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PERFORATION OF CONCRETE TARGETS 
 

1 INTRODUCTION 

For design and construction of concrete buildings for military purposes, it is necessary to know 
the required wall thickness to prevent perforation of a given projectile.  Therefore a lot of 
different work has been performed on penetration into concrete.  In Teland [1], several existing 
empirical formulas for predicting penetration, spalling or perforation of concrete targets were 
analysed.  The main focus was, however, penetration into semi-infinite targets. In Forrestal et 
al [2], cavity expansion theory (CET) was used to calculate the final penetration depth into 
semi-infinite targets, an approach that was further developed by Sjøl & Teland [3], and Teland 
& Sjøl [4].   
 
However, for real constructions, the thickness of the walls, or the concrete cover, are indeed 
finite. An important question is therefore to determine the required thickness to prevent 
perforation or spalling.  In this report, the problem of determining the perforation thickness 
and even the residual velocity will be analysed.   
 
In [3,4], the penetration model based on cavity expansion theory was analysed using non-
dimensional parameters.  The existing empirical models reviewed in [1] will here be analysed 
using the same non-dimensional parameters in order to compare these empirical models with 
the analytical expressions. 
 
Littlefield et al [5] used CET to determine the target resistance in steel targets with small 
diameters (boundary effects).  In Teland & Sjøl [6] and Sjøl & Teland [7], the same method 
was applied for thick concrete targets to give an estimate of the redused force on the 
penetrator. In the present paper, this approach is further developed to be applicable for thin 
targets as well.  
 
The new theory will be compared to other available models from the literature and different 
experimental data. 

2 APPLICATION OF CAVITY EXPANSION THEORY 

In this chapter we briefly review the use of CET for determining the penetration depth into 
semi-infinite targets, and how boundary effects can be taken into account.  This theory will 
then be extended to determine the force acting on a projectile reaching the rear side of the 
target, resulting in analytical formulas for residual velocity, ballistic limit velocity, thickness to 
prevent perforation and finally penetration depth into thin targets.   
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Two different cavity expansion (CE) models can be used, namely spherical and cylindrical 
models.  In spherical CE, the cavity expands spherically, and spherical symmetry can be used 
in the calculations.  In cylindrical CE, the “cylinder” expands in the radial direction, while the 
length of the cylinder is assumed to be infinite.  It is, however, not obvious what is the best 
approach in perforation problems.  Therefore, we have analysed both spherical and cylindrical 
CE in this report. 
 
In Figure 2.1 we have shown the most important geometrical parameters that are used in the 
theoretical analysis. 
 
 

p 
 

r

xN 

v0 

 
 
 
 
 
 
 

db d  
 
 
 
 
 
 
 
 
 

h 
 
 
Figure 2.1 Description of penetration problem. 
 
The variables used in the analysis are as follows.  Some of them are also defined in Figure 2.1. 
 

 
   



 9  
 

Projectile diameter
Target diameter
Force acting on projectile nose
Target thickness
Projectile mass
Final penetration depth
Projectile nose radius
Length of projectile nose
Target densit

t

N

t

d
d
f
h
m
p
r

x
ρ

=
=

=
=
=
=
=
=
= y

Target compressive strengthcσ =

 

  
From these parameters, it is convenient to define the following non-dimensional quantities: 
 

2

3
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3

49.5

c

t

c

c

fF
d

hH
d

mM
d
pP
d

S

mV v
d

σ

ρ

σ

σ

−

=

=

=

=

=
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2.1 Semi-infinite targets (Forrestal’s formula) 

In Forrestal’s CET approach, the penetration process is divided into two different phases.   
In the cratering phase, the projectile nose is not yet fully embedded in the target and the force 
is assumed proportional to the current penetration depth.  In the tunnelling phase, the entire 
projectile nose is inside the target, and the force is determined from CET.   
 
The force acting on the projectile can then be written as:   
 

2
0 1

4

N

N

C X X X
F N VS X

M S
π

∞ ≤
=   + 

 
X≥

       (2.1) 

 
where C  is a constant determined by continuity in force, displacement and velocity, and is 
found to be 

∞
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2
0

44 N

VM
N S

XM
N N

SC
X π

π
∞

+
=

+
         (2.2) 

 
Since the projetile is assumed rigid, Newton’s 2nd law can now be used to determine the 
deceleration of the projectile: 
 

02

2

F
X
VV

T
X

−=
∂
∂

=
∂
∂          (2.3) 

 
After integration of Equation (2.3), the final penetration depth is found to be [3]: 
 

( )

2

4

2 ln
V M

S N
NM

N N

MP
N X ππ∞

 +
=  + 

X+        (2.4) 

 
In [4], Equation (2.4) is generalized for projectiles with truncated noses.  Such projectiles will 
not be analysed in this report since there is very little experimental data available.  

2.2 Boundary effects 

For small target diameters, the force on the projectile will be reduced due to boundary effects.  
This is accounted for mathematically by introducing  a correction factor α, depending on the 
target diameter, but constant during the penetration process. 
 

0( ) ( )td
d NF F V X Xα= ≥         (2.5) 

 
The correction factor α is further discussed in Chapter 3 for different material models.  
However, on assuming a constant value of α, the final penetration depth is given by 
 

( )

2

4

1 2 ln
V M

S N
NM

N N

MP
N X πα π α∞

 +
=  + 

X+        (2.6) 

 
The boundary effect problem is further discussed in [5,6]. 

2.3 Thin targets 

For thin targets, i.e. in situations where the projectile perforates or almost perforates the target, 
we have another boundary effect involved.  In the situation described in Section 2.2, the 
distance to the free surface was assumed to be constant resulting in a constant correction 
factor.  However, as the projectile approaches the rear side of the target, the distance to the free 
surface is reduced, and the correction factor should also be influenced by this fact.  To proceed 
further, it is convenient to divide the process into several phases.  
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In the beginning of the penetration process, the projectile is not affected by any reflections 
from the rear side. Hence the target resistance will be the same as for penetration into semi-
infinite targets.  However, as soon as pressure waves from the projectile have been reflected by 
the rear surface and travelled back to the projectile, a different situation arises.  The projectile 
is then (in some way) influended by the reflected waves, resulting in a reduced target 
resistance. 
 
