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GLOSSARY OF SYMBOLS

Coefficient associated with the ga voltage diff, i
defined by Eq (B. 4) gap g ifference equation,

Initial amplitude of the attenuated gap voltage wave in a synchron-
ously tuned multi-cavity klystron, defined by Eq (3.50)

Excitation column vector, defined by Eq (4. 7)

Small-signal electronic susceptance normalized with respect to
Go' (be = Be Go)

Coefficient associated with the gap voltage difference equation,
defined by Eq (B. 5)

Initial amp_litude of the growing gap voltage wave in a synchronously
tuned multi-cavity klystron, defined by Eq (3.51)

Magnetic induction

Small-signal electronic susceptance, defined by Eq (2.69)

Electronic susceptance matrix associated with the Sth group of gaps,

defined by Eq (4. 25)

Circuit matrix associated with the two-port representation of a
general interaction region, defined by Eq (5.84)

Electric displacement .

Drift matrices associated with the two-port representation of a
general interaction region, defined by Eqs (5.70) and (5. 71)

Charge of the electron
Electric field intensity
Space-charge field
Circuit field

Normalized longitudinal RF electric field distribution in a gap,
defined by Eq (2.51)

The nth space harmonic component of F(x)

Small-signal electronic conductance normalized with respect to
Gor (8g = Go/Gy)

Circuit conductance, (Gc = Re Yc)
Small-signal electronic conductance, defined by Eq (2.69)
Ratio of DC beam current to DC beam voltage

Electronic conductance matrix associated with the Sth group of
cavities, defined by Eq (4. 24)

Magnetic field intensity
RF beam current density
RF beam current

DC beam current
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Matrix representing the two-port of a general interaction region,
defined by Eq (5.59

Length of interaction region
Spacing between the centers of the rth gap and the sth gap

Spacing between the input cross-section of the first gap and the
center of the sth gap

Spacing between two identical groups of cavities

Position matrix associated with the Sth group of cavities, defined
by Eq (4. 33)

Mass of the electron
Complex gap coupling coefficient, defined by Eq (2. 53)
Absolute value of M

Coupling coefficient of the slow space-charge wave, defined by
Eq (2. 58)

Coupling coefficient of the fast space-charge wave, defined by
Eq (2. 58)

Mean square of M: and M;

Coupling coefficient matrices (line vectors) associated with the Sth
group of cavities, defined by Eqs (4. 31) and (4. 32)

Mean square coupling coefficient matrix, defined by Eq (4. 50)
Number of half waves, or harmonic number

Number of cavities in the multi-cavity klystron

Power

Available input power from the signal generator

Output power from the klystron

Complex power

Complex power extracted by the beam in the pth interaction region
Unloaded Q-value

Electronic Q

External Q

Loaded Q

Plasma reduction factor, (R = mq/wp)

Shunt impedance

Characteristic impedance of the cavity, defined by Eq (A.10)

Coefficient associated with the gap voltage difference equation,
defined by Eq (3.21)

Time

Coefficient associated with the gap voltage difference equation,
defined by Eq (3.22)
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RF beam velocity
DC beam velocity
RF kinetic voltage, defined by Eq (2.17)

Self-admittance matrix in the alternate matrix formulation,
defined by Eq (4.75)

Transfer admittance matrix in the alternate matrix formulation,
defined by Eq (4.77)

Phase velocity

RF gap voltage, defined by Eq (2. 52)

DC beam voltage

RF gap voltage column vector, defined by Eq (4.6)
RF beam impedance, defined by Eq (2. 30)

Stored energy in a resonant cavity

Axial co-ordinate measuring distance from the center of each
interaction gap

Normalized input admittance of the first cavity measured at the
"detuned short'' position, given by Eq (A.7)

Circuit admittance of the sth gap, defined by Eq (A.15)
Electronic admittance of the sth gap, defined by Eq (2.69)

Total electronic admittance of the sth gap including transfer terms,
defined by Eq (A.11)

Transfer admittance from the rth to the sth gap, defined by Eq (2.67)

Self-admittance of the sth gap, (Y ok T b )

5,8 i e,s

Circuit admittance matrix associated with the Sth group of cavities,
defined by Eq (4.21)

