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SPACE-CHARGE WAVE THEORY OF INTERACTlON GAPS AND MULTI-

CA VITY KLYSTRONS WITH EXTENDED FlELDS

SUMMARY
The report presents an analysis of space-charge wave propagation
on a thin electron beam subject to modulation in a series of inter-
action gape of arbitrary length and longitudinal RF electric field dis-
tribution. Representation of general interaction gapa by twa-ports
and their possible realization by passive networks are diseussed.

Application of the general rnodulation theory to multi-cavity klystrons
with extended interaction Helda leads to a generalized small-signal
klyetron theory which is more rigorous than the conventional theory
in the sense that space-charge and density modulation effects in the
interaction gape are properly accounted for.

Analytical formulae for the frequency respanse are derived using
variouB approaches, ineluding a formulation in terms of self-admit-
tances and transfer admittanees associated with the interaction gaps,
and a formulation in terms of gap voltage waves.

A number of problems are diseussed which appear to be significant
for proper understanding of klystron behavior and for practical de-
sign of klystrons with extended interaction gaps.

INTRODUCTION

The phenomena taking place in electron beam tubes for generation and amplifica-

tion of electromagnetic power in the mierowave region have be en the subject of

very extensive theoretical and experimental studies during the last few deeades.

Of the considerable number of various practical devices that have appeared as a

result of this study, the tubes known as longitudinal beam amplifiers are probably

best known. These are characterized by a long thin electron be am surrounded by

an electric cireuit that can take many different eonfigurations. The amplification

proces8 is basically one in which part of the kinetic energy of the beam is trans-

ferred to electromagnetic power by cumulative interaction between space-charge

wave8 propagating on the electron stream and the electromagnetic field of the sur-

rounding cireuit. Since a lang thin beam is a common feature of these tubes, the

characteristics of various types of longitudinal beam amplifiers are mainly deter-

mined by the details of the circuit configuration. Typical examples are the travel-

ing-wave tube (1,2,3,4,5) and the conventional narrow-gap klystron (2,5,6,7),

which represent distributed and lumped interaction, respectively. Although the

concepts of distributed contra lumped interaction may be useful for qualitative

understanding of the interaction processes, the fundamental phenomena of velocity

modulation and trans it-time effects causing density modulation and power extrac-

tion are the same for both. In particular, it should not be implied that distributed

and lumped interaction phenomena in general are charaeteristic for traveling-
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wave tubes and klystrons, respectively. Examples can be given of traveling-wave

tubes employing transmiesion lines conøisting of coupled narrow"'gap cavities es-
sentially similar to klystron cavities. thUB exhibiting lumped interaction (8). Con ...

versely, later developments of klystrons make use of extended tield. of resonatecl

slow-wave structures for which the interaction is distributed (9,10). Nating that

the circuit of the traveling-wave tube is a non-resonant transmission line and that

of the klystron a number of separated resonant cavities, the øignificant differenees

between the twa type 8 of tubes, accounting for thei r typical operating charaeteris ...
ties,must be ascribed to fundamental differences in the electrical characterietics

of the circuits rather than being associated with distributed contra lwnped inter-

action.

Even if historical1y the klystron is the older of the two, the theory of the various

aspects of traveling-wave interaction has reached a more satisfactory state than

the theory of the klystron. This situation is probably due largely to the fact that

klystron theory has developed along two different lines based on kinematic and

space-charge wave approaches, respectively. The original theory of velocity mod-

ulation and bunching was a pure kinematic or ballistic approach in which space-

charge effecte were disregarded (11.12). Later theories introduced corrections

accounting for the debunching effects of space-charge in the drift tubes between the

gape (13). Although these corrections essentially are equivalent to a epace-charge

wave description (14,15) of the drift phenomena in the regions between the gape,

the modulation procesaea taking place in the gapa themse1vea are still \reated on

a kinematic basis using a madel with infinitely narrow gaps and introclucing correc-

tion factors accounting for the small but finite length of the actual interaction gapa.

It is not widely recognized, however, that this model is on ly approximate and does

not account ful1y for the phenomena taking place. The approximatioDe involved are

those of neglecting density modulations and space-charge effects in the gaps. In

many cases these appro:"imations are serioue, particularly in klyetrons with high-

density beams and extended interaction regions, but also to a lesser extent in con-

ventional narrow-gap klystrons.

The present report is concerned with a small-signal study of interaction gap pheno-

mena and multi-cavity klystroDs from a very broad point of view. In presenting

the material contained in the report emphasis has been put on generality, and at-

tempts have been made to make the basic assumptions as unrestrictive as possible.

A cODsistent and consid~rably more general theory than the conventional one is de-

veloped by performing a space-charge wave analysis of the interaction processes

in a beam traversing an amplifier structure consisting of a Dumber of adjacent but

uncoupled interaction regions of arbitrary lengths and arbitrary longitudinal RF

field distributions. Through this approach it is p08sible in the analysis to avoid

the rather artificial and unnecessary separation of drift-tube and interaction-gap

phenomena that is characteristic of conventional klystron theory.

Even it the theory essential1y deals with distributed or extended interaction pheno-

mena and in this re speet is related to the theory of traveling-wave tubes, the re are
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significant differences ariøing from the types of circuit used. It i. characteristic

for klystronø as opposed to traveling-wave tubes that the longitudinal RF fieid dis-

tribution in each interaction region is approximately independent of the inter~ction

proeesses occurring in the region. The normal-mede theory of resonant cavities

(2) showB that tOOsaS8umption is justified provided the cavities have relatively
high Q-values, i e large stor ed energiee compared to the power dissipated in the

cavities.

The general approach discu8sed ahove. using space-charge wave analysis. leads

to a consistent small-signal theory which differs from the less complete formula-

tiana in severai respects: first, hoth velocity and density rnodulation phenomena

in the interaction regions are properly accounted for; second. space-charge ef-

fects in the interaction gapa are included i and third, the theory is considerably

more general, comprising interaction regions of arbitrary lengths and arbitrary

longitudinal RF field dh:tributions.

These differences between the more rigorou8 theory of this report and the less

complete formulations have many impUcations that are discussed as they natural-

ly appear in the analysis. Furthermore. apart from the limitatlons of convention-

al klystron theory, the present approach appears to be mathematically simpler, and

leads to a number of significant results concerning interaction gaps in general and

multi-cavity klystrons in particular. The !ollowing is a brief account of the main

contents in each chapter.

Chapter 2 is concerned with the fundamental modulation phenomena occurring in

an electron beam traversing a number of eascaded modulation regions in succes ...

si on. The RF kinetie energy associated with the beam and conversion of kinetie

beam power to electromagnetic power in each region are diseussed and shown to

be consistent with the small-signal kinetie power theorem (18, 20, lI).

In Chapter 3 application is made of the general space-charge modulatlon theory of

Chapter l for a very thorough small-signal study of multi-cavity klystrons with ar-

bitrary, extended interaction fielda. General analytical formulae for gain and

bandwidth are derived using twa different approaches. One leads to a formulation

in terms of se1f-admittances and transfer admittances associated with the inter-

action regions i this theory is valid for arbitrary. stagger-tuned cavities. The

other, which is applicable only to klystrons having synchronously tuned cavities,

is a "wave approachll quite analogous to the approach used in the theory of traveling-

wave tubes. In this wave forma1ism, klystron operation is described in terms of

growing and attenuated lIgap voltage waves" propagating in approximate synchron-

lsm with the slow and the fast space-charge waves on the beam.

In thlø chapter a considerable number of problems are discussed which are impor-

tant for proper understanding of klystron theory and for practical design of klys-

trans, sueh as stability. optimization problems, scaling rules for gain and band-

width. and reciprocity theorems.



• 16 -

Chapter 4 deai. with a further generaHzation of kly.lron lheory which dilfero from

the theDry I" Chapter 3 In thal kly.tron performance lo deocribed by mean. of ap-

proprietely deflned matrix paramelero a•• oelaled wilh group. of conoecutive cav!-
tiea, rather than by Icalar parameter. a•• oelated with lingle cavitf... The mat-

rix formu1&tion lo partieularly powerful for .olvlng cerlain typeo of problem. arle-
inl in cODJlection with aeveral klystrona coupled in caleade witb COmmOD beam,

ti I evaluation of gain and optimum apacing of two or more caleaded klyatron.,
periodtcally otagger-luned kly.lron., and related problem •.

Chapter 5 contains a general gap tbeory of extended interaetion region.. Launch-

Iq of .pace-charge wave. by an extended modulation gap and excitation of an ex ..
tended-interaction ca vity by a modulated beam are øtudied in con.iderable detail.

The theory include. a di.eu.don of the conditiona for which the interaetian region

couplea only to one of the .pace-charge wavea, a situatian which ha. lome actua1-

fty t. connection with falt"wave couplers for low nohe parametric ampllfiere (24,2.8).
The .eneral gap theory developed in this chapter 8ubstantiates the previously die-
eueeed objectionø that must be raised concerning the validity of conventional gap
lheory.

In the subsequent treatment general two-port representations of interaction regions

are liven. Repreøentation by a' combination of pas8ive, reciprocal networkø and

tran.mission lines is discussed and shown to be pOBsibleonly i! the beam loading
of the gap v&.nishes. For thiø case a practical analog of mulU.•cavity klystrons h

sUlle.ted, which is ba.ed on tranemission lines loaded with palsive, lumped reeo .•

nant circuits (16). The suggeøted analog appearø to have potential ule. for optimi-
zatlon of øtagger-tuning pattern of muiti-cavity klystronø.

The remaining part of Chapter 5 iø concerned with a dhcuøøion of general proper-
ties of the relevant gap parameters, which are the gap coupling coeUlelents of the

dow and the fast space-charge waveø, and the electronic admittance. The chapter

concludee witb presentation of numerical data for these parametere in the epedal
case that the longitudinal RF field distribution is øinusoldal. Thie i. a field di.tri .•
butlon of considerable practical interest because it couples .trongly to the .pace-
charge wave. and can be realized very slmply using shorted slow-wave Itructuree
which. in leneral, are characterized by relatively high interaction impedance (9).

The fncludon of numerical data for the slnusoidal fleld diøtrlbutlon serves a. an
illu.trative example of the po•• ibflities that exist for enhancement of klystron gain
and bandwidth by the ule of non-conventional interaction regiane.
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PROPAGATION OF SPACE-CHARGE WAVES ON LINEAR ELECTRON

BEAMS IN CASCADED MODULATlON REGIONS

Introduetion

An exact analysiø of the propagation ol øpace-charge waves on longitudinal electron

beams of finite crose-sedlone is extremely difficult. Only approximate salutien.

ba.ed on øimplified physical rnodels ol. the electron beam øystem can be obtained

(14,15). It is fcund that the beam supports an infinite numher of .pace-charge

modes, each consiøting of a pair of øpace-charge \l{aveø having propagation faciorø

whoae arithmetic averageø are approximately equal to the propagation !actor

associated with the time-average or De electron velocity. For a thin beam witb

small lateral extension campa red to the wavelengthø of the øpace-charge waveø.
the loweøt-order or funda.mental space-charge made has approximately uniform

current and velocity modulations over the entire heam cross-section, whereas the

higher .•order modes vary rapidly acros8 the beam. For this reason external struc-

tures with approximately uniform fields at the position of the beam couple predomi-
nantly to the fundamental space-charge mode. This fact allows interaction pheno-
mena between a thin beam and external circuits to be analyzed, disregarding all but
the fWld.amental space-charge mode. This is one of the fundamental assumptionø

on which the present work is based. The second fundamental assumption iø that of
small-Bignal conditionø, which is necessary for linearization of the equationø des-
cribing the interaction phenomena. The assumption of small-signal conditionø iø
not too re8trictive to be useful. because longitudinal heam tubes operate in the li-
near range throughout the larger part of their interaction length except possibly
the output region. Thiø is especially true in the upper frequency range. wbere ef-

ficiency generally is quite low.

In order to avoid mathematical complications that are unessential for an under-

standing of the physical phenomena. the one-dimensional model of the RF structure
and the beam is adopted. This assumption implies that all quantitieø considered in
the analysis are function8 of a single spatial co-ordinate, the co-ordinate along the
beam. All parameters are thus independent of the co-ordinates transverse to the

beam. The one-dimensional small-signal analysis in conjunction with the as sump-

tions stated below leads to a theory in which a signal propagating on the beam can
be characterized in terms of two modulation parameters, for example the velocity
and current modulations. or .uitable linear combinations of the.e.

The assumptions, stated explicitly. are:

a) The analysis is one-dimensional. The assumption that none of the relevant RF
quantities depend on transverse co-ordinates is weU satisfied in phy.ical beaml
i! the beam diameter is sufficiently small. In this case both the space"charge
field and the external circuit field are approximately uniform over the beam
crosa-section.
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b) A strong longltudinal magnetle foeUling £leid conflnes the motion of the elec-
trons to lines paralleI with the axi••

c) The analYlis iø non-relativiøtic. ThiB a.8umption impliea that the accelera-
tien of eleetrons from RF magnetie fielde can be neglected.

cl) The electron beam ia assumed to drift in a cloud of heavy politive ion& exactly
neutrallzing ita time-average or De .pace-charge. The ionl are a •• umed to
have infinite masa. Thus, they are not accelerated by the RF field and do not
contribute to the RF current in the beam.

e) The time-av.erage quantitieø are independent of the axial co•.ordinate. Thi.
restriction 18 required to ascertain that only the fundamental .pace-charge
mede propagatea on the beam, since spatia1 variationl in the time-average
velocity introduee cro ••• couplings between the fundamental Ipace-charge made
and higher.order model.

l) The RF modulation on the beam is treated aø a small perturbation ol the time-
&Yerale or De conditionø. The analysiø, therefore, is valid under .mall-
d~l conditions.

/

IJ Excltationl o! higher-order space-charge modes are neglected and a signal
on the beam iø asøumed to propagate only in the fundamental s~ace-charge
mode. Tms aøsumption il weU satiafied for thin beams drifting in a conltant
De potential.

h) Interaction between the beam and the external circuit !ield le treated on a small-
perturbation baøis, i e with weak coupling between the space-charge field of
the beam and the cireuit field ol the external øtructure.

The allJUmption ol weak coupling permits a description whieh es.entially is a
coupled-mode theory, in which the composite system consilting of the electron
beam and the external circuit can be analyzed in terms of the eharacteri.tie
parameters of the .ub-ayøteme, namely the space-charge mode propagating on
a freely drifting beam without the external circuit. and the normal mode. whieh
are charaderistic for the circuit with no beam present.

The coupled-mode formulation,based essentially on the same aSlumptions as the

anes øtated above. has been uled extensively in the analysie of longitudinal-beam

ampllfiers Buchaø tQe traveling-wave tube (1) and the klYBtron (6). The traveling-

wave tube i. a typical repreøentative of the class of beam tubes having extended

interaction, based on coupling between a space-charge wave propagating on the
electron stream and a øynchronous circuit wave propagating on a tranlmiøsion line,
while the conventional klystron iil a sense repreøents the other extreme: lumped

interaction Helds confined to narrow gaps.

In the present work we shall analyze the interaction of øpace-charge waves with
circuit fieids which are conlJiderably more general in the sense that the Iengthø of
interaction regions and their longitudinal RF field distributions are quite arbitrary.
The analysiø naturally dividee into two parts. The firøt part iø concerned with the
excitation of space-charge waves in the beam by a given circuit Held. The approp-
riate equation describing this relationøhip is conveniently referred to as the elec-
tromc equation. the form of which does not depend on the details ol the circuit.
The second part of the analysh deals with the excitation of circuit neldl by a given
øpace-charge modulation in the beam. This relation is expressed in the circuit
equation which generally takes different forms depending on the particular type of
circuit used. SimultaneouB solution of the electronic equation and the circuit equa..
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tian, 8ubject to the proper boundary conditions, yields a consistent salution of the

problem of determining the space"'charge waves and the circuit neId. of the com-

posite system represented hy the beam and the circuit coupled together.

Z.2 Basic equations governing .pace-charge flow

In the analyøiø of electron beam problems it is convenient to adopt a sign CQnven-

tion that resultø in positive numhers for electron beam velocity, current denøity.

and electron øpace-charge density. The choice of sign8 for the varioul!I fieid quan-

tities must be done in away which is consistent with Maxwell's equationso In the

m k. system uøed throughout this report, these are

'V X E = 013
at

'V x fl = i + oD
at (2. l)

'V D = p

'V B=O

Obviously, this set of equations is invariant to the following tranøiormations

E - E
H - fl

i - i (2.2)

p - p

u u

These transformations alBo leave quantities involving products and raUos of two

field quantities invariant, such ae energy flow E XH, impedance E/H etc. The

advantage gained by using this sign convention in analyses connected with electron

beam problems more than outweigbs the minor dieadvantages resulting from adopt-

ing a sign convention different from the standard form.

Under the small-signal assumption all quantities can be written as a sum of a time-

average part and a time-varying part whose amplitude is much smaller than

the time-ave rage part. The first-order evaluation of the time-varying quantities

results in linear equations. Thus, a sinusoidal excitation of frequency w cauøes

a sinusoidal response of all time-varying quantities at the same frequency. Under

the aS8umptions stated above we can write, using complex notation
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E(z,l) = E (z) + Re [ E(z) eJ"'1 l (2.3)o

l (z,l) = lo (z) + Re [ l (z) eJ"'1 l (2.4)

U(z,l) = u (z) + Re [ u (z) ej"'l l (2.5)o

p (z, l) = po(z) + Re [ p(z) eJ"'1 l (2.6)

where E(z, t), i(z, t), u(z, t) and p (z, t) are the longitudinal electric {ield inteneity.

the enrrent density, the velocity. and the space-charge densitYt reapectively.

Furlhermore, E(z), l(z), u(z) and p (z) are lhe small •• lgnal complex amplilude.

ol the time-varying parts of the same quantities. Using the Eulerian approach,

treating the beam as a continuous lIfluid", made up of an infinite number of inlinite-

ly small partieies with an infinitesimal charge, the space-charge now i. governed

by the following three equations :

a) The continuity equation

b) The definition of eurrent in terma of velocity and space-charge density

c) The force equation

The continuity equation is given by

ol(z,l)
OZ

+ Op(z,l) = O
ol (2.7)

Separation in time-average and time-dependent parts yields

l e i = con. tanto
(2.8)

ol(z) + j'" p(z) = Ooz
The current is defined by

(2.9)

l(z,l) = u(z,l) p(z,l) (2.10)

Neglecting cro8s-productB of second order, we obtain. upon øeparation in time-

ave rage and time-dependent parts

l (z)o
(2. Il)

= u (z) p(z) + p (z) u(z)o o

In the Eulerian formulation the force equation is given by

(2.12)

du(z, l)
dl

ou(z,l) + ( l) ou(z, l) = ! E(z,l)
=:: O t u z. O Z m (2.13)
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where e and m are the charge and mase of the eleclron, re.pectively (note that

in aur natatian the eleetronlc charge e is a po.ltive number). Separation of the

equation lnto time-average and time-dependent parti yieldø

[t u (z)lJ = ~ E (z)o m o
(l.14)

jalu(z) + .2-oz = e E(z)
m

(l.15)

According to aur initial assumptions, the time-average quantities do not vary with

the axial co-ordinate z. Thi. mean8 that the beam is drifting in a region of can-

ltant DG potential Va which is related to the De velocity Uo by the equation

v -= J E (z) dz = t!!!. u 2o o e o
(l.16)

Equatlons (2.8) through (2.15) can be combined to two equations which take on par-

ticularly simple forms after introduetion of the following variables

U(z)
Uo u(z)

(2.17)=
eim

al (2.18)
~e =

Uo

The quantity U(z)

modulation u(z).

velocity uo.

ie the RF kinetie voltage which is proportional to the velocity

The propagation factor ~e is associated with the DC electron

Substitutlng from Eqs (l.9) and (2.11) in Eq8 (2.15) and (2.12). and introducing

the notations defined above, we obtain

[j Be + 00'] U(z) = E(z) (2. 19)

00']
i

[j Be i (z) l . ~ o U(z) (2.20)+ = 2' J e vo

These twa equations. which form the basis for the 8ubsequent ana1Y81s, govern the

propagation of space-charge waves on a longitudinal electron beam. The first equa-

tion is the force equation re lating the acceleration to the electric fieId. The second

iø essentially the continuity equation, relating the rate of change of the current

modulation i(z) to the kinetie voltage modulation U(z).

It is important to natice that the electric field intensity E(z) appearing in Eq (2.19)

is the total electric field due to both the charges in the beam and the imposed cir-

euit Held. Under the aS8umption of weak coupling (small perturbation) the super-

position principle obtains, that is, the electric field of the composite system is the

sum of the electric Helde in the modes of the two eub-systems with the coupling
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removed. In our case these are the electric fieida E (z) a d E () {h {b n c z o t e unda-
mental space-charge made on the beam with the external circuit removed, and the

appropriate circuit made. reBpect~vely. ThuB. we have

(l.ll)

l.3

In the next section we shaIl show that the space-charge fieid can be eliminated

(rom Eq (2.19) by expressing Eb in terms of the current density i.

Relation between spa cc-charge field and current density

The .pace-charge field Eb(z) can be

the uøe of Maxwell 's equations (2. l).

curl equation for H

related to the current density i(z) through

We have, by tak ing the divergence of the

V' [ i + j w'o Eb J = O (l. ll)

Observing that the current density i is directed in the positive z-direction. we

have

I= --- (l. l3)

In the truly one-dimensional beam,there are no transverse Helde, in which case

V . .E1, = ilEb(z)/ilz. Thu., {rom Eq (l. l3)

I
ju.>€ o

i( z) (l. l4)

This case requires infinite beam eross-eeetion and has less practieal interest than

the beam with finite eross-section. In the latter case, the spaee-charge fieid has

a transverse component Er' and from Eq (l. 23) we £ind

(l. l5)

This equation serves as an illustration of the laet that the longitudinal field in the

linite beam is modified by the transverse fringing field. A rigorous analysis of the

finite beam subject to the appropriate boundary conditions (15) showa that the 100gi-

tudinal space-charge field of the fundamental space-eharge mode is obtained by

multiplication of the expression in Eq (2.24) by the square of a factor R. the plasma

reduction factor. which is always less than unity. The reduction factor depends on

the detaila of the geometry of the beam with its surrounding condueting boundaries.

and the propagation factor 13e• Thus, for the finite beam Eq (l. 24) must be modi-

fjed to
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(l. l6)

In the Bubscquent analyses we shall 3S8ume that the plasma recluction {actor R is

constant throughout the.entire interaction length. Aha, according to the basic

assumptions stated in the introduetion, the beam is sufficiently thin to justify the

one-dimensional beam made! with no variations of the longitudinal electric fieid

and enrrent density over the beam cro8s-section. We can then write Eq (2. lb) in

terms of the complex amplitude of the enrrent I(z) rather thao the eurrent density

i(z). The equations are further simplified by introducing Bome new parameters re-

lating to the propagation of space-charge waves, namely the plasma frequency Ul ,P
the reduced plasma frequency Q) , the reduced plasma propagation factor 13 • andq q
the RF beam impedance W. These quantities are defined by

(j)l • 00=p m '0

Ulq = Rllp

Ilq = 51
uo

W =
lVo t'q
I Il.o

(l. l7)

(l.l8)

(l.l9)

(l. 30)

With the use of these definitions the expression for the space-charge neId becomes

(l.31)

2.4 Beam modulation in gener~I cascaded interaction regions

Substitutlon of Eq (l. l7) through (l. 31) in Eq (l.19) and (l. lO) r.sults in the follow-

ing equations between the kinetie voItage U(z), the RF current I(z) and the circuit

fi.ld E (z):
C

U(z) = i Il W I(z) + E (z)
q c

(l. 32)

(l.33)

These equations are reminiscent of transmission-line equations. and in faet can be

shown to be identieal with these in a co-ordinate system moving with the time-

ave rage velocity of the beam, provided the circuit field is zero (17).

The first-order coupled "transmission-line" equations above can be combined to

yield two second-order differential equations, one for the current and one for the

kine tie voltage
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'/1 ill
- (fl.

2
_ flq

2)1+ 2'fl l
ilz2 J •

ilz
; j flq E

W c

il2U ilu
(fl.

2
_ flq

2)U (j fle + ~) E--+ 2jfl - - ;
il z2 e ilz ilz c

(2. 34)

(2.35)

wh~re the explicit dependenee of I, U and Ec on the axial co"ordinate z has be en

onutted. It is noted that the left.hand sides of the twa differential equations are
identical.

We shall asswne that the beam is subject to modulation by the RF fieida in a num ..

ber of cascaded modulation regions as shown schematically in Fig l. 1.

lr lp

---- -----
Electron (l) (2) (r) (p)
beam

U(O) l5-..J I x I
1(0) Ol O 1L..P.i

---- ------
l' I J" J' I I l"
r r p P

I • l • I I
I p,r I I

O Z I I
I

Fig 2.. l Sehematie diagram of the arrangement of cascaded, uncoupled
modulaUon regions

The longitudinal RF tield distribution and interaction length of each of the p ad-

jacent moclulation regions, which 8upposedly are uncoupled in the absenee of the

beam. are completely arbitrary and may consequently include field-free drift tubes.

For reasons of generality we shaU assurne that the beam at the entranee to the

modulation region (z::;;O) has an initial space-charge wave modulation speci£ied by

U(O) and 1(0). The modulations U(O)and 1(0) and their derivatives with respect

to z are interrelated through Eqs (2.32) and (2.33).

Equations (2.34) and (2.35) are readily solved by m.ans of Laplace transformo.

Using the notation in Fig 2.1, we £ind

I(z) ;
-jfl.z l j~ -jfl (z-x)

e sin flqZ+ j W E(x). e sin flq(z-x) dx
o

(2.36)

-jfl z -jfl z z -jfl (z-x)
U(z); U(O). e coofl z + jI(O) W. • oinfl z+j E(x). e coofl (z-x)dxq q q

o
(2.37)
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where the suhscript of E(x) has be en omitted. In the subsequent analysis consider-

ahle simplifications of the algebraic manipulations result through introductio? of

twa operators l::J. and t. operating on functions of the electronic propagation coo-

stant ~e' These operators are defined by

Ll.f( fl.) = t [f(fl. + flq) - f(fl. - flq) J

tf(fl) = t[f(fl +fl}+f(fl -fl}]e e q e q

(l. 38)

(l. 39)

By means of the difference and sum operators l::J. and S, the superposition of slow

and fast "pace-charge waves in the cascaded modulation regions is expressed in a

particularly simple way. For the following analysis it will he useful to list some of

the propertics of these operators. They are linear and commutable with respect

to differentiation and integration

(l.40)

...::.. [ M (fl ) ]
dfl ••

(l.41)

with identical results for the sum operator f,. Further. the following important

relations hold:

R. [ Ll.f(fl } t f(fl )•• ) = .l LI. [f( fl } f( fl }•• J (l.43)• • 2 • •
1m [ M( fl ) t f( fl J* l = t 1m [ f( ~ + flq) f( fl. - fl/' ] (l.44)• • •
lim [ M(fl.)) = d [(fl.) (l.45)

~ - Oq

lim [tf(fl.} J = f(fl ) (l.46)•
fl - Oq

Equations (2.43) and (2.44) are useful in connection with problems involving evalu-

ation of energy flow on the beam, while the relations expressed in Eqa (l. 45) and
(l. 46) provide the link between the space-charge wave theory and kinematic ana-

lyses based on the assumption of zero space-charge. For negligible space-charge,

operation on a function by the di!ference operator ~ is equivalent to differentia-

tion. and operation by the sum operator f, leaves the function unchanged.

Expressing Eqs (2.36) and (l. 37) by means of the operators ~ and $. we obtain
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I(z) [
-jt! Z] U(O) [-jt! Z] JZ -jt! (z-x)

= 1(0)$ e e - W t>e e -~t> E(x)e e dx

o
(l.47)

[
-jt! z] r -jl> Z]

U(z) = U(O) $ e e -I(O)W t>Le e Jz - jl} (z-x)
+ $ E(x) e e dx

o
(l. 48)

The integrala on the right-hand sides can be expressed as a sum of integrals over

each gap. In doing this it is natural to introduee a separate co-ordinate system for

each gap with origin at the center. Following the notation used in Fig 2. l, let x
r

be the co-ordinate referring to the rth gap. The relation between x and z is
r

then given hy the equation

x = z -r

.t;. + .z:. '
l

(l.49)

Furthermore, it is convenient to express the electric fieid in each modulation gap

as a product of a normalized distribution lunchon F(x) and an amplitude factor V

which. by definition, is the RF gap voltage. For the rth gap

E(x ) = F(x ) Y
r r r (l.50)

In the suhsequent application of the rnodulation theory to multi-cavity klystrons

with interaction gapa be ing parts of high-Q cavities, the distribution function F(x)

can be chosen real (and V complex). The validity of the general modulation theory

of this chapter, however, is not restricted to real va!ues of F(x).

The choice of normalization of the distribution function F(xr) is irrelevant. and

can be specified in any convenient manner. In the present report we shall use the

following normalization:

F(x )i< dx
r r

~ 1 (l. 51)

where 1. i s the length of the rth gap.
r

Equations (l. 50) and (l. 51) are equivalent to the following definition of the RF gap

voltage Yr:

y y* =
r r

E(x ) E(x )* dx
r r r

(l. Sl)

which showa that the choaen normalization leada to an rms definition of gap voltage

(in the spatia! co-ordinate). The often used voltage definition as the line integral
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of the RF fieId, to which Eq (l. 52) rcduces for a conventional gridded gap .••..ith

constant RF HeId, [ails in many important cases for which the RF electric fieid

reverses direction within the gap. A typical example is the sinusoidal standing-

wave type interaction fieid which is characteristic for resonated slow-wavc strue-

tures.

Wc ahaH defin.c a coupling coefficient for each gap as the Fourier transform of

the normalized RF fieId. For the rth gap

1/z .l/z
r j p x

r J.; x

Mr(~e ) = j' E(x ) e e r dx = J F(x ) e e r dx (2.53)
Vr r r r r

-.l /2 -.l /z
r r

Using these new nota lions, the RF current and kine tie voltage modulations are

readily evaluated from Eqs (2.47) and (2.48). At the position x in the last gapp

these quantities are given by

I(x ) = 1(0)
t [e -jPe(Xp+lp,o)] _ UJO) ~ [;jile(xp+lp, o)]

p

p-I
x

V [ -j;3 (~ + x ) ] V ~-jilX P j;Jy ]-L -:: ~ e e ,r p M (il ) ...E~ e e p J F(y) e e p dy
W r e W / p p

r=l -~ 2
(2. 54)

U(O) t [ -j~ (x +~ o)J [ -jp (x +l. )J
U(x ) = e e p , _ 1(0)W~ e e p p, °

p

(2.55)

where.t is the spacing between the centers of the rth and pth gap, and L
P. r p, O

is the dietance from the input end (z = O) to the center of the pth gap.

li it ie recalled that the operators 6 and Sexpress euperposition of twa waves,

the interpretations of the expressions in Eqs (l. 54) and (l. 55) are straight forward:

the current and kinetie voltage in the output gap are expressed as superpositions

of alow and fast space-charge waves partly due to the initial bearn modulations,

and partly originating in the modulation gaps. Two space-charge waves due to the

initial current and kinetie voltage modulations 1(0) and U(O) propagate along the

beam with propagation factors (13e + Øq) and (Øe - Pq) for the slow and fast wave.

respectively. These waves propagate unaffected by the rnodulation Helds. On

these are superposed the slow and fast waves which are excited by the modulation

neIde. The slow and fast waves at the position xp in the output gap due to the

modulation at the rth gap are given by
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u (x ) =
r p

I (x )
r p

Yr~ (-j(~e+~q)(lpr+xl -j(~-~)(l +xl]= - -l Mr ~e + ~q) e • p - M (~ _~ lee q p, r p
W r e q

(l. 56)

Yr [ -j(~ +~)(l +x) -j(~ -~)(l +X)JM (~ +~ ) e e q P. r p +M (~ _~ ) e e q p, r p
2 req req

(l. 57)

wbere the Fourier tranøforms

l/l
r

J-1/z
r

(l. 58)

can be interpreted as the coupling coefficients of the slow and the faet wave. respec-

tively. Since the coupling coefficient M(13e) is a {unelion of tie' the twa coefficienta

Mr(~e + ~q) and Mr(~e - ~q) are generally different, meaning that the slow and the
fast space-charge waves are excited with different amplitudes. For a given De
beam velocity (13egiven) the difference between the twa coupling coefficients tende

to increase with increasing ti • They are identical only il l3 is zero i e for a
q q'

heam with negligible space-charge. The significanee of the occurrence of twa dia-

tinet coupling coefficienh will become clearer when the power relationships in the

gape are considered. It will be shown that the beam loading is simply related to the

two coupling coefficients, being propartianal to the difference between their squares.