The mathematical problem is then reduced to two different cases, depending on whether the 
reflected waves return to the projectile before or after the nose has fully penetrated the target 

2.3.1 The waves are reflected before the nose has penetrated the target 

As for semi-infinite targets, the target resistance is assumed proportional to the current 
penetration depth as long as the projectile is not fully embedded in the target, while afterwards 
we use CET to determine the target resistance.  The possibilities are summed up in the       
Table 2.1.  
 
Table 2.1 Definition of the different phases and integration limits in perforation process. 
 

Integration limits Phase Description Force (F) 
Pen depth Velocity 

Phase (i) “Infinite target” C X∞  0 to X1 V0 to V1 
Phase (ii) Corrected 

cratering phase 
( )X C Xα ∞⋅  X1 to X2 V1 to V2 

Phase (iii) Corrected 
tunnelling phase 

0( ) ( )X F Vα ⋅  X2 to X3  
(X3 is P or H) 

V2 to V3  
(V3 is 0 or Vexit) 

 
The problem is normally solved “backwards”, i.e. starting with phase (iii), and then using 
phase (i) and (ii) to find the relationships between the different transition velocities.  In phase 
(iii), Newton’s 2nd law gives us 
 

0( ) ( )VV X F
X

α∂
= − ⋅

∂
V          (2.7) 

 
Integration of Equation (2.7) gives 
 

3

2

22
322( ) ln 1 ln 1

X

X

VVM N NX dX
N M S M S

α
π

  
= + − +  

     
∫


      (2.8) 

 
From phase (ii) we have 
 

( )VV X
X

α ∞
∂

= − ⋅
∂

C X          (2.9) 
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)

which integrates to 
 

2

1

2 2
1 2 2 (

X

X

V V C X X dXα∞− = ∫         (2.10) 

 
In phase (i), Newton’s 2nd law gives 
 

VV C
X ∞
∂

= −
∂

X

2
1



          (2.11) 

 
Integration gives 
 

2 2
0 1V V C X∞− =          (2.12) 

 
Combining Equations (2.10) and (2.12) gives the following relationship between V0 and V2. 
 
 

2

1

2 2 2
2 0 1 2 ( )

X

X

V V C X X X dXα∞

 
= − +
  

∫        (2.13) 

 
Inserting (2.13) into (2.8) result in an equation where we apparently have two unknown 
parameters, V3 and X3. But since either X3 or V3 is fixed, Equation (2.8) can be used to 
determine the residual velocity or the penetration depth.   
 
The ballistic limit velocity is found by setting X3 = H and V3 = 0, and solving Equation (2.8) 
with respect to V0. Finally, the thickness to prevent perforation is also found by setting X3 = H 
and V3 = 0, but in this case the problem is somewhat more complicated, as the correction 
factor α also depends on the target thickness.  This problem must therefore be solved 
numerically.

 
   



 13  
 
 

2.3.2 The nose has penetrated the target before the waves are reflected 

 
Table 2.2 Definition of the different phases and integration limits in perforation process. 
 

Integration limits Phase Description Force (F) 
Pen depth Velocity 

Phase (i) “Infinite target” C X∞  0 to X1 V0 to V1 
Phase (ii) ”Infinite 

tunnelling phase” 
0 ( )F V  X1 to X2 V1 to V2 

Phase (iii) Corrected 
tunnelling phase 

0( ) ( )X F Vα ⋅  X2 to X3  
(X3 is P or H) 

V2 to V3  
(V3 is 0 or Vexit) 

 
In Case II, the result from phase (iii) is also determined by Equation (2.8).  In phase (ii), 
Newton’s 2nd law is also given by 
 

0 ( )VV F
X
∂

= −
∂

V           (2.14) 

 
Integration of Equation (2.7) gives 
 

2 2
1

2 1
2 ln 1 ln 1VM N NX X

N M S M Sπ
   

− = + − +   
     

2V 
      (2.15) 

 
The relationship between V0 and V1 is given by Equation (2.12).  On combining Equations 
(2.12) and (2.15), we obtain the following relationship between V2 and V0: 
 

( )
2

2 20
2 2 1exp 1 1

2
V CM N NV S X X X

N M M S S
π ∞

    = − − + −   
      

1
 −     (2.16) 

2.3.3 Determine X1 and X2 

To decide which of the cases discussed above that should be applied, we need to estimate the 
current penetration depth when the reflected pressure waves have returned to the projectile 
nose.  Let the speed of sound in the target material be denoted by ct, and assume for simplicity 
that the projectile’s velocity is constant in the start of the penetration process.  The projectile 
has then penetrated  
 

LX
v

c
W

t
0

1

2

+
=          (2.17) 
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into the target when the waves are reflected.  For thin targets, which is the subject of  this 
report, the reflected waves normally return to the projectile in the cratering phase, i.e. before 
the nose is fully embedded in the target1.  As discussed in the previous sections, X1 and X2 are 
defined as follows: 
 

1 2min( , ) max( , )N W N WX X X X X X= =       (2.18) 

3 TARGET RESISTANCE 

The only remaining problem now is to find an expression for α as a function of material and 
geometrical parameters.  This calculation is, however, not trivial, and there are in fact several 
different approaches.   
 
In this chapter, we will adopt the static approach in Littlefield et al [7] for boundary effect 
problems in Mises materials, as reviewed in Section 3.1.  This method is extended in  
Section 3.2, using a Mohr-Coulomb material model instead, which should be more correct for 
concrete targets.   
 