Electronic admittance matrix associated with the Sth group of gaps,
defined by Eq (4.22)

Transfer admittance matrix associated with the Rth and the Sth
groups of gaps, defined by Eq (4. 36)

Self-admittance matrix of the Sth group of cavities,
(fo'd =Y +Y
~5,5 .c,S

~e,S5
Axial co-ordinate

Voltage gain per stage of the attenuated and growing gap voltage
waves in synchronously tuned klystrons, given by Eq (3. 46)

Voltage gain matrix of the Sth cavity group, given by Eq (4.71)
Propagation factor associated with the DC beam velocity, (Be= m/uo)
Plasma propagation factor

Frequency tuning parameter, defined by Eq (A. 8)

Difference operator, operating on a function of B, defined by
Eq (2. 38)
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Sum operator, operating on a function of Be, defined by Eq (2. 39)
Velocity parameter, defined by Eq (5. 108)

Permittivity of free space

Complex voltage gain from the input gap to the pth gap, ('rlp = Vp/Vl)
Voltage gain of the two-gap klystron consisting of the rth and the sth
cavities with the intermediate cavities removed or detuned, defined

by Eq (3.12)

Voltage gain matrix of the Rth and Sth cavity groups with intermediate
cavity groups removed, defined by Eq (4. 13)

DC transit angle between centers of consecutive gaps
Plasma transit angle between centers of consecutive gaps
Beam loading parameter, defined by Eq (3. 38)

A parameter proportional to the voltage gain at zero beam loading of
a two-cavity klystron, defined by Eq (3. 39)

Space-charge density
Phase angle of a,
Phase angle of a,
Phase angle of 1-24f

2
A function of ¢ (equal to M_), from which the small-signal electronic
conductance can be obtained by means of the difference operator A,
defined by Eq (5.118)
A function of € , from which the small-signal electronic susceptance
can be obtained by means of the difference operator A, defined by
Eq (5.119)
Angular frequency
Resonant angular frequency
Angular plasma frequency

Reduced angular plasma frequency

Space-charge parameter, defined by Eq (5.122)
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SPACE-CHARGE WAVE THEORY OF INTERACTION GAPS AND MULTI-
CAVITY KLYSTRONS WITH EXTENDED FIELDS

SUMMARY

The report presents an analysis of space-charge wave propagation
on a thin electron beam subject to modulation in a series of inter-
action gaps of arbitrary length and longitudinal RF electric field dis-
tribution. Representation of general interaction gaps by two-ports
and their possible realization by passive networks are discussed.

Application of the general modulation theory to multi-cavity klystrons
with extended interaction fields leads to a generalized small-signal
klystron theory which is more rigorous than the conventional theory
in the sense that space-charge and density modulation effects in the
interaction gaps are properly accounted for.

Analytical formulae for the frequency response are derived using
various approaches, including a formulation in terms of self-admit-
tances and transfer admittances associated with the interaction gaps,
and a formulation in terms of gap voltage waves.

A number of problems are discussed which appear to be significant
for proper understanding of klystron behavior and for practical de-
sign of klystrons with extended interaction gaps.

INTRODUCTION

The phenomena taking place in electron beam tubes for generation and amplifica-
tion of electromagnetic power in the microwave region have been the subject of
very extensive theoretical and experimental studies during the last few decades.
Of the considerable number of various practical devices that have appeared as a
result of this study, the tubes known as longitudinal beam amplifiers are probably
best known. These are characterized by a long thin electron beam surrounded by
an electric circuit that can take many different configurations. The amplification
process is basically one in which part of the kinetic energy of the beam is trans-
ferred to electromagnetic power by cumulative interaction between space-charge
waves propagating on the electron stream and the electromagnetic field of the sur-
rounding circuit. Since a long thin beam is a common feature of these tubes, the
characteristics of various types of longitudinal beam amplifiers are mainly deter-
mined by the details of the circuit configuration. Typical examples are the travel-
ing-wave tube (1,2,3,4,5) and the conventional narrow-gap klystron (2,5,6,7);
which represent distributed and lumped interaction, respectively. Although the
concepts of distributed contra lumped interaction may be useful for qualitative
understanding of the interaction processes, the fundamental phenomena of velocity
modulation and transit-time effects causing density modulation and power extrac-
tion are the same for both., In particular, it should not be implied that distributed

