E s t i m a t o r _ _
# d e f i n e _ _ T e r r a i n T e s t _ _ X D r a w I n t e r p o l a t e d E s t i m a t o r _ _

# i n c l u d e <cmath >

c l a s s X D r a w I n t e r p o l a t e d E s t i m a t o r {
p u b l i c :

i n l i n e double e s t i m a t e _ h o r i z o n ( c o n s t double n e a r _ h o r i z o n , c o n s t double f a r _ h o r i z o n , ←↩
c o n s t i n t di , c o n s t i n t d j )

{
c o n s t double l = abs ( abs ( d i ) < abs ( d j ) ? ( double ) d i / d j : ( double ) d j / d i ) ;
re turn (1 − l ) ∗ n e a r _ h o r i z o n + l ∗ f a r _ h o r i z o n ;

} ;
} ;

# e n d i f /∗ d e f i n e d ( _ _ T e r r a i n T e s t _ _ X D r a w I n t e r p o l a t e d E s t i m a t o r _ _ ) ∗ /

Listing 18 XDrawMaxEstimator.hpp

/ /
/ / XDrawMaxEstimator . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 2 0 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f __Ter ra inTes t__XDrawMaxEs t imator__
# d e f i n e __Ter ra inTes t__XDrawMaxEs t imator__

# i n c l u d e < a l g o r i t h m >
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us ing namespace s t d ;

c l a s s XDrawMaxEstimator {
p u b l i c :

i n l i n e double e s t i m a t e _ h o r i z o n ( c o n s t double l h s _ h o r i z o n , c o n s t double r h s _ h o r i z o n , ←↩
c o n s t i n t di , c o n s t i n t d j )

{
re turn max ( l h s _ h o r i z o n , r h s _ h o r i z o n ) ;

} ;
} ;

# e n d i f /∗ d e f i n e d ( __Ter ra inTes t__XDrawMaxEs t ima tor__ ) ∗ /

Listing 19 XDrawMinEstimator.hpp

/ /
/ / XDrawMinEstimator . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 2 0 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f __Ter ra inTes t__XDrawMinEs t ima to r__
# d e f i n e __Ter ra inTes t__XDrawMinEs t ima to r__

# i n c l u d e < a l g o r i t h m >

us ing namespace s t d ;

c l a s s XDrawMinEstimator {
p u b l i c :

i n l i n e double e s t i m a t e _ h o r i z o n ( c o n s t double l h s _ h o r i z o n , c o n s t double r h s _ h o r i z o n , ←↩
c o n s t i n t di , c o n s t i n t d j )

{
re turn min ( l h s _ h o r i z o n , r h s _ h o r i z o n ) ;

} ;
} ;

# e n d i f /∗ d e f i n e d ( __Ter ra inTes t__XDrawMinEs t ima to r__ ) ∗ /

Listing 20 XDrawMeanEstimator.hpp

/ /
/ / XDrawMeanEstimator . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 2 0 / 0 2 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f __Ter ra inTes t__XDrawMeanEs t ima to r__
# d e f i n e __Ter ra inTes t__XDrawMeanEs t ima to r__

# i n c l u d e < a l g o r i t h m >
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us ing namespace s t d ;

c l a s s XDrawMeanEstimator {
p u b l i c :

i n l i n e double e s t i m a t e _ h o r i z o n ( c o n s t double l h s _ h o r i z o n , c o n s t double r h s _ h o r i z o n , ←↩
c o n s t i n t di , c o n s t i n t d j )

{
re turn ( l h s _ h o r i z o n + r h s _ h o r i z o n ) / 2 ;

} ;
} ;

# e n d i f /∗ d e f i n e d ( __Ter ra inTes t__XDrawMeanEs t ima to r__ ) ∗ /

Listing 21 RadarVisibilityFinder.hpp

/ /
/ / R a d a r V i s i b i l i t y F i n d e r . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 2 1 / 0 3 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f _ _ T e r r a i n T e s t _ _ R a d a r V i s i b i l i t y F i n d e r _ _
# d e f i n e _ _ T e r r a i n T e s t _ _ R a d a r V i s i b i l i t y F i n d e r _ _