In the subsequent analysis we shall introduee the following simplified notations :

~e + ~q = ~+ (l. 59)e

~e - ~ = ~e (l.60)q

Mr(~e + ~q) = M+ (l.61)r

Mr(~e - ~q) = M (l.6l)r

and similarly for other quantities associated with the slow and fast space-charge

waves. The superscript plue and minus will thus refer to quantities associated with

the slow and fast wave, respectively. Although it may be argued that the opposite

choice would be preferable, the above superscript notation is more natura l in con-

nection with the sum and difference operators S and A us ed in this report because

the superscript then indicates the operation that has to be performed, namelyaddi-

tion or subtraction of ~ and ~ wherever these quantities are involved .. e q

It follows immediately from Eqs (2.56) and (2. 57) that the ratios between the kinetie

voltage and the current for the two waves are given by minus W and plue W. res •.

pectively.
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(l.63)

(l.64)

which illustrates the characteristic in-phase and out-of-phaøe relationøhips between

current and ldnetic voltage for the twa space-charge waves originating in each modu ...

lation gap.

Z.5 Extraction ol power from the electron beam

In thiB section we shaU evaluate the electromagnetic power that ia extracted from

or imparted to the beam when it nows through the same structure as the one shown

in Fig l. It consisting of a total of p eascaded interaction regions. Since the inter-

action regions are not coupled mutually. the power bala'nce for each region can be

evaluated separately. As shown in Appendix A. application of the normal-made
theory for resonant cavities (2) gives the following expre8sion for the complex energy

now f' to the electron beam {rom the particular circuit associated with the pthp
interaction region:

l/z
I J I(x ) E(x )" dx= =l P P p

-L /lp

l y"
l P

t/z
p

J I(x) F(x )" dxP P P
-J-/l

(l.65)

where E(x ) is the circuit field, and l(x ) is the beam current. It fe øignificant
p p

that the øpace-charge field, according to normal-mode theory, contributes nothing

to the ener5" flow except indirectly through ita effect on beam current modulation.

By direct substitution of the current from Eq (l. 54) in Eq (l. 65) we find

~
-Jfll J nfnlM'tee ep,O_,!,.!:!.l.Q"LV*6

p l W P

I
lW

t /z x
p .~ f. l•• J~eX JfleY

+ y y" t> J F(x) e p F(y )e p dy dx
pp / p / p p p

-.lp l -~ l

(l.66)

The increase in be am energy £low in the pth gap is thus a sum of terms due to:

a) Initial current and velocity modulation 1(0) and U(O)

b) Modulation in the preceding gaps by the gap voltages Yl' Yl --- Y (transfer
terms) p-I

c) Modulation in the pth gap itsel! (beam loading term)
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We ehall define appropriate tranafer admittances Y and beam loading admit-p.r
tancel Ye p on a voltage-power ba.ie. The transfer admittance y from the

• p r
rth to the pth gap lo defined by •

-j~ l
Y = -..!...il (M M*e e p,r)
P. r W r p (l.67)

The beam loading admittance or the eleclronic admittance of the pth gap ie defined

by

ye,p

l Il

= _..!... il IP F(x)"
W I p_ l

P

-j~ x
e e p (l.68)

The circuitø conaidered in this report are resonant cavitiea; therefore. the pha8e

of the electric field is the same everywhere in the gap, and the dislribution function

F(x ) can be chosen real. Under these circumstances Eq (2. 68) is readily separated
p.

into it. real and ima.ginary parts, Withthe following re.ult:

x

f F(x ) F(y ) sin [~ (y - x ) l
I

p p e p p
-Ip l

dy dx lp p5
(l.69)

The real part of Y is the bearo loading concluctance G given bye,p e,p

Ge,p [1M (fl - ~ Hl - 1M (fl +~) Il]p e q p e q

=
l
4W

(l.70)

Thiø important relation show8 that the beam loa ding of a gap is equal to the differ-
ence between the øquareø of the coupling coe!ficient8 of the fast and the alow space-

charge wave divided by four times the RF beam impedance.

Subotitutlon of the admittanceo defined in Eqs (l. 67) and (l. 68) in Eq (l. 66) yi.ldo

p-l
+ i-I

r=l

y y* y
r p p, r

+ J:..y y"'tf.Y
2 P P e. P

(l. 71)

which iø the fundamental electronic equation on which is based the epace-charge

wave analyøis of multi-cavity klystrons with arbitrary. extended interaction regions

done dn ~hapters 3 and 4. Before turning our attention to the diseussion of kly.-
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trons we 8hall evaluate the now of energy on the beam, using the small-signal kine-

tie power theorem for longitudinal beams. and show that the resulte derived in thil

chapter are consistent with thi. theorem.

l.6 The small-llignal kinetie power theorem for longitudinal electron beams

Amplification of electromagnetic energy in electron beam amplifierl is obtained by

conversion of part of the kinetie energy of the eleetrons to electromagnetic energy.

Regardles8 of detai1ø of the amplifier structure, signallevel. etc, it follows from

power conservation principles that the difference in the ave rage now of kinetie

energy into the structure and out of the structure must be equal to the electromag-

netie power delivered to the RF st rue ture Burrounding the beam.

It is less obvious that a similar power conservation relation existø between the

small-signal solutions of Maxwell's equations. The derivation of this relation for

a longitudinal beam starts from Maxwell's equations (l. l). Under the assumptions

stated in the introduction to this chapter, all time-dependent quantities can be ex-

pressed as the sum of a time-average part and a time-varying part whose ampli-

tude ls much smaller than the time-ave rage part, as shown for the z-components

In Eqs (2.3) to (2.6). In glving the derivatlon of the theorem we shall have to con-
sider the transverse components as well. For reasons of generality the assump-

tion of a one-dimensional beam is dropped, but the electron motion is still con-

fined to the z-direction. Therefore, the relevant time-varying vector quantities

can be written

E(r,t) = Eo( r ) + Re l E( ;: ) ej<llt l (2.72)

H(r,t) = A (r) + Re lA( r ) ej<llt J (2.73)
o

i(r.t) = I (r) + Rell(r) ej<llt l (2.74)
o

u(r.t) = Uo ( r ) + Relu(r) ej<llt l (2.75)

p(r.t) = Po ( r ) + RelP(r) ej<llt l (2.76)

where r is the radius vector to a given position in the beam.

Upon introduction of these deIinitions into Maxwell's equations and separation in

time-ave rage and time-varying parts, we Iind for the latter

(2.77)

~ )( A(r) = il I(r) + j<ll£ E(r)z o (2.78)

where a is a unit vector in the z-direction. Equations (l. 77) and (l. 78) are the
z

small-signal solutions of MaxweU's equations.
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- - "Forming the Bealar produet of E(r) and Eq (2.78), then Bubtraeting it from the
Bealar produet of H(r) and the eomplex eonjugate of Eq (2.77), we flnd

- V. [E" x H J = E"i + j(l) [ € E. E" _ ~ H' A" J
• o o (2.79)

where the independent variable r has been omitted and E is the electric field, .
along the z~axi8. Equation (2.79) is the small-signal form of PoynUng'ø theorem

for longitudinal beams. The theorem can be transferred to an alternate form.

usually referred to as the small-signal kinetie power theorem, first sugge sted by

L J ehu (18) for longitudinal beams and later extended to other beam configurationø

by others (20,21). The alternate form is obtained by nating that the product Eiti•
can be rewritten by use of the force equation (2. 19) and the equation of continuity

(2.20). We find

E*,' j m "~. (U",")z = - ID e Pa Ull + 02 (2.80)

where U is the kinetic-voltage moclulation defined in Eq (2.17). and u is the RF

veloc!ty. Noting that

(2.81)

we obtain by BubBtitution in Eq (2.79)

(2.82)

Equation (2.82) is the complex small-signal kinetie power theorem in differential

form. Integration over a volume V bounded by the Burface a gives the integral

form of the power theorem :

-f (~(E" xH) + tU"ia.l;; da
a

l J - --M - -+t m '* J=2)"(1) (€E.E -~H.H --puu dVo o e o
V (2.83)

Separation of the equation into its real and imaginary parts gives

Ref[~(E"XH)+tU"ia.l;;da = O
a

(2.84)

Imf [~(E"xH) + jU"i a.l;; da
a

l JI - +t - -* m "')d= 2(1) [€ E. E - ~ H. H - - p uu Vo o e o
V

(2.85)

The interpretation of the small-signal power theorem should be done with some

caution since terms involving cross-products and squares of the small-signal amp-

litudes were neglected in the derivation. As shown by Haus and others (lO.21).
the theorem gives the power now correct to second order in the small-signal quan-

tities.
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The real part of the kinetie power theorem (2.84) is arelation hetween first-order

RF quantities, &tating that the electromagnetic power extracted from the electron

beam inside the volume V is balanced by a net flow lnto the volume of kinetie

energy. The quantity ~Ui*å can therefore be interpreted as the complex kinetic-z
power density Sk in the beam.

ilz
(l.86)

With the aS8umption of a one-dimensional beam the current denøity i and kinetie

voltage li are uniform over the beam cro8s-section. The real kinetie energy now

on the beam is then gi ven by

p = t Re (U" I)

where l is the RF current.

(l.87)

It is immedialely obvious from a consideralion of Eqs (l. 79), (l. 84) and (l.l6) lhal

the real power extracled by the beam can be evaluated either on the basis of the

small-signal Poynting theorem (2. 79) as the real part of the volume integral of

i'E"'fi (E being the circuit !ieid). or from the kinetic-power theorern (l. 83) as
c c

the surface integral of the real part of the kinetic-power density SkO As shown in

detail below, both the se methods are equivalent, and neither of them seerns to offer

computational advantages compared to the other, although conceptionally the intro-

duction of kinetie energy now associated with the electron beam is appealing.

On the other hand, the surface integral of the imaginary part of the kinetie power

density Sk is not equivalent to the imaginary part of the volurne integral of ~ E;i.

The latter, according to the normal-mode theory of resonant cavities, is the reac-

ti ve bearn power that is balanced by the reactive power in the external cavity, (see

for instance the circuit equation (A. 7)). ThuB, evaluation of the electronic suscep"

tance Be from the surface integral of the imaginary part of the kine tie power den-

sit Y Sk obviously is erroneOUB. Even if the additional volume integral of

wp uuxm/le in Eq (2.85) were included, the result would be in error by an amount
o

that eorresponds to the reaetive power .a.ssociated with the space-eharge field Ebo

Although not done here, it can be shown 'that this extra reactive power is associated

with energy stored in the electron beam sVstem, oscillating periodieally between

potential electric energy stored in the space-charge field and kinetie energy asso-

ciated with the longitudinal RF electron velocity u. This component of reactive

power, which plays nO aetive ro le in the reactive power balanee in the circuit itself,

accounts for the fact that the space-charge neId Eb. does not appear in expression

(Ao 5) for the ~omplex power extracted by the beam.

From this discussion it appears that evaluation of the reactive power balanee in

the circuit-electron beam system should be done with some eaution in order not to

arrive at erroneous resultso
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In the following section we shall show that the use of the real small-signal power

theorem (2.84) presents an alternate method for derivation of the results in Sec-
tion 2.5.

2.7 Application of the power theorem to eascaded rnodulation regions

The real e:lergy now on an electron beam traversing the cascaded interaction re-

gions shown in Fig 2. l is readily evaluated from Eq (l.87) substituting the kinetie

voltage U and the current I from Eqs (l. 54) and (l. 55). For simplicity the ini-

tial beam modulations U(O) and I(O} are set equal to zero. At the exit cross-

section x = l /2 of the pth gap, we £ind that the kine tie energy now is given by
p P

p
p, l = t Re(U*r),£ /z

p
y y"t:.
r q (l.88)

This equation can be written in the alternate form

pp,l
p

= __ 1_ "\ V y" t:.(M M ")
4W L r r r r

r=1

p p
_1_\ "\ y y" t:.
4W L L r q

r~ q

(l.89)

which shows explicitly the contributions to the beam energy flow {rom:

a) Interaction in each gap given by the first sum (beam loading terms)

b) Interaction between non-adjacent gaps given by the double sum (transfer loading
terms)

According to the small-signal power theorem (2.84) the diHerenee between the kine-

tie energy £Iows P and P l' re{erred to the output and input cross-seetions
p,2 P.

o{ the pth gap, respectively, must be balaneed by a now o{ electromagnetic energy

P from the pth circuit into the beam. Using Eq (2.89) we obtain
p

p =p -p
P p,2 p,l

= __ 1_V Vift:. (M M*)
4W P P P P

1

lW

P-l

~
-ill t JRe \"" V V* l\ M M* e e p, r

~ r p r p
r=l

(l.90)

By comparison with Eqs (2.67) and (2.70) we find immediately

p
p

Re [lV v~y= ~ p p e, p

r=l

y y"y ]
r p p, r

(l.91)
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Comparison of this cquation with the real part of the previously derived electronic

equation (2.71), setting 1(0) = U(O) = O, showa that thcsc are identical. Thus, eva-

luation of the real power P from Eq (l. 65), as done in this paper, is consistent
p

'Nith the small-signal power theorcm (2.84). The twa methods are therefore equi-

valent.

A further simple il1ustration of the significance of the small-signal power theorem

is obtained if wc consider a single interaction region in which the circuit is loaded

by the beam. The beam loading power P is evaluated from Eq (2.70)

p = ..l. VV"G =
2 e

VV"

4W
(2.92)

From the small-signal power theorem (2.84) this power must be balanced by a cor-

rcsponding increase in kinetie energy flow on the beam lea ving the gap. That this

is indeed the case is shown by evaluation of the energy now from Eq (2.89) for the

special case of one single interaction gap. Hence, the beam loading power in a

single gap is exactly equal to the energy flow on the beam after the gap.

li we con sider the kinetie energy carried by each of the two space-charge waves,

we find using Eqs (2.87) and (l. 64) that the fast wave carries positive energy and

the slow wave negative energy. both in the positive direction. In general

p - ~ Re(U-"n 1 U-U-* tw 1-1-* (2.93)= = =
2W

p+ = tRe(U+><t) = __ 1_U+U+* - tw [+["'1 (2.94)
2W

In the cascaded modulation regions studied in this section the relative contributions

to the kinetie power from the two space-charge waves are readily found from Eq

(2.88). The fast-wa ve power is given by

p p
= 1 '\ '\

8W ~ L
r=1 q=1

and the slow-wave power by

- j( p - p )R
V v"tM - M -x e e q q, r
r q r q

(2.95)

p p - j( p + ~ ).e.
= __ 1_ ~ '\ V V*M+M+i't e e q q. r

8W L L r q r q
r=1 q=l

(l.96)

The sum of P-p,l
with the beam.

and p+ is equal to the net RF kinetic power p associatedp,2 p,2

The sign of the net cnergy now p l' given by Eq (2.88), obviously will be detcr-
p,

mined by the spacings between the rnodulation gapa and the relative phases of the
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gap voltages VI' Vl, --- Vp that rnodulate the beam. The preceding analysis is

general in the sense that nothing has been assumed concerning the excitation of the

gap voltagest whether this is done from external signal generalors Or by the beam

itself. In the particular case of a mu1ti-cavity klystron amplifier studied in the

next chapter, the net beam energy now at same arbitrary position beyand the input

cavity is always negative if the amplifier gain exceeds unity. This conclusion {ol-

iowa immediately from the small-signal power theorem (l. 84) applied to the struc-

ture shown schematically in Fig 3. l, where the input cavity gap is excited from an

externaL signal source and the subsequent tlfloating" cavities by the RF rnodulation

in the beam itsel!. Thus, since the initial kinetic energy now is zero. the kinetic

energy now p immediately after the pth gap is given byp, l

p = p. -p -Pp.l 1 c,l c,l -p e,p (l.97)

where P. is the input power from the generator and P j' P l' --- P are
1 c, C. c, p

the power dissipated in the p passive cavities or circuits associated with the p

gape. The equation can be written

[l P p -~Jp = p. -S..! ~ ...p,l l p. p. p.
l l l

= p. [l-Gl-Gl- ..... - Gp] (l.98)
l

where G G --- G are the power gains referred to the various cavities. lil' Z' P
the etructure ie to serve as an amplifier. at least ane of the G's muet exceed Wlity.

which reeults in negative kinetic energy now p l Of couree, the same appliesp,
to any longitudinal beam amplifier in which the power gain is obtained by energy

transfer from the slow space-charge wave carrying negative energy.

For a more thorough discussion of the physical interpretation of the positive and

negative kinetic energy nows associated with the two space-charge waves, the

reader is referred to the literature (19, lO. lI).
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3 MULTI-CAVITY KLYSTRONS WITH EXTENDED INTERACTION REGIONS

3. l Introduction

This chapter presente a general small-signal theory of multi-cavity klystrons with

arbitrary. extended interaction fields based on the space-charge wave modulation

theory in Chapter 2. The generality of the klystron theory presented here thus ex-

eeede that of narrow-gap klystron theory which is obtained as a special case of the

general theory. Moreover. the theory is more rigorous than conventional klystron

theory, accounting fuUy (or space-charge forces and density modulation effects in

the interaction gape.

The analysis is valid under the same assumptions a8 those stated in the introduc-

tion to Chapter 2. General formulae for the frequency response are derived using

an approach based on evaluation of the power balanee in each interaction region.

This procedure applied to a p-cavity klystron leads to a set of p linear algebraic

equations in the p RF gap voltages, which can be solved by standard methods.

The solution expresses the voltage gain of a p-ca vit y klystron very simply in terms

of a determinant of order p-l, from which a number of significant results concern-

ing klystron theory can be deri ved.

Figure 3. l shows 8chernatically the general type of klystron amplifier that we shall

study. The amplifier structure consists of p cascaded interaction regions. each

associated with a single resonant cavity. It is characteristic for klystron opera-

ti on that each cavity is electromagnetically isolated from its neighbors, the only

coupling being provided by the electron beam. Since the electron beam by nature

is a unilateral transmission system, a signal can be propagated from cavity to cav-

it y only in the forward direction. The propagation of a signal from the output cavity

towards the input cavity is therefore prohibited because no possible signal paths

exlst. This characteristic feature of klyatrons as opposed to traveling-wave tube.

accounts for the fact that the klystron basically is a stable device, permitting opera-

tion at very high gain and power level without danger of osdllations due to feed-hack

from the output to the input.

Input
cavity

Intermediate floating cavities
Output
cavity

---
Beam

(I) (2) (r) (p-l l (pl

-- -

t
P. ! PL
1

Fig 3. l Schematic drawing of a mu1ti-cavity klystron with extended gapa
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In the klystron shown in Fig 3. l the signal from the signal source nows thr-augh

the input transmission line into the first ctlvity, the input cavity. The RF gap volt-

age developed across the gap modulates the initially unmodulated electron bcam.

The signal propagates in the forward direelion as space-charge waves on the beam,

is amplified by cumulative interaction in the subsequent p-l intermediate "flo<lting"

cavities excited by the beam itaelf, and is finally extracted in the last cavity. the

output ca vit y, and dissipated in the external load as useful power.

The analysis starts with the power balanee in each interaction region, expresscd

in arelation which we shall refer to as the circuit equation.

3. Z Circuit equa tions

A general circuit equation for arbitrary resonant cavities interacting with electron

beams has been given by Slater (2) in his normal-mode theory of resonant cavities.

In Appendix A some of the results from this theory are staled without proo!, and

rewritten in a form that is suitable for the applications that we have in mind.

In addition to the assumptions stated in Chapter 2 we must introduce additional as-

sumptions concerning the circuits. We shall specify the se as resonant cavities

characterized by relatively high Q-values, with their resonances sufficiently sepa-

rated to justify the assumption that only ane resonant made is exdted in each cavity.

Under these circumstances the circuit equation for a cavity excited by a beam (no

excitation from external sources) is particularly simple. as shown by Eqs (A.II)

and (A.13) in Appendix A. For the pth ca vit y we have

It = - -! y y* y =
p p p c, p

l (0) 1"2 V V" P -- (I + 2jOL a)
p p R h OL • P Ps ,p • p

(3. l)

where f is the complex power extracted by the beam in traversing the pth inter-
p

action region. From power conservation principles this is equivalent to stating

that minus f is the com pl ex power dissipated in the pth resonant cavity and its
p

associated external load. The circuit admittance Y is therefore given byc,p

° 1Y = ( P) __ (I + 2jOL a)
c, P R h OL • P Ps , p ,p

(3. 2)

The circuit parameters appearing in this equation are all defined in Appendix A for

the general type of cavities considered here. The important parameter Rsh/Q is

the characteristic impedance of the ca vit y, usually given in this form as the ratio

of the shunt impedance and the Q-valuc; OL is the loaded Q; and l) is the fre-

quency tuning parameter defined by

(J) (J)

a =~( __ -E)~
p (J) (J)

p
(J)

p

(3. 3)
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where Q) is the frequency of excitation and (I,) the reBonant frequency associatedp
with the particular normal made in which the cavity is operating.

It should be noted that the circuit equation (3. l) daes not hold for the input cavity

which is excited from an external source. In this case the modified circuit equa-

tion (A. IZ) i. the appropriate ane.

3.3 General formulae for muiti-cavity klystron gain

Derivation of general expressions for the gain of a klyøtron is now a relatively

simple matter from conøiderations of the power balanee in the gape. Simultane-

ous 801ution of the electronic equation (l. 71), with the initial rnodulations 1(0) and

U(O) set equal to zero, and the circuit equation (3.1) yields the following relation

between the p complex gap voltages V}' V2' --- Vp:

p-I

L v y + V (Y + Y ) = O
r p,r p C,p e,p

(3.4)

This equation holda for p equal to or larger than two. Therefore, starting with

the second cavity we can write a Bet of (p-l) linear homogeneaus equations in p

gap voltages. This set can be transformed to a non-homogeneous set with p-l un-

knowna by dividing through in all equation~ by Vl" For convenience let the voltage

gain "Ip of the p-cavity klystron be defined by

'Ip (3. 5)

ga in "'lp will be a
as the sum of

Since the RF gap voltagea in general a re complex, the voltage

complex quantity. Further, let UB denne a selt -admittance Yp,p
the circuit admittance y and electronic admittance Yc, p e, p

y =y +y
p,P c,p e,p

Using these notations, we obtain the following set of p-l linear equations in

"lz' "l3' --- "Ip:

(3. 6)

!
r=2

y
q, I

q ::t 2, 3, ---, P (3.7)

where the transfer admittancee y and the seif-admittancee Y are obtainedq,r q,q
from Eq. (Z.67). (Z.69), (3. Z) and (3.6). For convenience, the admittance. are

repeated here :

y =_.1.<:>
q, r W [

•• -jl>e~q rJ
MM e '

r q
(3.8)
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J/z
- l Al1M M*+' JqW"2"qqJ

-l/2q

Xq

J F(xql F(y l .in [lle(Y -x lJ dy dX}
-l/2 q q q q q
q

(3.9l
•

Uling matrix notation, the set of equations (3.7) can be written

Y2 2 O O --------- O "l2 y 2 l, ,

Y3 2 Y 3 3 O --------. O '3 Y 3 l, , ,

Y-I 2 Y-I 3 Y 4 4 -------- O "l4 = - y 4 l (3. lol, , , ,

- - - - - - - - - - - - - - O

Yp,2 Yp,3 -------- Yp,p-l Y "lp y
p,l

,
p,p

The faet that the coefficient matrix is triangular is a manifeetation of the unilateral

nature of the amplifying proces8 in a klystron. The beam modulations or RF gap
voltage at lome position along the beam are not a!fected by the gap voltageø in any

of the subøequent gaps.

The 8olution of Eq (3. 10) can be written a8 the following determinant:

'/2 l -l O O - .•. ------------ O,

'V3 l "13 2 -l O -_ .•. ----------- O, ,

"14 l '/4 2 "14 3 -l ---------- ..--- O
, , ,

"lp = (3.11 l

-l

"lp-l, l 'lp_l, 2 --------------'1p_l,p_2

O

-l

'Ip, l '/ ----------------'/p,l p,p-2 '1p,p-l

where the elements appearing in the determinant are the negative ratio. of the tranl-

fer admittances and the seli-admittances
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(3. l Z)

We .hall refer to (3. Il) as the gain determinant of the multi-cavity kly.tron.

Uaing standard rules for expansion of determinant •. the voltage gain can a180 be

written as a multiple sum

"lp

p p p

= I I-----I
Ol=Z .Z=ol+l .p-Z =

• 3+1p-

(3.13)

As examples, let us write explicitly the voltage gains of klystrons having two, three,

and faur cavities, respectively. We obtain

"1Z l,
"13 = "13,Z "1z, l + "13, l

"14 = "14,3' 3, Z "1Z,l + "14,Z "1Z,l + "14,3 "1.3,l + '14, l

(3.14)

(3.15)

(3.16)

Thi. procedure can be continued in an obvious way for p larger than faur. By
noting that the gain of the two-cavity ampUlier is equal to "lz l' a very useful in-
terpretation can be made of the general gain expre •• ion (3. 11')or (3. 13). Each of
the factors "1 appearing in Eq (3.13) repreoento the gain of a two-cavity klys-

o,r
trOn consisting of ca vit y rand B. li the product under the multiple Bumrnation
sign contains q Buch iaetors, it represents the gain of an amplifier cbain eODsist-

ing of q independent twa-cavity amplifiers coupled in caseade. Thi. product is

conveniently referred to as the eascade gain. Thus. by definition, the cascade

galn of the chain of q cavities including the input cavity and the output cavity but

otherwise selected arbitrarily from the total of p cavities. is given by

"I(I,opsZ ----- °q_Z'p) = "lp, ° Z"lo z,s 3 ---"I,Z Ol "101,1
q- q- q- ,

Subotitution in Eq (3.13) yieldo

(3.17)

(3.18)

From the.e relations the following procedure for evaluation of the overall voltage

gain of a multi-ca vity klystron can be given: the eaacade gain of an arbitrarily

øelected set of two or more eavities including the input and the output eavity is eva"

luated using Eq (3. 17). The overall voltage gaIn "lp of the kly.tron I. then equal
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to the sum of the cascade gains of all p08sible sete that can be selected. The pro-

cedure is illustrated in Fig 3.2 for a five-cavity klystron.

In the general case the numher of terms in the sum (3. 18) is easily determined

using standard methods for expansion of the determinant (3. Il). seleeting one fac-

tor from each line and row. Starting from the first line, the numher of p08sible
combinations is obtained as the following product:

S = 2(3-1)(4-2)(5-3) ----- (p-I-p+3)

or S = 2P-2 terms (3.19)

In other words, the number of terms in the general expression for the voltage gain

is doubled for each added cavity. In special cases same of the cascade terms .,.,
~8, 1

may be zero, under which circumstances the total number of terms is correspond-

ingly lower than that given by Eq (3.19).

"15 I,

(I) (2) (3 ) (4) (5)

Output
l

"/5 2,"14,1

t
Input

Fig 3.2 Figure showing the possible signal paths in a five-cavity klystron ampli-

Her. The voltage gain is given by: "'l5 = .,(1,2,3,4,5) + "l (I , 2, 3, 5)
+ "1(1,2,4,5) + "l (I , 3, 4, 5) + "1P ,2,5) + "1(1,3,5) + "l (I , 4,5) + '!\(I, 5)

From theae results it is clear that the gain function "lp of a multi-cavity klystron

is considerably more complicated than the gain function of conventional cascaded

band-pass amplifiers. This is due to differences in the mechanism of the amplify-

ing proeess. In the conventional cascaded amplifier there is only one signal path

between the input and output. and the overall gain is the product of the gains of all

the stages. In the klystron the excitation of the output cavity is the sum of modu-

lation components proportional to the gap voltages at all preceding gapa (see Eqs

(2.54) and (2.55)). The interaction between non-adjacent gaps resulte in multiple

signal paths from input to output. and the overall gain is the sum of the cascade

gains over all possible signal paths.
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This characteriøtic of the klystron complicatee the syntheeis of Itagger-tuned

multi-cavity klystrons with preacribed band-pa •• curve, or gain al {unetion of fre-

quency, because the multiple signal path. may cauøe signal cancel1ationl at com-

plex frequencies other lhan zero and infinile frequency, which are characteriatic

for the conventional eascaded amplilier.

It has been shown that the pole-zero concept of modern network theory provides a

u.eful baøi. for the analysiø and design of narrow-gap multi-cavity kly.trons (2Z).
Becaule the results for the general-type klyslron analyzed here are idenlical in

form, the pole-zero method is applicable in this general case aa weU.

From an examination of the determinant (3. 11) we can draw the following eonelu-

sions eoneerning the poles and zeros of the gain funetion: the positionø of the poles

in the complex frequency plane, i e the complex frequendes for which the gain is

infinite, are determined by the zeros of the seli-admittanceø.

y = Or.r (r = 1,2, --- p) (3.20)

The positions of the poleø are thus determined by the resonant frequencieø and the
loaded Q's of the cavities (including beam loading). The number of poles obviouøly

corresponds to the number of cavitieø (the pole due to the input cavity seli-admit-

tance Yl, l is not represented in the voltage gain "'tp' but appeare in the power
gain expression (3.86». Excluding the trivial zeros at infinite frequency, the num-

ber of possible zeros in the gain function "lp' i e the number of complex frequencieø
for which the gain is zero, is easily determined from the determinant (3. Il), or

better still, Eq (3.117). In the non-degenerate case the number of zeros iø p-Z, ie

equal to the number of intermediate floating cavities. From examination of the
gain determinant (3. 117), it is observed that the positions of the zer08 depend on

all the transfer admittances and the positions of the poles associated with the (p-2)
intermediate, floating cavities. The problem of tuning a p-cavity klystron may then
be considered in terms of adjullting the p poles and the p-2 dependent zeros in
øuch a way as to achieve a desired frequency respanse (l3). In the present report

we shall not deal any further with tbis method.

3.4 Alternate form of the gain determinant

The determinant (3.11) øpecifying the voltage gain of a p-cavity klyøtron can be

transfarmed to an alternate form by taking appropriate linear combinations of the
colurnns. The linear combination is the same as the one used in Eq (B. 2) Appendix B,
lea ding to the difference equation (3.34). li we anticipate the results of the next sec-
tian, the alternate form of the determinant is most easily arrived at using the pro-
cedure shown below. Let us define explicitly the coefficients appearing in the dif-

ference equatio"n (3.34).

I
= ---

y
p, p

[a y
p p-2. p-2 + b YP p-l.p-2 + y ]p,p-2 (3.21)
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[b Y + Y ]P p-l,p-l p,p-l (3, U)

where ap and bp are constants given in Appendix B. Expressed in terms of the
coefiicients Sp and T

p
' th d'{{elerenee equation takes the following [orm. valid for

p~ 4:

5 .•.• +T" -" =0p 'p-2 p 'pol lp

li we form a new set of linear equations using

set (3.10) (or p < 4, we obtain

(3.23)

Eq (3.23) for p ~ 4, and the original

-l O O O---- _____ O "7
2 "l2, l

"13 2 -l O O--------- O '''b• 3, l

54 T4 -l 0--------- O 14 O (3.24)

= -
O 55 T5 -l --------- O "15 O

------------------------- .._-------

O O -------- 5 p
T
p

-l 'Vp O

which has the solution

'12 l -l O O 0---------0
•

"13, l "13 2 -l O O ---------0
•

O 54 T4 -l O ---------0

"I = O O 55 T5 -l ---------0
P

----------------- O 5p-l Tp-l -l

O O O ---- O O 5 T
P P

(3.25)

The ooly non-zero elements of this determinant are the elements along three adja-

cent diagonal line s.