Both spherical and cylindrical cavity expansion theory are applied to give an estimate of the 
correction factor.  There is, however, no significant difference in the various methods, as will 
be shown in the discussions of the theoretical perforation model.  The models described in this 
report are results of static cavity expansion.  In Warren and Poormon [8] the target resistance 
for dynamic problems are calculated, but this model will not be discussed here. The dynamic 
terms do not contribute significantly to the residual velocity, but should be included in a 
complete numerical model.  The static expressions in this chapter are calculated in detail in 
Appendix A.   

3.1 Mises model 

We here present results for both spherical and cylindrical CET with a Mises material model. 

3.1.1 Cylindrical cavity expansion 

In Littlefield et al [7], the relative target resistance for small targets, using a Mises material 
model was calculated using cylindrical cavity expansion theory.  
 

2 2

1 ln
2

ep ep
t

t

d dYR
d d

    
= − +   
    



                                                

         (3.1) 

 

 

 
   

1 For the impact velocities used in the experiments discussed later in this paper, XW is between 0.1 and 0.3 times 
the scaled target thickness H.  XW is between 0.2 and 2.1 for the values of scaled target thickness discussed in this 
paper.  In any case, XW is less than XN, which is approximately 3 in the experiments discussed in the present 
paper.One experiment (with v0 = 1035 m/s) gives XW > 3, but in this case, the impact velocity is far from the 
ballistic limit. 
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where   
 

( )
2 2

1 81 1 2
2(1 2 )

ep

t t

d G d
d Y

ν
ν

    = + −   −    

1
d

−


       (3.2) 

 
 

( 21 ln( )
2

G
Y

YR∞ = + )          (3.3) 

 
The expression for target resistance given in Equation (3.1) assume that we have both plastic 
and elastic material in the target.  If the target diameter is sufficiently small, the plastic zone 
will extend all the way to the edge.  In this case, the elastic-plastic interface does no longer 
exist, and the formulas need to be modified.   
 
This can be achieved in two different ways.   One possibility is to calculate the target 
resistance using for instance mass conservation in the plastic region, as done in Littlefield et. al 
[7] for targets with small diameters.  However, this gives little contribution when analyzing the 
rear side of the target in perforation problems, so we will instead use a simpler approach by 
just setting dep = dt in Equation (3.1). 
 
If the elastic-plastic interface reaches the boundary (dep = dt), the target resistance is then found 
from 
 

2
ˆ ln

2
t

t
dYR
d

 =  
 

          (3.4) 

 
Substituting dt with 2(l – x), where l is the thickness of the target and x is the current 
penetration depth, into Equation (3.4), the following expression of the target resistance is then 
found 
 

( )2

2

ˆ ln(4 )
ˆ( )

1 ln( )
t

G
Y

H XRx
R

α
∞

−
= =

+
        (3.5) 

 
In perforation problems, the projectile is close to the rear side of the concrete target.  In this 
case, the plastic zone in front of the projectile’s nose will most likely have reached the rear 
side of the target.  This means that the distance to the free surface is equal to the elastic-plastic 
radius.  Equation (3.4) is therefore used for the target resistance instead of Equation (3.1).   If  
Equation (3.5) predicts ˆ ( ) 1.0xα > , it is set to 1.0, i.e. the distance to the rear side is sufficiently 
large to avoid correction in the resistance force. 

3.1.2 Spherical cavity expansion 

Using spherical cavity expansion theory, the corresponding correction models are as follows: 
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3 3

3 3

1 ln ln

21 ln

1 1 16 1 21 1
4 1 2 1

ep ep t

t t
t

ep

t t

d d d
d d d

G
Y

d G d
d Y

α

ν ν
ν ν

          − + +        
          =

 +  
 

    + − = +    − +     
d

−

      (3.6) 

 
If the elastic-plastic interface reaches the boundary (dep = dt), the target resistance is found 
from 
 

3

ln

21 ln

t

t

d
d

G
Y

α

   
  
 =
 +  
 

          (3.7) 

3.2 Mohr-Coulomb model 

For concrete, the yield limit is known to depend on the pressure.  It is therefore more  
correct to use a Mohr Coulomb material model to describe such a material.  The Mohr-
Coulomb material model can be written as 
 

pYY β+= 0           (3.8) 
 
In Appendix A, the derivation of the target resistance for MC-materials can be found.  Here we 
just present the results. 
 

3.2.1 Spherical cavity expansion 

 
We obtain using spherical cavity expansion: 
 

( )
2

21 3

0
3

1
21 1

3 2

ep
t

ep

t

d
dYR

d
d

β
β

β β
β

−       = −
    − −   −    

        (3.9) 

 
where 
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( ) ( )( ) ( )00 0

23 33 33
2 22 2 12

6
t t

YY Yd d
G d G d dK

ep

d
d

β β+ + + + 
=  

 

3

t
d

   (3.10) 

 
 






















−
−=

−

∞

)23(
2

23

231 00
β

β

β

β G

YY
R        (3.11) 

 
In the case where the plastic zone reaches the boundary (dep = dt), we obtain 
 

2
2(1 )3

0 1t
t

Y dR
d

β
β

β

−  = −  
   

         (3.12) 

 
and if dt is replaced by 2(l-x), the target resistance is again found to be 
 

[ ]( )
2

2(1 )3

2
(3 2 )

0

1 2

3 21
3 2

mc

L X

Y
G

β
β

β
β

α
β

−

−

−
− −

=
−  −  

 

        (3.13) 

 
In the limit 0β → , we retrieve the Mises result given in Chapter 3.1. 