# i n c l u d e <cmath >
# i n c l u d e <deque >

# i n c l u d e " macros . hpp "
# i n c l u d e " V i s i b i l i t y F i n d e r . hpp "

c l a s s R a d a r V i s i b l i t y F i n d e r : p u b l i c V i s i b i l i t y F i n d e r {
p u b l i c :

R a d a r V i s i b l i t y F i n d e r ( s i z e _ t m, s i z e _ t n , double K) : V i s i b i l i t y F i n d e r (m, n ) , ←↩
n u m _ s e c t o r s ( ( s i z e _ t ) f l o o r (K∗ (2∗m + 2∗n − 4) ) ) , s e c t o r _ s i z e (2∗M_PI / ( num_sec to r s←↩
−1) ) { } ;

b o o l _ g r i d v i s i b i l i t y ( pos o b s e r v e r , double o b s e r v e r _ h e i g h t , double t a r g e t _ h e i g h t )
{

v e c t o r < v e c t o r <pos >> s e c t o r _ p o i n t s = g e t _ s e c t o r _ p o i n t s ( o b s e r v e r ) ;

b o o l _ g r i d v i s i b l e = v e c t o r < v e c t o r <bool > >(m, v e c t o r <bool >( n ) ) ;

v e c t o r <double > p r e v _ r l = eval_LOS ( o b s e r v e r , o b s e r v e r _ h e i g h t , t a r g e t _ h e i g h t , 0 ) ;

f o r ( i n t s e c t o r = 0 ; s e c t o r < n u m _ s e c t o r s ; ++ s e c t o r ) {
v e c t o r <double > r l = eval_LOS ( o b s e r v e r , o b s e r v e r _ h e i g h t , t a r g e t _ h e i g h t , (←↩

s e c t o r + 1 )∗ s e c t o r _ s i z e ) ;
i n t e r p o l a t e ( v i s i b l e , p r e v _ r l , r l , s e c t o r _ p o i n t s [ s e c t o r ] , o b s e r v e r ) ;

p r e v _ r l = r l ;
}

re turn v i s i b l e ;
} ;
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p r o t e c t e d :
c o n s t s i z e _ t n u m _ s e c t o r s ;
c o n s t double s e c t o r _ s i z e ;

i n l i n e v e c t o r <double > eval_LOS ( pos o b s e r v e r , double o b s e r v e r _ h e i g h t , double ←↩
t a r g e t _ h e i g h t , double t h e t a )

{
v e c t o r <double > r u n _ l e n g t h ;
t h e t a −= M_PI ;

double c t = cos ( t h e t a ) ;
double s t = s i n ( t h e t a ) ;
double t t = t a n ( t h e t a ) ;
double a s t = abs ( s t ) ;
double a c t = abs ( c t ) ;
double a t t = abs ( t t ) ;

i n t d i r _ x = ( t h e t a > −M_PI_2 && t h e t a < M_PI_2 ) ? 1 : −1;
i n t d i r _ y = t h e t a < 0 ? −1 : 1 ;

bool v i s i b l e = t rue ;
double e l = −INFTY ;

vec2 p = { . x =0 , . y =0} ;
double d i s t = 0 ;
double t e l = −INFTY ;

f o r ( ; ; ) {
double s t e p _ x = c e i l ( abs ( p . x ) + EPS ) − abs ( p . x ) ;
double s t e p _ y = c e i l ( abs ( p . y ) + EPS ) − abs ( p . y ) ;
double d i s t _ x = s t e p _ x / a c t ;
double d i s t _ y = s t e p _ y / a s t ;

i f ( d i s t _ x <= d i s t _ y ) {
s t e p _ y = s t e p _ x ∗ a t t ;

} e l s e {
s t e p _ x = s t e p _ y / a t t ;

}

vec2 pos = { . x= o b s e r v e r . j + p . x + d i r _ x ∗ s t ep_x , . y= o b s e r v e r . i + p . y + d i r _ y ∗←↩
s t e p _ y } ;

i f ( ! ( 0 < pos . x + EPS && 0 < pos . y + EPS && pos . x − EPS < n − 1 && pos . y − ←↩
EPS < m − 1) ) {
break ;