The determinants (3. Il) and (3.25) represent twa alternate bul equivalent {ormulae

{or evaluation of the voltage gain. As we have seen. expansion of the determinant

(3. Il) leads to a superposition of terms that are naturally interpreted as represent-
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ing the eascacle gains of the variaus possible signal paths from the input cavity to

the output cavity. The study of synchronously tuned multi-ca vit y klyslrons made

in sections 3.7 - 3.10 shows that expansion of the alternate determinant (3.25)

leacls to a formulation in terms of growing and attenuated "gap voltage waves".

In this formulation the terms representing interactions between non-adjacent gapa

are incorporated in the parameters expressing the overall exponential variation

of the gap voltage waves.

3.5 Criterion staling lEe condition for elability

The Bolution (3. Il) of the set of equations (3.10) is finite only if the system deter-

minant is non-vanishing, i e if

y I Op,p (3.26)

In other words, '7
p

is finite if all the se1f-admittances in Eq (3.26) are different

from zero. li the additional requirement is made that the RF gap voltage Vl of

the input gap be finite, we also have that Yl, l / O. Therefore. we must have

y I Or,r (r=l,2,---p) (3.27)

The physical meaning of these conditions is quite evident. By definition. the self-

admittance y of the rth ca vit y is the sum of the circuit admittance Y andr. r c. r
the electronic admittance y The vanishing of this sum is exactly the requiredo,r
condition for start of self-supported monotron osdllations in the rth cavity. Be-

cause the present linearized theory does not al~ow for saturation effects. the theory

therefore predicts an increase of ga in towards infi nit Y as the oscillation condition

y = O is approached.r,r
From consideration of the physical system, the mathematieal condition (3.27) can

be further specialized to yield the following criterion for stable operation:

RoY = G = G + G > Or,r r,r e,r e,r
(r = 1,2, --- p) (3. 28)

In other words. the magnitude of the beam loading eonduetance. if negative. must

be less than the circuit eonductance. This condition is generaUy satisfied in klys-

trons of conventional design using narrow-gap cavities, and normally there are no

instability problems arising from this eause in such klystrons. However, as shown

by theory, and also demonstrated experimentally (9), this is not eorrect in the

general case of klystrons having extended interaction regions. Here. the electronic

conduetance tends to increase with t.he length of interaction gape and roay assume

sufficiently large negative values to cause oscillat10ns. Actually. the stability

eriterion (3.28) imposes a restriction on the gap lengths and thus on the ultimate

performanee of klystrons with extended interaction regions.
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3.6 Caseade gai" approximation

Although the voltage gain of the p-ca vit y klyslron is given by a rclativcly com[lli-

eated expression containing the sum of Zp-l products. various .1pproximations of

the exact formula can be derived. Of particular intcrest in this connection is the

approximation in which interactions betwecn non-adjaccnt gaps a re disrc~a rdcd.

Such an approximation leads to a formula for gain that is in cascade form:

'l ~p "'Ip,p_l "1p-I,p-2 ----- "13,2 "12,1 ..l. 29)

The approximation involved in Eq (3.29) is small only if the voltage gain per sta,ge

is large compared to the number of cavities. In order to show the correctncss of

this statement Wc aS8ume for simplicity identical cavities with identical gain per

staget i e "1 J p-l = "lp-l, p-l;; --- "'lZ,I' In this case the eascad(~ gain approxi-

mation (3.29) gives

'lp
= p-I

'l8+1,8
(3. 30)

where s can be chosen arbitrarily. An approximate eriterion of the approxima-

tion involved in this expression can be obtained by comparing it with the p-2 pro-

ducts in the exaet formula (3.13) containing ane factor less. Each of these identi-

cal products represents the cascade gain from the input to the output with one of

the intermediate cavities removed. The sum of the products is given by

p-3
A'1p = (P-2l"l8+1, 8 '8+2,8

Forming the ratio of the expressions in Eqs (3.31) and (3.30) we find

(3. 31)

A'1p =
'lp

(p-2)
"l8+2,8

2
"18+1,8

(3.32)

Thus, we ar rive at the conclusion that the caacade gain approximation holda if

2
"18+ l. s

'78+2,8
» p-2 (3. 33)

which reduces to the eondition stated previoualy il "1 +1 and"'" +2 are ofS • B Is, S

the same order of magnitude.

This discussion leads to the conclusion that the cascauc approximation of the volt-

age gain given in Eq (3.29) hardly is of much vahu.' whcn p ("xceeds a few cavities,

except possibly in special cases for which the spacings are sueh that the interactions

between every second cavity cancel (plasma transit anglE' equal to rr).

In section 3.8 we shall study the special case of klystrons having idcntical. syn-

ehronously tuned cavities and derive an ;dtcrnate formula for klystron gain which
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alBa is in eascade form and, moreover, is valid for aoy number of cavitieø be-

cause the derivation is done without diøregarding the interactions between noo-

adjacent gap8.

3.7 General difference equation for voltage gai" of multi-cavity klystrona having
arbitrarily tuned ca vitle 8

For klystrona with a relatively large number of cavities the general formula

(3.18) for voltage gain involves the Bum of a considerable number of terms that

are all complex numbere. A discu8sion of the various factors that affect the gain

is therefore extremely difficult except on a qualitative basis. It seerne natural to

loak for a airopler formulation that lumpa all these terms ioto mathematieally

airopler expressions. perhaps a formulation similar to the wave description used

in the theory of traveling wave tubes. Although Buch an approach seems quite out

of the question in the general case with stagger-tuned cavities, the wave formal-

ism nevertheless is possible in special cases for which the cavities are tun ed ac-

cording to a specific pattern, such as synchronous tuning and periodic tuning.

Adrnittedly, these very special tuning schemes are less interesting than the more

general stagger-tuning. Nevertheless, the wave formalism applied to these spe-

cial cases results in simple gain formulae that are interesting and il1urninating,

first because the approach leads to considerable insight into the physical mechan-

iam behind the amplifying process in a klystron, and second because many of the

conclusions that can be drawn concerning the effect of the various relevant para-

meters on klystron gain alBo are qualitatively correct for stagger-tuned klystrons.

The approach used in the following analysis differs from that of the preceding sec-

tions in that the voltage gain is obtained by solving a linear second-order homogene~

oua difference equation, which is satisfied by the gap voltages of the klystron. As

shown in Appendix B, the RF gap voltages of three coosecutive cavities are linked

together by the following quite general second-order difference equation or recur-

rence formula, valid (or any gap parameter combinations and tunings of the indivi-

dual ca vitie s :

Y'I+[bY +Y l" +[aY +bY +Y l =0P. p p P p-l, p-l p, p-l 'p-l P p-l, p-l P p-l, p-l p, p-l 'Ip-l

p = 4, 5,6 ------- (3.34)

The quantities a and b given by Eqs (B. 4) and (B. 5) as weU as the se1f-adrnit-
p p

tances and the transfer admittances appearing in the coefficients of this difference

equation are given by the characteristic parameters associated with the cavities

(p-l). (p-l), and p only. Equation (3.34) hold. for p equal or larger than four.

lf p is less than four, the linear relationships between the gap voltages are ob-

tained directly from Eq (3.7).

li the parameters and spacings of th. ;odividual cavities constituting the klystron

are chosen in an arbitrary fashion, n, simple analytical solution of Eq (3.34) is
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possible, although in this case the recurrence form of the diflerence equation is

particularly weU adopted for numerical calculations on a digital computer. On the

other hand, analytical 50Iutions can be [ouod in same special cases for which the

coefficients in Eq (3.34) are specified functions of the independent variable p.

We shaU salve the difference equation for the twa cases which appear to be the

simplest anes, namely:

a) Constant coefficients, corresponding lo synchronously tuned cavities and iden-
tical spacings between the gaps

b) Periodic caefficients, corresponding lo a periodically repeated bul otherwise
arbitrary stagger.tuning

The procedure followed in salving the above difference equation for these twa Cases

is essentially the same as that known for differential equations having constant co-

efficients and periodic coefficients, respectively.

In case a) the wave-type solution is readily obtained as a linear combination of two

exponential functions whose exponents are given in terms of the cavity parameters

hy a second-order algebraic equation. In case b) it can be shown, using a theorem

similar to Floquet's theorem in the theory of differential equations with periodic

coefficients (Z5), that the solution is a linear combination of two products, each of

which is given by an exponential function multiplied by aperiodie function with

periodicity equal to the number of cavities in the periodieally repeated stagger-

tuning pattern. The exponents are obtained as the solution of a determinantal equa-

tion, the order of the determinant being equal to the number of eavities in the period.

Noting that the solution of the equivalent mathematical problem in the theory of dif-

ferential equations with periodic eoefficients involves an infinite determinant. it

appears that the solution of a difference equation with periodie coefficients is simp-

ler than that of a differential equation of the same type.

In this chapter we shall study on ly klystrons with synchronous tuning. The analysis

of periodic stagger-tuning is done in Chapter 4 using matrix algebra.

3.8 Gain of synchronously tuned multi-cavity klystrons in terms of growing and
attenuated gap voltage waves

The assumption of constant coefficients in the difference equation (3.34) requires

identical cavities. synchronous tuning, and equal spacings, i e:

y = yp-I,p-I = = yp,p
y = y p-I,p-l = = y l Ip,p-l ,

G = Ge,p-l = Ge.p e (3.35)

~,p-I = -tp_I,p_l = = .l

M+ = M+ = = M+
P p-I

M- M - M= p-l = =
P
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The derivations in Appendix B show that the difference equation (3. 34) in this par-

ticular case simplifies to the following:

-j~.e[( G) M2 J"1 - 2e e I - ~ cos ~ .£ - j -- sin ~ .e
p y q 2WY q

p = 4,5,6,

-j2~l[ G]
"lp_Ite e 1-2ye'lp_2:0

(3.36)

-2
where the bearn loading Ge is given by Eq (l. 70). and M is the ave rage va lue of

the squares of the coupling coefficients of the slow and the fast space~charge waves.

(3.37)

For convenience, let us introcluce the following dimensionless quantities:

G
lo = e

y

~
M2

: --
2WY

e = ~q.iq

e : ~e.t

(3.38)

(3.39)

(3.40)

(3. 41 )

The ratio of the parameters }f and ~ is given by

(3.42)

which shows that it. normally is much less than ; • except in the special cases for

which the gap field couples mainly to ane of the space-charge waves. Upan substi-

tutian of the parameters ~. ~. 9, and e in the difference equation (3. 36) it take 5q
the form

p = 4,5,6, ------

The solution of the equation is obtained by setting

-je(p-I) p-I'7p = e a

Substitution in Eq (3.43) yields the following algebraic equation for a:

(3.43)

(3.44)

o (3.4S)

Besides the trivial Bolution a equals zero, the equation has two solutions al and

a2 given by
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sin 8q t j tI -lI( - [(l-It) cos 8q - H sin (3.46)

The general solution of Eq (3.43) is a linear combination of the twa particular solu-

tions. Hence

(3.47)

p:; 2,3, ---

It should be noted that Eq (3.43) holds only when p is larger than or equal to four.

For the case that p equals four it relates "14' "'13and '12' and the solution (3. 47)

is therefore applicable to any of these, i e for p equals two and upwards.

The constanta A and Bare specified by the initial conditionB, i e the gains '1}z

and '13 of the two first stages, which can be calculated from Eqs (3.14) and (3. 15).

Expressing "'12and "13 in terms of the parameters ~. ~ ,a and Sq' we obtain

from these equations

j8 _
'Ile - -l (lt cos 8 + H sin 8 )q q

'l8 l l
'l3eJ = -l (l~ sin 8 + Hsinl8 - ljl!~ sinl8 - l~cO.z8 +l/cosl8)q q q q q

(3.48)

(3.49)

Substitution in Eq (3.47) results in twa linear equations in the unknowns A and B.

By solving we £ind

A =

B =

jlt cos 8 - ~ sin 8 - jlt/olq q

]01[1 - III - [(I-li) cos 8q - it sin 8q]l 2

jlt cos 8q - ~ sin eq - jlC/Ol

fl - lit - [(l-It)cos 8q - it Sin8l1
l}-:\-

(3,50)

(3.51 )

The constants A and Bare generally different. For the special case that the

beam loading is zero (x. = O) we have that A = -B.

Substitution of the expressions al' az' A. and B in Eq (3.47) yields a formula that

expresses the voltage gain of a synchronously tuned klystron in terms of the three

dimensionless parameters It, ~ and 8q defined in Eqs (3.38), (3.39) and (3.40).

The parameters can be interpreted physically by nating that ~ is proportional to

the beam loading, ~ is equal to one half the maximum voltage gain of a two-cavity

klystron (cavities spaced a quarter of a plasma wave length). and Sq is the plasma

transit angle between consecutive cavities.

The general nature of the complete solution evidently is in the form of twa gap volt-

age "waves" where the exponential gaine per stage of the two waves are given by
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the absolute values of 1")'1and oZ' rpsplE'ctively. \•...ithout rll"king a dct.'lilcd sL\ld~'

of the rather complicated expressions for al anu 02 it is pos8ible to m.l~(' ~U1rlf'

general statements concerning thf' natur€, of the twa \V;lVC>S. I"irst, introducing

complex vector notations, we have

~l (3. ol)

az = I azl
j'l'z

• (3. o l)

G
l - ZI! = l - Z ~ =

y
l - Z

G c
y +G

c e

y -G
= c c =

y tG
c •

Il - Zlt I j '1'••
e ( l. 5.1)

In the last equation wc have made the small unessenti~l approximation of including

the electronic suseeptanee Be in the circuit admittance, for instance by making an

appropriate small detuning of the cavity. Also note that <PH is the phasc an~de of

1-2~, rather than if. At the resonanee frequency r.p.. obviously is zero.

It follows immediately from Eq (3.45) that the twa solutians Ol and 0'2 salisfy the

following relations:

al az Iall I az I
j('I'lt'l'z)

Il - ZII I j '1'"
= c = l-lie = e

lailiazi = Il-zlel

'1'1+I'z = '1'"

The two components of the general solution (3.47) can thus be written

(3. 55)

(3. 56)

(3.57)

"lp, l = A
-j(et '1'Z-'I',,)(p-l)

c (l. 58)

= B Ia I p-l
"lp, Z li

-j(e -'I'Z)(p-l)
e (3. 59)

The following general comments can be made about the nature of the solutions:

From the faet that the beam-loading parameter K normally is quite small, it fol-

Iowa from Eq (3.56) that the product of lajl and lazi is approximately equal
to unity. Therefore, since I Clll is the larger of lhe two, wc conclude that the

two componenta "l l and "l lrepresent attcnuated and growing waves, resp(~c-P. p,
tively. The two waves propagate with phasc velocities slightly different from the

De beam velocity. In the numerical analysis in the next section it is shown thal

Cf'l is always negative. :'lnd since <p~ is approximately 7.ero. the attenuated wavc

has a phase shift a + 92 per stagc, meaning thal the wave is traveling faster than

the beam. Conversely. the growing wave with a phase shift 3 - <Pl per stage

travels slower than the beam. It is shown later that it the gap spacing is chosen
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such as to maximize the gain (8q::: n/l), the twa gap voltage wavcs a re in cxact

synchronism with the fast and the slow sp<'l.ce-chargc Waves propagating on the

beam. These results are in accordanct' with what might be (~xpected from co05i-

deraljons of the interaction mechanism in terms of coupling between circuit mooes

carrying positive energy and space-charge modes carrying either positive or nt'ga-

live energy. Synchronization of the circuil made with the slow space-charge wave

carrying negative energy results in waves with growing amplitudes; synchroni7.a-

tion with the fast wave carrying positive energy results in attenuated waves.

Another significant point noted from Eq (3.55) is the faet that the product a l ryl is

independent of the spacing of the cavity gaps. Furthermore, the product is also

independent of all cavity and gap parameters provided the beam loading is z(>ro or

negligible. Thus. any optimization of cavity parameters and gap spacing that maxi-

mizes the amplitude of the growing wave is accompanied by a corresponding mini-

mum in the amplitude of the attenuated wave.

The attenuated wave, which is essential for matching input conditions, attenuates

very rapidly, particularly it the gain per stage is high. Therefore, beyond a [ew

stages from the input gap, the attenuated wave is negligibly small, and there the

overall voltage gain is equal to the growing wave "'l 2 given by Eq (3.59). Actually,p,
for praetical klystrons with gain per stage exeeeding a few decibels the attenuated

wave is negligible already at the seeond gap, as shown by the subsequent numerical

ealeulations. For most practical purposes, therefore, the voltage gain of a syn-

ehronously tuned p-ca vit y klystron is given by Eq (3.59) which is in simple eascade

form, i e the overall voltage gain is expressed as the produet of p-l faetors al'

eaeh representing the eomplex voltage gain of one of the identieal p-l stages. It is

signifieant that the derivation of this cascade gain formula is done without dis re-

garding terms arising from interactions between non-adjacent gaps. The gain per

stage al is the reault of contributions both from cascade interaction between adja-

cent gapa and interaction betwcen non-adjacent gape. Equation (3. 59) therefore is

superior to the approximate cascade gain formula (3. 19) derived previously in sec-

tion 3.6 by throwing away the terms arising from interaction betwecn non-adjacent

gaps. On the other hand, the wave approach lea ding Eq (3.59) is applicable only

for the synchronous case, a limitation that does not apply to Eq (3.l9).

A comparison of the two formulae for the synchronous case is interesting because

it illustrates how the gain and the phase shift per stage are affected by interactions

between non-adjacent gaps. Accor"ding to the approximate equation (3.l9) the volt-

age ga in per stage is simply the voltage gain "1l of a two-cavity klystron, which in

the present notation is given by Eq (3.48). For this discussion it is sufficient to

assurne the frequency equal to the resonant frequency, in whieh case; is real, and

to negleet the beam loading faetor It which normally is much less than ~. In this

case Eq (3.48) yields

I "12 I - 2 < sin 6q

Arg "12 = - (6 + ,,/z)

(3.60)

(3.61 )
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where ~ is real. ThuB, the aimplified approach based on e&scade interaction

alone indicateø a phaae .hilt per stage of .•(8 + Tr/Z) regardles8 of the plasma tran-

.it angle e. The extra phaae øhift of ff/Z per stage in addition to 8 11 explainedq
from the faet that the RF beam eurrent that excites the gap voltage is in time quad-

rature to the RF velocity modulation in the preceding gap. This argument, of

cour.e, is correct on ly if the RF beam modulationa due to previouB gap. are neg-

leeted, a8 is done. in deriving the approximate equation (3.29).

The numerical data given in the next aection (Fig 3.6) reveah that the voltage

gain per Btage 1021, obtained using the wave approach, is higher than the ga in

per stage I 'Ill evaluated from the eaacade approximation. We Can therefore draw

the conclusion that at lea st for synchronous tuning the cascade approximation (3. Z9).

neglecting interaction between non-adjacent gap', undereItimatee the voltage gain

per stage. The enhancement of voltage gain over that evaluated on the balis of cal-

cade interaction alone must be due to favourable phaeeø of the extra current com-

ponente ariøing from interactionø between non-adjacent gaps. It is øignificant that

the increase in gain is aeeompanied by a change in the phase shift per Itage from

- (8 + Tr/Z). predicted by the eascade approximation towards the value (8 + 8q).

(eee Fig 3.4). The !atter would be the expeeted phase shift if the gap voltage wave

were in synehronism with the slow space-charge wave. Since the anlplifying pro-

cess is baeed on power transfer from the slow spaee-eharge wave to the circuit,

the above re.ults are in qualitative agreement with what might be expected from

physical reasoning.

The detailed numerical data presented in the next section substantiatel the above

qualitative diecussion, and allows us to draw eonclusions concerning many impor-

tant questions in mu1ti-cavity klyatron theory such as the effect of beam loading on

gain and bandwidth, optimum gap spacing, etc.

3.9 Numerical data for gain and phase shift per stage

In addition to the general cornments and discu8sion given in the last section concern-

ing the general nature of the two gap voltage waves of a synchronously tuned klys-

tron, we shall present a number of graphs plotted from numerieal data ealculated

on an electronic computer. The graphs serve a twofold purpose, first that of pro-

viding some of the required information for the previous general discu8sion. and

second, they are useful for praetieal design purposes.

All the quantities shown in the graphs are funetions of three independent variable.

which are ~ • I( and 8q defined in Eqs (3.38) to (3.40). At the re sonant frequency

the quantities ~ and ~ are both real. We note that for frequencies below reso-

nance E and Jf have positive imaginary parts, and viee versa. Furthermore. ac-

eording to Eq (3.42) the ratio It/~ is real, and the phases of ~ and It are there-

fore the same.
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In Fig 3.3 are shown the absolute values of al and al evaluated from Eq (3.46)

and plotted VI the gap .pacing 9. The para'meters ~ and ~ are cha.en realq •
i e the curveø reier to reøonance, which of CDurøe il the case having mo.t inter-

en. Each curve is labelled with twa Dumbers, referring to ~ and I( respec-

tively. Three different values of ~ are chosen: 0.5, Z, and 5, correøponding

to low, intermediate, and high gain per stage, reapectively. Each of the value.
of ~ ill combined witb three different values of the beam loading parameter:
0.2, zero, and -O. Z.

The phase angles 'PI and 'Pl of al and al are shown in Fig 3.4 for the same
real values of the parameters ~ and t.

Figure 3.5 ahowaloll and loz I for two different frequencieølocated 'ymmet-
rically with reøpeet to the reøonant frequency.

Firure 3.6 .how8 the ratio I aZ 1/ I 'lZ I for the same real valuee of ~ a8 thoee in

Fig 3.4, and Il = O (zero beam loading).

The graphs in Fig 3.7 are tbe absolute values of the initial values A and B of the
atte:a.ua.ted and growing Kap voltage waves for the same real valuee of~ and Jf aa

thon.in Fil 3.3.

In additioD to the general comments made in the laat section concerning the reia ..

tive malnitudeø of the Irowinl and the attenuated waves, a study of the curveø in

Flgs 3.3 to 3.7 in connectlon with Eqs (3.46) to (3.51) allow8 one to draw a num-

ber of dlnificant conc1uaiona concerning Iynchronously tuned multi ..cavity klys"

tron.. Theae are the following.

3.9. I Optimum gap spacing

First we observe from Fig 3. 3 that the gain per stage Ia l I at resonance is

maximum when the gap spadng is equal to a quarter of a plasma wavelength

(Øq z: .,,:/2), regardless of the beam loading. The same conclulion concerning the

value of the optimum gap spaeing is reached if we diseu •• the gain of two-ca vity
and three-cavity klystrons dlrectly from Eqs (3.48) and (3.49) rather than using
the wave formalism. It should be pointed out that, although this optimum is pre ..

dicted by the simple conventional klystron theory, the reeult iø not at all obviouø

because the simple theory does not account properly for interaction between non ..

adjacent lapa and denaity moclulation e!fects within the gaps.

The curvea .hown in Fig 3.5 for complex values of t and at, i e for frequenciea

different from the re.onant frequency, in this case two frequenciea located aym-

metrical1y on each eide of the resonant frequency (Arg ~ = Arg lC :;;t 'ff/4), indi ..

cate a øhift in the optimum gap spacing from 'ff/l towards smaller valuea il

a> <ID ,and a shift towarda higher values il w> w . In these two cases there. res
cavity impedance i. inductive and capacitive, respectively. The two curveø are

.yrnmetrically located with reapect to 8q:;; ff/l, a property that can abo be proved"

directly from Eq (3.46). Thua, beøldea maximizing the gain at reaonance, the gap

apacinl 9 =: 'ff/Z resultl in a frequency re.ponle curve that is aymmetric withq
respect to the mid frequency.
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It ahould be noted that the atatements concerning optimum gap .paeing do not

apply to the more intere.Ung case of non-.ynchronouø tuning. The optimum gap

SpaciD'. of li. atagger-tuned klyatron will be modified. depending on the detaih

of the atagler-tuning arrangement and. furthermore. on the frequency to which

the optiIniz.ation lø referred. Although thia queøtion ie an intereøting one, it doe.

not 8eem probable that very much could be gained by a further optimization of

drift lengtha of stagger •.tuned klyatron •• and it is beyond the 8cope of thi. paper

to attack thi. very complicated problem which appearl to be intimately related to

the problem of optimization of øtagger-tuning pattern with reapect to galn and
bandwidth.

3.9.2 Gam and phaae shift per stage

Setting 9q = 'ff/Z. correaponding to optimum gap spacing for .ynchronou. tuning.

we can eaøUy write the analytical expressions for the maximum voltage gain. In
this connectlon it is interesting 10 determine both hz I 1'131 and

max max'IaZ I from Eqs (3.48), (3.49) and (3.46), respectlvely. We flnd
max

hz I = z l
max

(3.6Z)

(3.63)

(3.64)

Comparieon of Eqe (3.62) and (3.64) yielde the following result already etated in

the general discussion in the previoue section:

> I'!zl
max

ifll<t (3.65)

Since the condition )( < i is equivalent to G < G , the inequality (3.65) can bee c
interpreted as meaning that the interaction between non-adjacent gapø always en-

hancee the voltage gain at synchroniem provided the electronic conductance Ge i.

lees than the circuit conductance Gc' Of couree, this statement is correct only

il the attenuated gap voltage wave can be neglected. A case for which the attenu-

ated wave cannot be disregarded is the three-cavity klyøtron. We have namely

from Eqs (3. 6Z) and (3.63)

if jf > O (3.66)

meaning that for positive beam loading the maximum voltage gain of the three-

cavity klystron is less than the product of the gains of each of the stagee conøidered

alone, a re.ult which is ~ apparent contradiction to the inequality (3.65). The ex-

planation for the discrepancy is first ol all that in thh case the attenuated wave can-
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not be neglected t its pha.e at the third gap h oppo.ite that of the growing wave

and reduce. the overall gain. Second, in the dilcuaøion of gain OD the ba.ia of

Eq (3.59) the initial amplitude B has heen dioregarded; evidenUy thi. lo not per-

mitted for kly.tronø with only a few atage •.

The curves in Fig 3.3 and perhap. particularly tho8e in Fig 3.6 .how that en-

haneement of voltage gain due to interaetien between non-adjacent gap' actuaUy

become. more pronounced a8 9 departs from the optimum value 8 = Tr/Z. par-q q
ticularly for small values of ~. For high gain per stage (~ large) the ratio

10zl/l"12, approaches unit Y regardlc88 of eq' a8 predicted by the caeeade ap-

proximatlon (3.2,9). For small gain per staKe (~ amaU) the ratio beeomea in-

crea.ingly large a8 ~ approacheø zero.

These re.ults show that the gain of a klystron with relatively elo.ely .paced gapa

(9 «ff/l.) is conøiderably higher than anticipated from the caseade formula
q

(3.l.9), particularly i£ the eavities are heavily loaded (small ~ ) and tuned to a

frequency above the signal frequency (see Fig 3. Sl. Onlya more thorough in-

vestigation of this scherne could answer the question as to whether gain and band-

width obtained in this way are comparable to those of ordinary stagger-tuned

klystrons.

tjext, let us consider the phase shift per stage at resonanee where fill + ~Z = O.

l'he curves in Fig 3.4 ahow that Ci'Z' the phase shift per stage of the growing gap

'f0Itage wave. has a value between the plasma transit angle - 8 and - .,,/Z, de-q
pending mainly on the parameter ~ and, to a lesser extent. on the beam loading

parameter M'. For high ga in per &tage (~ large) q>Zapproache. - ff/Z which is

the value predicted from the cascade approximation neglecting interaction between

non-adjacent gaps. For small gain per &tage (~small). ~Z approacheø - 8q in

which ca se the growing gap voltage wave is in exact synchronism with the slow

lpace-charge wave regardless of the gap spacing 8q• The eascade approxima-

tion is therefore, as expected. gros81y in error for small gain per atage•

Besides being a function of ~, the phase shift per stage depends to a lesøer extent

on the beam loading parameter ~ except at the optimum gap spacing 9 = .,,/l,q
in which case ~l.= - Tr/l. regardleøs of beam loading. At thiø gap .pacing the

growing gap voltage wave il in synchronism with the slow space-charge wave and

the attenuated wave in synchronism with the fast space-charge wave. It thul ap-

pearø that optimization of gap spacing with respect to gain is øynonyrnoul with pro-

viding synchronism between the growing gap voltage wave and the .Iow space-charge

wave.

3.9.3 Effect of beam loading on gain and bandwidth

l! we return to the study of the curveø in Fig 3.3. we are able to make astatement

concerning the effect on gain and bandwidth of the beam loading. and an.wer the

queøtion whether ca vity loading by circuit 108s or by the beam il preferable. In

this connection it is significant that the beam loading is not properly accounted for
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by simply adding the beam loading conductance G to the circuit admittance ye c'
all is claimed in the conventional klystron theory. li this were correct, it would

he quite irrelevant all far ae gain and bandwidth are concerned whether the cavi-

ties were loaded with circuit 1088 or by the beam. It follow8 from the more riga-

rous theory developed in this report that the beam loading conduetance G in addi-
e

tien to appearing in parallei with the circuit admittance aha enlere 10to the trans-

fer admittance Yr. 8' as iø apparent for instance from Eq (B. 9) in Appendix B.

Nating that the bandwidth iø specified mainly by the value of the øelf-admittance

y:; Ye + Yc' which determines the effective loaded Q. the ga in will depend expli-

dUy on the beam loa ding Ge through the transfer admittance even if Y. and thus

the bandwidth. is kept constant. In the present wave description. this point mani-

festa itself by the fact that with constant e (meaning constant Y and therefore

constant bandwidth) the gain is a funetion of the beam loading parameter •• wruch

is proportional lO Ge• A sludy of Fig 3.3 or of Eqs (3.63) .nd (3. 64) r~vea1s lhal

the quantities 1"l31 and lall increase as the beam loading parametermax max
~ decreases provided ~ and thus the bandwidth are kept constant. Therefore. the

rather important conclusion pertaining to synchronously tuned multi-ca vit y klys-

trons can be made that loading of cavities by circuit loss is preferable to beam

loading. For a given bandwidth (y constant) the highest gain is achieved uaing

negative beam loading compensated by sufficient circuit 10s8. Evidently. in this

case the density modulations occurring in the interaction gaps in addition to the

normal velocity modulationa have favourable phases and contribute to enhance the
ove rall gain.

Another observation made from the curves in Fig 3.3 is that negative beam load-

ing causes a general broadening of the maxima. Therefore. aIao in thh respect

negative beam loading is beneficial because the gain will be a less critical function
of gap spacing.

Even if the beam loa ding generaUy afiects the gain and bandwidth as described.

the magnitude of the efiect is quite small. as clearly observed from Fig 3.3. be-

cause jf normally is much smaUer than ~ • and only approaches ~ in extreme

cases for which the cavities couple mainly to one of the space-charge waves.

From physical reasoning it aeems natural to expect that the discussed possible

enhancernent of gain at constant bandwidth due to negative beam loading should be

accompanied by a change in the phase shift per stage q>Zin a direction which

bringa the growing gap voltage wave nearer to synchronism with the slow space-

charge wave. That thia is indeed the case is shown clearly by the curves in Fig
3.4.

3.9.4 Relative phases of the growing and aUenuated gap voltage waves

To conclude the presentation of numerical data for synchronously tuned klystrons.

the abaolute values of the initial values A and B of the aUenuated and growing

gap voltage waves are plotted in Fig 3.7 for the same combinations of the para-
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meter. t and ~ a8 tho.e in Figs 3.3 and 3.4. Over the appreciable range of

parameter •• hown in the graphø, both IA I and IB I are of the order of unit y, a

fact that permitted us to dilregard these iaetore in the previou8 dhcuI.ions.