3.2.2 Cylindrical cavity expansion 

We obtain using cylindrical cavity expansion: 
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2

3

0
2

3 1
2

1 1
3

ep
t

ep

t

d
dYR

d
d

β
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β β
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−       = −
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        (3.14) 
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In the case where the plastic zone reaches the boundary (dep = dt), we obtain 

 
   



 18  
 
 

( )
2

3

03 1
2t

t

Y dR
d

β
β

β

−  = −  
   

         (3.17) 

 
and if dt is replaced by 2(l-x), the target resistance is again found to be 
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Again, we retrieve the Mises result given in Chapter 3.1 in the limit 0β → .   

3.3 Comparison between target resistance models 

In this section we compare the various target resistance models for a specific material. 
 
It is not obvious how to apply the Mises yield strength for concrete materials.  The shear 
modulus (G) is well defined, and Y is here chosen to be the highest level on the Mohr-
Coulomb curve.  Since only “ln(G/Y)” is included in the mathematical expressions for target 
resistance, it is expected that α is not very sensitive for the choice of Y.  For low strength 
concrete, we chose G = 3490 MPa and Y = 165 MPa.  
 
For the Mohr-Coulomb model, the target resistance is more sensitive to the choice of Y0 and b.  
In [9], a 30 MPa concrete was analysed, and the parameters describing the Mohr-Coulomb 
model is given in Table 3.1. 
 
Table 3.1 Parameters used to describe the Mohr-Coulomb model. 

Pressure [MPa] Yield stress [MPa] 

0 6.69 

33 50 

120 110 

250 165 

 

From Table 3.1, Y0 = 6.69 and the slope (β) for each interval is found to be 1.31, 0.69 and 0.42, 
respectively.  The extreme cases will be Y0 = 6.69 and β = 1.31, i.e. the target resistance is 
determined by the “low pressure region”, and Y0 = 60 and β = 0.42, which means that the 
“high pressure region” is dominant.  The value Y0 = 60 is determined by extrapolating the 
straight line in the pressure interval between 120 MPa and 250 MPa to zero pressure.  For 
penetration purposes, it is likely that the “high pressure region” of the Mohr-Coulomb curve 
determines the result, hence the values Y0 = 60 and β = 0.42 are chosen. 
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Figure 3.1: Relative target resistance as a function of distance to free surface, for Mises 

and MC materials. 
 
In Figure 3.1, the target resistance for Mises and MC materials as a function of the distance to 
the free surface is shown.  We see that the main difference is between the spherical and 
cylindrical CET approaches, not the choice of material model.  In the analysis of residual 
velocity in Chapter 4, the analytical model will be used with both spherical and cylindrical 
Mohr-Coulomb material models. 

4 RESIDUAL VELOCITY 

After a projectile has perforated a concrete wall, it will have a residual velocity.  
Determination of  this velocity has been shown to be a rather difficult task, especially near the 
ballistic limit.  However, several empirical relationships between residual velocity and impact 
velocity exist.  The cavity expansion approach presented in this report is compared to some of 
these formulas, and to a wide range of empirical data. 

4.1 Previous work 

In several works, experiments have been performed in order to find the relationship between 
impact and residual velocities.  In most cases, this relationship is found by curve fitting the 
experimental data.  The residual velocity can often be written as (see for instance Børvik et al 
[10]) 
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)( nn
bl

n
exit VVaV

1

0 −=          (4.1) 
 
where V0 is the impact velocity, Vbl is the ballistic limit velocity, i.e. the minimum impact 
velocity required to obtain perforation and a and n are constants.  From the Norwegian 
fortification handbook (1990) [11], Bergman’s formula for residual velocity after perforation 
of fragments into concrete targets can be found: 
 

0.5555

01exit
HV
P∞

 = − 
 

V          (4.2) 

 
where 
 

3 0.4 1 1.8 0.5
08 10 cP m d v σ− − −

∞ = ⋅         (4.3) 
 
is the penetration depth into semi-infinite targets.  One major drawback with the model in 
Equation (4.2) is that it predicts no perforation if the target thickness is larger than the 
penetration depth in a semi-infinite target.  This indicates that the model underpredicts the 
residual velocity.  A further discussion is done in Section 4.4. 
 
A modified version of Formula (4.2) can be found in [12]: 
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where  is here calculated from the modified NDRC-formula: NDRCP
 

( )3

0,0756 9 1,8 0,15

NDRC a0,53
c

56,6 10 10 '
1

m
d N mv dP f

cd σ

− −⋅ ⋅  = + 
 

    (4.5) 

4.2 Cavity expansion approach 

Using the cavity expansion approach described in Chapter 2, the residual velocity is also found 
to be on the form of Equation (4.1) with p = 2 and 
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N M
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where  
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The scaled ballistic limit for a 75 mm projectile against concrete targets as a function of scaled 
target thickness is shown in Figure 4.1. 
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Figure 4.1 Scaled ballistic limit velocity as a function of scaled target thickness for a        

75 mm projectile.  
 
The deviation in ballistic limit for spherical and cylindrical CET is between 16 % and 25 %. 
 
The scaled mass M depends on the target density.  Assuming this is constant, we obtain that 
 

0.285
bl c cv Sσ σ∝ ∝          (4.9) 

 
This means that the ballistic limit velocity increases by a factor 1.5 when the compressive 
strength is increased by a factor 4.  In other words, if a C140 concrete is used instead of a C35 
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concrete, a projectile must have 50 % higher impact velocity to perforate the same wall 
thickness. 

4.3 Comparison to experiments 

Here we will compare the analytical perforation formulas to available experimental data.  
From Equation (4.1), the scaled residual velocity is a function of the parameters M/N and L.  
For a given projectile, the factor M/N is (almost) fixed.  Therefore, the classification of the 
different experimental data is made with respect to the scaled target thickness H, as shown in 
Table 4.1.  A brief comment is given in each case, i.e. for different target thicknesses.  A more 
detailed discussion is given in Section 4.4.  
 