}

double n e w _ d i s t = mag ( pos , o b s e r v e r ) ;
double n e w _ t e l = e t a ( o b s e r v e r , o b s e r v e r _ h e i g h t , pos , t a r g e t _ h e i g h t ) ;

i f ( ( n e w _ t e l > e l + EPS ) ^ v i s i b l e ) { / / v i s i b i l i t y s t a t u s has changed
double x = n e w _ d i s t ;

r u n _ l e n g t h . push_back ( x ) ;
v i s i b l e = ! v i s i b l e ;

}

p = { . x=p . x + d i r _ x ∗ s t ep_x , . y=p . y + d i r _ y ∗ s t e p _ y } ;
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d i s t = n e w _ d i s t ;
t e l = n e w _ t e l ;
e l = max ( e l , e t a ( o b s e r v e r , o b s e r v e r _ h e i g h t , pos , 0 ) ) ;

}

re turn r u n _ l e n g t h ;
} ;

i n l i n e double mag ( c o n s t vec2 p , c o n s t pos o b s e r v e r )
{

c o n s t double dx = p . x − o b s e r v e r . j ;
c o n s t double dy = p . y − o b s e r v e r . i ;

re turn s q r t ( dx∗dx + dy∗dy ) ;
} ;

i n l i n e double e t a ( pos o b s e r v e r , double o b s e r v e r _ h e i g h t , vec2 t a r g e t , double ←↩
t a r g e t _ h e i g h t )

{
vec2 p = t a r g e t ;
double h = 0 ;

i f ( abs ( p . x − round ( p . x ) ) < EPS && abs ( p . y − round ( p . y ) ) < EPS ) {
i n t i = ( i n t ) round ( p . y ) ;
i n t j = ( i n t ) round ( p . x ) ;

h = h e i g h t _ d a t a [ i ] [ j ] ;
} e l s e i f ( abs ( p . x − round ( p . x ) ) < EPS ) {

i n t i = max ( 0 , ( i n t ) f l o o r ( p . y ) ) ;
i n t j = ( i n t ) round ( p . x ) ;

h = ( p . y − i ) ∗ h e i g h t _ d a t a [ i + 1 ] [ j ] + ( i + 1 − p . y ) ∗ h e i g h t _ d a t a [ i ] [ j ] ;
} e l s e i f ( abs ( p . y − round ( p . y ) ) < EPS ) {

i n t i = ( i n t ) round ( p . y ) ;
i n t j = max ( 0 , ( i n t ) f l o o r ( p . x ) ) ;

h = ( p . x − j ) ∗ h e i g h t _ d a t a [ i ] [ j +1] + ( j + 1 − p . x ) ∗ h e i g h t _ d a t a [ i ] [ j ] ;
} e l s e {

c o u t << " foo " << e n d l ;
/ / p i s n o t on any g r i d l i n e
/ / e l e v a t i o n i s u n d e f i n e d
/ / t h i s i s an e r r o r

}

vec2 v = { . x = o b s e r v e r . j − p . x , . y = o b s e r v e r . i − p . y } ;
double d = s q r t ( v . x∗v . x + v . y∗v . y ) ;
re turn ( ( t a r g e t _ h e i g h t + h ) − ( o b s e r v e r _ h e i g h t + h e i g h t _ d a t a [ o b s e r v e r . i ] [←↩

o b s e r v e r . j ] ) ) / d ;
} ;

i n l i n e void i n t e r p o l a t e ( b o o l _ g r i d &v i s i b l e , c o n s t v e c t o r <double > &l h s , c o n s t v e c t o r <←↩
double > &rhs , c o n s t v e c t o r <pos > &p o i n t s , c o n s t pos o b s e r v e r )

{
bool l h s _ v i s i b l e = t rue ;
bool r h s _ v i s i b l e = t rue ;
i n t l h s _ i d x = −1;
i n t r h s _ i d x = −1;
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f o r ( pos p : p o i n t s ) {
vec2 p_ = g e t _ s e c t o r _ p o s ( p , o b s e r v e r ) ;