The dUference between the phaøe angles of lAI and IBI is exactly equa.l to 'IT

(A ~ - B) for zero beam loading, and approximately equal to 'fl' for moderate

valueo of the ratio ~/!.
In conclusion we ahall ehow that the growing wave and the attenuated wave are in

pha.e at the gap. for which p iø even. and out of phase at the gap. for which p

is odd. At lea st thia statement is correct for gapa with optimum spacing 9q ~ ff/Z

and zero beam loading. Since in this case A = - B. q:tl = -lpZ = 'ff/Z, and

1011 = 1/lozl. Eq (3.47) redueeolo the following expreooion:

(3.67)

which showa that the above statement is correet. Thus, for a three-eavity klys-

tron (p=3) the attenuated wave subtraets from the growing wave at the third gap,

explai~ng the faet previously discussed that the voltage gain in this case is less

than the produet of the gaine of its twa stages eoneidered alone (see Eqs (3.6l)
and (3.63».

3.10 Spaee-charge waves in synchronously tuned klystrons

As a supplement to the discussion in .the last sections of gap voltage waves in syn-

chroItOusly tuned klystrons, it is instructive to study the growth of the associated

space-charge waves that propagate on the electron stream. Since the kinetie volt-

age components U+ and U- of th~ two space-charge waves are simply related to

the current components r+ and 1- through the RF beam impedance W, it sufficeø

to study the current wave. which in the general case is given by Eq (Z. 54). Noting

that the initial modulatione 1(0) and UfO) are zero, and using the notations defined

in the last sections, we obtain

Ip = - ~ fYr" [M e-jaIP-r+t)]

r=l
(3.68)

where I is the RF beam current at the output cro8s-section of the pth gap. and
p -

e = t3 I. as befare is the electronic transit angle between the centers of two adja-e + _
cent gape. We shall study the slow and the fast waves I and r separate ly. Ex-

p p
pansion of Eq (3.68) by meane of the difference operator il yielde

M+ -j(a + a )(p+t) IP j(e+ s )r
1+ :; - - e q V e q
p zw r

r=l

M- -j(s-a)(p+t)IP: j(a-a)r
C=+-e q Ye q
p zw . r

r;l

(3. 69)

(3.70)
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These formulae are quite general and hold for any atagger~tuning li the proper

gap voltagea Vrare inserted in the equationø. We shaU, however. refrain from

a general study which is quite involved and rather confine the discu8aion to one

speda! cale for which une •• entia! detail. are avoided and the mathematleal for-

mulae are particularly simple, namelya .ynchronously tuned kly.tron having op-

timum gap øpacingø (9q = Yr/l).

li the øynchronouøly tuned klystron ia operated at the resonant frequency, the gap

voltage Yr is readUy determined from Eq (3.47) by noting that in thia case

~l = -rpZ = fr/l. and both A and B are real. Thus, for r 2:: l

(3.71)

where the real constants A and B are of the order of unity.

Substitution in Eqs (3.69) and (3.70) yields for the twa component. of the eurrent

M+Y -j(9+i)(p -tl [I P
10zlr-' + At(-lol!)r-l ]t I

BI= ---- e +
p ZW

r=l

- M-Y1 -j(9-i)(p-t) [P p ]r = .--- e 1+ B~z(-IOzl)r-1 +A ~;ollr-Ip ZW

(3.72)

(3.73)

Since the quantities inside the brackets are real, the phase shifts per stage of the

slow and the fast current components r+ and C are given by e + ff/Z and 8 - ff/l,P P
re spe etively • corresponding to propagation faetors ~ + ~ and ~ - l3 , a8 ex-e q e q
peeted.

The amplitude 8 of I+ and C grow from gap to gap in aecordanee with the sum ofp p
the geometrical series inside the braekeu. Of these the al-serie. represenh

the eurrent modulation due to the growing gap voltage wave. and the al-series the

current modulation due to the attenuated gap voltage wave. By evaluation of the
+ -series it followø immediately that eaeh of the eomponents Ip and Ip is the sum

of three current waves: one wave having constant amplitude, one growing wave,

and one attenuated wave. Some distance beyond the input gap no significant error

is made if the eonøtant-amplitude wave and the attenuated wave are negleeted com-

pared to the growing wave. Making thia approximation, we £ind

r+
BM+Y 10ziP -j(9+¥)(p-t)I.- e

P ZW 10zl- I

r- BM-Yl (- lozl)p -j(9-i)(p-tl.-
10ZI + I

e
P ZW

(3.74)

(3.75)
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The equationl .how quite eiearly that the amplitude of the dow wave t exceed.
• p

that of the fa.t wave I .1 i. expected from the .maU-lignalldnetie powerp'
theorom (o••• octlon Z.7). From a otudy of Eq. (3.69) to (3.73) It lo roadily

leen why the .~ow øpace-charø:e wave growl more rapidly tban the fa.t wave.

The growin.c gap voltalc wave modulating the beam h in Iynchronbm witb the

dow .pace-charge wa.ve and the effect on the dow wave I; ie therefore cumu1a-

tive, i e the contributionl from each gap add in pha.e, IIIhownby the raet that all

the terme ill the 0Z ••• rie. in Eq (3.72) have the lame llign. On the other hand,

the pha.e of the growinl gap voltage wave is unfavourable for modulation of the

faøt lpace-charge wavc. The modulation in one particular gap tend. to canecl

lhat of the preceding gap, al indicated by the fact that the sign of the terms in the

"aZ-serie. in Eq (3.73) alternatee between plus and minus, The net amplitude

Irowth of the faat .pace-charge wave h therefore lInaUer than that of the slow

waye.

Tho additlonal small modulation. given by the 0l-.erio, In Eq. (3. nI and (3.73)
a.re cauaed by the attenuated gap voltage wave which iø in aynchronhm with the

faet .pace-charge wave. Therefore, the small current modulationl due to the

attenuated gap voltage wave are cumulative for the fa.t wave and alternating be-

tweeD plua and minua for the slow wave.

+ -The relative magnitudea of l and I depend, furtbermore, on the coupllng co-
+ - p peUicient. M and M • Sinee the amplifying meehanism is one by whieh RF power

is coupled to the eavitie. along the stream from the slow apace-charge wave earry-

ing negative kinetie energy, the occu:'rence of a growing slow wave ia quite easen-

tial. The faat wave, however, increases ih amplitude at the expense of power,

and servea no useful purpose in the amplifying proees8. The faat wave eould be

elirninated altogether by arranging matter a such that the gaps couple ooly to the

dow .pace-charge wave, in whieh case M- = O, We would then have a klyatron

in which the ølow wave ta the only one occurring. li the praetleal problem of de-

aigning gapa that couple only to the slow wave is dhregarded (althoUlh design of

IJUchcouplera seerne entirely feaøible). sueh a hypothetieal kIyatron would be

charaderized by gaps having negative bearo loading, which would require suffi-

cient cavity loas to avoid self-oscillations. The gain would be almost independent

of gap spacing and be somewhat larger than that of a aimilar klyatron with zero

or positive bearo loading, according to the discueøion given in the previous two

section •• It appears improbable, however. that the small improvement in gain

and bandwidth would ju8tUy the added eomplexity.

3.11 General expreøsion for power gain

The power gain of a multl-cavity klystron ia determined by elltabli.hing the pro-

per re1ationship. between the input power and output power and the RF ,ap voltage.

of the input and output cavitiell by meanl of the formulae given in Appendix A.
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3.11.1 Relatian between input power and gap voltage

The RF energy from the signal source nows through a tranami8sion line into the

input cavity, as indicated in Fig 3. Ba. The equivalent circuit ehown in Fig 3. Bh.

referred to the position in the transmission line known as the "detuned .hort"

position, is carrect {or aoy resonant ca vit y provided the cavity ie excited in only
one of itø resonant modes.

Beam Input cavity

"Detuned shortll

/~~tion

Input transmission
line

Signal source with available
powe r Fj, matehed to the

input transmission line

(a)

R ah, l

v

t

(bl

Fig 3.8 Configuration of the input cavity and signal source

(a) Input ca vit y excited from a signal source with available

(b) Equivalent lumped-parameter circuit

power P.
l

The input admittance Yl' norrnalized with re speet to the characteristic admittance

of the transmission line and referred to the detuned short position, follows from

Eq (A.12) in Appendix A. In the present notation the equation takes the form

(3.76)

where Qext, l is a measure of the coupling from the input tranamission line to the

cavity, 51 is the frequency-tuning parameter defined in Eq (3.3), 0l is the un-

loaded Q, Rsh•l/Ql is the characteristic impedance of the cavity. and Ye•I is

the electronic admittance. The Ioaded Q of the input ca vit y by definition is given

by

(3.77)
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Subatituting Eq (J. 77) in Eq (3.76) and uaing Eq (3. Z), we can expre •• the nor-

malized input admittance y l in terme of the .el£-admittance y l, l = Yc, l + Ye. l
in the following way:

(J.78)

Although it normally is desirable to adjust the normalized admittance to unit y at

relonanee by appropriate choice of coupling between guide and ca vit y (adjustment

of Qext, l)' the general case characterized by arbitrary input admittance will first

be considered. The aløwnption will be made that the signal source impedance h

rnatched to the input transmi88ion line, 80 that the entire available power P. i.1

transferred to the ca vit y and the beam when the normalized input admittance Yl

is unity. Such an assurnption claes not restrict the generality of the re.ulte. li

Yl is not unit y • lIome of the power is reflected at the input terminal, only part of

it being tran.mitted into the cavity. For this transmitted complex power we shaB

use the notation lP.. From elementary considerations of re!lection. at the input
1

terminal, the following reIation between the available power P., the trana mitt ed
1

cornpIex power "i' and the normalized input admittance is obtained:

4Yl
6'i = Pi ------

(I+YI)(l+y~)
(3.79)

where here. as throughout the paper, complex power is defined on the bash of the

product of current and the conjugate of voltage.

The tranarnitted complex power 6'i rnay be related to the RF gap voltage Vl through

the se1f-admittance Yl l by noting that the power is dis sipated in thh admittance,
minus the coupled admittance from the input transmission line.

6'i =
R ah, l

) (3.80)

Combination of Eq. (3.78), (3.79) and (3.80) yleld. the de.ired refatlon between

the available power Pi of the signal source and the RF gap voltage VI:

3.11. l Optimization of the input coupling

"Qext,l YI•I YI,1 (3.81)

At a given available power Pi the maximum input gap voltage VI at resonance is

obtained for a certain optimwn value of Qext, l which can be determined from

Eq (3.81) by differentiation. It should be noticed that relonanee is defined a8 the

frequency at which the imaginary part of the se1f-admittance Yl, l' rather than

the imaginary part of the circuit admittance Y l alone, is zero. Uaing Eqac,
(3.6) and (3.9) we flnd the optimum condition
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l ( G. l )aL l Gl l = - l + --=..:.
• • 2 G lc,

(3.8Z)

where GI,l is the real part of YI,l; Ge,l a8 befare is the electronie conduc-

tance; and Ge• l is the loaded circuit conductance al /(R.h, l OL, l ). An alter-
native way of writing the optimum input condition (3. 8l) is the following:

R ah, l
+ G =., l R ah, l aext. l

(3.83)

which is easi1y interpreted a8 meaning that the sum of the unloaded circuit conduc-

lanec and the electronicconductance must equal the transformed external conduc-

lanec, i e the generator conductance. This, of course. meanø that the generator

is matehed to the cavity and the beam. We can ea.Hy convince ourøelve. that it

the optimum. condition (3.82) is fulfilled. the input admittance Yl given by Eq(3. 78)

lø equal to unity. and all the available power P. of the generator is therefore trane-
l

mitted to the cavity and the beam.

If the beam loading is zero, the optimum condition simply i. OL l/a l = t ., ext,
This dtuation is normally referred to as critical coupling. In tbis case the two

space-charge waves are excited with equal amplitudes, and the net power required

for their excitation is zero. Seen from the generator, the cavity behaves as if the

beam were not pre sent.

With positive be am loading the amplitude of the fast space-charge wave exceeds

that of the slow wave. and a net positive power is required for their excitation.

Therefore. optimum power transfer occurs at a coupling stronger than the critical

coupling, OL l/a l > i. Conversely, if the input gap has negative beam load-
,ext, .

ing, the amplitude of the slow space-charge wave exceeds that of the fast wave,

and a net positive power is extracted from the beam. The optimum input condition

is obtained for weaker coupling, OL, l/Qext.l < t ..
With optimum coupling Eq (3. 81),relating the available power Pi and the RF gap

voltage Vl' reduces to

(3.84)

It is intereeting to study what happens il by some meanø the beam loading is made

larger, but otherwise the cavity parameters Rsh,l/Ol and al are kept conetant.

In order to maintain the optimum condition given by Eq (3.83). the trandormed

generator conductance must be correspondingly increased througb reduction of

the external Q. by making the coupling between input transmisdon line and cav-

ity stronger. If the beam loa ding becomee 8ufficiently large, the optimum exter-

nal Q will be approximately equal to the loaded Q. meaning that the larger part

of,the overall cavity loading is due to external loading and beam loading, both be-

ing approximately equal in magnitude. In this limiting case for wbich
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o l ~ OL 1« Ol' a negligible amount of the available power P. is dissipated
ext, t l

in the input cavity itself. The main part of Pi is trans(erred ta the electron

beam and propagates in the forward direction in the form of an exceS8 modulation

of the fast space-charge wave relative to the slow wave. This diøcu8sion has

some relevance to problems encountered in connection with ialt-wave cavity coup-

lers for beam.parmetric amplifiers (24), a8 discussed more thoroughly in Chapter 5.

3.11.3 Relatlon between output power and gap voltage

As already done for the input cavity, we shall next establish a corresponding re1a-

tion between output gap voltage and output power. It will be aS8umed that the out-

put transmission line carrying the useful power from the output eavity (ca vit y no. p)

is terrninated in a matehed external load. This assumption does not in any sense

restrict the generality of the results. The power PL dissipated in the external

load is then simply given by

= tv v*p p
l
R

Bh. P

(3.85)

whieh is the required relation.

The power gain. defined as the ratio of the output power PL dissipated in the ex-

ternal load and the available power Pi of the signal source, is obtained by diviaion

of Eqs (3.85) and (3.81). Recalling thatthe ratio V/VI is the voltage gain "'Ip'

we obtain

~ Ol

R R ° °ah, p ah, l ext, l ext, p V l l V7 l, ,
(3.86)

This equation is quite general, holding for arbitrary input and output couplings, and

a180 for large-signal operation, if by ""l: is meant the actual large-signal vOltagep
gain. In the present report we are concerned on ly with the small-signal perfor-

mance, in which case "'lp is given by the formulae derived previously in tbis

chapter.

3.11.4 Optimization of output coupling at small-signallevel

The output coupling can be adjusted to maximize the power gain in the same fashion

as previously done for the input coupling. Remembering that the voltage ga in "lp

contains the aelf.admittance Y of the output ca vit y aS a common denominatorp,p
(see Eq (3.13)). we obtain the following condition stating the optimum output coup-

ling at resonanee and small-signal level:

= z
R2!w?o G° L,p P,P

P

(3.87)

It is significant that the optimum small-signal output coupling is identical with the

optimum input coupling given by Eq (3.82).
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U the external a'. of both input and output cavitiea are adJuøted to tbeir optimum

.mali-oignal valueo accordlng to Eq. (3. 8Z) and (3.87). we find from Eq (3.86)
that the correeponding m&ximum ømaU-lignal power gain il given by

G G1,1 p.p
Y l l Y7 l• •

(3.88)

At reeonance thiø equation aimplifieø to

"= "lp 'lp (3.89)

Hence, for optimized input and output couplings at small-øisnallevel, the power

,ain h equal to the square of the voltage gain if the input and output cavities are

identical (Gl l :: G ). Hiih-efficiency aperatian of praetieal tube. at large-
t p,p

signal leve! requireø stranger output coupling than that fndiealed by Eq (3.87).

In thi. clOe the power ga In Is given by the general Eq (3.86) rather thon Eq (3.88).

3.1Z Bandwidth con.ideration.

Simple expre8sionø for the bandwidth of a multi-cavity klystron cannot be given

even for the simple caae that all the cavitieø are identical and synchronouøly tunedo

Thi. difficulty is due to the complicating effect of interaction terme between non-

adjacent cavitiea. A rough idea of the expected bandwidth can be obtained by con-

sidering a .pecial case for which the interaction terms between non-adjacent cavi-

tie. can be disregarded, namelya klystron having large gain per øtage compared

to the number of cavitieeo In this case the cascade gain approximation (30 19)
holdl. Jf for limplicity the assumption is made that all the cavitiel including the

input and output cavities are identical, the emall-øignal power gain 18 obtalned

from Eq (3.88), yl. Iding

( " )p-l
= "lZ l 'IZ l, , (3.90)

where the voltage gain per stage 'rll.l is given by Eq (3. Il),

"lZ l• (3.91)

Since. by our aesumption, Yl l = Y l l =. ,
y Eq (3.90) reduee. top,p

p-l
= (y l 1 Y~ l). ,

(3.9
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In thh expreø8ion the only quantity changing rapidly with frequency is the sel!-

admittance y l l' Therefore, the frequencies for which the power gain is re-
•

duced to half itø value at reøonance are given by the relation

(3.93)

Neglecting the slow variation of the beam loading admittance with frequency. we

obtain the following expresllion for the relative bandwidth (subøeript. are omitted):

(3.94)

1£the numher of cavitieø exceeds twa, the following approximation holde to within

three per cent:

= .(I/p)logZ _ 1+ .!.
p

log Z (3.95)

We shall aha define an electronic Q by the relation

I (3. 96)

Sub.titution of Eq. (3.95) and (3.96) in Eq (3.94) yl.ld.

wo

0.83--;T (~L+ ~)
(3.97)

Thus the relative bandwidth is inversely proportional to the total loaded Q (in-

cluding the electromc a) and the square root of the numher of cavities. The ef-

feet of positive beam loading is to increase the bandwidth, of negative beam load-

ing to decrease the bandwidth. The modified bandwidth due to beam loading ia ac-

companied by a corresponding change in the power gain in the oppoeite direction.

This is easi1y observed from Eq (3. 92). which at reaonance can be written

( Y" )p-I
:;; Yl,l 2,1 [

(R /0)0 ] Z(p-I)
.h L

l + oL/a.
(3. 98)

Hence, if the bandwidth ia increased by a certain factor due to positive beam load-

ing, the power gain per stage becomes smaUer by the square of this factor, and

vice versa. These phen omena obviously are caused by regenerative effects in

the individual cavitiel. The bandwidth becomes vanishingly small and the gain

extremely high in the limiting case for which the beam loading is negative and its

magnitude Bufficiently large to cause the klystron to operate juat below the start

of oacillationø. Thie situation occurs when the eum of the electronic Q and the

loaded Q approaches zero.
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Since the beam loading and therefore the electronic Q are functions of the DG

beam velocity, gain and bandwidth of a klystron with appreciable beam loading

will be a function of the De beam voltage. The above discu8sion showa that the

gain and bandwidth are expected to vary in oppoeite directions Ola the beam volt-

age is varied.

In the theory of cascaded hand-pass amplifiers it is convenient to define a gain-

handwidth faetar GB as the product of the relative bandwidth and the aqua re root

of the power ga in per stage

In the cascade approximation of multi-cavily klystron gain discu88ed here, the

gain-handwidth faetor is readily evaluated from Eqs (3.97) and (3.98). We £ind

(3.100)

3.13

which show. explicitly that the faetors containing the beam loading or the elec-

tronic Q have cancelled out, rendering the gain-bandwidth factor substantially

constant and independent of regenerative effects. It should not be implied, how-

ever, that the gain-bandwidth factor is entirely independent of beam loading. be-

cause the transfer admittance Y2 l contains a term propartianal to the beam

loading (see for instance Eq (B. 9): Appendix B). As discussed previously, this

term is due to the small dens it y modulation taking place in the gaps in addition

to the velocity modulation.

General rules for scaling of the frequency band at constant gain

The expressions for bandwidth deri ved in the previous section are approximate

because interactions between non-adjacent gaps are neglected. A dhcussion of

bandwidth for synchronous tuning. taking full account of these terms. is rather

difficult. and even more so for the general case of klystrons with arbitrary.

stagger-tuned cavitiell. We shall refrain from a discussion of the rather involved

problems encountered in the analysis and synthesis of frequency respanse func-

tions with stagger-tuned cavities. Instead. we shall confine aur attention to the

discussion of a particular problem which is solvable, namely that of scaling the

frequency band at constant small-signal power gain.

Using the general gain formulae (3.86) and (3. 11), we find that the power gain vs

frequency depends on a number of parameters or parameter combinations, listed

as follows:
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Input cavily (IFI) :

R

( ~~' I 0ext, I ) , (

Intermediate cavities (9=2,3, ----- p-l) :

OL, l) ,
W

M•
Ra)
( ~h,s ~' 5

•
(J.IOI)

Output cavity (s=p) :

Ra)a ~ ---.h.E.
ext, p) ,( a w '

p

Note that these exprcssions inc1ucle the effect of beam loading through the coup-

ling coefficients Mt and M -o The gain obviously stays constant if all the M-

parameters and the products inside the parenthcses are kept conatant. Within

the limitation indicated by this requirement the parameters can be scaled. We

ahall show that the frequency response curve at constant gain is scaled by a fac-

tor k in bandwidth provided all the loaded Q's are scaled in the ratios l Ik, all

the characteristic impedances Rah/a in the ratio k, and the stagger-tuning pat-

tern scaled as descdbed below. If the scaled parameter values are indicated by

primes, we obtain, using for each cavity the condition QL5 = constant

= = ~ = 0'1

A' olL,p

= =
o'
~ = k
o

P

(3. 102)

Within the accuracy of the approximate expression for a g:iven in Eq (3.3) we

obtain from Eq (3. 102)

, , ,
O,)- 0,)0 l 00-0,)0 l Ul -Ul

l = , = =
O,p = k (3.103)

Ul • wo. l (.1)- wO, 2 U) -mO,p

where (1)0,l' (.\)0,l' --- 000• p are the original resonant frequencies, and CJ)~,1t

mO 2' --- (1)'0 are the scaled resonant frequencies. By succes sive subtrac-
• ,p

tions of both numerators and denominators in the various fractions of Eq (3. 103),

the frequencies (1) and (Dl canoe'f. and wc obtain the new. scaled stagger-tuning

pattern expressed in terms of the new resonant frequency of the first cavity and

the original resonant frequencies.

, , , , , ,
wo• l - 0,)0. l UlO,3 - wo, l Ul - wo, l

= = O.P = k (3.104)

wo, l - 0,)0, l wO,3 .000, l wo, P - (.1)0,1
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The new frequency 00' ia related to the original frequency w by

w' - w~ I = k (w - w )• O, l (3.105)

showing that the frequency band is increased by the factor k. It should be noled

that the scaling rules still hold if the location of the new response curve is ahifted

in the frequency band relative to the originalone.

Furthermore. ainee from (3.101) the produet (R IQ)(Q IW)
ah L

for each cavity, the scaled values are given by
must be constant

(Rah• /Q1 W)' =

Rah• /QI W
=

(R IQ W)'
ah, p p

R h IQ W
8 • P P

k (3.106)

This means that the procluct of the characteristic impedance Rah/a and the in-

verle RF beam impedance l/W must be scaled in the ratio k.

The scaling discu8sed here further requires that the coupling coefficients M- and
+

M of the two space-charge waves are maintained at their original values in each

gap.

-'M = Ma a
a = l, 2 P (3.107)

M+' = M+
a a

Provided the RF field distribution in each cavity is maintained, the requirements

stated in Eq (3.10?) imply that the propagation factors l3 and l3 remain theq e
same (see Eq (2.58)). This again imposes a slight restriction on the possible

scaling of the RF beam impedance W, defined in Eq (2.30). since the scaling

must be done without affecting ~he propagation faetors.

The requirements expressed in Eqs (3.106) and (3. lO?) are equivalent to having

a constant ratio between the cavity admittance and the electronic admittance or

the transfer admittance.

It is noticed from (3. 101) that twa additional requirements must be fuUilled. name-

ly the scaling of external O's at the input and output cavities. These requirements

are rather trivial, however, because no frequency dependent quantities are in-

volved.

The above discu8sion show8 that if the stagger-tuning pattern of a given klystron

lø already optimized with respect to gain and bandwidth, a further increase in

bandwidth at constant gain can only be obtained through:

a) Higher characteristic impedances Rsh/o of the cavities

b) Lower characteristic beam impedance W
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Theøe re.ult, demonatrate quite clearly the øignificance of the characteriatic im~

pedancelll of the cavitiea and the beam in multi-cavity klyatron theory and design.

In this connection it ahould be pointed out that the characteriatic impedance

Rah/a generally increases with the interaction length. For example Rsh/a of

a ahorted ølow-wave atructure having ainusoidal RF fieid diøtribution il propor-

tional to the number of standing wavea. while the coupling coefficienh are 8ub-

stantially independent of thh number. Therefore, the use of such atructurea

offera definite p08sibilitie8 of marked improvement in bandwidth over that ob-

tained with conventional narrow-gap klystrons (9).

The 8caling problem discu8sed above. characterized by constant gain and scaled

frequency band, seems to be the only one that can be discussed in simple terms.

li we ask what happens il the loaded Q's, or the characteristic impedances are

scaled independently, no simple answers can be given to these questions. except

for special cases in which interaction between non-adjacent gaps and the beam

loading can be disregarded. The difliculties encountered in such a discu8sion

are due to the fact that the relative contributions to the gain from the various

terms in the general formula (3.11) depend on the loaded Q's and the (Rsh/Q)'s

in a rather complicated manner. Thus, the following general statement can be

made:- In a multi-cavity klystron. separate scaling of all the loaded Q's, or of

all the characteristic impedances Rsh/o, does not result in a simple scaling of

bandwidth or gain, except in the case discu8sed above for which the 8calings of

the parameters are interconnected in the way prescribed by Eqs (3. 102) through

(3. 107). Although not done here, it may be shown that this same conclusion can

be drawn from a treatment of the same scaling problem in terms of poles and

zeros of the gain function in the complex frequency plane.

To conclude the discussion of bandwidth, we shaIl emphasize the unique role

played by the input and output cavities relative to the intermediate floating cavi-

ties. This difference is quite clear already from the pole-zero description of the

response funetion (ll, 23). Each of the p cavities contributes to one of the p

poles in the complex frequency plane, while the p-l zeros depend only on the p-l

intermediate cavities, and not on the input and output cavities. In aur formula-

tion this point manifesta itself by the fact that the seIfwadmittances YI l and
•y of the input and output cavities are common factors in the denominators of

p,p l
all the ZP- cascade terms (J. 17) adding up to the overall gain (see Eqs (3.18)

and (3.86», and thus can be brought outside as multiplicative factors.

On the other hand, each of the self-admittances Yl 2 --- Y -l -l of the inter-
-3 '-l P ,p

mediate cavities is found only in lP of the total of lP calilcade terms (3.17),

i e in exactly half the total Dumber of terms. Thus, it appears plausible that the

frequency respanse will depend more strongly on the loaded Q'. of the input and

output cavities than on the loaded O's of the intermediate, floating cavitiea. The

practical consequence of this fact is that the required bandwidths of the input and

output cavities should be of the same order as the desired frequency band of the

multi-cavity klystron. while no luch restrictions on the bandwidths of the inter-

mediate cavitiea are necessary. In practice, therefore, the frequency responsea
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of the input and output cavities .hould be sufficiently hroad to be considered a.

canetant. The actual frequency response of the entire klyatron amplifier will then

he determined mainly by the general voltage gain {unelion (3.11), i e by the para-

meters of the intermediate floating cavitieø and the detail. of their etagger .•tuning.

Reciprocity theorems for multi-cavity klystrons and interaction gap. with
dhtributed interaction

In this section Bome very important reciprocity theoremø will b•..proved. pertain-

ing to general, extended inter&ction gaps and multi-cavity klYltrons using cavities

with such gaps. The theorems are concerned with the reciprocity relations for

rever.ed direction of electron now through the gaps. We shall show that by re-

Terlling the electron now. the following theorems hold:

a) For any gap 8 the coupling coeHicientø M: and M; of the slow and the fast
space-charge waves transfer to their complex conjugates M+"Cand M-x.• •

b) For any gap 8 the electronic admittance Ye s and the seli-admittance Ys. s
are invariant with rcøpect to reversed now. '

c) The transfer admittance Yr s between any twa gaps 8 and r is invariant with
respeet to revers ed now, i e Yr 8 = Ysr'. .

d) For any arbitrarily stagger-tuned multi-cavity klystron with arbitrary. exten-
ded interaetion gaps the power gain over the entire frequency band remains the
same if the beam ill reverøed and the roles of the input and output transmis-
øion lines are interehanged øuch that in the new configuration the eleetromotive
foree of the generator appears in series with the original output load. and the
original generator impedanee serves as the new output load.

As a eorollary to theorem d), we have the following theorem:

e) Assume that the cavities with their gaps are arranged symmetrically with re-
speet to the plane hal! way between the input and the output gap. Then, for eaeh
øtagger-tuning pattern eharacterized by the resonant frequencies w1,w2,w3 -- (O •
the re exists a second, different øtagger-tuning pattern having exactly the same p
power gain vs frequency. The second pattern iø obtained from the first by re-
versing the order of tuning, i e the new reøonant frequencies are (Op'(Op_l' -- wl'

3.14. l Reciprocity relation for the coupling coefficient

The coupling coefficients M- and M+ are given by Eq (2.58)

ljlZ j{ø tø )x
= F(x)e e q dx

-l/z
(3.108)

where F(x) is the normalized longitudinal RF fieid distribution in the gap. li

primed quantitieø refer to the situation with reverøed electron now, we have from

Flg 3.9

F' (x) F( -x) (3.109)
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therefore

l/l .(~ t~ )
= l F(-X)/. q x dx

- l

(3. Il O)

Changing sign of the integration variable x, we obtain

(M+)'} IJ/z -j(~ t ~ )x {M+"
= F(x). • q dx = _"

(M-)' -'ill M

which provelI theorem a).

Electron
now

(a)

-i/l

I/F' (-x) = F(x)

F(x)

x --- ..•••

(3.111)

l/z

(b)

Electron
new

-i/z
I
I l -x

O
i/l

Fig 3.9 Longitudinal RF neId distributions
(a) Example of RF neId distribution of a gap with electron flow

in original direction
(b) RF fieid distribution of the same gap with electron flow reversed

3.14. Z Reciprocity relation for the electronic admittance

The electronic admittance Ye of a gap is given by Eq (2.68). Since a cavity inter-

action gap is characterized by real values of F(x). we have

il.l '0 x .
I J -J".x J J~.Y= -Vi!>. F(x). F(y). dydx

-ill -J/z
(3. Ill)

where fj. i. the difference operator defined in Eq (2.38). For the rever.ed beam

w. find. uslng Eq (3.109)
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1/2 . x .

l -Jp x J JPeY
= - ~ A F(-x)e e ,F(-y)e dy dx

-/2 -1.,l

Changing signa of the integration variables x and y. we obtain

y'
e

J/2 . x .
1 J Jp Xi -Jp Y= + W A F(x) e e F(y) e e dy dx

-ril /l

Partial integration transforms the double integral to

y'
e

1/2 . x . o
l l -Jp x J J~ Y= - W A F{x) e e , F{y) e e dy dx =

-,/l -ill
(3.113)

which proves theorem b).

Since the circuit admittance y c obviously is independent of the direction of elec-

tron £1ow, it is hereby aha proved that the self-admittance y 5 for aoy cavity
5,

8 is invariant with respect to reversed now.

yl = yl + yl :; y
s,s e,s C,S 8,8

3.14.3 Reciprocity relation for the transfer admittance

(3.114)

The transfer admittance Y {rom gap r to gap s. (r < 8) is given by Eq (Z. 67)
5, r ----------

y
5, r

= _1.. A(M M"W r 5 (3.115)

EvidentlYt with reversed flow, the transfer admittance

is given by

-jp 1,
y' ==_'!'6(M'MiIf'eer,s)
r.s W 8 r

Y, ( rom gap s lo gap rr. 5 --~----~-_

Since.2 is equal to 1. ,and the primed coupling coefficients satisfy theorems, r r, s
a) stated in Eq (3. 111), we obtain

-j~ 1.
y' = _.!. A(M M* e e SJr) = y
rJs W rs s,r

which proves theorem c).