Table 4.1 Review of all perforation experiments discussed in this report. 
H v0 vexit σc Reference 
2 135 - 352 0 – 278 200, 600 Darrigade and Buzaud [13] 
4 440 – 560 234 - 425 140, 200, 600 Darrigade and Buzaud [13] 
4.93 458 187 103 ANNC [14] 
5.33 618 287 153 HPC [5] 
6 527 20 140 Darrigade and Buzaud [13] 
7 301 – 1058 0 – 947 48, 140 Hanchak et. al. [15] 
 

4.3.1 H = 2 (Darrigade and Buzaud [13]) 

In Darrigade and Buzaud [13], some experiments against high strength concrete were 
performed.  The projectile used in the experiments is shown in Figure 4.2. 
 
 

d = 25 mm

r = 75 mm

 
Figure 4.2   The projectile used by Darrigade and Buzaud [13]. 
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Table 4.2 Different experiments against thin concrete targets with H=2 (Darrigade and 

Buzaud [13]). 
Target Projectile 

Comp str. 
[MPa] 

Thickness 
[cm] 

Mass 
[kg] 

Diameter 
[mm] 

v0 
[m/s] 

vexit 
[m/s] 

Remarks 

200 56 0.5 25 335 278   
200 55 0.5 25 250  168   
200 50 0.5 25 135   10   
600 50 0.5 25 352  249  
600 52 0.5 25 250 151  
600 53 0.5 25 140 0  
 
In Figure 4.3, these experiments are compared to the perforation model in this report, and to 
Bergman’s formula and to a model based on the NDRC formula.  The FFI-model is shown to 
agree well with the experiments, while Bergman’s model severely underpredicts the residual 
velocity.  This could be due to the fact that the model is mainly designed for fragments, and 
not for larger projectiles.  The NDRC model is better than Bergman’s formula, but the FFI-
formula gives the best prediction of the residual velocity. 
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Figure 4.3: Residual velocity as a function of impact velocity for H = 2. 
 
Near the ballistic limit, the experiments seem to be more in agreement with the cylindrical CE 
model, compared to the spherical CE model.  For larger impact velocities, there is little 
difference between the two CE models, mainly because the target is (very) thin.  The CE 
models are in much better agreement with Bergman’s model, and slightly better than the 
NDRC model. 
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4.3.2 H = 4 (Darrigade and Buzaud [13]) 

 
For H = 4, the same projectile, as shown in Figure 4.2 was used in the experiments.  
 
Table 4.3 Different experiments against thin concrete targets with H=4 (Darrigade and 

Buzaud [13]). 
Target Projectile 

Comp str. 
[MPa] 

Thickness 
[cm] 

Mass 
[kg] 

Diameter 
[mm] 

v0 
[m/s] 

vexit 
[m/s] 

Remarks 

140 105 0.5 25 545 350  
140 103 0.5 25 445 234  
200 110 0.5 25 550 425  
200 107 0.5 25 445 305  
600 105 0.5 25 560 351  
600 104 0.5 25 440 255  
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Figure 4.4 Residual velocity as a function of impact velocity for H = 4. 
 
The experiments show some scattering in this case, but compared to the NDRC and Bergman 
models, the CE approach gives a better agreement to the data. 
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4.3.3 H = 5 (ANNC [14] and HPC [5,15] experiments) 

 

 
 
Figure 4.5 152 mm projectile (left) and 75 mm projectile used in the HPC and ANNC 

experiments. 
 
 
 
Table 4.4 Different experiments against concrete targets with H = 5 (HPC [5,15]/ANNC 

[14]). 
Target Projectile 

Comp str. 
[MPa] 

Thickness 
[cm] 

Mass 
[kg] 

Diameter 
[mm] 

v0 
[m/s] 

vexit 
[m/s] 

Remarks 

153 40 6.28 75 615 276 Ref. [15] 
153 40 6.28 75 618  303  Ref. [15] 
153 40 6.28 75 612   293  Ref. [15] 
153 40 6.28 75 619  260 Ref. [5] 
103 75 44.76 152 460 183 Ref. [14] 
103 75 44.76 152 455 204 Ref. [14] 
103 75 44.76 152 459 181 Ref. [14] 
250 4 x 20 44.76 152 476 Approx. 0 Ref. [5] 
36 5 x 20 44.76 152 478 160 Ref. [5] 
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Figure 4.5 Residual velocity as a function of impact velocity for H = 5. 
 
The experiments here are all relatively close to the ballistic limit.  The scattering in the data is, 
however, close to the estimated interval between the spherical and cylindrical CE models.  

4.3.4 H = 6 (Darrigade and Buzaud [13]) 

 
Table 4.5 Experiment against thin concrete target with H=6 (Darrigade and Buzaud 
[13]). 

Target Projectile 
Comp str. 
[MPa] 

Thickness 
[cm] 

Mass 
[kg] 

Diameter 
[mm] 

v0 
[m/s] 

vexit 
[m/s] 

Remarks 

140 156 0.5 25 547 20  
 
The ballistic limit velocity calculated from the CE model is 364 m/s (cylindrical) and 432 m/s 
(spherical). 
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Figure 4.6 Residual velocity as a function of impact velocity for H = 6. 
 
In this case, we only have one data point, and it is difficult to draw any conclusions. 

4.3.5 H = 7 (Hanchak et al [16]) 

 
Table 4.6 Different experiments against thin concrete targets (Hanchak et al [16]). 

Target Projectile 
Comp str. 
[MPa] 

Thickness 
[cm] 

Mass 
[kg] 

Diameter 
[mm] 

v0 
[m/s] 

vexit 
[m/s] 

Remarks 

48 17.8 0.5 25.4 301 0  
48 17.8 0.5 25.4 360 67  
48 17.8 0.5 25.4 381 136  
48 17.8 0.5 25.4 434 214  
48 17.8 0.5 25.4 606 449  
48 17.8 0.5 25.4 746 605  
48 17.8 0.5 25.4 749 615  
48 17.8 0.5 25.4 1058 947  
140 17.8 0.5 25.4 376 0  
140 17.8 0.5 25.4 482 0  
140 17.8 0.5 25.4 443 171  
140 17.8 0.5 25.4 522 265  
140 17.8 0.5 25.4 587 368  
140 17.8 0.5 25.4 743 544  
140 17.8 0.5 25.4 998 842  
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Figure 4.7 Residual velocity as a function of impact velocity for H = 7. 
 