/ / l oop f o r w a r d t o r e l e v a n t s e c t i o n a t l h s and r h s
f o r ( ; l h s _ i d x + 1 < l h s . s i z e ( ) && l h s [ l h s _ i d x + 1] < p_ . x ; ++ l h s _ i d x , ←↩

l h s _ v i s i b l e = ! l h s _ v i s i b l e ) ;
f o r ( ; r h s _ i d x + 1 < r h s . s i z e ( ) && r h s [ r h s _ i d x + 1] < p_ . x ; ++ r h s _ i d x , ←↩

r h s _ v i s i b l e = ! r h s _ v i s i b l e ) ;

double l h s _ l o = l h s _ i d x > −1 ? l h s [ l h s _ i d x ] : 0 ;
double l h s _ h i = l h s _ i d x + 1 < l h s . s i z e ( ) ? l h s [ l h s _ i d x + 1] : INFINITY ;
double r h s _ l o = r h s _ i d x > −1 ? r h s [ r h s _ i d x ] : 0 ;
double r h s _ h i = r h s _ i d x + 1 < r h s . s i z e ( ) ? r h s [ r h s _ i d x + 1] : INFINITY ;

v i s i b l e [ p . i ] [ p . j ] = p o i n t _ v i s i b l e ( l h s _ l o , l h s _ h i , l h s _ v i s i b l e , r h s _ l o , ←↩
r h s _ h i , r h s _ v i s i b l e , p_ ) ;

}
}

i n l i n e c o n s t bool p o i n t _ v i s i b l e ( double up_lo , double up_hi , bool u p _ v i s i b l e , double ←↩
down_lo , double down_hi , bool d o w n _ v i s i b l e , vec2 p )

{
i f ( u p _ v i s i b l e == d o w n _ v i s i b l e ) {

re turn u p _ v i s i b l e ;
}

i f ( up_ lo > down_lo ) {
/ / f l i p up / down
re turn p o i n t _ v i s i b l e ( down_lo , down_hi , d o w n _ v i s i b l e , up_lo , up_hi , ←↩

u p _ v i s i b l e , { . x=p . x , . y=1 − p . y } ) ;
}

double l o = down_lo ;
double h i = min ( up_hi , down_hi ) ;
double m = ( l o + h i ) / 2 ;

i f ( p . x <= m) {
/ / l e f t o f c e n t e r , which i s where up d o m i n a t e s t h e s i d e t r i a n g l e

i f ( ( h i − l o ) ∗p . y < p . x − l o ) {
re turn u p _ v i s i b l e ;

} e l s e {
re turn d o w n _ v i s i b l e ;

}
} e l s e {

/ / r i g h t o f c e n t e r
i f ( up_h i > down_hi ) {

/ / up d o m i n a t e s t h e s i d e t r i a n g l e

i f ( ( h i − l o ) ∗ (1 − p . y ) < p . x − l o ) {
re turn u p _ v i s i b l e ;

} e l s e {
re turn d o w n _ v i s i b l e ;

}
} e l s e {

/ / down d o m i n a t e s t h e s i d e t r i a n g l e

i f ( ( h i − l o ) ∗p . y < p . x − l o ) {
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re turn d o w n _ v i s i b l e ;
} e l s e {

re turn u p _ v i s i b l e ;
}

}
}

} ;

v e c t o r < v e c t o r <pos >> g e t _ s e c t o r _ p o i n t s ( c o n s t pos o b s e r v e r )
{

v e c t o r < v e c t o r <pos >> s e c t o r _ p o i n t s ( num_sec to r s , v e c t o r <pos > ( ) ) ;

b o o l _ g r i d v i s i t e d = v e c t o r < v e c t o r <bool > >(m, v e c t o r <bool >( n , f a l s e ) ) ;
v i s i t e d [ o b s e r v e r . i ] [ o b s e r v e r . j ] = t rue ;

deque <pos > q ;
q . push_back ( o b s e r v e r ) ;

pos dps [ ] = { { . i =1 , . j =0} , { . i =−1, . j =0} , { . i =0 , . j =1} , { . i =0 , . j =−1}};