3.14.4 Reciprocity relation for the power gain

(3. llb)

The proof of this apparently important theorem is based on theorems a). b) and c)

already proved. Let us first consider the voltage gain "tp of a p-cavity klystron,

which from Eqs (3.l1) and (3. Il) can be written as the following determinant:



"'lp =
(_l)p-l
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o o ------------- O

o ------------- O

(3.117)

y y --------- y yp-l,l p-l,2 p-l,p-2 p-l,p-l

y
p, l

y
p,2

y
p,p-2

y
p, p-l

li the direction of electron flow is reversed and the cavity resonant frequencies

maintained at their original values, the new voltage gain "l~ can be evaluated

from the same general equation. The original gap indices are retained, i e the

new input gap has the index P. the second gap inclex (p-l). etc. We find

y' yl
p-l,p p-l,p-l o o --------- O

I ="1 p
(_l)p-l

Y Y -- Y1,1 2,2 p-l,p-l

y~-2,p y~-2,p-l y~-2,p-2 O--------- O

y' y' . ,
y~ 2---------_ .... Y2,32,p 2, p-l ,

y' y' ,
y; 2l, P l,p-l ------------ Y1,3 ,

(3.118)

The next step is to show that the dete rminant s appearing in Eqs (3, 117) and (3. 118)

are identical. This reeult follows very simply using theor~m c) on all the trans-

fer admittances in one of the determinants, and then interchanging rows and co-

Iumne. Therefore. the ratio between the voltage galne "1~ and "'tp for the re-

versed and original directions of flow is given by

I

2=
"lp

(3.119)

The equation showa that the voltage gains are the same in the two cases except for

a trivial impedance transformation equal to the ratio between the self-admittances

of the output and input cavities.

We shall prove next that the power gain with reversed now is exactly the same as

the power ga in for the original direction of now. The proof follows very simply

from Eq (3.86), wmch is valid for arbitrary input and output loads. For the ori-

ginal direction we have
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Ol

R Q °ah, l ext, l ext. p y l I y7 I
• •

(3.120)

With reversed beam and input and output interchanged, we obtain from the same

formula

(;L) .
l

". Q14 '"1p"!p -R--
ah, l

~
R sh,p

y y"
p,p P.P

(3.121)

On account of Eq (3. 119). the following identity obviously holds:

which proves theorem d).

(3.122)

Theorem e) follows immediately as a co rolla ry to theorem cl). By symmetric

arrangement of cavilies with respect to the center cavity. it is quite evident that

the klystron with reversed beam and the cavities mainlained at the original reso-

nant frequencies is equivalent to the original klystron with cavities tuned in the

reversed order.

As an example, this theorem shows that a stagger-tuning pattern in which the

first cavities are tuned to lower frequencies and the subsequent cavities to higher

frequencies, results in exactly the same power gain and frequency re sponse as

the reversed tuning pattern in which the first cavities are tuned to the higher fre-

quencies and the subsequent cavities to the lower frequencies. It should be borne

in mind, however. that all the theorems a) to e) hold under smaU-signal condi-

tions only. For efficiency reasons one would in practice prefer the pattern in

which the next to last cavity is tuned to a relatively high frequency, since this in

general enhances the large-signal bunching and thus the efficiency.
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4 MULTl-CAVITY KLYSTRON THEORY FORMULATED IN TERMS OF

MATRICES ASSOCIATED WITH CAVITY GROUPS

4. l Introduction

The present chapter is concerned with a further generalization of klystron theory

ba.ed on a reformulation of the reøults of Chapter 3, expressing these by means

of appropriately defined matrix parameters associated with group. of consecutive

cavities rather than by scalar parameters associated with aingle cavitiel. We

.hall find that this approach leada to a theory describing klyatron performance

in terms of matrix relations which are formally identical to the scalar relations

derived in Chapter 3, which can be obtained as a special case of the more general

theory of thh chapter.

The matrix formulation is particularly powerful for salving certain types of prob-

lems ariøing in connection with aeveral klystrons coupled in cascade with com mon

beam, 8uch as evaluation of the overall gain of two or more cascaded klystrons.

or of periodically stagger-tuned klystrons, and other related problems.

4.2 General matrix formulation

In the present analysie it is slightly more convenient operating witb RF gap vol-

tages, rather than normalizing these with respect to the input gap voltage Vl as

wae done in the analyøh in Chap~er 3 (Eqs (3.5) through (3.18». The analy"h

will be baeed on the set (3.4) of p-l linear equations in the p RF gap voltagee

Vl' V2' --- Vp' The additional equation required to make the set complete is

furniehed by Eq (3.81) relating the input gap voltage VI and the input power Pi'

P. =
l

Q Y y*
ext,l 1,1 1,1

(4. l )

Let us define a complex quantity a, whosc absolute value squared h proportion-

al to the input power Pi'

aa*
R sh, l

(4. l)

Equation (3.4) together with (4.1) form the following complete set of linear equa-

tions :

y l l VI = a,
y 2 l VI + Yl l Vl = O, ,

Y3, l VI + Y3,2 Vl + Y33V3 = O,

--------------------------------
(4.3)

O
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In matrix form this sd of equations can be expressed as

y V • A- - -
where the triangular admittance matrix Y of order p is given by

y l, l O O O ~._-~---O

Yl l Yl l O O -------. O, ,

y 3 l Y 3, l Y 3,3 O -------- O
•

Y.

(4.4)

(4. 5)

y
p, l

yp,l y
p,3

y y
p,p-l P,P

The voltage rnatrix Vand the excitation matrix A in Eq (4.4) are column vec-

tors given by

V. A.

a

O
(4.6)

(4.7)

O •

Under the aS8umption that the admittance matrix "! is non-singular {Det y J O,

satisfying the stability criterion (3.27)}. the solution of Eq (4.4) is

V
Det Y

A (4,B)

where

we £ind

A

Y is the adjoint matrix. Salving with re speet to the output gap voltage Vp'

V. ."P - '3, l

O O ------------- V l

O ------------- O

------------- O (4.9)

------------------------.-- l O

-"1p, l ---------- -"Ip, p-l O

where "ls, r is given by Eq (3. l Z). li V P is divided by V l = a/Y l, l' Eq (4.9)
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reduces properly to Eq (3. 11) as required. After these introductory remarks we

shall turn to the problem etated in the introduction to this chapter, namely that of

lumping consecutive cavities together in groups and considering the composite

set of gapa belonging to each group as ane interaction region, as indicated in Fig

4.1. As befare. we shaU use small letters for indices referring to the sequence

of cavities: 1,2,3, --- 8, ---(p-l). P. and capitalletters for indices referring

to the sequence of cavity graups : 1,2,3, 5, P.

The decomposition ioto cavity graups is done by observing that the triangular ad-

mittance rnatrix Y given by Eq (4.5) can be partitioned ioto a number of sub-

matrices using the procedure indicated in Fig 4.2. Here, the sub-matrices along

the diagonal are all triangular matrices of orders corresponding to the number of

cavities lumped together in the particular groups associated with the sub-matrices.

groupi group 2 graup 5 graup P

'-----ls, I----~~--------Jp. s-------.~!t PL
Ilp, 1-------------,

.
eam (l) (2) (3 ) (s) (s+I)--- (s+q) (p-I) (p)

I i II I Il.rr I TL[

B

Fig 4. l 5chematic drawing indicating the procedure followed in lumping
cavities together in groups

y , O O I... O ••• I O_1, l I l I
I I I I I I I-----r------,------r--------r----'--------T----~-----I I I 'I I I

YZ l: Xz 2: : O : •.• : O : "0: O
• I 'I I I. I I_____ L ~ ~ ~ ~ • ~ _

I I I " I I
I I I I I "
I I I l I l I

I I , I I t I
I , I I I I I
• I I 'l I I-----r------,------,--------,----,--------T----~-----
I I I I I I I

y= : : : YRR: ••• : O : ••• : O
I l I 'I I-----~------~------~-_._----~----~--------~----~-----,
I I I • I I £ I''': 2-----t------~-----~---------~----~--------+----~-----

y : rS 2 : : y : ...: :'5.5:' .. : O.•.5, l l I I I -5. R I l I I-----~------~------~--------~----~--------+----~-----l I I l I I I

l l I ,I I'

I I l I I I'

I I I I l I l
l l l I I I I
l I I I I I l-----~------~-----_r--------~----~--------T----~-----
l I I I I I l

Y I Y t l Y I I Y I lY
_P,l: _P,2: : _P,R: : .•.p.S: : ...P,P

Fig 4.2 Partitioning of the pth order admittance matrix Y into a number of sub-
matrices of orders less than p
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Correlponding partitioning of the voltage vector y and the excitation vector A

defined by Eq. (4.6) and (4.7), re.pectively, give.

Yl ~I

Yl O

V = ~ = (4.10)

Ys

O

Expressing the matrices !.Y and ~ in terms of their suh-matriee. and per-

forming the matrix multiplication (4.4). we obtain the following set of linear mat-

rix equations:

(4.11)

------.-.-.-.-------------------
Ip,l Yl + Ip l Yl + --- + "!:P p YP = O. .

This set is a generalized form of the set (4.3). to which it reduces il all the mat-

rices are of order unity.

The general solution of Eq (4.11) obviously is identical to the solution (4.9) of

Eq (4.3), il the elements in the determinant are replaced by the appropriate mat-

rix elementa. Therefore, the voltage vector YP of the Pth cavity graup is given

by the following determinant of matrices:

I O ~---------------YI

-'I I 0--------------- O_2,1

YP = -:~13.I -~3. l l
_______________ O'

(4. Il)

___________________________ 1 O

where the matrix

-'I....P, l
O

~S.R
-I

- Xs 5 Xs R. . (4.13)
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rePTeøentl the eascade gain matrix between group Rand graup S. Thh is the

generalized form of Eq (3.12.) in the single-gap klyatron theary. In expanding

the matrix determinant (4.12), care must be ob.erved in multiplying the mat-

rice8 together in the correct order luch that terms with higheat indice. appear

firat. In analogy with Eq (3.13) we £ind by expanøion

(4.14)

As examples. the voltage vectorø of the four first graupa .re given below. The

flrBt one followB from Eq (4.8) rather than Eq (4.14).

:::z = ~Z.I Yl

Y3 = (!3,Z':JZ,I + ::!3.1) Yl
V = (~ 3 ~ "1 + "1 ~ + "1 ., +., ) V
-4 ~4 •. ~3.Z-Z.1 _4.3~3.1 _4.Z~Z,1 ~4,I-l

Thi. procedure can be continued in an obvioU8 way for P larger than four.

(4.15)

4.3

4.3. I

Befare proceeding with a further study of the variaus admittance matrices enter-

ing into Eqs (4.13) to (4~J.5)' 'Ne ,shall state the matrix equivalentø of the electronic

equation (2. 71) and-the circuit equation (3. l).

Electronic matrix equation and circuit matrix equation for group. of cavitieø

The electronic equation

In the matrix formulation the equivalent of the electronic equation (2.71). relating

the complex power fl extracted by the beam in the pth interaction gap and the
p

RF voltageø VI' V2, -- .. Vp of all the preceding gap.,is given by the following

expreellion. which we shall epeak of as the electronic equation of group P:

y* y V + l y* y V
P_P,R-R Z p-e,P-P (4.16)

where V; is the He rmitian conjugate of Yp. The quantity fp is the com pl ex

po'\Ver extracted by the beam in all the interaction gape be10nging to the Pth group.

The last matrix product in Eq (4.16) does not depend on any voltage column vec-

tors other than the vector Vp of the Pth group itøelf. The matrix Y P' there-"'" -e,
fore, can be interpreted as the electronic admittance matrix of the Pth group of
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gapa. The quantity

• (4.17)

4.3.Z

represents the complex beam loading power of the Pth group of gap8. By~erform-

ing the matrix multiplication in Eq (4.17) it is found that P is the au feP mo
terms propOrtional to the square of the gap voltages (ordina;y beam loading term,

of the gapa), and terms proportional to cross-products of gap voltageø within the

group p (transfer loading terme). In the matrix formulation all tbese contribute

to the overall complex beam loading of the Pth group of gape.

As shown later, the real and imaginary parts of P are determined by splittinge. p
the matrix Y pinto the electronic conductance matrix G p and the electronie~e. -e,
SU8ceptance matrix B P'~e.

Returning to Eq (4.16). the remaining terms on the right-hand side are transfer

terms containing matrix cross-product8 of voltage vectors YR and Yp' The mat-

rix '!p. R' conveniently referred to as the transfer admittance matrix. will be

studied in more detail later.

The circuit equation

In the matrix formulation the equivalent of the cireuit equation (3.1) is given by

(4.18)

where "p is the eomplex power extracted by the beam (the same ae in Eq (4.16)).

and the circuit admittance matrix Y p is a diagonal matrix in whieh the diagonal~c,
elements are the circuit admittances y J Y +1' of the gaps formingc.P e, p
the pth group.

Combination of the electronic equation (4.16) and the circuit equation (4.18) re-

sults in the set of matrix equations (4. Il). which were al ready derived directly

from Eq (4.4) through parUtioning of the admittance matrix !.

4.4 Definitions of characteristic matrix parameters of cavity groups

The general matrix formulation developed in this chapter is formally øimilar to

the theory of multi-cavity klystrons of Chapter 3 in the sense that the expressions

{or the gap voltages VI' Vl, --- Vp (Eq (3.13)) formally are the same as those

for the group voltage vectors VI' YZ' --- V (Eq (4. 14)). From the BubBequent~ ~ ~p
evaluation of the appropriate matrix parameters of each cavity group it appears

that the similarity goes heyond these relations. We shall tind that the equations

specifying self-admittance. electronic admittance. circuit admittance and trans-

fer admittance in the multi-cavity klystron theory of Chapter 3 all are applicable

in generalized form in the present matrix formulation of klystron theory.
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Self-adrnittance matrix

Referring again to Fig 4.2, the 5th graup of cavitiee is repreøented by the øquare

matrix !'S s located on the main diagonal of the 'Y -matrix. li the 5th graup con-,
sists of q + l consecutive cavities beginning with the 8th cavity, we !ind from

Eq (4. S) that the self-admittance matrix !s. s is a triangular matrix given by

y
B. B

o 0----------0

YS,S =

Ys+l. s y s+I, s+1
0----------0

(4. 19)

4.4.l

y y -------- yS+q,8 s+q,s+l s+q,s+q

The diagonal elements are the self-admittances of the cavities constituting the

5th graup; the off-diagonal elements are the transfer admittances between the

various gapa of the same graup.

Circuit adrnittance and electronic admittance matrices

Exactly as done in Eq (3.6), the seli-admittance matrix Is, s can be split ioto

a circuit admittance matrix Y and an electronic admittance matrix Y 5_____________ -c, S --------------- -e,

y-SS=y +y, -c.S -e,S

where Y 5 and Y are given by-c, -e,S

(4. lO)

y
C. B

o --------- O O

y =-c.S

O y
c, s+I O O

(4. li )

and

y =-e,S

0------------------0

y O ------------- Oe,B

y y ---------- OstI.s e,s+l

y
c. s+q

(4.22)

y stq,s
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The elementa of the diagonal circuit admittance matrix Y S are the circuit ad--c,
mittances of the q+l cavities constituting the 5th group. The diagonal elements

of the electronic admittance matrix Y are the electronic admittanceø of the_e ••
same cavities; the off-diagonal elements are the transfer admittances between

the same cavities.

The electronic admittance matrix Y S can be split further ioto the electronic_e.
concluctance matrix G S and the electronic 8usceptance matrix B S by ob-...e, _e,
serving that Y S. like any square matrix, can be written as a lum of a Hermi-_e,
tian matrix and a skew Hermitian matrix.

I ( y-") I (y y-" l = G +' BYS=-lYS+ S+-l s. S S J S...e. -ef e. -ef e. -ef -ef
(4. l3l

where y* is the transposed conjugate matrix or the Hermitian conjugate ofe.S
y S'-e,

The Hermitian part of Y S ia the beam loading matrix G S' given by-et -et

" y" y"
G

Y 8+1 ,. 5+2,8 8+9,8
e,. l l l

Y y"8+1,8 G
8+2,8+1 --~-----l e. s+1 l

l -" Y8+2,8 Y8+2.5+1 (4.l4)G o-ly s+Y S) = G ---------e.S 2 _et e, l l e,8+Z

------------------------------------
y
8t9,8
l

Y 6+9,8+1
l

Ge,8+q

The akew Hermitian part of Y divided by j is the electronic aU8ceptance mat--et S
rix ~e,s,givenby

" y" y"
B

Ystl . - 8t2,8 8+9,8
e,_ lj lj lj

Y y"
s+I, S B s+Z,stl --------
lj e. st I lj

I -" Y8+2, s Y8t2,8tlB S =Z,(Y S.y e, Sl = B_e, J -e, lj lj e,st2 --------
(4. l S)

y
8+9.8
lj

Y s+9.s+1
lj

Be,s+q

Their significanee will beNote that G Sand B S are not real matrices.-e, -et
clearer if the following matrix products are forrned :
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l 1. -*
P ="2 Vs B 5 Vse.S -et ...

(4.26)

(4.27)

where Ys is the voltage veclor of group s. It is then {ouod that the real num-

bers P 5 and Bl are the real and imaginary components of the complex beam
et /e,S

loading power P 5 of the 5th group of gaps. Thuse.

IP = p 5 + jF' 5e.S e. e,
= 1. v* y V2' 5 _e,S-S

(4.28)

which is in accordance with Eq (4. 17).

In the same way. the product

If'c.s = iv"s y V-c,S -5
(4.29) \

is the complex circuit power extracled by the q+l cavities forming the 5th group.

Hence

6'5.5 = "e,S +
(4.30)

is the sum of the complex circuit power and the complex beam loading power for

the 5th group.

In exactly the same way as tt-e beam loading Ge of a single interaction gap pre-

viously W3S expressed in terms of the coupling coefficienls of the slow and fast

space-charge waves (see Eq (2.70)), the beam loading matrix G 5 can be ex-~e
pressed in terms of appropriately defined coupling coefficient mat~ices ~~ and

~;, characteristic for the 5th group of cavities. It will be convenient to define

these as line vectors, rather than column vectors

M+ [M: +
~S = Mstl

~~ = [M~ M~tl

(4.31)

(4.32)

Further. we shall need to define a diagonal position matrix !:os specifying the

positions of the gaps of the 5th group

.ls. 1

o

o o

o

o

o

-------------_.----.---
(4.33)

o o --- ---- l.stq. l
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where the diagonal elements are the spacings between the centers of the inter-

action gapa of group Sand some arbitrary reference point. here chosen as the

center of the input gap (see Fig 4. l).

Uaing the definitions (4.31) to (4.33) and the definition (2.67) of transfer admit-

tance. we !ind that the beam loading matrix G 5 defined in Eq (4.24) takes the_e,
simple form

G-e,S (4.34)

which is analogous to Eq (l. 70) in the single-gap theory.

From standard theory on matrix functions, the exponential (unelion of the position

rnatrix ~S appearing in Eq (4.34) is equal to a matrix of the same order having

eigenveetors that are the same as those of !:S' and eigenvalues that are related

to the eigenvalues of ks by the same exponential function.

Hence

O

o o ---------- O

O ---------- O

(4.35)

O ---------------------
.0 l
JI-'e s+q l

e '

4.4.3

As in single-gap theory. it does not aeem pos8ible to express the electronic sus-
t

ceptance matrix -!!e S as a simple function of the matrices ~S and Ms,,

Transfer admittance matrix

We shall next consider the transfer admittance matrices represented by the off-

diagonal matrix elements in the y-matrix in Fig 4. Z. In contra st to the self-

admittance matrices, these are not necessarily square matrices. except in the

special case that all the groups l, Z --. S, --- P have the same number of cavi-

ties. li, as befare, the Sth group consists of q+l cavities, and the Rth group of

k+l cavities. the transfer admittance matrix rS• R evidently is given by
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y y
s,rtl --------- y

8. r+ks,r

y
stl.r

y
stI,rtl ------- y

s+l. r+k

YS,R = y s+l.r y stZ.rtl ------- y stZ.rtk , (4.36)

y s+q, r
y

s+q. rt l
y

s+q, r+k

The matrix elements of X S R are the various transfer admittances between the,
gapa belonging to the Rth and the 5th group. The transfer admittances between

gapa belonging to the same group are contained in the electronic admittance mat-

rix (4.22) of that sam. group. Again using Eqs (l.67) and (4.31) through (4. 33),

we find that !S R can be expressed as the following matrix product:,

'. L '~L )_ 1 (-J'""e-s -* J e ....RIs, R - - W t:>. • Ms !;:!R • (4.37)

The relation expressed in Eq (4.37) is the matrix equivalent of Eq (Z. 67) in the

single-gap theary.

4.5 Gain and optimum spacing of twa cascaded identieal multi-ca vit y klystrons with
commo" beam

As an example of the type of problems that lend themselves to solutions by the

matrix formalism,we shall study in some detail a relatively simple cavity confi-

guration, namely that of two cascaded identical groupa of cavities. as illustrated

in Fig 4.3. The identical groups, each consisting of q arbitrarily tun ed and

spaced cavitiea. are located a distance L apart and the gaps traversed by the

same beam. As before, let Yl and Y2 be the voltage column vectors of groupa

l and 2. respectively. Noting that the self-admittance matrices X l. 1= 'Yz, 2 = -:!.
we obtain from the firat two equationa of the set (4. Il)

= y-I A
- -I

-I -1-1
YZ = -Y. Yl,l Yl = -Y. Yl,l I ~I

(4. 38)

(4.39)

where the self-admiUance matrix y is given by Eq (4. 19). the tranafer admit-

tance matrix 'Y2.1 by Eq (4. 36) or (4. 37). and the excitation vector ~l by Eq

(4.7), i.

a

O O

~l = O = a O (4.40)

O O
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In Eq (4.40) the absolute value of the only non-zero element a. defined in Eq (4.2.),

is proportional to the aqua re raot of the input power P i'

I, Iq I L .1
I I I
I ly Yq+1 Yq+Z Yq+3 IYZqIYI YZ Y3~ ~ ~ q

Beam

(1)1 It 'o; (I) (1)1 (l)Z (1)3 (l)q
Z 3 q

Input let group 2nd group Output

Fig 4.3 Sketeh showing the configuration studied in the text, consisting of two
identical eascaded gTaupa of cavities spaced a distance L apart

The matrix equations (4.38) and (4.39) express the variou8 voltage components

of the vectors Yl and Yz in terms of the quantity a. i e the square root of the

input power Pi' In particular. the relations between the gap voltages YZq and

V of the last cavity in each group can be established in an obvioU8 way by evalu-

at10n of the matrices y-l and y.l YZ I y.l (for calculation of the ratio Vz ly..• ....• - q q
it auffices to know the first element in the last line of each of these matrices)

We shail next proceed to evaluate the optimum spacing L between the twa groupa.

defined as the 8pacing that maximizes the gain of the composite atructure. Dur-

ing this optimization the configuration of each group, including gap apacing, tun-

ing, etc, is not changed.

1£we define a column vector 2 by

o
O

5 =

the gap voltage Vlq of the last cavity is given by the matrix product

(4.41)

YZq = 5 ::Z (4.4Z)

where Se is the transpose of ~. Using Eq (4. 39) we tind

-I=-5Y YZIYI•
(4.43)

In this equation the transfer matrix Xl. l ia the only matrix depending on the graup
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spacing L. Since maximization of VZq with respect to L thus involves only

this matrix, it is convenient to introduee a new line vector R by the equation

whereby

(4.44)

y
-lq

(4.45)

Evaluation of IZ.1 from the general formula (4. 37) yields

(4.46)

Nating that ¥Z :::¥l = M and kZ:::!;;-1 + L!. where l is the unit matrix, we

find

I
Yl l = - W, (

-j~ L -j~ LI _ -j~ LI)
~ e e e e - M'X¥ e e'" (4.47)

Expansion of the expression in the parenthesis by means of the difference opera-

tor 6 yields

Yl, I
e-j~eL [_~

cos l3qL
( -j~eb -" j~eI"l)

= .c. e M M e

+.1. ( -j~ L M"¥ ej~eI,,1 )]e -I
W

sin ~qL f, e (4.48)

The first term is recognized as the beam loading matrix Qe defined in Eq (4.34)

G-e
I

(
-j~ LI' j~ LI)e-"'''f: e-

=-ZWt!J.e M~e (4.49)

Furthermore. defining a mean square coupling coefficient matrix by the equation

we !ind that Eq (4.48) reduces to

(4.50)

-j~ L [Iz, l = e e 2ge cos ~ L + .!.. ~l sin
q W (4. 51)

In the single-gap theory Eq (4.51) has its equivalent in Eq (B. 9), Appendix B.

The matrix 'fZ is equivalent to the mean square coupling coefficient MZ defined

in Eq (B.I O).

Substitution of Eq (4.51) in Eq (4.45) yields
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-j~ L [ . - ]
V, = e e R lG cos ~ L + .L Ml sin ~ L V
.q - -e q W - q-I

(4. 5l)

where now

.pacing L.

sin ~qL and co. ~qL are the only term. that are function. of the graup

Forming the complex conjugate

V"lq (4.53)

and multiplying Vlq by V;q' we find

= R [lG V y" G'" + _I _ Ml V y" (~l)"J ii."
- -e -l I e lWl -l I

[ - -.. I -l -"(""-l)"']-+!!: '9. Yl V"'IGe M V V M R'" (' L)• - lWl - -I I cos .~q (4.54)

The optimum va lue of l3qL. making Iv lq 12 an extremum. is determined by dif-

feremiation. We find

For convenience let us write

(4.55)

diV lq Il =

d(~qL)
- l sin (l ~ L) R T ii." = O

q - - -
(4.56)

where the Hermitian matrix T is given by

I

lWl
Ml V y" (~l)'"
- -I l

(4.57)

Equatlon (4. 56) is solved by sin (Z~ L) = O, i eq

Zl3L=n1Tq
n=I,2.3--- (4. 58)

Whether this condition yields maximum or minimum is delermined by forming the

second derivative

(4.59)

The sign of the øecond derivative thus depends on the sign of the matrix product
-", .~! R and on the even or odd character of the inleger n. We shalllht the twa

p08sible eases without sludying the matrix product in detail. The .econd deri va-
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tive is negative, correøponding to a maximum of Iv lq I, it:

a) ~ 1: it" > O and n = 2k, k=1,2,3 (4.60)

Optimum øpacing and output voltage are given by

IVz IZ = Z R G V V" G" ii."q max ... -e ...l 1 e

(4.61 )

(4.6Z)

b) R T 'R" < O and n = Zk+ l. k=1,2,3 (4.63)

Optimum øpacing and output voltage are given by

(4.64)

l -Z - (M=-Z)"= - R M V V"
wZ - - -l l

il" (4.65)

The question whether case a) or b) applies cannot be decided without a cIo ser-..study of the matrlx produet !!- r R. In the .pedal case that eaeh of the group.

consiets of one ca vit y onIy, the configuration degenerateø to a simple two-cavity
. -" "(" ")klystron, and the matrlx product ~!R reduceø to Vl Vl ~)f - ~~ where

li. and tare defined in Eqs (3.38) and (3.39). In view of Eq (3. 4Z) the differenee

)f){* - ~ ~-H is always negative and the optimum øpacing iø therefore equal to

k1T+ 'fr/Z as specified by Eq (4.64). This is in accordance with well-known re-

sults from simple klystron theory.

In the general cal!!le, however, the matrix product ~!R'Xcan be either positive

or negative. The optimum apacing is therefore either kw or kw + ,,/Z depending

on the detailed arrangement within each cavity group.

4a 6 Alternate matrix formulation

The matrix formulation used in the theory developed in the preceding eections

has been built on the øet (4.3) of linear equationø in the RF gap voltages

VI' V
Z

' ..-- Vpa It will aho be useful to consider an alternate deøcription based
on Eq (3. Z4) which. as we remember, resulted from taking øuitable linear com-
binations of the .et (3.10) or the equivalent (4.3). Rewriting Eq (3. Z4) in term.

of RF gap voltages, we obtain the equation
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-l O O O O -------- O VI VI

"Iz l -l O O 0-------- O Vz O•
"t3, l "13 Z -l O O -------- O,

O 54 T4 -l 0-------- O ~

O O 55 T5 -l ------_ .. O

(4.66) .

O --------------- O -l V
P

O

which can be written

!! Y ~ ---A (4.67)

where the column vectora y and ~ are the same a8 those in Eq (4.6) and (4.7).
and !! iø the triangular matrix on the left. Exactly in the lame way a. done pre-

viouøly, the matriceø !!' y and ~ can be partitioned in the manner indicated by

Eq (4.68).

- ~-__---~------~-----r-------r----

'::1 ~l

Yz 2

Y3 O

l (4.68)
~

OY4 Yl, lOO
I l I I

: O : ~4 3: ~4 4:
I I' I I I-----r------1------~-----.-------r----

, .
U IU 'O 'O O-l,l: -2.2: : , I_____ ~ ~ ~ L L _

I l I I I

O:U:U :0: :0
l •••3,2, ...3,3 l I I
I • I I I

o
U o O O O O..•1f l I

o-----~------~------~-----r-------~----

o
o

I I I I I-----r------,------r-----T-------r----
l I I I I
I l l I ,
I I I I I-----~------~------~-----.-------~----

O O 2 O

The partitioning .hown in Eq (4.68), in which the only non-zero off-diagonal eIe .•

menta are of the form YS 5-1 • is pOIlIl.ibleonly i! each group containl twa or,
more cavitieB. The trivlal calle of ane cavity in each group il of courle repre"

oented by the original Eq (4.66).

Of the Bub-matricee in Eq (4.68) the matrice. along the diagonal are all Iquare

matrieee of order. correøponding to the number of cavitieø in the a •• odated

cavity group. The off-diagonal matriceB are in general rectangular. but reduce
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to square matrices if all the graup8 contain the same number of cavities.

Performing the matrix multiplication in Eq (4.68) we obtain the following sel of

matrix equations:

~I

= O

(4.69)

We see from this that any twa consecutive voltage vectors YS-1 and Ys are re-

lated through the following firet order matrix difference equation. or recurrence

formula :

Or

u V +~S.S-l ~S-I

YS = ::S YS-I

2s,s ~S = O s ~ l (4.70)

(4. 71)

where the group gain matrix c:S is given by

-I (4. U)
::S = - Ils, S U s 2- 2

~S, S-1

l -I
~I = Yl = --- Ill , l ~1 (4.73)

Y1,1

The difference equation (4.71) evident ly is solved by the matrix procluct

Yp = ::p ::P-l ---::S -- '::3::2 Yl (4.74)

This formula is useful in that it ie in e3scade form, i e the overall gain is ex-

pressed as a matrix product of the ugroup gains", We shall later take advantage

of this property fOT evaluation of the gain of periodically stagger-tuned multi-

cavity k1ystrons.

4.7 Matrix parametere in the alternate formulatian

The partition matrices ~5 S and ~5 5-1 of the mat ri x ~ in Eq (4.68) are, ,
given by the exprcssions below. Again wc assume that the 5th graup conlains

q+l cavities, of which the first is the sth cavity.
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-l O O O ---------. O

T 0+ l -l O 0-------- __O

S o+z T o+z
-l 0---------- O

JlS• S
~

O S 0+3 T 0+3 -l --- •.------ O

(4.75)

------------------------------------
O O------S o+q T o+q -l

where the elements S8 and Ts are given by Eqs (3. lI) and (3.22) for values of

8 equal to or larger than four. For 8 smaUer than four the corresponding ele-

ments are obtained directly from Eq (4.66).

S3 ~ "13. l

T3
~ "13 Z (4.76)

•
TZ ~ '1z l•

Il the groups Sand 5-1 consist of q+l and rtl cavities, respectively.