For high impact velocities, it seems that the residual velocity calculated with the spherical 
cavity expansion model gives a better agreement with the experiments, while there is a little 
more scattering in the experimental data near the ballistic limit.  The experiments against 140 
MPa concrete seems to agree better with the cylindrical CE model, while the experiments 
against 48 MPa concrete agree more with the spherical CE model.  The reason for this 
observation is, however, not clear at the moment, and there is a need for further investigation 
to clarify this question. 

4.4 Discussion 

In the comparison made in the previous section, the FFI-model seems to predict the residual 
velocity better than the model in the Norwegian fortification handbook, although the present 
model also gives a little under-prediction near the ballistic limit.  This may be due to the fact 
that our model does not take the brittle behaviour of the target material into account. 
 
It is not obvious whether the spherical or cylindrical cavity expansion approach gives the best 
representation of the target resistance.  The comparison in this chapter shows that the residual 
velocity in most experiments is between the results from the two CE approaches.   
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5 THICKNESS TO PREVENT PERFORATION 

When building protective structures, it is important to know how to prevent perforation of KE 
projectiles.  In this chapter, the cavity expansion approach will be used to determine the 
required thickness to prevent perforation.  The CE-model will be compared to existing 
methods found in the literature, and to some of the experiments discussed in the previous 
chapter. 

5.1 Cavity expansion approach 

Using the CE-model, the thickness to prevent perforation can be found numerically from  
 

2

2
22( ) ln 1

pH

X

M N VX dX
N M

α
π

 
= +

 
∫ S 

b

        (5.1) 

 
where V2 is given by either Equation (2.13) or (2.16).   

5.2 Existing methods from the literature 

Some of the existing formulas for required target thickness are related to the penetration depth 
in semi-infinite targets in the following way 
 

pH aP∞= +            (5.2) 
 
The parameters a and b for some actual formulas are given in Table 5.1. 
 
Table 5.1 Constants in Equation (5.2). 
 
Formula a b 
NDRC  [17] 1.24 1.32 
Degen  [18] 1.29 0.69 
Hughes  [19] 1.58 1.4 
Petry  [20] 2 0 
 
It is very important to note that the thickness to prevent perforation in Equation (5.2) is related 
to the corresponding penetration depth formula in semi-infinite targets, i.e.  is not identical 
for all formulas listed in Table 5.1.  

P∞

 
Some other formulas, which are defined in a different way, were also discussed in Teland [1]: 
 
Adeli & Amin [21] 
 

20.906 0.3214 0.0106( )pH NV= + − NV        (5.3) 
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CEA-EDF [22] 
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Chang [23] 
 

0.25

2.79
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v
= V            (5.5) 

 
Bergman [11,24] 
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Table 5.2 Experiments near the ballistic limit compared to empirical formulas  

(m = 0.5 kg; d = 25 mm). 
 

H v0 vexit σc Thickness to prevent perforation (Hp) 
    FFI A/A CEA Chang Berg

man 
Hughes NDRC Degen Petry

2 135 10 200 1.9-2.2 1.4 1.7 1.4 0.8 2.4 2.9 2.3 8.6 
 140 0 600 1.6-1.9 1.2 1.5 0.8 0.5 2.1 2.8 2.2 9.1 
6 547 20 140 11.2-13.3 2.8 5.5 4.8 4.5 6.7 7.7 7.4 36.9
7 301 0 48 5.6-8.0 2.7 5.1 5.1 3.8 3.8 5.4 5.0 21.7
 360 67 48 8.6-11.3 2.9 5.9 5.8 4.7 4.7 6.5 6.1 25.6
 482 0 140 8.4-11.1 2.7 4.9 4.2 3.8 3.8 6.5 6.1 32.2
 443 171 140 6.2-9,6 2.6 4.6 4.0 3.5 3.5 5.9 5.5 30.2
 
The thickness to prevent perforation as shown in Table 5.2 should in most cases be somewhat 
larger than the thickness used in the experiment because the projectile actually perforated the 
target in the experiments.  The two values for the FFI-model are calculated from spherical and 
cylindrical CET, respectively.  We see from Table 5.2 that the FFI-model gives higher values 
for the perforation thickness than found experimentally, but our model predicts the perforation 
thickness better than most of the other formulas.  For the experiments with H = 2, the FFI-
model predicts Hp between 1.9 and 2.2 for a 200 MPa concrete and Hp between 1.6 and 1.9 for 
a 600 MPa concrete.  For the experiments with H = 7, our model predicts a scaled thickness to 
prevent perforation between 5.6 and 11.3 for a 48 MPa concrete, while the predicted thickness 
for a 140 MPa concrete is between 6.2 and 11.1.  It should be mentioned that we should have 
had more experiments in this comparison to obtain a better statistical foundation for our 
comparison. 
 
It is difficult to show the results in Table 5.2 graphically, because most of the empirical 
formulas involved are not dimensionally correct, and therefore it is impossible to show the 
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variation of the scaled thickness to prevent perforation as a general function of the scaled 
impact velocity. 
 
Our model should be “safe” to use when constructing protective structures, since it 
overpredicts the required wall thickness by a couple of projectile diameters. 