whi le ( ! q . empty ( ) ) {
pos p = q . f r o n t ( ) ;
q . p o p _ f r o n t ( ) ;

s e c t o r _ p o i n t s [ g e t _ s e c t o r _ i d x ( p , o b s e r v e r ) ] . push_back ( p ) ;

f o r ( pos dp : dps ) {
pos np = { . i =p . i + dp . i , . j =p . j + dp . j } ;

i f ( np . i < 0 | | np . i >= m | | np . j < 0 | | np . j >= n | | v i s i t e d [ np . i ] [ np . j←↩
] ) {
c o n t in u e ;

}

v i s i t e d [ np . i ] [ np . j ] = t rue ;
q . push_back ( np ) ;

}
}

re turn s e c t o r _ p o i n t s ;
} ;

i n l i n e double g e t _ t h e t a ( c o n s t pos p , c o n s t pos o b s e r v e r )
{

re turn a t a n 2 ( p . i − o b s e r v e r . i , p . j − o b s e r v e r . j ) + M_PI ;
} ;

i n l i n e i n t g e t _ s e c t o r _ i d x ( c o n s t pos p , c o n s t pos o b s e r v e r )
{

re turn ( ( i n t ) f l o o r ( g e t _ t h e t a ( p , o b s e r v e r ) / s e c t o r _ s i z e ) ) ;
} ;

i n l i n e vec2 g e t _ s e c t o r _ p o s ( c o n s t pos p , c o n s t pos o b s e r v e r )
{

i n t d i = p . i − o b s e r v e r . i ;
i n t d j = p . j − o b s e r v e r . j ;
double h = g e t _ t h e t a ( p , o b s e r v e r ) / s e c t o r _ s i z e ;
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re turn { . x= s q r t ( d i ∗ d i + d j ∗ d j ) , . y=h − f l o o r ( h ) } ;
} ;

} ;

# e n d i f /∗ d e f i n e d ( _ _ T e r r a i n T e s t _ _ R a d a r V i s i b i l i t y F i n d e r _ _ ) ∗ /

Listing 22 R2UniformVisibilityFinder.hpp

/ /
/ / R 2 U n i f o r m V i s i b i l i t y F i n d e r . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 1 6 / 0 5 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f _ _ T e r r a i n T e s t _ _ R 2 U n i f o r m V i s i b i l i t y F i n d e r _ _
# d e f i n e _ _ T e r r a i n T e s t _ _ R 2 U n i f o r m V i s i b i l i t y F i n d e r _ _

# i n c l u d e " R 2 V i s i b i l i t y F i n d e r . hpp "
# i n c l u d e " macros . hpp "
# i n c l u d e " t y p e s . hpp "

template < c l a s s E s t i m a t o r >
c l a s s R 2 U n i f o r m V i s i b i l i t y F i n d e r : p u b l i c R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r > {
p u b l i c :

R 2 U n i f o r m V i s i b i l i t y F i n d e r ( s i z e _ t m, s i z e _ t n , double K) : R 2 V i s i b i l i t y F i n d e r <←↩
E s t i m a t o r >(m, n ) , n u m _ s e c t o r s ( ( s i z e _ t ) f l o o r (K∗ (2∗m + 2∗n − 4) ) ) { } ;

b o o l _ g r i d v i s i b i l i t y ( pos o b s e r v e r , double o b s e r v e r _ h e i g h t , double t a r g e t _ h e i g h t )
{

e s t i m a t o r . r e s e t ( ) ;

c o n s t double b a s e _ h e i g h t = V i s i b i l i t y F i n d e r : : b a s e _ h e i g h t ( o b s e r v e r , ←↩
o b s e r v e r _ h e i g h t ) ;

p r e c a l c _ s l o p e s ( o b s e r v e r , b a s e _ h e i g h t , t a r g e t _ h e i g h t ) ;

c o n s t double s e c t o r _ s i z e = 2∗M_PI / n u m _ s e c t o r s ;

f o r ( i n t s e c t o r = 0 ; s e c t o r < n u m _ s e c t o r s ; ++ s e c t o r ) {
e v a l _ t a r g e t ( o b s e r v e r , b a s e _ h e i g h t , s e c t o r ∗ s e c t o r _ s i z e − M_PI ) ;