U is an rt} by q+l rectangular matrix given by-S. S-l

O

Y5.S-1 =

O

O

O O ------- S T
o •

O O ------- O 5e+1

O O ------- O O (4.77)

4.8 Periodic stagger-tuning

O O O ------- O O

li we take advantage of the mathematical apparatus developed in tm. chapter, the

analysis of periodic stagger-tuning is straight forward. Although this problem

can be analyzed using the scalar difference equation (3.34). noting that the co-

efficients in this case are periodic with respect to the variable p, the matrix {or-

mulation derived in this chapter simplifies the analysis considerably. It turns out

that the periodic stagger-tuning is represented by a matrix difference equation

with conøtant coefficients, the solution of which is a linear combination of one grow-

ing wave and one attenuated wave. quite analogous to the results obtained in Chap-

ter 3 for the case of synchronously tuned cavities. li the periodic tuning pattern

is repeated sufficiently many times, the attenuated wave obviously can be neglected
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and the increase in voltage gain per period will be constant. We IIhall analyze

the problem using severai slightly different approachell wNch lead to solutions

that are all equivalent but differ in their mathematical form.

The situation which wc shall study is shown schematically in Fig 4.4. Each of the

p identical groupa consieting of q+l cavities has the same atagger-tuning pattern

characterized by the resonant frequencies LUI, wz• ---a>q+lo

Bearn

'------L • l
I
I
I

"'Z '" q+l "'Z "'q+1

1st group 2nd group Pth group

4.8. 1

Input Output

Fig 4.4 Detaila of the periodic stagger-laDing analyzed in the text

Matrix eascade gain formula

Using the approach shown in Section 4. 6 for the special case of identical groups,

i eperiodie stagger-tuning, we have that the group gain matrix 2 s defined in

Eq (4. n) is independent of S.

(4.78)

It should be noted that ~ 2 is different from the other a's it the re are only two

cavities in each group. Thiø is a minor detail. and it we assurne q ~ 2, we abo

have c:: 2 =: ~. Hence, Eq (4.74) reduces to

P-I
YP = a Yl (4.79)

4.8.Z

where a is a square matrix given by the matrix product in Eq (4.72). In Eq

(4.79) each of the RF gap voltages within the Pth group is expressed as a linear

combination of all the RF gap voltages in the first group.

We shall next present an alternate formula, in which the gain per group is given

by a scalar rather than a matrix.

Gain in terms of growing and attenuated waves

Let us consider the first-order matrix difference equation (4.71). We shall show

that the di£ference equation has particular 8olutions of the form
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5 ~ 2
(4.bU)

where k is SOme scalar constant independent of S. Equation (4.80) can aha be
expressed in a different, but equivalent way

p ~ l (4.81)

where ~ is lIome constant column vector independent of P.

Sub.titution of Eq (4.80) in Eq (4.71) yield.

': Ys = k YS (4.82)

which is an eigenvalue equation,

YS the associated eigenveetors.
krepresenting one of the qtl eigenvalues, and
The equation can also be wriUen

(4.83)

where l is the unit matrix. This homogeneous system of equations has 000-
tri vial solutions only if

Det (c: - k !) = O (4.84)

The qt1 eigenvalues kare determined by this algebraic equation of order qtl.

It turns out that the equation is degenerate because on ly twa of the k's are dif-

ferent. Tros is most easily shown by expressing Eq (4. 84) in a slightly different

form, obtained by premultiplication of Eq (4. 83) by the square matrix lls,s de-

fined in Eq (4.75). lnstead of Eq (4. 84) the following equivalent determinantal
equation is obtained :

Det (k -1115 5-1 + 115Sl = O. . (4.85)

By means of Eqs (4.75) and (4 ..77) this determinantal equation can be written in
the form

O -lT -l O 0------- k 5• •
5.+ l T .+1 -l O O ------- O

O 5.+2 T .+2 -l O ------- O

= O (4.86)

O --------------- O Ss+q_l T s+q-l -l

-k O ------------- O 5.+q T s+q

Because of the degeneracy the factor k appears on ly in two of the elements. A

Httle consideration shows that the expansion resulte in the following second-order

equation for k:
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.+q
k + k -1 11 (-SI) - D = O

1=.
(4.87)

where D is a determinant obtained from Eq (4.56), replacing by zero the twa

elements containing k.

T -I O O ---------- O•
5.+1 T .+1 -I O ---------- O

O 5.+2 T .+2 -I ---------- O
D = (4.88)

-------------------------------------
0------------5 T -Io+q-I .+q-I

O O -------- O 5.+q T .+q

Salving Eq (4.87) with re speet to k, we obtain the twa values kl and kZ satie-

fying Eq (4.80)

D
2 +

2 o+q i
l(Q) - 11 (-5.)J

2. i=s l

(4.89)

The general lolution of the di£ference equation (4.71) is a linear combination of

the twa particular 8olutiona:

P;< I (4.90)

where the unknown column vectors <P l and <P 2. must be chosen such that Eq (4.90)

satiafies the initial conditions. Subetitution of Yl at P = l and Yl at P = 2.

in the equation gives twa linear equations in Pl and <£2.' Expres8ing these vec-

tors in terme of Yl and YZ and Bubstituting in Eq (4.90), we obtain

p;<1 (4. 91)

The analysiø done here serves as a simple proof of the equivalent of Floquet'a

theorem (Z5) known from the theory of differential equations with periodie coeffi-

cients. Equation (4.80) or the equivalent (4.81) is Floquet's theorem in matrix

form for difference equationø with periodic coefficients. stating that particular

solutions can be found with the property that two values of the dependent variable

taken one period apart differ by a constant {actor only. In the theory of differen-

tial equations the determinantal equation has an infinite number of terms (HiU ••

determinant). The present thea ry shows that for difference equationa the order

of the determinant is equal to the number of terms in the period, and it. evalua-

tion is therefore correspondingly simplere
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The matrix equation (4.91) holds for any of the corresponding q+l scalar com-

ponents of Yp• Y2 and Yl' The analysis of synchronouB tuning in Chapter 3 re-

sulted in the analogoua equation (3.47) which expressed the solution as a sum of

One attenuated and ane growing gap voltage wave with gain per stage equal to a}

and ol for the two waves, respectively (see Eq (3. 46)}. In the present analysis

of periodic atagger-tuning, the solution (4. 91) is alsa expressed as a sum of twa

wavea with gain per period equal to kl and kl' It will be shown below that a160

in thiB case one wave is attenuated and the other growing. We have from Eq (4.87)

s+q

11
i=s

(-5. ), (4.92)

In evaluating the product on the right-hand side wc shall assume, for simplicity,
+ +that the coupling coefficients for all the gapa are the same, i e Ml = M

Z
and M~ = M~ ---. This assumption also implies that the beam loading is the

same in all the gaps. In this case the coefficients Si and Ti are obtained by

compariBon of Eq (3.23) mth Eq (B. 11), Appendix B. We lind

S. 2 •••

l

-j~ l .. 2 sin ~ l .. le e 1,1- 9 1,1-

sin ~ t. l . ,q 1- ,1-••

Y. , . ,
1-••,1- ••

Y ..
" '

(4.93)

-j~ t.. I ( l sin t'iqL.. 2 Y. l . l G
l, l- I- , l- e t.. lT. ; lee 1,1- _ cos a

l 2 sin Øqli_1,i_Z Y. Y. q l t l-
l, i l, i

-2
M

-j sin~l"I)ZWY. . q 1,1-

" l

Evaluation of the product in Eq (4. 9l) by means of Eq (4.93) yields

(4.94)

-j~ 2Le
e

s+q
Tf
i=s

ZGe )

Yi-Z,i-l

(4.95)

where L is the periodic length. For zero beam loading. Ce = O, and the expres-

sion simplifies to

(4.96)

Even with G slightly different from zero, the product of the absolute values ofe
kl and kl is of the order of unity. Since kZ is the larger of the two, and the

overall gain per period is large if the period includes severai stages, we must

have

I k2 I »1 • (4.97)

It is therefore entirely justified to neglect the attenuated wave compared to the
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growing wave. For P ~ l the gain is thus given by the grovving wave in Eq (4.91).

P~l (4.98)

Since the gain per period presumably is considerably larger than unit y, we must

havethat ~l»~I' and in viewofEq (4.97), Ikll« l and Ikll» 1. There-

fore, Eq (4.98) can be simplified further by introducing the approximations

yielding

V_p = V k P-l
-l l P ~ l

(4.99)

(4.100)

Thus, the increase in gain per period of a periodically stagger-tuned multi-cavity

klystron is constant and equal to kZ' which can be found from Eqs (4.88) and (4.89).

For a klystron with severai stages in one period, kZ necessarily must be relative-

ly large, permitting the following approximation of Eq (4.89)

(4.101)

where O is the determinant (4.88), whose elements are given by Eqa (4.93) and

(4.94) for arbitrary resonant frequencies of the q+l cavities in the period.

It must be expected that the formulae derived here for periodic stagger-tuning re-

duces to those derived in Chapter 3 for synchronous tuning, if in Eq (4.88) we put

T :; T :; --- T :; T and S = S = --- S :; S Since each period hass s+l s+q s+l s+2 s+q.
q+l cavities or q stages. the quantities appearing in Eqs (4.90) and (3.47) must

in thia special case be related by the following equations :

-jaq q
kl = e al (4.IOl)

-ja q
kl = e q al (4.103)

Rather than proving the se relations rigorously, we shaIl only show that the last re-

lation ia satisfied if the gain per period is large. In this case we found that

kl- D» l. Furthermore. for the synchronous case the determinant D in Eq

(4.88) evidently aatisfies the following recurrence formula

= O (4.104)

which is identical with the difference equation (3.l3), or rather (3.43). Under the

aS8umption stated above, k2 •• D» l, the complete solutians of either equations

are approximated by the larger of the two particular solutions. Since Eq (3.43)

is solved by Eq (3.44). the relation (4.103) is proved.
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5 GENERAL GAP THEORY OF EXTENDED INTERACTION REGIONS

5. l lntroduction

The small-signal multi-ca vit y klystron theory developed in Chapters 3 and 4 is

baaed on a formalism in which the RF current and velocity moclulations on the

be am are not appearing explicitly in the various expressions for klystron gain.

Instead, the propagation of the signal from gap to gap is expressed in terms of

appropriately defined self-admittances and transfer admittances representing

the be am coupling between the variou8 gap8. Mathematically thiø forma1isffi is

simpler than the more direct approach based on a description in terms of the

be am rnodulations. For a thorough physical understanding. however, it is alBa

uøeful to study the modulation phenomena taking place in input and output regions

of the general typeø considered in tms reporL

The analysis carried out in the present chapter will be concerned mainly with the

two following subjects :

a) The small-signal RF current and velocity modulations irnposed on a beam
traversing an extended modulation region of the general type conøidered in
thiB report

b) The excitation of a general cavity gap by a beam with apecified current and
velocity modulationa

Both of these subjects can be analyzed by meana of some of the results derived

in Chapters l and 3. The results arrived at in this chapter serve as a further

illustration of the previously discu8sed differences between the present tbeory and

the less complete co:nventional narrow-gap klystron theory, arising from the neg-

leet of øpace-charge forces and density rnodulation in the gapa.

We shall £ind in the general case that the interaction region can be represented

as a non-reciprocal twa-port, in which the terminal excitations are the beam cur-

rents and kinetic voltages at the input and output cross-sections of the gape.

Furthermore, we shall flnd that the two-port is reciprocal only if the beam load-

ing G vanishes, in which case the two-port can be represented by a passive,
e

reciprocal network consisting of transmission-line sections and lumped resonant

circuits.

5. Z
extended modulation a 8

The situation which we shaIl first study is shown schematically in Fig S. l, and

applieø for instance to the input gap of a klyatron. An interaction gap of arbitrary

length and with arbitrary longitudinal RF fieid dietribution is tra.vereed by a beam

having zero initial kinetie voltage and current modulations at the input cr08S-

section of the gap, i e at the position x = - .l/l.
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The modulation imposed on the beam due to the longitudinal RF gap fieid can be

found from Eqs (l. 54) and (2.55), setting p = l and 1(0) = U(O) = O. The modu-

laUene at some position beyond the gap region, x ~ 1./2, are given by

U(x) = V li[e-j~eX M(~e)J

I(x) = - ~ t.[e -j~ex M(~e)J

where V is the RF gap voltage defined by Eq (2.50) or (2. Sl),

gap coupling coeffieient defined by Eq (2. 53).

(5. l)

(5.2)

and M( ~ ) is the
e

Beam

I.
I

I--l/z

Gap length t
• I •
I
I
I

.1
I

l/2 ---l
Space-charge wave

l I _- __
I-"- .....
I
I
Ir--.j.---
I I

Ol I
i + _

Arg M -Arg M
l

I(x)

+ -Arg M -Arg M
lT + 2

•
~ xq

Fig 5. l Modulation of a beam in a single extended interaction gap

li we rewrite Eqs (5. l) and (5.2) u.ing the definitions (2.38) and (2.39) of the

sum and the difference operators t, and L:J...we obtain

U(x)
V -j~ex ( _ j~qX + -j~ x)

(5.3)= -e Me + M e q
2

. . I
+ -j~qX)

I(x)
V -J~eX( _ J~qX (5.4)= -e M e 1- M e
2W I

where Mt and M are the coupling coefficients of the slow and the fast apace-

charge waves defined in Eq (Z. 58). In general, the coupling coefficient. are cam-

plex, and il we wri te

M+ M+ e
jArgM+

(5. 5)= o

M = M- ejArgM (5.6)
o
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where M~ and Mo are absolute values, we lind

v V•• [(M+/ + (M-,
2

U(xl U(x)" = o o M+. ( + - ]
2 2

+ oMo cos 21lqX - Arg M + Arg M )

vv •• [(M+,z + (M-)2
- M~M~ cos (2llqx - Arg M+ + ArgM-)]l(x) l(xl" = o O

2W2 2

(5.7)

(5.8)

As shown in Fig 5. l J the pe riodically repeated maxima of IU(x) I and minima of

11(x)I occur at the positions for which the cosine term in Eqs (5.7) and (5.8) is

equal to plus one.

+ -ArgM -ArgM
2

k = 0,1,2,3 (5. 9)

The minima of IU(x)1 and maxlma of 11(x)1are shifted nl2, occurrlng at

+ -
Il x = (k+t)n + ArgM - ArgM
q 2

The maxima and minima are given by

k = 0,1,2,3 --- (5.10)

IU(x)lmax = lvi
2

(5. 11)

IM+ - M-
IU(x)1 . = lvi o 2 omm

lvi M+ + M-
I l(x) I = o o

max W 2

Il(x) Imin
lVi

IM~: M~ I=
W

(5. 12)

(5. 13)

(5.14)

The launching of the fundamental pair of space-charge waves on a stream by a

single modulation gap Is fully descrlbed by Eqs (5. I) through (5.14). Comparlson

of the general results derived in this analysis with conventional narrow-gap klys-

tron theory bringe out some important differences which are due to the fact that
the latter operates with only one coupling coe!ficient. Unless M+ = M-, corres-
ponding to zerO beam loading (see Eq (2.70». the twa space-charge waves are ex-
eited with different amplitudes, and the space-charge standing-wave pattern behind

the modulation gap is characterized by the fact that the velocity modulations or the

current modulations of the two waves never cancel completely, but leave resulting

minimum modulations proportional to the difference between the coupling coeffi-

cients. Thia, of course, is in accordance with power conservation principles for

longitudinal beams, diseussed in Section l. 7. It ahould aho be noted that two dif-

ferent modulation gape. one with positive beam loading. M~> M~, and the other

with negative be am loading, M+ > M-. can launch epace-charge waves havingo o
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identical øpace-charge atanding-wave patterna. In the first .case the net kinetie

energy flow iø positive, in the second case negative. A knowledge of the standing-
wave patterns of I(x) and U(x) iø therefore not sufficienl for a complete øpeci£i-

cation of the øpace-charge waves. In additioD, the sign of the net energy now

must be known.

li we imagine that the standing-wave pattern iø extrapolated back 10to the modula-
tian region, a correct representation is obtained by aS8uming an inlinitely narrow

hypothetical gap loeated near the center at the poøition corresponding to k = O in

Eq (5.9). Thiø hypothetical gap, then, imposes a velocity modulation given by

Eq (5. 11) and, in addition. a.mall current modulation given by Eq (5. 14). The

current modulation ie neglected in the conventional narrow-gap klystron theory.
For narrow gapa the approximation involved is, of course, quite small, because

the two coupling coefficients are approximately equal.

Neverth.eles8, the faet that for non-zero beam loading the periodic minima of the

fundamental space-charge modulation are never zero is worth while noticing in
same types of experimental work involving ~xploration of space-charge waves by
stiding a cavity along the electron beam for measurement of the standing-wave
pattern. Obviously, great care should be observed in drawing any conclusion as
to the cauae of observed non-vanishing minima, because these roay be due partly

to the effeet described above arising from non-zero beam loading of the modula-
tion gap, and partly to higher-order space-charge mocles launched on the beam
in addition to the pair of fundamental space-charge waves discu8sed in this report.

5.3 Characteristics of modulation gaps with coupling to ane of the space-charge
waves. Faøt-wave cavity couplers

We shall here diøcu8s the special situations arising when ane of the two coupling
coefficients M+ or M- vanishes. li M+ is zero and M- different from zero

we obtain a case of considerable practical interest in connection with low-noise
beam parametric arnplifiers based on fast space-charge wave interaction (24).
The modulation gap then serves as a fast-wave coupler, exciting only the fast
.pace-charge wave. From Eq. (5.3) and (5. 4) the lUnetie voltage U(x) and the

current l(x) excited by a fasl-wave coupler are given by

v - -j(~ -~ )x
U(x) = -M e e q

Z

V -j{~ -~ )x
I{x)" = M - e e q

ZW

or
U(x)" = W I{x)"

(5.15)

(5. 16)

(5. 17)

which ha. the characteristic. of a pure traveling wave in which the current and

the ldnetlc voltage are in pha.e everywhere. The positive beam loading of the
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gap launching the fast wave equals the positive RF kinetie power p carried in

the forward direction by the fast wave.

p (5.18)

Conversely, if M is zero and M+ different from zero, the gap iø a slow-wave

coupler exciting the slow wave only. In this case the modulations are given by

U(X)+ =
y + -j(l'le + I'lq)x

(5.19)-M e
2

I(x)+ =
-y + -j(Il.+llq)x

(5. 20)-M e
2W

or +U(x)+ = - W I(x) (5. 21 )

The wave launched by this sIow-wave coupler aha is a pure traveling wave in which

the eurrent and the kinetie voltage are in oppoelte phase everywhere. The nega-

tive beam loarling of the gap equals the negative RF kinetie power p+ carried in

the forward direction by the slow wave.

(5.22)

Evidently both fast and slow-wave couplers can be realized using extendecl-inter-

action cavities for which eitber M+ or M- in general can be made zero by proper

choice of De beam voltage. In order to eee thie, let UB aesume that the Fourier

transform of the longitudinal electric fieId, i e the gap coupling coeffieient M(~e)

defined by Eq (2.53), is zero at 13 ::: t3 . Bya slight increase in beam velocity,e e,o
as specified below, we obtain:

M- = M(1l - Il) I Oe q

for A
e

::: A _ A

'"' '"'e,o '"'q
(5.23)

In this case the gap aeta as a faet-wave coupler. On the other hand, a Blight de-

erease in beam velocity, ae specified below, leads to the following relations:

M+ = M(1l + Il ) ;. O
• q

M = M(1l - Il ) = O• q
(5.24)

In thiB case the same gap acta as a slow-wave coupler. Examples of øuch couplers

with sinusoidal RF neId diøtributions are given in Section 5.12. Z.

For eHiefent operation of a fast-wave coupler of the cavity-type di.eu •• ed here,

the signal generator would have to be appropriately matched to the coupler such

that reflections would not occur. li this matching condition il satisfied, the input
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cavity serves as a perfect coupler between the generator and the beam. In the

ideal coupler all the input power P. is transferred to the fast øpace-charge
1

wave on the beam as shown schematieally in Fig 5. Z. In a practical coupler

some small fraction of. the power would be dissipated as IOBses in the coupler

itself. The required optimum coupling is readily determined using the general

equations derived in Section 3. Il trelating the unloaded cavity Q. the external

Q, the characteristic impedance R hia, and the electronie conductance G •• e
For a coupler with 1088, the optimum coupling for perfeet match between the
generator and coupler is specified by the following relation derived from Eq (3. 82):

(R;h) Ge =
Q

(5.25)

The input power Pi is divided between circuit loss P c and be am loading power

p transferred to the fast space-eharge wave. The ratio between these is given

by

p
c

= = (5.26)

For an idealloBsless coupler the ratio P Ip- is zero. This situation evidentlyc
is approached if the beam loading conductance G is considerably higher thane
the unloaded circuit eonductance liR h' In thiø case P. - P- if the external Q

• 1

is adJusted to itø optimum va lue given by

(5.27)

Beam

l
P.
1

Resonant cavity with
no internal loss

M~ = O.

Input transmission
line

p+ = O

P = P.
1

Fig 5.2 Sehematie diagram of the power relationship in an ideal fa.t-wave

eoupler of the cavity-type charaeterized by M~ = O, M~; O
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All the input power Pi is tran.ferred to positive kine tie power p. a •• ociated

witb the faat space-charge wave propagating on the beam:

(5. 28)

The kinetie voltage U(x) and the current lex) of the fast wave excited by the

coupler are given by Eqs (5.15) and (5.16), respectively.

5.4 Excitation of an extended-interaction cavity by a modulated be am

We shall here study the converse proble"m, namely the small-signal excitation of

a cavity by an electron beam rnodulated in the fundamental space-charge made.

The configuration to be studied is shown 8chematically in Fig 5.3 and rnay, for

inøtance. reier to the output cavity of a klystron.

The RF kinetie voltage and eurrent modulations at the input and output cross-

sections of the gap are Ul' Il and Ul' IZ' respectively.

I
I
l •
I

Gap iength 1.

l/2 .1 •
I

.1
I

,t/2 -----1

~ax

u .mm

Modulated bearn

x

i 1__,
../-l

IUI /.. I<. / II .....<
I / .... I
/ •.....•..
I --.1-__ -,
I I

l

Fig 5.3 Excitation of an extended interaction cavity by a modulated be am

Again uøing same of the results from Chapters Z and 3 we shaIl determine :

a) The induced RF gap voltage V in terms of the input modulationø Ul and Il
or same 8uitable linear combinations of these

b) The output modulations UZ' 12 in terms of the input modulations Ul and Il

The last relation determines the two-port matrix of an interaction gap of the gene-

ral type analyzed here.
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From Eqø (Z. 71) and (3.1). setting p:: l, we cbtain the following relation between

the incluced gap voltage Vand the input mcd\11ations li 1 and Il:

(5.29)

Rather than expressing V in terms of the input rnodulations Il and li l we shall

rewrite V in terms of the modulations lex) and U(x) at the arbitrary position x.

This reference position can be chosen either outside or within the interaction re-

gion, if in the last case lex) and. U(x} are the original modulations that would

exist on the heam if the interaction region were removed. The transformations

from Il and li l to lex) and U(x) are simply affected by means of the relations

expressed in Eq (2.54) and (2.55) for the spedal case that p=O (pure drift action).

We obtain

(5.30)

where x as befare is measured from the center of the gap. In Eqa (5.29) and

(5.30) Y is the self-admittance of the cavity. i e the sum of the drcuit admit-

tance Y and the electronic admittance Y .c e

li the cavity is moved axially along the beam, the induced gap 'voltage V will

vary periodically with x in accordance with the periodic modulation U(x) and

I(x) on the beam. The fact that the induced gap voltage V is a linear combina-

tion of both the current lex) and the kinetie voltage U{x). rather than being a

U(x) = U . in Eq (5.30).
mm

ful to state some relations between lmax' lmin'

immediately from Eqs (5.3) through (5.14)

function of the current alone: has same important implications, which we shall

discuss in the following. In this discussion it will be convenient to let x refer to

ane of the positions for which the current is maximum (or the kinetic voltage is

minimum) as shown in Fig 5.3. We shall then have to put l{x)::: l andmax
For evaluation of the induced voltage V it will be uøe-

Umax and Umin tbat follow

= w I Iimax (5. 31)

(5.32)

li the amplitude of the fast space-charge wave exceeds that of the slow wave. we

have

Re (I U".) = w II I II I .max mIn max mIn (5.33)

In the opposite case. il the slow wave dominates.

(5.34)

In both ca se s

1m(! U")max min
( ")= 1m Imin Umax ::: O (5.35)
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Multiplying Eq (5.30) by its complex conjugate and using the relations above. we

find after performing sorne algebraic manipulations

l
yy'" =

yy"

(5.36)

where the upper and lower eign8 apply when the net energy now on the beam is

positive or negative. respectively. In this equation the square of the induced gap

voltage is expressed in terms of the twa rnodulation variables repreøented by the
current maximum and the current minimum rather than the current and the kine-

tie voltage. Again, it is important to Dotice that the space-charge waveø are not

fully delermined by III and III . and their posilions, i e the slanding-
max mIn

wave pattern of the current. The sign of the energy £low must aha be specified.

The exploration of space-charge standing-wave pattern on a longitudinal beam by

means of a ca vit y that can be moved along the beam can now be diseussed using

Eq (5.36). The periodic maxima and minima of the observed power (proportional

to VV~) occur at the positions Xl and Xl given by

= krr t
t -Arg M -Arg M
l

k=O,tl,tl--- (5.37)

t -
= (kt1')rrtArgM -ArgM, k=O,tl,tl---

l
(5. 38)

for the maxima and minima, respectively. The periodic maxima and minima are

oblained from Eq (5.36) by subslilulion of Xl and Xl from Eqs (5.37) and (5.38).

and taking the square roots of the resulting expressions. We £ind

Mt tM- + -

I~I( \llmax
M -M )

Ivimax
o o

Illmin
o o

= +
l l

= 1~lllllmax

M+ - M-
M>M~ I

lvi min
o o

Illmin+
l l

(5.39)

(5.40)

use the absolute valne of the right-
- +

negative when Mo is larger than Mo,
In the expression for lvi . we shall have to

mm
hand side because the expression may become

i e by positive beam loading in the gap.

Again, the upper and lower signs in Eqs (5.39) and (5.40) refer to the cases for

which the net energy flow on the beam is positive and negative, respectively.

The concluøions that can be drawn from examining Eqs (5.39) and (5.40) are the

following:
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a) For the general case in which M~ and M~ are different, the induced maxi-
mum and minimum voltage Ivlrn and lvtmin are linear combinationø of the
maximum and minimum RF bea~xcurrent Illmax and 111min' and depend.
furthermore, on the sign of the net energy now on the beam.

b) On1y in the special case for which the beam loading is zero (M~ = M~ :;:Mo)
are the beam current maxima and minima simply related to the observed gap
voltage maxima and minima, respectively. Because in this case Ye:;: O.
y :;:y , we have

e

Ivlmax
1

Illmax=
IYel

M (5.41)
o

Ivimin =
1 Mo Illmin (5.4Z)

TY:T
Thiø is a situation approximated to a fair degree by a narrow-gap re-entrant
cavity often us ed {or experimental exploration of space-charge waves on linear
beams.

From the above analysis it also follow8 that the converse problem of determining

the beam current maxima and minima from information obtained by measuring gap

voltage maxima and minima, as the cavity is mo ved along the electron beam. has

no unique Bolution in all the cases that can occur. Thie conc1usion follows immedi-

ately if Eqs (5.39) and (5.40) are solved with re speet to II1 and III .• propermax min
care being taken ai the various combinations oi sign8 that can occur. The £inal re-

sulte are conveniently listed in the iollowing table. Here, the quantity 'X. charac-

terizes the type oi gap used in the observation of the space-charge wave pattern.

By definitlon

(5.43)

For a gap with positive beam loading, X is positive, and vice versa.

Observed
Characteristics of the space-charge waves

Case gap voltage Sign of Appropriate formulae for beam
ratio beam current standing-wave ratio ex-

lvi ./lvl energy pressed in terms of the observed
mln max now gap voltage ratio

I o~ Ivimin Sign (-X)
Illmin IX 1+ Ivlmi/lvlmax

lvi ~ 1 Illmax
= 1 + IX nvl i llvlmax m n max

lvi. Illmin lil- lvi. Ilvl
Il oS mlnslXI Sign (- X) =

mln max

rvc Illmax l -ltTTVl . Ilvlmln max

lvi. Illmin lvi . I lvi - I'X.I
ill IXls mIn Sl Sign (+X) = mln maxwc:: Illmax 1 - I x.llvl I IlvCm n max

Table 5. I Possible 8pace-charge waves associated with the gap voltage ratio

tdmin/lvlmax as observed with a gap specified by the gap para-

meter X = (M- - M+)/(M- + M+)
0-0--0--0-



- 114 •

The use of the table is quite simple. The first column liats the three pOBsible

cases that can occur. determined by the relative magnitudes of the observed gap

voltage ratio and the presumably known absolute valne of the gap parameter i,
as indicated by the second column. The third and fourth columns give the sign

of the be am energy flow and the appropriate formulae for evaluation of the cnr-

rent standing-wave ratio.

The conclusions which can be drawn from a study of Table 5. l are the following :

a) Unambiguous determination of the bp,am cnrrent standing-wave ratio from the
observed gap voltage ratio l vlmin/lvlmax is not po8sible in the general case
with X different from zero. For a given gap (X given) there exist in general
twa different spaee-eharge waves with different current standing-wave ratios
giving rise to the ~ gap voltage ratio Ivlmil}/Ivlmax. The first of these
is always the wave listed in Table 5. l as case I; the second is one of the
twa waves listed as e,se Il or case ill depending on the relative magnitudes 9f
the observed Ivimin Ivimax and the presumably known absolute value of 1...

b) If we have a priori knowledge of the sign of the beam energy now, unambigu-
ous determination of the current standing-wave ratio from the observed gap
voltage ratio is possible py proper choice of gap. By arranging matters Buch
that the gap parameter i.. and the energy flow have the same sign, the wave
listed as case 111in Table 5.1 evidently represents the only possible spaee-
charge wave associated with a given gap voltage ratio. Therefore, we may
conclude that in order to avoid ambiguouB results, a beam lplving positive
energy flow should be explored with a gap having positive "i , i e positive
be am loading, and vice versa.

c) Unarnbiguous determination of beam current standing-wave pattern is always
possible by ehoosing a gap having zero be am loading, i e i. = O. This, how-
ever. aeems very difficult to achieve in practice. In this eonnection it should
be pointed out that the neglect of beam loading in narrow-gap conventional
klystron cavities. whieh probably are the types of cavities that have been used
most extensively for exploration of current standing-wave pattern on linear
beams, in many cases leads to entirely incorrect resu1ts a8 shown in the ex-
ample below. The results of such measurements should therefore be inter-
preted with great care.

A numerical example will serve to illustrate the statement given above. AS8ume

a eonventional klystron cavity for whieh the gap coupling coefficient i. given by

M = .in(8/Z)/(8/Z) where 8 = ~ l i. the gap tran.it angle. Evaluatlon of thee
parameter i from the defining equation (5.43) yields the curve shown in Fig 5.4,

where the ealculated ratio X. 1(", I",) i. plotted v. the gap tranait angle 8. li
q

we choose 8 equal to 11", which is areasonable value. 1.- will be exactly equal to

the space-charge parameter wq/(J), whoae magnitude 18 far from negligible. Let

us asøume that w 1m = i = O. l, and that the gap voltage ratio obaerved by slid-q
ing the eavity along the modulated beam ia IVlmin/lvlmax = O. J. From Table

5.1 the space ...charge wave giving ri.e to this gap voltage ratio may be either ane

of the following :

i) A wave carrying negative energy liated as Case l in the table. with current
standing wave ratio

IlI
min = O.l98

Illmax

il) A wave carrying zero energy with current standing wave ratio

(5.44)

: O (5.45)
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GAP TRANSIT ANGLE 9 = {3.(,

Fig 5.4 Curve showing the parameter X. /(wq/w) for a conventional narrow-
gap cavity plotted vs the gap transit angle e
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The aetual space-charge wave on the beam roay be either one of the wave. 1)

and H). For neither of theøe does the current standing-wave pattern correspond

to the observed gap voltage ratio. The discrepancy is particularly large if the

magnitudes of i.. and IVi . Ilvl are approximately the same as In thismIn max
example.