and lumped interaction phenomena in general are characteristic for traveling-
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wave tubes and klystrons, respectively. Examples can be given of traveling-wave
tubes employing transmission lines consisting of coupled narrow-gap cavities es-
sentially similar to klystron cavities, thus exhibiting lumped interaction (8). Con-
versely, later developments of klystrons make use of extended fields of resonated
slow-wave structures for which the interaction is distributed (9,10). Noting that
the circuit of the traveling-wave tube is a non-resonant transmission line and that
of the klystron a number of separated resonant cavities, the significant differences
between the two types of tubes,accounting for their typical operating characteris-
tics,must be ascribed to fundamental differences in the electrical characteristics
of the circuits rather than being associated with distributed contra lumped inter-

action.

Even if historically the klystron is the older of the two, the theory of the various
aspects of traveling-wave interaction has reached a more satisfactory state than
the theory of the klystron. This situation is probably due largely to the fact that
klystron theory has developed along two different lines based on kinematic and
space-charge wave approaches, respectively. The original theory of velocity mod-
ulation and bunching was a pure kinematic or ballistic approach in which space-
charge effects were disregarded (11,12). Later theories introduced corrections
accounting for the debunching effects of space-charge in the drift tubes between the
gaps (13). Although these corrections essentially are equivalent to a space-charge
wave description (14, 15) of the drift phenomena in the regions between the gaps,
the modulation processes taking place in the gaps themselves are still \reated on

a kinematic basis using a model with infinitely narrow gaps and introducing correc-
tion factors accounting for the small but finite length of the actual interaction gaps.
It is not widely recognized, however, that this model is only approximate and does
not account fully for the phenomena taking place. The approximations involved are
those of neglecting density modulations and space-charge effects in the gaps. In
many cases these approximations are serious, particularly in klystrons with high-
density beams and exte:ided interaction regions, but also to a lesser extent in con-

ventional narrow-gap klystrons.

The present report is concerned with a small-signal study of interaction gap pheno-
mena and multi-cavity klystrons from a very broad point of view. In presenting
the material contained in the report emphasis has been put on generality, and at-
tempts have been made to make the basic assumptions as unrestrictive as possible.
A consistent and considerably more general theory than the conventional one is de-
veloped by performing a space-charge wave analysis of the interaction processes
in a beam traversing an amplifier structure consisting of a number of adjacent but
uncoupled interaction regions of arbitrary lengths and arbitrary longitudinal RF
field distributions. Through this approach it is possible in the analysis to avoid
the rather artificial and unnecessary separation of drift-tube and interaction-gap

phenomena that is characteristic of conventional klystron theory.

Even if the theory essentially deals with distributed or extended interaction pheno-

mena and in this respect is related to the theory of traveling-wave tubes, there are
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significant differences arising from the types of circuit used. It is characteristic
for klystrons as opposed to traveling-wave tubes that the longitudinal RF field dis-
tribution in each interaction region is approximately independent of the interaction
processes occurring in the region. The normal-mode theory of resonant cavities
(2) shows that this assumption is justified provided the cavities have relatively
high Q-values, i e large stored energies compared to the power dissipated in the

cavities.

The general approach discussed above, using space-charge wave analysis, leads
to a consistent small-signal theory which differs from the less complete formula-
tions in several respects: first, both velocity and density modulation phenomena
in the interaction regions are properly accounted for; second, space-charge ef-
fects in the interaction gaps are included; and third, the theory is considerably
more general, comprising interaction regions of arbitrary lengths and arbitrary
longitudinal RF field distributions.

These differences between the more rigorous theory of this report and the less
complete formulations have many implications that are discussed as they natural-
ly appear in the analysis. Furthermore, apart from the limitations of convention-
al klystron theory, the present approach appears to be mathematically simpler, and
leads to a number of significant results concerning interaction gaps in general and
multi-cavity klystrons in particular. The following is a brief account of the main

contents in each chapter.