}

re turn v i s i b l e ( ) ;
} ;

p r o t e c t e d :
us ing R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r > : : e s t i m a t o r ;

c o n s t s i z e _ t n u m _ s e c t o r s ;

us ing R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r > : : e v a l _ t a r g e t ;
us ing R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r > : : p r e c a l c _ s l o p e s ;
us ing R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r > : : v i s i b l e ;

} ;

# e n d i f /∗ d e f i n e d ( _ _ T e r r a i n T e s t _ _ R 2 U n i f o r m V i s i b i l i t y F i n d e r _ _ ) ∗ /
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Listing 23 HybridVisibilityFinder.hpp

/ /
/ / H y b r i d F a s t V i s i b i l i t y F i n d e r . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 2 3 / 0 3 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f _ _ T e r r a i n T e s t _ _ H y b r i d V i s i b i l i t y F i n d e r _ _
# d e f i n e _ _ T e r r a i n T e s t _ _ H y b r i d V i s i b i l i t y F i n d e r _ _

# i n c l u d e " R 2 V i s i b i l i t y F i n d e r . hpp "
# i n c l u d e " R2MaxEst imator . hpp "
# i n c l u d e " R2MinEst imator . hpp "
# i n c l u d e " macros . hpp "
# i n c l u d e " t y p e s . hpp "

template < c l a s s E s t i m a t o r >
c l a s s H y b r i d V i s i b i l i t y F i n d e r : p u b l i c R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r > {
p u b l i c :

H y b r i d V i s i b i l i t y F i n d e r ( s i z e _ t m, s i z e _ t n , double K) : R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r←↩
>(m, n ) , m a x _ e s t i m a t o r (m, n ) , m i n _ e s t i m a t o r (m, n ) , K(K) { } ;

b o o l _ g r i d v i s i b i l i t y ( pos o b s e r v e r , double o b s e r v e r _ h e i g h t , double t a r g e t _ h e i g h t )
{

r e s e t ( ) ;

c o n s t double b a s e _ h e i g h t = V i s i b i l i t y F i n d e r : : b a s e _ h e i g h t ( o b s e r v e r , ←↩
o b s e r v e r _ h e i g h t ) ;

p r e c a l c _ s l o p e s ( o b s e r v e r , b a s e _ h e i g h t , t a r g e t _ h e i g h t ) ;
e v a l _ b o u n d a r y _ t a r g e t s ( o b s e r v e r , b a s e _ h e i g h t ) ;

v e c t o r <double > a n g l e s ;
a n g l e s . r e s e r v e ( 1 0 0 0 0 0 ) ;

f o r ( i n t i = 0 ; i < m; ++ i ) {
i f ( i == o b s e r v e r . i ) {

c o n t i nu e ;
}

f o r ( i n t j = 0 ; j < n ; ++ j ) {
c o n s t pos p = { . i = i , . j = j } ;

i f ( m a x _ v i s i b l e ( p ) != m i n _ v i s i b l e ( p ) ) {
a n g l e s . push_back ( a t a n 2 ( i − o b s e r v e r . i , j − o b s e r v e r . j ) ) ;

}
}

}

c o n s t s i z e _ t r 2 _ s i z e = ( s i z e _ t ) f l o o r (K∗ (2∗m + 2∗n − 4) ) ;
c o n s t s i z e _ t n _ a n g l e s = a n g l e s . s i z e ( ) ;

i f ( n _ a n g l e s < 1 .5∗ r 2 _ s i z e ) {
f o r ( double t h e t a : a n g l e s ) {

e v a l _ t a r g e t ( o b s e r v e r , b a s e _ h e i g h t , t h e t a ) ;
}
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} e l s e {
s o r t ( a n g l e s . b e g i n ( ) , a n g l e s . end ( ) ) ;

f o r ( i n t k = 0 ; k < r 2 _ s i z e ; ++k ) {
c o n s t s i z e _ t i = ( k∗ n _ a n g l e s ) / r 2 _ s i z e ;
c o n s t double t h e t a = a n g l e s [ i ] ;

e v a l _ t a r g e t ( o b s e r v e r , b a s e _ h e i g h t , t h e t a ) ;
}