6 PENETRATION INTO THIN TARGETS 

In some cases, the concrete wall is too thin to be regarded as semi-infinite, but the thickness is 
larger than the perforation thickness so the projectile will stop inside the target.  In these 
situations, the penetration depth Pthin is found from 
 

2
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22( ) ln 1

thinP

X

M N VX dX
N M

α
π

 
= +
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∫ S          (6.1) 

 
where V2 is given by either Equation (2.13) or (2.16).   
 
From [12], the penetration depth into thin targets is given by 
 

( ) ( )1US
thin NDRC p p s s p

s p

P P H H H H H H
H H

 = − + − −
H H≤ ≤     (6.2) 

 
where Hs is the thickness to prevent spalling discussed in the next chapter, and Hp is the 
thickness to prevent perforation calculated from Equation (5.2) using the values for the NDRC 
formula.  In Figure 6.1, the penetration depth relative to penetration depth into semi-infinite 
targets as a function of scaled target thickness is shown for a 25.4 mm projectile with impact 
velocity of 300 m/s into a 48 MPa concrete target. The CE approach is compared to the NDRC 
model in Equation (6.2). 
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Figure 6.1 Relative penetration depth as function of scaled target thickness for a 25.4 mm 

projectile into a 48 MPa concrete target with an impact velocity of 300 m/s. 
 
The spherical CE approach seems to be in better agreement with the empirical formula (6.2) 
for target thickness larger than the “spalling thickness” (see the next chapter for discussion), 
i.e. the target is considered to be semi-infinite if no damage is visible on the rear side of the 
concrete target.  For thinner targets, the only difference between the spherical CE model and 
the empirical NDRC model is the perforation thickness. 

7 THICKNESS TO PREVENT SPALLING 

The thickness to prevent spalling is not found directly from the cavity expansion approach 
presented in this report, but is included here for completeness.  Formula (7.1), taken from [12], 
gives an estimate of the scaled target thickness to prevent spalling. 
 

s NDRC1,375 2H P= +           (7.1) 

 
In Figure 7.1, this formula is compared to the cavity expansion solutions for penetration depth 
into semi-infinite targets and the required thickness to prevent perforation for a 75 mm 
projectile.  Even though the cavity expansion approach in this report can not be used to 
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calculate the spalling thickness, Figure 7.1 shows that the spalling thickness compared to the 
CE results for perforation and penetration depth is reasonable. 
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Figure 7.1 Scaled thickness to prevent spalling and perforation as a function of scaled 

impact velocity compared to the penetration depth into semi-infinite targets for 
75 mm projectiles. 

8 CONCLUSIONS 

The cavity expansion approach for penetration of rigid projectiles into semi-infinite concrete 
targets has been further developed to calculate perforation problems as well.  In addition, a 
Mohr-Coulomb based material model has been used to give an estimate of the target 
resistance.  The comparison to different empirical models shows that the CE approach gives a 
better agreement to the experiments than the other models.    
 
Bergman’s formula is underpredicting both the ballistic limit and the residual velocity 
compared to all experiments analysed in this report.  The NDRC model gives acceptable 
results near the ballistic limit against thin targets (H = 2).  In this case, the residual velocity is 
estimated too low compared to the experiments.  Against thicker targets, the CE model gives 
the best results. 
 
The perforation thickness calculated from the CE model is in agreement with the experimental 
values, although we should have more experiments to obtain a better statistical foundation.  
Compared to the existing empirical models, the CE model is shown to be good.  Especially 
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against thick concrete targets (H = 7), the other models predict a low thickness to prevent 
perforation, which is not desirable for dimensioning purposes. 
 
For penetration into targets that can not be considered as semi-infinite, the CE model is 
compared to an empirical model based on the NDRC model.  The qualitative behaviour using 
spherical CE is almost identical compared to the NDRC based model, where the only 
difference is the value of the perforation thickness. 
 
The cavity expansion models presented here, in addition to the models for semi-infinite targets, 
form a complete collection of powerful analytical tools for analysing normal impact of rigid 
projectiles against concrete targets.  
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A CALCULATION OF REDUCTION FACTOR 

When the projectile is near a free surface, the resistance force is reduced.  The reduction factor 
is calculated as the ratio between the target resistance in a finite material and the target 
resistance in a semi-infinite material.  In a finite material, the situation is illustrated in  
Figure A.1.  Near the cavity, the material behaves plastically, while the material far from the 
cavity is still elastic.  The stresses and strains in the material are calculated using continuity 
and boundary conditions at the interfaces between the different regions.  
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Figure A.1 The physical problem in cavity expansion is to find the pressure at the cavity 
surface (r=d) as the cavity expands, while known boundary conditions apply at 
the elastic-plastic boundary (r=dep) and the elastic boundary (r=dt). 

 
In general, the stress-strain relationship can be written as 
 

2ij kk ij ijGσ λε δ ε= +          (A.1) 

 
where 
 

2
1 2

Gνλ
ν

=
−

          (A.2) 

 
The strain-displacement relationship is given by 
 
 

 
  
dt
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Spherical coordinates (spherical symmetry): 
 

0r r
rr r r

u u
r rθθ φφ θ φθ θε ε ε ε ε ε∂

= = = = =
∂

=        (A.3) 

 
 
Cylindrical coordinates (radial symmetry): 
 

0r r
rr r

u u
r rθθ θε ε ε∂

= =
∂

=

Y−

         (A.4) 

A.1 Mises material modell 

A.1.1 Spherical CET 

The boundary conditions are given by: 
 

( )

( ) ( )

( ) ( )

( ) 0

( ) ( )

p
rr r
e p
rr ep rr ep

e
rr ep ep

e
rr t
e p
r ep r ep

d p

d d

d d

d

u d u d

θθ

σ

σ σ

σ σ

σ

= −

=

− =

=
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         (A.5) 

 
The equation of motion is given by: 
 

2
e ee
rrrr

r r
θθσ σσ −∂

+
∂

0=           (A.6) 

 
giving  
 

2

2 2
2 2 0r r

r
u u u

r rr r
∂ ∂

+ −
∂∂

=          (A.7) 

 
The solution of (A.7) is found to be 
 

2
1 2( )r

Ku r K r
r

= +           (A.8) 

 
The radial stress in the elastic region is then given by 
 

( ) ( ) 2
1 13

2( ) 2 2 2 2e r r
rr
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
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    (A.9) 
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Using the boundary condition ( ) 0e

rr tdσ = gives the following relationship between K1 and K2. 
 