Chapter 2 is concerned with the fundamental modulation phenomena occurring in
an electron beam traversing a number of cascaded modulation regions in succes~
sion. The RF kinetic energy associated with the beam and conversion of kinetic
beam power to electromagnetic power in each region are discussed and shown to

be consistent with the small-signal kinetic power theorem (18,20, 21).

In Chapter 3 application is made of the general space-charge modulation theory of
Chapter 2 for a very thorough small-signal study of multi-cavity klystrons with ar-
bitrary, extended interaction fields. General analytical formulae for gain and
bandwidth are derived using two different approaches. One leads to a formulation
in terms of self-admittances and transfer admittances associated with the inter-
action regions; this theory is valid for arbitrary, stagger-tuned cavities. The
other, which is applicable only to klystrons having synchronously tuned cavities,

is a "wave approach' quite analogous to the approach used in the theory of traveling-
wave tubes. In this wave formalism, klystron operation is described in terms of
growing and attenuated ''gap voltage waves' propagating in approximate synchron-

ism with the slow and the fast space-charge waves on the beam.

In this chapter a considerable number of problems are discussed which are impor-
tant for proper understanding of klystron theory and for practical design of klys-
trons, such as stability, optimization problems, scaling rules for gain and band -

width, and reciprocity theorems.
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Chapter 4 deals with a further generalization of klystron theory which differs from
the theory in Chapter 3 in that klystron performance is described by means of ap-
propriately defined matrix parameters associated with groups of consecutive cavi-
ties, rather than by scalar parameters associated with single cavities. The mat-
rix formulation is particularly powerful for solving certain types of problems aris-
ing in comnection with several klystrons coupled in cascade with commeon beam,

e g evaluation of gain and optimum spacing of two or more cascaded klystrons,
periodically stagger-tuned klystrons, and related problems.

Chapter 5 contains a general gap theory of extended interaction regions. Launch-
ing of space-charge waves by an extended modulation gap and excitation of an ex-
tended-interaction cavity by a modulated beam are studied in considerable detail.

The theory includes a discussion of the conditions for which the interaction region
couples only to one of the space-charge waves, a situation which has some actual-
ity im comnection with fast-wave couplers for low noise parametric amplifiers (24,28).
The general gap theory developed in this chapter substantiates the previously dis-
cussed objections that must be raised concerning the validity of conventional gap

theory.

In the subsequent treatment general two-port representations of interaction regions
are given. Representation by a combination of passive, reciprocal networks and
transmission lines is discussed and shown to be possible only if the beam loading
of the gap vanishes. For this case a practical analog of multi-cavity klystrons is
suggested, which is based on transmission lines loaded with passive, lumped reso-
nant circuits (16). The suggested analog appears to have potential uses for optimi-

zation of stagger-tuning pattern of multi-cavity klystrons.

The remaining part of Chapter 5 is concerned with a discussion of general proper-
ties of the relevant gap parameters, which are the gap coupling coefficients of the
slow and the fast space-charge waves, and the electronic admittance. The chapter
concludes with presentation of numerical data for these parameters in the special
casge that the longitudinal RF field distribution is sinusoidal. This is a field distri-
bution of considerable practical interest because it couples strongly to the space~
charge waves and can be realized very simply using shorted slow-wave structures
which, in general, are characterized by relatively high interaction impedance (9).

The inclusion of numerical data for the sinusoidal field distribution serves as an
illustrative example of the possibilities that exist for enhancement of klystron gain

and bandwidth by the use of non-conventional interaction regions.
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PROPAGATION OF SPACE-CHARGE WAVES ON LINEAR ELECTRON
BEAMS IN CASCADED MODULATION REGIONS