}

re turn v i s i b l e ( ) ;
} ;

p r o t e c t e d :
us ing R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r > : : e s t i m a t o r ;
us ing R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r > : : s l o p e s ;
us ing V i s i b i l i t y F i n d e r : :m;
us ing V i s i b i l i t y F i n d e r : : n ;

c o n s t double K;
R2MaxEst imator m a x _ e s t i m a t o r ;
R2MinEst imator m i n _ e s t i m a t o r ;

us ing R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r > : : e v a l _ b o u n d a r y _ t a r g e t s ;
us ing R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r > : : e v a l _ t a r g e t ;
us ing R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r > : : p r e c a l c _ s l o p e s ;
us ing R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r > : : v i s i b l e ;
us ing L O S V i s i b i l i t y F i n d e r : : e v a l _ l o s ;
us ing V i s i b i l i t y F i n d e r : : i n t e r s e c t s ;

void r e s e t ( )
{

e s t i m a t o r . r e s e t ( ) ;

m a x _ e s t i m a t o r . r e s e t ( ) ;
m i n _ e s t i m a t o r . r e s e t ( ) ;

} ;

i n l i n e void e v a l _ t a r g e t ( c o n s t pos o b s e r v e r , c o n s t double b a s e _ h e i g h t , c o n s t pos ←↩
t a r g e t )

{
double h o r i z o n = −INFTY ;

e v a l _ l o s ( o b s e r v e r , b a s e _ h e i g h t , t a r g e t , [ = ] ( c o n s t pos l h s , c o n s t pos rhs , c o n s t ←↩
double l , c o n s t double s l o p e ) mutable −> bool

{
e s t i m a t o r . t r a i n ( l h s , l , true , h o r i z o n ) ;
e s t i m a t o r . t r a i n ( rhs , 1 − l , f a l s e , h o r i z o n ) ;

m a x _ e s t i m a t o r . t r a i n ( l h s , l , true , h o r i z o n ) ;
m a x _ e s t i m a t o r . t r a i n ( rhs , 1 − l , f a l s e , h o r i z o n ) ;
m i n _ e s t i m a t o r . t r a i n ( l h s , l , true , h o r i z o n ) ;
m i n _ e s t i m a t o r . t r a i n ( rhs , 1 − l , f a l s e , h o r i z o n ) ;

h o r i z o n = max ( h o r i z o n , s l o p e ) ;

re turn true ;
} ) ;
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} ;

i n l i n e bool m a x _ v i s i b l e ( c o n s t pos p )
{

re turn ! i n t e r s e c t s ( m a x _ e s t i m a t o r . e s t i m a t e ( p ) , s l o p e s [ p . i ] [ p . j ] ) ;
} ;

i n l i n e bool m i n _ v i s i b l e ( c o n s t pos p )
{

re turn ! i n t e r s e c t s ( m i n _ e s t i m a t o r . e s t i m a t e ( p ) , s l o p e s [ p . i ] [ p . j ] ) ;
} ;

} ;

# e n d i f /∗ d e f i n e d ( _ _ T e r r a i n T e s t _ _ H y b r i d F a s t V i s i b i l i t y F i n d e r _ _ ) ∗ /

Listing 24 HybridBoundVisibilityFinder.hpp

/ /
/ / H y b r i d F a s t V i s i b i l i t y F i n d e r . h
/ / T e r r a i n T e s t
/ /
/ / C r e a t e d by Ma r t i n Vonheim L ar se n on 2 3 / 0 3 / 1 5 .
/ / C o p y r i g h t ( c ) 2015 Ma r t i n Vonheim L ar se n . A l l r i g h t s r e s e r v e d .
/ /

# i f n d e f _ _ T e r r a i n T e s t _ _ H y b r i d B o u n d V i s i b i l i t y F i n d e r _ _
# d e f i n e _ _ T e r r a i n T e s t _ _ H y b r i d B o u n d V i s i b i l i t y F i n d e r _ _