2
1 3

4
3 2 t

KGK
G dλ

=
+

         (A.10) 

 
At the elastic-plastic interface (r = dep), we have e e

rr Yθθσ σ− = − 2. 
 

( )

2 3 3

2 3 3
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2 1( ) 2 2 2
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giving 
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   (A.12) 

 
Inserting this into (A.10) gives 
 

( )

3

1
2

3 3 2
ep

t

dYK
G dλ

 
= +  

         (A.13) 

 
In the plasticity region, we have 
 

2
p pp
rrrr

r r
θθσ σσ −∂

+
∂

0=          (A.14) 

 
using a Mises yield criterion ( p p

rr Yθθσ σ− = − ) combined with the boundary condition 
, we have ( )p

rr rdσ = − p

 

( ) 2 lnp
rr r

rr Y
d

σ  =  
 

p−          (A.15) 

Continuity in the radial stress at the elastic-plastic interface (r = dep) gives 
 

2 3 3
1 14 2 ln ep

r
t ep

d
GK Y p

dd d

   
− = −   

    
       (A.16) 

                                                 

 
   

2 Stresses are here negative in compression and positive in tension.  
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3
22 ln 1
3

ep ep
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d Yp Y
d d

   
= + −   
     

d
        (A.17) 

 
dep/dt as a function of  dt/d is found from conservation of mass (see for instance Partom [25]): 
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where 
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Solving (A.19) with respect to dep/dt gives the following equation: 
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This finally yields 
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      (A.21) 

 

A.1.2 Cylindrical CET 

The boundary conditions in this case are given by Equation (A.5).  The equation of motion 
using cylindrical coordinates is  
 

0rrrr

r r
θθσ σσ −∂

+
∂

=          (A.22) 

 
giving  
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r
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        (A.23) 

 
The solution of (A.23) is on the form  
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Ku r K r
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The radial stress in the elastic region is given by 
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    (A.26) 

 
Using the boundary condition ( ) 0e

rr tdσ = gives the following relationship between K1 and K2. 

 
2

1 2
t

KGK
G dλ

=
+

          (A.27) 

 
At the elastic-plastic interface (r = dep), we have e e

rr Yθθσ σ− = − , giving 
2

2 4
epd Y

K
G
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Inserting this into Equation (A.27) gives 
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In the plasticity region, the equation of motion is given by 
 

0
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θθσ σσ −∂
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using a Mises yield criterion ( p p

rr Yθθσ σ− = − ) combined with the boundary condition 
, we obtain ( )p

rr rdσ = − p
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Continuity in the radial stress at the elastic-plastic interface (  ) gives ( ) (p e

rr ep rr epdσ σ=
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ep ep
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dep/dt as a function of  dt/d is found from conservation of mass: 
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Solving (A.33) with respect to dep/dt gives: 
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A.2 Mohr-Coulomb material model 

A.2.1 Spherical CET 

The elastic solution is given by 
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3 2r
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G ru r K
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which is similar to the Mises solution, except that the constant K2 will be different due to 
different boundary conditions. The elastic radial stress is given by: 
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For Mohr-Coulomb materials, the yield stress depends on the pressure in the following way: 
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This gives the following relationship between p

θθσ  and p
rrσ : 
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The equation of motion in the plasticity region is given by 
 

2 0
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Inserting the Mohr-Coulomb yield stress, we obtain 

 
   



 43  
 

p
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giving the following equation: 
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Separation of variables gives  
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which after integration gives 
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and 
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The boundary condition gives ( )p
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resulting in the following expression for the radial plastic stress: 
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Inserting the values for Y and α, gives 
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Continuity in the shear stress at the elastic-plastic interface 
( ) gives: ( ) ( ) ( ) (p p e e

rr ep ep rr ep epd d dθθ θθσ σ σ σ− = −
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resulting in  
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Continuity in the radial stress at the elastic-plastic interface ( ) gives ( ) (p e
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After some calculations, we obtain: 
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The elastic plastic diameter is here unknown.  By using conservation of mass, depd ep/dt as a 

function of d/dt is found: 
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and 
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Ordering the terms gives the following equation to calculate dep/dt: 
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Solving with respect to dep/dt finally gives: 
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(A.58) 

 

A.2.2 Cylindrical CET 

The elastic solution is given by 
 

2 2
1( )r

t

G ru r K
G rdλ

 
=  + 

+          (A.59) 

 
which is similar to the Mises solution, except that the constant K2 will be different due to 
different boundary conditions. The elastic radial stress is given by: 
 

( ) 22
1( ) 2 2e

rr
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r G G
d r

σ λ
 
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 

2
1 K        (A.60) 

 
For Mohr-Coulomb materials, we have 
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         (A.61)

 
After some calculations, similar to the spherical Mohr-Coulomb case described in          
Section A.2.1, we obtain the following expression for the radial plastic stress: 
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      (A.62) 

 
Continuity in the shear stress at the elastic-plastic interface 
( ) gives: ( ) ( ) ( ) (p p e e
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Continuity in the radial stress at the elastic-plastic interface ( ) finally gives: ( ) (p e
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Again, conservation of mass enables us to find an expression for dep: 
 

2

2 ( )
ep ep

r ep

d d
d u d

 
= 

 
      (A.65) 
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and 
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Combining Equations (A.65) – (A.67), gives the following equation to calculate dep/dt: 
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Solving with respect to dep/dt gives: 
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