The discusBion clearly showa that great ca re should be observed in interpreting

data from Buch measurements. The simple conventional theory is quite inøuffi-

cient and may lead to appreciable errors even if conventional narrow gap cavitieø

are used. Reported discrepancies between theoretically predicted noise standing-

wave pattern on a drifting beam. subject to transformations by passive beam tranB-

ducers. and experimental measurements are often ascribed to higher order spa.ce-

charge modes not accounted fo,r in the one-dimensional model of the beam (26.27).

It appears possible that the observed discrepancies, wmch are particularly pro-

nounced for small values of III . /Irl I at least in part may be due to misin-mIn max
terpretation of experimental data caused by the effect discuBsed above~

5~5 Exeitation of faøt-wave cavity couplers by a modulated beam

In supplement to the study made in Section 5.3 of be am modulation by fast-wave

cavity couplers. we shaIl here deal with excitation of a fast-wave coupler by a

modulated beam, as shown schematieally in Fig 5.5. The fast-wave coupler is

characterized by having M~ = O and M~ ~ o. ThuB. a p09sible slow-wave com-

ponent on the be am propagate B through the coupler without contributing to the in-

duced voltage, as is easily verified using Eqs (5.30) and (5. 2I). We need there-

fore consider only the fast-wave modulations U(x( and I(x( given by Eqø (5.15)

and (5.16).

Fast space-
charge wave

/'
Resonant ca vi ty with
no internal loss

-

!
PL,max = pi

Flg 5. 5 Schematic diagram of the power relations in an ideal fast-w&ve output
+ - .;cavity coupler for which Mo = O I Mo~
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The induced gap voltage, evaluated from Eq (5.30) for the special case at hand,

is given by

y = l _ - j( ~e- ~q)x
M-- i(x) e

y
(5.46)

The uøeful power output dissipated in the external load is related to the gap volt-

age y through Eq (3.85)

= .!. yy" (..E...) _I_
l Rsh 0ext

(5.47 )

where Rabla is the charaeteristic impedance of the cavity and Qext is the ex-

ternal O. Substitution of Y from Eq (5.46) yie1ds

p =.!. IM- i(xfl l(....9....) _I_
L l Y Rsh 0ext

(5.48)

Remembering that y is the sum of the circuit admittance Y and the electronicc
admlttance Y

e
J the optimum value of Qext maximizing the output power p L is

readily determined. We £ind that the optimum coupling at resonanee for maximum

output power is the same as the optimum coupling (5.25) for maximum transfer

of power from the generator to the beam for the input fast-wave coupler:

(5.49)

Substitutian in Eq (5.48) yields the rnaximum power in the externalload expressed

in terms of the initial kinetie beam power pi.

[
(O ) ](PL) = P~ l _ ext opt

max Q

A small fraction p~ of the initial kinetie beam power p;

fast-wave modulation on the beam after the output coupler.

(5. 57) we find

pi = P~ [(Oe~)oPtr

(5.50)

remains a 8 a small

Using Eqs (5.46) and

(5. 51)

Another small fraction Pc of the initial kinetie power is dissipated in the coupler

itself due to its fnternal losses:

(5.5l)

It is noted that the relation P~ + PL + Pc = pi, required by the small-signal power

theorem (l. 84), is satisfied by these expressions. li the product GeRllh/a is suf-
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f1ciently large. the optimum condition (5.49) shows that 0ex/O «I. In this

case a practical coupler approaches the ideal coupler shown in Fig 5.5 in which

the entir~ldnetic power Pi i. transferred to the external load, the remaining

kinetie power Pi after the coupler being zero. Returning again to the general

case witb 1088y couplers, we note that although the maximum output power is

transferred to the external load if Qext saUefies the condition ølated in Eq (5.49),

a sltghtly different load wil! maximize the total power disBipated in the external

load plua the coupler itself. In thill case the be am will be malehed completely to

the coupler, and the initial fast-wave kinetie power in its entirety h lranøferred

to the circuit. This øituation arises if

Rsh I
G =O e OL

Then we have

PL + Pc = P~

P~ = O

(5.53)

(5.54)

(5.55)

Obviously, an amplifier based on faøt-wave interaction consiøting for inatance of

the input coupler shown in Fig 5. 2 and the output coupler ahown in Fig 5.5 has a

power gain that never exceeda unity. Otherwise the small-signal power theorem

would be violated. The resultø of the detailed calculationø done in Sections 5.3

and 5.5 are in agreement with thia requirement. Gain larger than unit Y can be

achieved through parametric amplification of the fast øpace-charge wave in the

region between the input and output coupler (24). The additional power required

for amplification is then supplied by an external RF generator, the "pump". For

low-noise amplification the input fast-wave coupler serves the double purpose of

sJ-multaneouøly modulating the beam and removing the fast-wave noiae power that

exi.tø on the beam before the input coupler. The equations derived in aectiona

5.3 and 5.5 show that complete removal of fast-wave noise can be achieved by a

cavity-type input coupler having its loaded Q adjusted according to the relation

(5.53).

For a general discussion of parametric amplifiers and fast-wave couplers differ-

ent from the cavity type. diseussed here, such as traveling-wave couplers, the

reader i. referred to the literature on the subject (24,28).

5.6 General two-port representation of extended interaction gapa

The linear relations between the beam current and the kinetic voltage modulationø

Il and Ul' IZ ~nd U2 referred to the input and output cross-section,'o{ a gap as-

sociated with a "£loating" cavity can be !ound using Eqs (5.l9). (l. 54) and (l. 55),
setting p = l in the last two equations. We obtain

I [ (" -j~//l)V=-- liMe -
y I

(5.56)
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i( e-jlle1) - Il W
(-j~e) i( -j~e1/2) (5. 57)Uz = Ul Ae tV Me

i( .-j~e1) -~ -j~ l V -j~ 1/z
IZ = Il A( e e) - W A( M e e ) (5.58)

W

Suhstitution of the gap voltage V from Eq (5. 56) in the other twa equations yielde

twa linear relations between the input and output modulations. These linear trans-

formations of the kinetie voltage ,and cnrrent. taking place when the beam traverses

the interaction region, can be represented by a linear two-port whose matrix re-

lates the output and input quantitie s

(5.59)

The element. of the matrlx K follow very .Imply from Eq. (5. 56) through (5. 58).
We f1nd

( -j~ l) ( -j~ .tIZ) i( -j~ 1/2)
A = i e e t 6.M*e e Me e (5.60)

Wy

A( e-j~/) ( -j~ 1/2) ( -j~ 1/2)
B = -w i M*e eiM e e (5.61)

y

I (-j~l) .::.( -j~ 1/2) ( -j~ tlZ)C = --6.e M~e e 6. M e e (5.6Z)
W WZy

I
t-Wy (

-j~ L/2) ( -j~ .l/Z)
AMe e i M"e e (5.63)

For the special case of narrow syrnmetric gape, similar relations have been oh-

tained by A Ber~ (29) using a different approach. His results agree witb the more

general results of this section i! we set M* = M, a relation which holds for gapa

ha ving symmetric RF fieId diatributions.

The matrix elementa (5.60) through (5.63) can be interpreted in aeveral waya aa

done by Bera for the caee of symmetric narrow gape. The first terms in all the

elements are independent of the specific nature of the interaction gap and are the

reøult of pure drift action between the input and output cross-sections. This drift

action is equivalent to that taking place in a drift tube with metallie walle or in

free øpace. The drift matrix is given by

j W
-J~ L-

e e (5.64)
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wbere the drift matrix elements are determined from the identities

-j~t -j~l
Ad = i( e e) = COB~qt e e (5.65)

A( e -j~el) -j~ L
Bd = -W = jW sin ~qt e

e (5.66)

I A(e -j~l) . I -jH

Cd = = J- Bin ~ t e e (5.67)
W W q

i(e -j~el)
-j~l

Dd = = COB ~.te e (5.68)
q

One particularly interesting r(.presentation of a general extencled interaction gap

iø obtained by writing the gap matrix ~ as a product of matricea that may be

identified with drift and gap parameters, respectively. We shall &ssume, as

shown achematically in Fig 5.6, that the drift matrices E'l and ~z. are associ-

ated with the lengthB li and lZ of the interaction gap (il + lz = .t), and the

matrix C with the circuit itself.

---l
IBeam

11 = 1/z + At iz =.e/Z- At
I • • I ' I
I I I
~J/z--r+J';z--1

~ (b)

Resonant
cavity

(a)

uzl
I

IZ I
I

(c)

(5.69)

Fig 5.6 Representation of interaction gaps by linear twa-ports

(a) General interaction gap of length 1.

(b) Representation by a linear twa-port with matrix ~

(c) Representation by cascaded twa-ports associated with drift
and gap parameters

For convenience, the iactor exp(-jee1) is taken outside the matrix product.

Then, by definition
-j~eL

K = Qz s: QI e
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where, in general, :el and .£lI are different. They are equal only for gap.
characterized by øymmetric or antiøymmetric fieid dietributionø. The matricel

J2l and J2z are given by Eq (5.64) by insertion of the proper drift lengths.

['O' ',' l ; W .~.",]

J2l =
J ~ dn llqll cos llqll

[00. ',' Z ; w "' •• ",]
~Z =

J ~ sin llq1Z cos llqlZ

(5.70)

(5.71)

where the drift lengthø II and 12 are determined from the requirement that the

gap matrix C be independent of drift lengths. The matrix C h obtained by pre-- -multlplication and poatmultlplication of Eq (5.69) by the inverse of the drift mat-

rices 122 and !?l' respectively:

.ll .LJ ee (5.7Z)

ri

[

Cl. l

C =
Cz l•

(5.73)

equatlon (5. 7Z) yields

l J
= l --G +

Y e ZWy
(5. 74)

(5.75)

Cz l•
l [+ +.. _ _.. (_ +•• Jllq(ll-.lZ»)]= .-- M M + M M - ZRe M M e

4YWZ
(5.76)

l
Cz Z = l - - G

• Y e

j

ZWy
(5.77)

The gap coupling coefficients M and Mt appearing in theøe equationa are, in

general, complex. Let

M (5.78)

(5.79)
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- + .
where Mo and Mo are the absolute values of M- and M+. Uøing theøe rela-

tions, we lind that the elements of the rnatrix C are independent of the lengths

11 and II ff these are chosen in accordance with the relation

~q (LI - .lZl A + -= rgM - ArgM

Then

Cl l Cz Z
l= = l - - C, , y e

Cl, Z = _ ~ (M:: M~) Z l -Z= - - M
Y

_l C> M~)Z
CZ

CZ, l = = e

YWZ Z y ~

(5.80.

(5.81 l

(5.8Z)

(5. 83l

where :M is the arithmetie mean of the coupling coefficients M+ and M- ando o'
G
e

is the beam loading. Hence. the twa-port in Fig 5. 6c representing the gap

parameters has the matrix

l l.c l -Z- -yMY e

C = (5.84)

l CZ
l.ce ly ~

- y e

which is identical with the result obtained by Bers (29) for a symmetric, narrOW
+ - .lgap, for which both M and M are real, and therefore .lI = Z'

The analysis done in this section show8 that a180 an arbitrary. extended interaction

gap can be represented by the chain of twa-ports shown in Fig 5. 6c. The two-

parts represented by the drift matrices !?l and ;?z are associated with pure drift

action through the drift lengths tI and IZ' the sum of which is equal to the

length 1, of the interaction gap. These matrices, except for opposite signs in the

off-diagonal elements, are analogous to the matrices relating the line voltage and

line current of lossless transmission lines. In fact, by a trivial sign transforma-

tion of the variable U they become identical.

The gap matrix C is specified entirely by the circuit parameters Y = Y + Y •
-Z - c e
M I and G

e
, representing the sel!-admittance, the square of the mean coupling

coefficient, and the beam loading, respectively.

5.7 Representation of interaction gapa by passive networks

The queation whether the cascaded two-ports associated with the general inter-

action gap shown in Fig 5.6 can be represented by passive, reciprocal networks

cannot be answered without a closer investigation. It turns out that Buch a repre-
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sentation is possible {or the drift matrices :el and .eZ but not for the gal' mat-

rix ~ except in the special case for which the beam loading is zero. 1£ we c()n~

sider reciprocity first. obviously the two-ports representing the drift-matrices

-el and ~2 satis[y the requirement for reciprocity, namely that the determi-

nants of the matrices are equal to unity. Furthermore, it is noted from Eqs (5. 70)

and (5.71) that the twa-ports associated with the drilt matrices ~l and ~2 can-

not be represented directly by simple transmi8sion lines, without redefining either

U or I with oppoeite sign. An equivalent method achieving essentially the same

result is to consider the inverse drift matrices

-1
121 = (5.85)

with a similar expression for !?Z-l. Evidently the inverse drift matrices are

equivalent to transmission-line matrices.

For a beam in a drift tube or in free space the following relation holds:

(5.86 )

where the matrix 121-1 aecording to the discussion above can be repreøented as

shown in Fig 5.7 by a two-port consisting of a section of a transmission line hav-

ing the characteristic impedance W and the same phase shift ~qll between in-

put and output. Although the plasma phase shift in the drift tube and the phase shift

in the equivalent transmission line are different functions of frequeneies. the vari-

ations with frequency are very small over the relative ly narrow band of the cavity.

It is therefore entirely justified to neglect these variations and con sider the trans-

mission-line representation of a beam in a drift tube correct for all the frequen-

eies within the band.

Except for the trivial factor exp(j~ t} the re is one-to-one correspondence betweene
the beam kinetic voltage and current of the space-charge wave propagating on the

beam and the line voltage and line current of the electromagnetic wave propagating

on the equivalent transmission line. The positive or negative energy flow on the

beam is always in the positive direction, i e in the direction of the beam. Since

the inverse of -!?l rather than -!?l represents the transmission-line matrix, it

followB from Eq (5. 86) that now of energy on the equivalent transmission line is

in the negative direction il the beam energy flow is positive, and vice versa,
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Ul I IUZ
Il I Beam

II IZ Energy now

~
I I 6

aSBumed positive

(a) I I •
I

I I
I I'. ~q.tl .1I

Il ~q.tl IZ
• • Direction of

(b)
UIl lUz

energy Ilow

Fig 5.7 Representation of a drifting beam hy transmission lines

(a) Drifti~g beam in a drift tube or in free space. The be am energy
new is assumed positive.

(b) Equivalent transmission line representing the drifting heam.
The energy now is in the negative direction if the beam energy
flow is positive, and vice versa.

The reciprocity relations of the gap matrix ~ given by Eq (5.73) can he inves-

tigated by forming the determinant of s: by means of Eqs (5.74) through (5.77).

We obtain

Det £:
G

Z~
y

(5.87 )

The requirement for reciprocity, a determinant equal to unity. is satisfied only

il the beam loading vanishes. Therefore, representation of the gap by passive,

reciprocal networks, il at all p08sible, requires zero be am loading. In this case

the gap matrix C reduces to

(5.88)

which evidently can be represented by the simple passive, reciprocal network

shown in Fig 5.8. Here, the direction of energy now in the equivalent two-port

is positive if the beam energy now is positive, and vice versa. while the opposite

was true for the transmisBion-line two-port representing the drift matrices.,
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Ul I I U2

Beam Il l 12 Energy flow

(a)
~

I 6 a B Bumed posi ti ve
I •

I I
i l Narrow gap

Il Z ~i:åy 12c
0---1 O

Ul t f U2

Direction of

(b)
energy now •

--O O

Fig 5.8 Representation of a narrow gap by a passive network

(a) Infinitely narrow gap excited by a beam. The beam energy
new is assumed positive.

(b) Network representation of the gap matrix C of a gap having
zero be am loading. The ~nergy flew is in the positive direc-
tion if the beam energy flow is positive. and vice versa.

After having discussed reciprocity and energy flow relations of the separate two-

ports and their network representations, we shaIl next consider the chain of cas-

eaded two-ports representing the general interaction gap. The matrix equation

relating the input and output rnodulations of the general gap in Fig 5. 6a is given

by

l::] [Ull']
-jll te

~e !?2S!?1 (5.89)

From a study of this equation we are led to the cC"::1....:1usionthat although the drift

matrices .el and 122 and the gap mat'l:":'x ~ are represented by passive networks

if eonsidered separately, rep:-csentation of the matrix product l?2 ~ -!?l by the

eascaded networks associated with .122' ~ and .Ql is not possible because the

energy nows are in opposite directions in the networks representing gap and drift

matrices.

However, even if representation of a general gap is not possible by means of trans-

rnlssion lines having the same total phase shift as the phase shift of the drifting

beam aerOBS the interaction gap, a Httle eonsideration shows that representation,
eertainly is possible with transmission lines of different phase shHts eqt1 and

1l.t'2 if these are ehosen according to the following relation:q .
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n = l,l. (5.90)

n=I,2, -_ .. (5.91 )

By øubøtltution in Eqø (5.70) and (5.71) we find that the aøsociated drift rnatrices

.el' and 'Qz' are related to the original anes by the relations

121 = (-I)n(12;(1

(_I)n (D' (I12Z = _ z

Substitutlon in Eq (5.89) yields

(5.92)

(5. 93)

Uz Ul
-j ~L

(D 'ri (D 'ri= e e C (5.94)_z -I

IZ Il

By modifying the lengths of the transmission-line sections we have be en able to

express the matrix product in terms of inverted drift matrices. Since inversion

of a drift matrix corresponds to 8witching the direction of energy flow in the twa-

port representing the matrix, the matrix product in Eq (5.94), according to the

preceding discu8sion. can be represented by the eascaded networks shown in Fig

5.9 where we have chosen n=l. In this equivalent of a gap with zero beam load-

ing, the direction of energy flow is positive if the beam energy now is positive,

and vice versa.

Energy flow
aS8umed positive••

l •
J. = J.I + lZ .'

I I
I I

Beam

I ~

•
(al

Ul I IUz
Il I I IZI I
I I
I " - ~qll " - ~qlZ l

I- .' Z = MZ/yc I .1
Il I I I IZI I I I ! I• , i ! ! •

(b)

U11 1Uz

Direction of
energy flow ••

Fig 5.9 Representation of a general gap by passive networks

(a) General gap having zero beam loading.

(b) Representation by passive networks. The direction of energy
flow carre sponde to the sign of beam energy flow.
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An alternate gap representation by active networks is obtained if Eq (5. Sq) is

Bolved for the input modulations in terms of the output rnodulations by inversion

of the matrix product.

[::J (5. 95)

In the two.port representation the inversion corresponds to switching the direc-
-l -ltion of energy now. In this case the matrices!':l1 and J?Z can be represented

by the transmission lines in Fig 5.7 with the original drift lengths LI and .t
2
'

but the matrix ~-l is no langer represented by the passive network shown in Fig

5.8, but by a similar active netwark with a negative series impedance Z, i e

an impeclance whose real part is negative. This leads to the active network repre-

sentation of a gap shown in Fig 5.10. Here, the direction of the energy flow is ~

posite that of the sign of the beam energy flow.

To summarize the results, we have shown:

a) Interaction gaps aI the general type diseussed can be represented by reciprocal
networks only if the beam loading is zero.

b) For gaps with zero beam loading two network representations are suggested.
of which ane is passive and one active. The passive network shown in Fig (5.9)
involves a cascade of a transmi8sion-line section of length TI" - f'qll ' a lumped
series impedance MZ/y C having positive real part. and a transmission-line
section of length Tl' - 13qlZ, the relative magnitucles of tI and J.Z being such
that Eq (5.80) is satisfied. The direction of energy now through the eascade
is the ~ as the sign of beam energy flow.

Beam

Ul
I

Il I (a)

I
I
I Øqll • I I ØqlZI • -Z/ I •Il I Z = -M YI I c I

• , ,I !,

Ul1

(b)

Energy now
aS8umed positive

•

Direction oI
energy now

• I

Fig 5.10 Representation of a general gap by active networka

(a.) General gap ba ving zero beam loading.

(b) Representation by active networks. Direction of energy
now is opposite that of the sign of beam energy flow.
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The active network repreøentation ahown in Fig 5.10 is a eascade of a trane"
mission-line section of length ~ .ti' a lumped se::,ies impedance _f.AZ/y
having negative real part, and aqtransmis81on-line eection of length 13 '2.
The direction of energy flow through the cascade iø oppoelte the 81gnoflbeam
energy now.

5.8 Loaded transmhsion-line analog of multi-cavity klystrons with extended inter-

action regione

The pa8s1ve network representation shown in Fig 5.9 is the basis of a tranømiø-
sion-line analog of multi-cavity klystrons (16) that exactly simulates the actual

small-signal klystron performance with the following restrictiona that are imme-

diately underatood from the preceding discu8sion:

a) The beam loading of all the cavities must be zero. This is a rather Bevere
reøtriction which iø not satiøfied in actual klystronø except Wlder øpecial cir-
cumatances. The errora introduced by non-zero beam loading, however, are
not expected to be aignificant in most practical cases for which normally the
ratio G ly «l (see Eq (5.84». 1£tbis conditlon is satisfied. the network
analog w'll ~robably be Bufficiently accurate for practical purposea.

b) The frequency dependence of the phase shifta of the transmission-line sectiona
are disregarded compared to the more rapid frequency dependenee of the cav-
ttyadmittance yC. This assumption is well satisfied in practice, the approxi-
matton being of the .arne order a. the approximation involved by neglecting the
frequency dependence of the plasma drift angles in the actual klyatrona.

c) It is Assumed that Eq (5.80) is satisfied, at least approxirnately. over the fre-
quency band of the klystron. It iø noted. in particular. that the equation ia al-
ways satiafied for gapa with \ymmetric or anti-symmetric RF £leId distrlbu-
tions, in which case. Arg M = Arg M- for all frequencies. i e ~l = J,z.

With the reøtrictions mentioned above under a), b) and d. the tranømiasion-line

analog shown in Fig 5. Il øimulates accurately the small-signal behavior of multi-

cavity klyøtrons with arbitrary. extended interaction regions. The analog ahown

in Fig 5.11b is obtained directly by cascading a series of gap repreøentations of

the type shown in Fig 5.9. In the analog the beam modulations U and I are re-

presented directly by the line voltage and line current except for a trivial exponen-

tial fador exp (j/3 z). The proper boundary conditions are established by apen-
e

circuiting the transmission line at the position corresponding to the input cavity.

thus f'orcing the current to be zero. as required. The RF power is fed from a

generator into the line at the opposite end. Since the beam energy now in the klys-

tron is always negative, the energy on the line will flow in the correct direction

from the right to the left, according to the discussion in connection with Fig 5.9.

In the analog the characteristic impedance of the transmission-line sections cor-

responds to the characteristic impedance of the beam, and the lumped series im-

pedances correspond to the ca vit y impedances, i e they are parallei Le circuits.

The analog shown in Fig 5.11 c refers to the special situation for which all the

plasma drift angles are equal to Tt/Z. In this case the transmission-line sections

can be eliminated altogether by succes sive simple transformationø of the twa-porta

consisting of two quarter-wave sections and one paraBel resonant circuit in seriea
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Flg 5.11 Transmisøion-line analog of multi-cavity klyatrons with arbitrary
gaps having zero or negligible be am loading

(a) Multi-cavity klystron structure with RF beam modulations
given by U and I.

(b) Transmission-line analog based on representation of the inter ..
action gaps by the networks shown in Fig 5.9. The line voltage
and line current correspond to the beam modulation. U and I
muItiplled by exp(j~ez),

(c) Ladder-network analog in the special case for which all the
pl.p.sma drift angles between centers of consecutive gaps are
TT/2. In this case no transmisøion lines are required.
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between these into one single series resonant circuit in paraBel. The resulting

ladder-network analog is a stop-band filter. the stop-band correeponding to the

pass-band of the klystron.

Although it is not immediately obvious, it can be shown, using the general rela-

tions for arbitrary extended gape developed in this chapter, that the RF gap volt-

ages of the variou8 extended interaction gape along the electron øtream are re-

presented in the analog hy the voltage drops acr088 the lumped series impedances,

modified by the coupling coefficients. Referring to Fig 5. llb, the pth gap voltage

is given by the relation

v
p (5.96)

where U lP.
and after the

and U are the transmission-line voltages immediately befare
p,2 2

series impeclance M ly . Therefore, the voltage gain of the klys-p
trOn is represented by

(5.97)

where ~Up is the voltage drop acro~s the series impedance representing the out-

put ca vit y, and Ul is the line voltage at the open-circuit position corresponding

to the position of the input cavity.

The duals of the networks shown in Fig 5.11 are aho possible analoge of multi-

ca vit y klystrons, but wiIl not be considered here.

The 8uggested simple network analoge may have potential uses for optimization

of stagger-tuning pattern, particularly for klystrons having a large number of

cavities, because in these cases analytical and numerieal synthesizing methods

are exeeedingly difficult to handle. In a practieal analog one would seale the klys-

tron parameters to a convenient lower frequency for whieh full advantage can be

taken of simple Le resonant circuits and low-frequency measuring technique.

5.9 Same general properties of the coupling coefficient

In the Dext sections a relatively detailed study wiIl be made of the relevant gap

parameters that characterize small-signal interaction with longitudinal beams.

These parameters are the gap coupling coefficient M(tl ) and the gap electronic, e
admittance Y , defined by Eqs (2.53) and (2.68). respectively. Actually. the gape
is characterized by twa coupling coefficients M- and M+, associated with the

fast and the slow space-charge waves. However. since these are derived from

the zero space-charge eoupling coefficient M(tle). a study of M(13e) suffices.

We shaIl prove same general properties satisfied by the coupling coefficient of any
gap having arbitrary longitudinal RF field distribution:
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a) The absolute value of the coupling coefficient of any gap is always less than.
unily

b) The coupling coefficient of a gap having symmetri c RF tield distribution is
real

c) The coupling coefficient of a gap having anti-øymmetric RF HeId distribution
i. imaginary

In order to prove the first statement let us consider the expression for the coup-

ling coefficient

t/2 ill x
M = J F(x) e e dx

-1./2
(5.98 )

We ahall allow complex values of the normalized longitudinal RF fieid distribution

F(x). Using Schwarz' inequality and the normalization condition (2.51) we lind

or

MM"

1/2 J/2 0A

£ l J •.• x -illex~ F(x) F(x)" dx e e e dx

- /2 - /2

1/2
= lJ F(x) F(x)"dx = I
-tl2

(5.99)

which proves the property listed above under a).

The properties liated under b) and c) follow immediately from the reciprocity

theorem a) derived in Section 3. 14, stating that the gap coupling coefficient trans-

fers to its cornplex conjugate if the electron now through the gap is reversed.

Hence, for a symrnetric RF field :

i eMis real (5.100)

For an anti-syrnmetric RF field:

M = - M" i eMis imaginary (5.101)

5. 10

The coupling coefficient of a gap whose RF field distribution is neither symmetric

nor anti-symmetric is, in general, complex.

Series expansion of the coupling coefficient in terms of sinusoidal fieId components

For a gap with arbitrary longitudinal RF field distribution, series expansion of the

coupling coefficient M in terms of the Fourier components of the gap field is use-

ful in that it shows explicitly the relative contributions to M from the variou8

Fourier cornponents. The problems arising in connection with the realization of

a specified RF field distribution by practical structures are irrelevant to the pre-

sent discussion. We shall aS8ume. however, that the RF fieid has the character

of a pure stand ing wave, i e that F(x) is in phase everywhere, and that the deri-

vatives dF/dx at the two cro88-sectiona corresponding to x;:: - ././Z and x;:: .l/Z
are both zero. Theae reatrictions mean that the typea of interaction gapa analyzed
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here are those which are typical for high-Q cavitieB hav,'ng d ti Icon uc og meta boun-

darieø at the cro8s-sections x = .),/2 and x = 1/2.

-t/l

F(x)+
I
I
I

x

Gap length 1.

---- ....•.....
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\
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I
3,t/l

" I
'- I-,

Fig 5. Il Sketeh showing the gap boundary eondition.: dF/dx = O
at x = -,L/z and x = .llz

The Fourier expansion of F(x) is based on a fundamental period of twice the gap

length for reason8 that are ohvioU8 if we consider the periodic gap fieid in a re-

Bonated section of same slow-wave structure. These structures resonate at aset

of frequencies for which the periodic RF fieid distributions comprise a whole

numher of half periods.

Referring to Fig 5.12, the mathematieal extension of F(x) in the region

l/l < x < 3L/l will be ehosen sueh that

F(x) = F(ol - x)

or
F(-x) = F(,t + x)

(5.IOl)

The Fourier expansion. valid in the interval - tIl < x < l L/l and therefore, in

particu1ar. over the gap itself, is given by the cosine series

F(x)

~
= F + '\ F eosln1T(xl.t -I/l) l

o f., n
l

(5. 103)

where the coefficients are obtained from

F
n

31./l
= i 1F(x) eosln1T(xI.t - l/l) ldx

-l/l

,l/z
= i J F(x) eos[ M(xI.t - l/l) ldx

-J/z
(5.104)

H/z
= lit J F(x)dx =

- t/l

l/li J F(x)dx

.£/l

(5.105)
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The Fourier camponents satisfy the following relation derived from the normaliza-

tion condition (l. 51) :

t/z
l r F(x)l dx =
-ill

!l F l + l
o l il

n=1

Fl =
n

(5. 106)

The Fourier components F for n ~ 1 represent a set of standing waves eacb of
n

which can be coneidered the superposition of twa waves traveling in oppoeite direc-

tions. The propagation constant en of these wavee is

Q = Tfnl.t"n
(5.107)

The integer ntherefore represents the number of half waves over the interaction

length.t. For evaluation of the coupling coefficient M in terms of the Fourier

camponents it is convenient to introduee a velocity parameter E.n defined by

£
n

= 1 -
~e

~n
= l - (5.108)

where fi = aJ/u is the propagation factor associated with the De electron velo-
e o

city u
o
' and v

n
the phase velocity of the wave constituting the nth Fourier com-

ponent. The parameter €n is a measure of the deviation of the beam ve lo city

from synchronism with the nth Fourier component.

Substituting the series expansion of F(x) in the expression for the coupling coef-

ficient and using Eq (5. 108), we obtaio

M = lF o

sln(~ lll)e

~ l/ze

~
+ .!.! '\ F ejTfn/z
l !.J n

0=1

l - •n

1-./z
n

sin (nTf.il)

n Tf£n/z
(5.109)

The first term in the equation. recognized as the coupling coefficient of a gridded

gap with coostant field, multiplied by .lFo' represents the contribution to the coup-

Ung coefficient from the average RF field component Fo. The remaining terms

represent contributioos from the various sinusoidal components of the field.

As expected, interaction with a given component is strong only if the beam is nearly

synchronized with the same component. Under these circumstances the small io-

teraction with the remaining components can often be neglected. In particular,

this is true for resonated sections of slow-wave structures in which normally one

of the Fourier components of the longitudinal RF field is dominating. Thus. i£ all

the components except the nth component are zero or negligible, i e il the RF

fieid is sinusoidal, the coupling coefficient is given by

M = l l - •n

- • /z
n

sin (nTf£ /z)n

nTf' Iln

jnTf/ze (5.110)
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- €n sin (o'"£n/l)
= ---- ------VZ l - <n/2 nW<n/2

(5.111)

The factor ...a in these equations is due to the normalization condition (5.106).