# i n c l u d e " R 2 V i s i b i l i t y F i n d e r . hpp "
# i n c l u d e " R2MaxEst imator . hpp "
# i n c l u d e " R2MinEst imator . hpp "
# i n c l u d e " macros . hpp "
# i n c l u d e " t y p e s . hpp "

template < c l a s s E s t i m a t o r >
c l a s s H y b r i d B o u n d V i s i b i l i t y F i n d e r : p u b l i c R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r > {
p u b l i c :

H y b r i d B o u n d V i s i b i l i t y F i n d e r ( s i z e _ t m, s i z e _ t n , double K) : R 2 V i s i b i l i t y F i n d e r <←↩
E s t i m a t o r >(m, n ) , K(K) { } ;

b o o l _ g r i d v i s i b i l i t y ( pos o b s e r v e r , double o b s e r v e r _ h e i g h t , double t a r g e t _ h e i g h t )
{

e s t i m a t o r . r e s e t ( ) ;

c o n s t double b a s e _ h e i g h t = V i s i b i l i t y F i n d e r : : b a s e _ h e i g h t ( o b s e r v e r , ←↩
o b s e r v e r _ h e i g h t ) ;

p r e c a l c _ s l o p e s ( o b s e r v e r , b a s e _ h e i g h t , t a r g e t _ h e i g h t ) ;
e v a l _ b o u n d a r y _ t a r g e t s ( o b s e r v e r , b a s e _ h e i g h t ) ;

i f (K > 0) {
b o o l _ g r i d bound = V i s i b i l i t y F i n d e r : : boundary ( v i s i b l e ( ) ) ;

v e c t o r <double > a n g l e s ;
a n g l e s . r e s e r v e ( 1 0 0 0 0 0 ) ;

f o r ( i n t i = 0 ; i < m; ++ i ) {
i f ( i == o b s e r v e r . i ) {
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c o n t in u e ;
}

f o r ( i n t j = 0 ; j < n ; ++ j ) {
i f ( bound [ i ] [ j ] ) {

a n g l e s . push_back ( a t a n 2 ( i − o b s e r v e r . i , j − o b s e r v e r . j ) ) ;
}

}
}

c o n s t s i z e _ t r 2 _ s i z e = ( s i z e _ t ) f l o o r (K∗ (2∗m + 2∗n − 4) ) ;
c o n s t s i z e _ t n _ a n g l e s = a n g l e s . s i z e ( ) ;

i f ( n _ a n g l e s < 1 .5∗ r 2 _ s i z e ) {
f o r ( double t h e t a : a n g l e s ) {

e v a l _ t a r g e t ( o b s e r v e r , b a s e _ h e i g h t , t h e t a ) ;
}

} e l s e {
s o r t ( a n g l e s . b e g i n ( ) , a n g l e s . end ( ) ) ;

f o r ( i n t k = 0 ; k < r 2 _ s i z e ; ++k ) {
c o n s t s i z e _ t i = ( k∗ n _ a n g l e s ) / r 2 _ s i z e ;
c o n s t double t h e t a = a n g l e s [ i ] ;

e v a l _ t a r g e t ( o b s e r v e r , b a s e _ h e i g h t , t h e t a ) ;
}

}
}

re turn v i s i b l e ( ) ;
} ;

p r o t e c t e d :
us ing R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r > : : e s t i m a t o r ;
us ing V i s i b i l i t y F i n d e r : :m;
us ing V i s i b i l i t y F i n d e r : : n ;

c o n s t double K;

us ing R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r > : : e v a l _ b o u n d a r y _ t a r g e t s ;
us ing R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r > : : e v a l _ t a r g e t ;
us ing R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r > : : p r e c a l c _ s l o p e s ;
us ing R 2 V i s i b i l i t y F i n d e r < E s t i m a t o r > : : v i s i b l e ;

} ;

# e n d i f /∗ d e f i n e d ( _ _ T e r r a i n T e s t _ _ H y b r i d F a s t V i s i b i l i t y F i n d e r _ _ ) ∗ /
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