The absolute va lue of Ml I ealculated from Eq (5. Ill), is plotted in Fig 5. 14

(appearing at the end of the chapter) as a funchon of the velocity parameter E and

the Dumber of half waves n. The non-symmetry of the curves, which is partieu-

larly pronounced for small n-values, can be shown to be due to interaction with

the refiected wave. This interaction becomes negligible for large values of n;

the maximum of M; is then equal to 0.5 for all values of n and occurs at syn-

chronism. This fact is significant because it showa that for sinu80idal Iieid dis-

tributions the lengths of the interaction gape are not limited by transit time con-

siderations, as are conventional klystron gaps. Since the characteristic impedance

of aresonator generally increaees with the length of the gap. the uee of resonators

and gaps with sinusoidal field distributions evidently provided a possibility for en-

hancing the gain or bandwidth of multi-cavity klystrona. Results from experimen-

tal tubes uaing such resonators tend to confirm these theoretical considerations (9).

5.11 Some general properties of the small-signal electronic admittance

The general expression for the small-signal electronic admittance of an arbitrary

gap characterized by the longitudinal RF field distribution F(x) is given by Eq

(2.69), for convenience repeated here

{

t/2
= _..!.. l> !.M2+ j Jw 2 o

-1/2
J F(x) F(y) sin[~e(Y-x) ldx dY}

-t/2
(5.112)

In Uus equation W is the RF characteristic impedance of the beam, given by Eq

(2.30), and l> is the difference operator defined in Eq (2.38).

The zero space-charge approximation of the electronic admittance is derived by

making the observation that if the space-charge density in the beam is negligible,

such that l3 /13 is rnuch less than unit y , Eq (5. 112) reduces to the following ex-q e
pression obtained by simple application of the transformation rule (2.45) and the

definition of W:

y
e

il2 x

{M; + 2j I 1F(x)F(y) sint ~e(Y-x)) dx dY]

-il2 -1/2
(5.113)

where G = I Iv. Equation (5.113) is in agreement with results obtained uaing
o o o

purely kinematic analyses neglecting space-charge (10).

For arbitrary space-charge, the real and imaginary cornpanents of the electronic

admittance of a gap with specified longitudinal RF fieid di stribution F(x) can be

evaluated either analytically from Eq (5. 112), or by a graphical method Buggested
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by the form of this equation and described in the following: If Eq (5. Ill) is re-

written in terms of Ga rather than W, we obtain

(5.114)

where y is the electronic admittance normalized with respect to G • li wee o
limit our attention to the real part of the expression. i e the beam loading, we

obtain

Re ye =
l l
- tl - t>(Mo

2) =
4 e tl

q

l
-tl
4 e

M;(tl e + tlq) - M;( tle - tlq)

2tl
q

(5.115)

The form of this expression Buggests the graphical method shown in Fig 5.13 for

evaluation of ge for any value of the space-charge parameter ~q' il a plot of

M 2 VB a is available for the particular gap considerecl.o e

tletle

I
I
I
I
I
I
I
I
I
I
I
I
I
I Ir-----j-----
I 2tl I
l" g I
I I
I I

tle - tlq

Fig 5. 13 Graphical method for evaluation of electronic concluctance {rom
a plot of the 9quare of the coupling coefficient

From a campa rison of Eq (5. 115) and the geometrical relations in Fig 5. 13 it is

observed that the beam loading is proportional to the slope of the straight line
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labeled ah. For negligible space-c.:harge this line approaches the tangent al bl

in which case ge is proportional to the derivative of M~ with respect to 13e
(compare Eqs (5.113) and (5.114). In general, if a is the angle betwecn the hori-

zontal axis and the line ah, the beam loading is given by

Go
= l3e tan 8

4
(5.116)

The imaginary part of Eq (5.114) can be determined by essentially the same gra-

phical method as shown in Fig 5.13 if M: is replaced by the appropriate function,

which is twice the double integral in Eq (5.114).

For a given gap with specified DG beam velocity (13 iixed), the question whethere
the eleclronic concluctance and suseeptanee always decrease with increasing space-

charge is a very intercsting ane. It turns out that although this is true in many

cases, it is not generally true for any RF field distribution and be am velocity. as

is readily observed from a study of the graphical method shown in Fig 5.13, or

perhaps better from the subsequent analytical method. Let Se and (ge)o be the

normalized electronic eonduetance with and without space-charge, respectively.

Taylor series expansion of Eq (5.115) in terms of øq yields

4

+3
5 !

(5.117)

and similarly for the

function.

eleetronie susceptance. if M l is replaced by the appropriateo

The conc1usions that can be drawn from Eq (5. 117) concerning the effect of space-

charge on the smaU-signal electronic conductance in a general interaction gap

are the following:

a) Space-charge effects are of second order in the spaee-charge parameter ø .q

b) As the space-charge parameter 13qis increased from zero, the sign of the
first derivative ~f ge with re speet to ~q is determined by the sign of the third
derivative of Mo with respect to 13. 1f a3(M;)/Of;'; > O, the electroniee .
eonduetance becomes smaller as the space-charge loereases from zero, and
vice versa.

c) The rate of change of g with increasing space-charge is determined by the
odd derivatives of M~ $ith respect to 13e• It is a general characteristic of a
Fourier transform that the rate of change with 13e increases with the length
l of the interaction region, regardless of the details of the RF fieid distribu-
tion. Therefore, it is anticipated that space-charge effects are relatively
more pronounced in lon~ gaps. For most practical gape of moderate lengths
the following discussion indicates, however. that the zero space-charge ap-
proximation is 8ufficiently accurate if the space-charge density is not exces-
sive.
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Electronic admittance of gapa with slnusoidal RF {ieid distributions

As previously stated, a more detailed knowledge of the gap parameters of reso-

nated slow-wave structures is of considerable practical interest. The longitudi-

nal RF fieid distributions in Buch structures are essentially sinusoidal standing

waves. In this section the electronic admittance of Buch fieida will be evaluated

for relative ly wide ranges of the relevant parameters which are the velocity para-

meter e: defined in Eq (5. 108), the space-charge parameter 13q/f) where f3 is

defined in Eq (5.107), and the Dumber of half Btanding waves n. In order to evah

ate Eq (5.114) for a pure sinusoidal fieid it is convenient to define twc {unchons

<l>(o) and I (o) by the following expressions :
n n

<1>(o) M2
I [l - o r [sin (nn€Iz)] 2 (5.118)= = 2" 1-012 mrohn o

112 x

~n(o) = 2 J J F(x) F(y) sin [ ~e(y-x) l dx dy

-1-/2 -.t/2

= nwo
I - o
I - ';2

I - o
l -oh

sin nrrE: ]
nwO

(5.119)

It is noted that 4>n(£) is equal to the square of the coupling coefficient Mo'

Making the proper suhstitutions of e; and Pq/i3 in Eq (5.114), we obtain the nor-

malized electronic conductance and susceptance expressed in terms of the tWQ

functions <l>n(E)and ~n(E).

l <l> (o +n)-<l> (o -n)
ge =-(1-0) n n

8 n
(5. 120)

be

I
=-(1-0)

8

.• (o +a) -jr (o -a)'n n
a

(5.121)

where n ia a space-charge parameter defined by

(5.122)

It should be noted that the quantities <l>n(o+a) and 'n(d:a) are functional sym-
bols indicating that the independent variable is (e:tO). These functions can be in-

terpreted as determining the coupling between the circuit field and the fast space-

charge wave (upper signa). and the slow space-charge wave (lower signa). In

discu8sing Eqs (5.120) and (5.121), twa significantly different cases roay occur:

a) The gap iield couples to both space-charge waves simultaneously, i e all the
four functions 4ln(e: t n) and +n(E t n) are different from zero

b) The Bap field couples only to one of the waves, in which case either $ (£+0)
or cp (E -n) is zero n

n
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A study of the function $ (lE) in Fig 5.14 reveals that the queøtion whether case
n

a) or b) applies depends ellsentially on the product of n and g only. We £ind

that if the following inequality is satisfied, the circuit cannot couple to both IIpace-

charge waves simultaneously:

na ~ 2 (5.123)

Thls result is obtained from Eq (5.111) or Fig 5.14 by observing thatthe width of

the main peak of the function M';(E) is.given approximately by Ll.E= 4/n (asymp-
totically correct for large n). Therefore, 1£ the inequality (5.123) ill satisfied.

either lE +0 or E -O will fall outside thiB interval, meaning that the main peaks

of the funclions <P (Eta) and li> (E -a) do not overlap. Thus, if the small secon-
n n

dary peaks of $n(E) are neglected, the statement above is shown to be correct.

Even i! the inequality (5. 123) is a sufficie~t condition for coupling to one wave only,

it is by no means a necessary condition. since by proper adjustment of DG beam

velocity either <I> (Eta) or <P (E-a) can always be made equalto zero.
n n

We shall study the two cases a) and b) separately ..

5~l Z. l Gaps with simultaneou8 coupling to both space-charge waveø

This case is typical for moderate values of n and a, and is probably of most in-

terest since the condition nO < Z is like ly to be satiøfied in practical resonators

for p08sible use in klystron. (9).. For the purpose of evaluation of the functions

(5.120) and (5.121) by graphical methods essentially similar to the methods shown
in Fig 5.13, curves have been prepared of the functions li> (E) = M2(E) and t (E),n Q n
shown in Figs 5..14 and 5.15 for values of n ranging from one to øix. The addi.

tional eurve B for n == 50 illustrate how the functions be come sharply peaked for

large n.

The graphical method is quite illuminating in the sense that it clearly brings out

the physlcal interpretalion of the terms lPn(Eta) and <Pn(E-a) etc as represent-
ing coupling between the circuit fieid and the fast and the slow space-chat:'ge waves,

respectively. Of course the graphical method suffers from being le •• aecurate

than numerical methoda. The set of eurves shown in Figs 5..16 to 5.20 at the end

of the chapter are obtained from an electronic computer .. Here, the normalized

eleetronie conductance ge and susceptance be are plotted vs the veloelty para-

meter £ for values of n from one to six and for a equal to O, O. I and 0.2 ..

Around synchronisffi, where the interaction is strongest, the general behavior

of the electronic eonductance is such that it changes from a positive maximum be-

low synchronism to a negative maximum above synchronism, the maxbna. increas-

ing with the number of half waveø n. The preceding qualitative diseu.sion con-

cerning the reduction of the maxima of ge due to space-charge iø confirmed by
theøe curves: the recluetion becomes more predominant as O increaae., e.peci-

aUy at the higher n-values, but is nevertheles8 negligible for moderate values of

a and n. (n< 6 and a< O.l).
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The electronic suseeptanee be is maximum at or near synchroniøm; otherwiae

the general comments made above concerning the dependenee of the electronic

conductance on n and Q apply equally weU to the electronic 8usceptance.

5.1 Z. 2 Gape witb coupling to one space-charge wave only

U the inequality nQ 2: 2 lø satisfied. it is not pos8ible to have appreciable coup-

ling to both space-charge waves sirnultaneously. Obviously this inequality i-s a

sufficient condition but not a necessary one. Practical fast-wave couplers for

p08sible use in parametric amplifiers should be designed !Incb that the coupling

to the slow wave is zero and the coupling to the fast wave is maximum. Expressed

mathematically

(5.124)

(5.125)

From the curves in Fig (5.14) it is found that these equations are approximate1y

satisfied for

nE: ~ -1

nn =

(5.126)

(5.127)

Thu8. the beam velocity for a fast-wave coupler of this type muøt øatisfy the re-

quirement € = - Q. The corresponding relations for a slow-wave coupler are

nE: = l and E:= Sl.

In evaluating the electronic adm~ttance of a gap with coupling to only one of the

space-charge waves it is convenient to write

(5.128)

where e.l is zero for maximum coupling. Noting that (1 - E. )/0 is identical to

tle/tlq = wlwq• Eqs (5.118) and (5.119) yield the followins expres.ions for Se and

be valid in a smaU velocity interval around the points of maximum interaction :

I tle [Sin (mr<'/z)f
Se = +

16 tlq nlTE.' /l

tle [1 - sin mr<' ]
b = te 8 tlq nTTE' nTTE.'

(5.129)

(5.130)

where the upper and lower signs refer to the situations for which the gap couples

to the fast and the slow waves, respectively.

The maxima of Se and be are readily evaluated from Eqs (5.129) and (5.130).
We lind
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~
(ge)max = O. 0625 ~ (5.131)

~q

(be)max = 0.08 ~e (peak to peak) (5. 132)
~q

and bare inversely proportional to t) jr; or (1) /U)e q e q
if the conditions stated previously for coupling to

Thus. the maxima of ge
regardles8 of the value of n

only one wave are satisfied.

The sketeh shown in Fig 5.22 of the functions gand b evaluated from Eqse e
(5.129) and (5. 130) serves as a further illustration of the points stated in the above

discussion.

To conclude this section, we have estahlished that the electronic conduetance and

susceptance of an interaction gap with sinuBoidal RF fieid distrihution varies with

the numher of half standing waves n in the following way. For small n and Q

(ng « 2), the fieid couples simultaneously to both space-charge waves, and the

maxima of ge and be are roughly proportional to n. As n is increased to-

wards nn = Z the field couples predominantly to ane of the space-charge waves,

yielding the maxima of ge and be substantially independent of n.

For practical klystrons based on extended-interaction cavities consisting of reso-

nated slow-wave structures with essentiaUy sinusoidal RF fieid distribution, opera-

tional stability requires that the magnitude of the negative electronic conductance

is smaUer than the va lue causing self-osciUations, as specified by the stability

criterion (3.28). From the nurnerical data and discussion presented in this sec-

tion these considerations determine the maximum safe value of n and thus the

maximum characteristic impedance Rsh/o. The requirement of stable operation.

therefore, puts a restriction on the enhancernent of gain and bandwidth that can be

expected from the use of extended interaction gapa rather than narrow gaps.
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APPENDIX A: GENERAL CIRCUIT EQUATlONS OF CAVITIES WITH

EXTENDED INTERACTION GAPS

A general circuit equation for arbitrary rescnant cavities interacting with elec-

tron beama has been given by Slater in his normal-made theory of resonant

cavities (l). We shall state without proo! some of the results from this theory

that are uøeful for the applications that we have in mind, and rewrite the equa-

tions in terms of the ootation8 used in the present report.

In principle, the normal-made theory is applicable to any configurations of the

reSODant cavity and the electron beam inside its volume, regardles8 of geomet-

rical detaUs. Stater arrives at his theory by defining twa seta of orthogonal

vector functions, one of which is 801enoidal and the other irrotational. The vec-

tor lunctions satisfy the wave equation inside the cavity with appropriately chosen

boundary conditions on the cavity walls. The electromagnetic field quantities in

the cavity are then expanded in terms of these orthogonal functions or normal

modes. The solenoidal part of any of the vector fields is expanded in terms of

the solenoidal normal modes. and the irrotational part of the field in terms of

the irrotational normal modes. In particular. the electric field vector E is

given by

(A. l)

where the solenoidal part Ec and the irrotational part Eb can be interpreted

physically a8 the circuit field and the space-charge field, respectively. The sole-

noidal circuit field Ec is given by the solution of Maxwell's equations within the

volume bounded by the cavity walle with no free electric charges in the volume.

As shown by Slater. the irrotational space-charge field ~, which is due to the

free distribution of charges in the beam. is derived from a scalar potential satis-

fying Poisson's equation. The problem of finding Eb is essentially an eleetro-

static problem of determining the field from a known charge distribution, subject

to the proper boundary conditions. The space-charge field is thus a loeal field,

which accounts for the fact that it does not contribute to the energy now from the

beam to the surrounding circuit.

It follows from the normal-made theory that jf the internal and possible external

cavity losses are negligible (high values of the loaded Q), and the resonant fre-

quencies associated with the normal modes are spaced sufficiently far apart. the

excitation of the particular made that is closest to the operating frequency wiIl

be predorninant. 1£this assumption is satisfied, as aS8umed in the present re-

port, the circuit field Ec wiIl simply be given by the particular normal made that

is excited. the contributions to the fieid from the remaining normal made s being

negligible in comparison. For this situation the formulae stated in the following
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are those derived by Slater. Bome of thern in the original form and lIorne rnodi-

lied in accordance with the notations used in this report.

Figure A. la shows a cavity with an electron beam that enters the interior volume

througb fine metallic grids in the cavity walls, or alternatively, through ahort

sections of waveguides with cut-off frequencies above the operating frequency.

The details of the geometrical configuration of cavity and be am are chosen arbit-

rarily. The cavity is coupled to the external system through a number of trans-

mhaior. lines of which twa are indicated in the figure. The reference pIanes Sl

and 52 normal to the tranemission lines are the positions to which we ahall reier

the input admittance when looking inta the cavity. These positions. characterized

by the !act that the cavity admittance behaves as that of a lumped paralleI resonant

circult, are often referred to as "detuned short" positions because the input ad-

mittance becomes zero for frequencies far off resonance.

(a)

v

(b)

c
L

Fig A. l Resonant cavity and electron beam configuration

(a) Cavity with arbitrary shape in which the electron beam interactø
with the RF electric field over an extended region of lengtb ).

(b) Lumped-circuit equivalent for ane of the resonant made.
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Under the a •• umption that one dngle cavity made il excited, the input admittance

Yl . at the referenc~ plane Sl in the tran.mi.sion line (l) i. given by

l

Q
ext, Z

+ . '"o o

ff . i:~dV ]

fi: .i:"dVe e

(A. Z)

where Yl lø normalized witb re speet to the characteristic impedanee of the

transmission line, and the second transmission line is terminated in !te charac ...

tert.tie admittance. Of the re'maining quantities in the equation, Q is the unloaded

Q-value of the cavity i aen, l and Qext,2. are the external Q's associated with

line (1) and (Z), reøpectivelYi eDo is the resonant frequency of the single made

that is excited in the cavity; w ia the signal frequency i Eo is the permittivity

of free øpace; I is the complex amplitude of the RF current in the beam; and

E is the complex amplitude of the RF electric field intensity of the solenoidal eir-
e --

euit fieId.. The two integrands on the right are integrated over the volurne bounded

by the cavity walls and the reference planes 51 and 52'

The unloaded Q ie defined in the conventional way by

Q = (j)
o

Wem
p

(A. 3)

where Wem iø the stored electromagnetic energy in the circuit field, and P is

the power dissipated on the surface of the cavity walh due to their finite electri-

cal conductivity. The external Q is also given by Eq (A. 3) where in this case p

i. the power dissipated in the external load.

The .tored energy W alternates periodically between electric and magnetie
em

energy, and is thus given by the maximum electric energy

Wem
= 1.. fi: . E* dV

2 o c c
V

(A.4)

The last integral in Eq (A. Z)

t" dVe
(A.5)

is the complex power extracted by the beam in traversing the interior region of

the cavity. It is significant that the space-charge field Eb does not contribute to

the complex'energy .o.~w~ except indirectly through its effect on the RF beam

current i through the modulation processes in the interaction region.

By introducing some additional quantities. which are characteriatic for the cavity

and beam configuration. we shall give two alternate forms of Eq (A. Z). In analogy

with the definition (A. 3) of the Q-value of a passive circuit. we shall define an

electronic Q by the relation
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(A.6)

Equation (A.l) can then be written

= O l l [j(20 + Imf)ex • e
+ l +

O
l + l ]

0exl,2 0e
(A.7)

where we aleo have introduced the frequency-tuning parameter 5 defined by

'" - '" o

"'o
(A.8)

Equation (A. 7) is quite general in the sense that the concept of an electronic Q

representing the effect of the beam is applicable for aoy beam configuration.

In many practical cases the beam configuration is such that it is possible to dt:fine

a typical interaction length 1. and an interaction voltage or gap voltage V. In

particular, for a thin linear beam the longitudinal electric fieid E(x} daes not

vary appreciably over the beam cross section. In these cases it is natural to re-

write Eq (A. 2) in terms of aclmittances or impeclances associated with the cavity

and the heam. li V is the gap voltage. to be defined later, the eavity shunt im-

pedanec Rsh is defined on a power-voltage basis by the relation

y y"
p

(A.9)

where P is the power dissipated internally on the eavity walls. The charaeteris.

tie impedance of the cavity will be defined by

y y"
= l

2 '" Wo em

(A. l O)

The characteristic impedance Rahla depends only on the geometrical configura-

tion and the frequency. The theory of mulli-eavity klystrons shows that Rsh/a

is the deciding cireuit parameter as far as ultimate gain and bandwidth are con-

cerned; it seems therefore natural to consider Rah/a as a "figure of merit" for

klystron cavities.

Further. we shall define a total electronic admittance lYe] by a similar re lat ion

[y l
e

2~
= yy"

(A.11)

where P is given hy Eq (A. 5). The total electronic admittance lYe] should not
e --

be confused with the electronic admittance Ye as defined in Eq (2.68). In general

[Ye] is the sum of Ye, due to moclulation by the gap voltage itself, and other

terms (transfer admittances) arising from RF modulations imposed on the beam

prior to the cavity in question. Gnly {or the ease of initial zero beam modulation

i. [y.] equallo Ye'
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lntroducing these new notations into Eq (A. Z) we obtain

= Q t I [ljt> + ~ +ex t Q

Rsh---+
Q

(A. Il)

li alsa transmission line number (1) is terminated in its characteristic admittance

in the same way as line numher (2), the admittance looking into the cavity is

-Yl = -I • and Eq (A. Il) transfers lo

[y l
e = O (A. 13)

where OL is the loaded Q. given by

= I +
Q Q

ext. l
+

Q
ext.l

(A. 14)

Equation (A.13), expressing the complex power balanee in a cavity excited in one

of its modes by an electron beam. can be considered as the circuit equation for

this made. Its form 8uggests the lumped-circuit equivalent diagram shown in

Fig A. lb, consisting of the total electronic admittance {y el and the circuit ad-

mittance Yc coupled in paralleI. The circuit admittance y c is thus given by

(A. IS)

According to Eq (A. 13), we have

(A.16)

The gap voltage V appearing in Eqs (A. 9) and {A.l l) was introduced in a formal

way without giving a specific definition of its meaning. Actually, since the gap

voltage is not contained in the final equations (A.Il) or (A.13), its definition is

irrelevant. The only restriction on the definition is that it should satisfy the ob-

vious requirement that V must be proportional to the amplitude of the RF electric

field intensity. Since the longitudinal RF fieid distributions ai the extended inter-

action regions considered in this' report are quite arbitrary. the conventional de-

finition oi gap voltage as the line integral oi the electric field intensity across the

gap must be rejected. Otherwise a numher of RF field distributions such as anti-

symmetric Helda. pure sinusoidal fields, etc. would yield V identically zero re-

gardless of the electric neId strength.

The physically most appealing definition oi gap voltage seerns to be the one that is

associated with the maxirnum abaolute value oi the Fourier transfer of the longi-

tudinal electric fieid :

I
J./z .~

V = J E(x} el eX

-.dl
(A. 17)
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where E(x) is the longitudinal electric fieid and J, the length of the interaction

gap. In tbis case V has a deHnite physical meaning, specifying the maximum

kine tie voltage moclulation imposed on a beam with negligible space-charge tra-

versing the gap with the appropriate DG beam velocity that maximizes the Fourier

transform, (.ee Eq (5.3». However, due to the complexity of Eq (A.17) we .hall

adopt the following simpler de!inition of V used throughout this paper:

1/2
yy" = 1J E(x) E(x)" dx

-1/2

This equation can alsa be written

(A. 18)

y = (A. 19)

where EE'X is the mean square of E. The definition (A. lB) thus implies that the

gap voltage V is an rms (root mean square) voltage in the longitudinal co-ordinate.

For the simple configuration of a narraw gap with constant fieid the general defini-

tion (A. IS) recluces to the conventional one. namely V;: EL.
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APPENDIX B: DERIVATION OF A SECOND-ORDER DlFFERENCE
EQUATlON FOR THE VOLTAGE GAIN

The system of linear algebraic equations (3. 10) can be transformed to a second-

order linear homogeneous difference equation by forming a linear combination of

the last three equations. AS8uming p equal or larger than four, we £ind

p-3
'\ (a y l + bpYp_I, r + Yp, r) "1rL p p- ,r
r=l

+ (a Y + b Y + Y ) .,.,P p-l, p-l p p-l, p-l p, p-l 'p_l

+ (b Y + Y }'" + y '" = OP p-l,p-l p,p_l'p_l P,P 'p
(B. l)

where a and bare suitahle constanta which are functions of p but not of r.
p p

Evidently thia relation recluces to a linear combination of "1p' "'lp .• l' and "1p_l

if the following relation is identically satisfied:

a Y + b Y + Y = O {or r = l, --- p-3
p p-l,r p p-l,r p,r

(B. l)

We shall show that ap and bp can be chosen Buch as to satisfy this requirement.

Expressing the transfer admittances Y l Y 1 and Y explicitly inp-,r p- ,r p.r
terms of the coupling coefIicients of the slow and the fast space-charge waves us-

ing Eq (l. 67), and rearranging terms. we obtain from Eq (Bo 2)

_j~+ I ~ -j~+ I -j~+ l ]M+ e e p-2,r a M+* + b M~ e e p-l,p-2 + M+*e e p,p-2
r p p-l P p-l P

r = l, --- p-3 (B. 3)

where 13+ = 13 + 13 and 13- = 13 - 13 o For arbitrary values of r this equation
e e q e e q

is satisfied only if the quantities inside the twa brackets vanish identically. This

requirement yields twa equations for determination of the quantities ap and bpo

We obtain

a
p =

+.. j~ JM M-* e q p,p-l
p-l P (B.4)
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(B.5)

li a and bare chosen according to these equations, Eq (B. l) reduces to the
p p

following second-order homogeneous difference equation:

y '" + (b Y + Y ) '"p,p 'p P p-I,p-I p,p-I 'p-I

+ (ap Yp-Z, p-Z + bp Yp-I, p-Z + y p, p-Z)"Ip-z = O (B.6)

where the quantities appearing in the coefficients depend on ly on parameters as-

sociated with the cavities p-l I p-l, and p.

Although the general expressions for ap and bp given in Eqs (B. 4) and (B. 5)

are relatively complex, they simplify considerably if the coupling coefficients of
+ + + - - -

all the gape are the same, i e if M Z = M l = M and M Z = M I = M •p- p- p p- p- P
In this slightly less general case, to which we wil! confine our attention, a andp

b are given by
p

a =p

.in~.l lq p, p-

sin ~ l. I Zq p- ,p-

(B.7)

b
p

sin ~ l z= - q Pf P-

sin ~ l l Zq p- ,p-

(B.8)

In this case the transfer admittance y defined in Eq (Z. 67) can be writtenp,r

y
p,r

-ill 1.
;:; e e p, r (2G

e
cos ~ i_

q-p. r
+ l ~Z sin Il 1. )w q p, r (B.9)

where the beam loading G is given by Eq (2.70). and ~Z is defined as the
e

arithmetie mean of the squares of the eoupling eoefficients of the slow and the

fast spaee-charge waves

(B. 10)

Using Eq (B. 9) for evaluation of the coefficients in the difference equation (B. 6).

we obtain
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y ..,,-
p,p lp

;:;:l

Yp-l,p-l - °ecos~qlp,p_l - j lW sin llqtp, P-l) "Ip-l

(B, 11)

li the generality is restricted still more by the aS8umption of equal cavity spac-

ings, i e,.l = l = --- = l, Eq (B. 11l simplifies top,p-l p-l,p-l

-jll l
y .,-le e
p,p 'p [(y l l - O ) cos Il l - j Ml sin /Iql] "l lp- ,p- e q l W p-

-jlll J. [ ]
+e ey -lO =0p-l,p-l e "Ip-l (B, l l)

In the difference equation or recurrence formula derived here in variou8 forms

(Eqs (B. 6l, (B. Il) and (B. l l»), the RF gap voltages of any three consecutive
cavities are related by linear expressions valid for arbitrarily tuned cavities.



:

References

(l) Pierce, JR

(Z) Slater, J S

(3) Kleen, W

(4) Kleen, W
K P~schl

(5) Beck, A H W

(6) Hamilton, DR
J K Knipp
J BH Kuper

(7) Beck, A H W

(8) Chodorow, M
E J Nalos

(9) Chodorow, M
T Wessel-Berg

(lO) Wessel-Berg, T

(Il) Hell, A A
O Hell

(I Z) Varian, R H
SF Varian

(13 ) Webster, D L

(14) Hahn, WC

(IS) Ramo, S

(16) Wessel-Berg, T

(17) Bloom, S
R WPeter

(18) Chu, L J

- 159 -

_ Traveling-wave tubes (book), D Van Nostrand
Co, New York (1950)

_ Microwave electronics (book), D Van Nostrand
Co, New York (1950)

_ EinfUhrung in die Mikrowellen-Elektronik,
Teill(book), S Hirzel, ZUrich (195Z)

_ EinfUhrung in die Mikrowellen-Elektronik,
Teil li (book), S Hirzel, Stuttgart (1958)

_ Space-charge waves (book), Pergamon Press,
London (1958)

_ Klystrons and microwave triodes(book), MIT
Rad Lab Series 7, McGraw-Hlll Book Co,
New York (1948f

_ Velocity modulated thermionic tubes (book),
Cambridge University Press (1948)

_ The design of high-power travelin~-wave
tubes, Proc IRE 44, 649-59 (1956)

_ A high-efficiency klystron with distributed
interaction, submitted for publication in
Proc IRE

_ A general theory of klystrons witb arbitrary,
extended interaction fields, Technical Report
376, Stanford University, Microwave Labo-
ratory, Stanford, Cal (1957)

_ Eine neue Methode zur Erzeugung kurzer
ungedampfter Elektromagneti8chen Wellen
von grosser Intensidit, Zeit Phys 95, 752-73,
(1935) -

_ A high frequency oscillator and amplifier,
J Appl Phys!.Q, 3Z1-7 (1939)

_ Theory of klystron oscillationa, J Appl Phys
.!..Q., 864-n (1939)

_ Small-signal theory of velocity-modulated
electron beama, Gen Elec Rev 42, 258-70
(1939) -

_ Space charge and field wave8 in an electron
beam, Phys Rev~, 276 (1939)

_ An analogy between multi-cavity klyatrona
and loaded transmission lines, Technical
Report 352, Stanford University, Microwave
Laboratory, Stanford, Cal (1956)

_ Transmission-line analog of a modulated
electron beam, RCA Rev XV. 1, 95-112
(1954) ---

_ A kinetic power theorem, paper delivered
at the IRE conference PGED, Durham, N H
(1951)



(19) Lauiaell, W H
J R Pierce

(20) Haus, HA
D L Bobroff

(21) KlUver, J W

(22) Kreuchen, K H
BA Auld
NE Dixon

(23) Isaacs, A T

(24) Lauiaell, W H
CF Quate

(25) Margenau, H
GM Murphy

(26) Smullin, LD
C Frled

(27) Rowe, HE

(28) Gould, R W

(2.9) Bero, A

RS

- 160 -

.. Power flew in electron beam devices, Proc
IRE 43, 425 (1955)

.. Small-signal power theorem for electron
bearns, J Appl Phys 28, 694-704 (1957)

.. Small signal power conøervation theorem
for irrolational electron beams. J Appl Phy.
29, 618-22 (1958)

_ A study of the broadband frequency re sponse
of the multi ca vit y klystron amplifier, J Elec-
tronics .t., 529-67 (1957)

.. Iterative methods for øtagger-tuning multi ..
cavity klyslron ampli!iers, MASe Thesis,
University of British Columbia, Vancouver,
B C (1958)

.. Parametric amplification of .pace charge
waves, ProelIRE 46, 707-16 (1958)

.. The mathematics of pbysic8 and ehemislry
(book) p 80, D Van No.trand Co, New York
(1943)

.. Microwave naise measuremenlø on electron
bearns, Trans IRE PGED !.' 4, 168 (1954)

.. Shot noise in electron beams at mierowave
frequencies, Se D Thesi8. MIT (1952); alBo
MIT Re.earch Lab Electronle. Tech Rep 239
(1952)

_ Traveling-wave couplers {or longitudinal
beam-type ampliflers, Proc IRE -47, 419-26
(1959) -

...Quarterly progres8 report 52, MIT Research
Lab of Electronles, 39-43 (1959)

\
\

.,


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137
	00000138
	00000139
	00000140
	00000141
	00000142
	00000143
	00000144
	00000145
	00000146
	00000147
	00000148
	00000149
	00000150
	00000151
	00000152
	00000153
	00000154
	00000155
	00000156
	00000157