Introduction

An exact analysis of the propagation of space-charge waves on longitudinal electron
beams of finite cross-sections is extremely difficult. Only approximate solutions
based on simplified physical models of the electron beam system can be obtained
(14,15). It is found that the beam supports an infinite number of space-charge
modes, each consisting of a pair of space-charge waves having propagation factors
whose arithmetic averages are approximately equal to the propagation factor
associated with the time-average or DC electron velocity. For a thin beam with
small lateral extension compared to the wavelengths of the space-charge waves,
the lowest-order or fundamental space-charge mode has approximately uniform
current and velocity modulations over the entire beam cross-section, whereas the
higher-order modes vary rapidly across the beam. For this reason external struc-
tures with approximately uniform fields at the position of the beam couple predomi-~
nantly to the fundamental space-charge mode. This fact allows interaction pheno-
mena between a thin beam and external circuits to be analyzed, disregarding all but
the fundamental space-charge mode. This is one of the fundamental assumptions
on which the present work is based. The second fundamental assumption is that of
small-signal conditions, which is necessary for linearization of the equations des-
cribing the interaction phenomena. The assumption of small-signal conditions is
not too restrictive to be useful, because longitudinal beam tubes operate in the li-
near range throughout the larger part of their interaction length except possibly
the output region. This is especially true in the upper frequency ranges where ef-
ficiency generally is quite low.

In order to avoid mathematical complications that are unessential for an under-
standing of the physical phenomena, the one-dimensional model of the RF structure
and the beam is adopted. This assumption implies that all quantities considered in
the analysis are functions of a single spatial co-ordinate, the co-ordinate along the
beam. All parameters are thus independent of the co-ordinates transverse to the
beam. The one-dimensional small-signal analysis in conjunction with the assump-
tions stated below leads to a theory in which a signal propagating on the beam can
be characterized in terms of two modulation parameters, for example the velocity

and current modulations, or suitable linear combinations of these.
The assumptions, stated explicitly, are:

a) The analysis is one-dimensional. The assumption that none of the relevant RF
quantities depend on transverse co-ordinates is well satisfied in physical beams
if the beam diameter is sufficiently small. In this case both the space-charge
field and the external circuit field are approximately uniform over the beam
crogs=-section.
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b) A stromg longitudinal magnetic focusing field confines the motion of the elec-
trons to lines parallel with the axis.

c) The analysis is non-relativistic. This assumption implies that the accelera-
tion of electrons from RF magnetic fields can be neglected.

d) The electron beam is assumed to drift in a cloud of hea
vy positive ions exactl
neutralizing its time-average or DC space-charge. The ions are assumed toy
have infinite mass. Thus, they are not accelerated by the RF field and do not
contribute to the RF current in the beam.

e) The time-average quantities are independent of the axial co-ordinate. This
restriction is required to ascertain that only the fundamental space-charge
mode propagates on the beam, since spatial variations in the time-average
velocity introduce cross-couplings between the fundamental space-charge mode
and higher-order modes.

f) The RF modulation on the beam is treated as a small perturbation of the time=-
average or DC conditions. The analysis, therefore, is valid under small-
signal conditions.

A

g) Excitations of higher-order space-charge modes are neglected, and a signal
on the beam is assumed to propagate only in the fundamental space-charge
mode. This assumption is well satisfied for thin beams drifting in a constant
DC potential.

h) Interaction between the beam and the external circuit field is treated on a small-
perturbation basis, i e with weak coupling between the space-charge field of
the beam and the circuit field of the external structure.

The assumption of weak coupling permits a description which essentially is a
coupled-mode theory, in which the composite system consisting of the electron
beam and the external circuit can be analyzed in terms of the characteristic
parameters of the sub-systems, namely the space-charge mode propagating on
a freely drifting beam without the external circuit, and the normal modes which
are characteristic for the circuit with no beam present.

The coupled-mode formulation,based essentially on the same assumptions as the
ones stated above, has been used extensively in the analysis of longitudinal-beam
amplifiers such as the traveling-wave tube (1) and the klystron (6). The traveling-
wave tube is a typical representative of the class of beam tubes having extended
interaction, based on coupling between a space-charge wave propagating on the
electron stream and a synchronous circuit wave propagating on a transmission line,
while the conventional klystron in a sense represents the other extreme: lumped

interaction fields confined to narrow gaps.

In the present work we shall analyze the interaction of space-charge waves with
circuit fields which are considerably more general in the sense that the lengths of
interaction regions and their longitudinal RF field distributions are quite arbitrary.
The analysis naturally divides into two parts. The first part is concerned with the
excitation of space-charge waves in the beam by a given circuit field. The approp-
riate equation describing this relationship is conveniently referred to as the elec~-
tronic equation, the form of which does not depend on the details of the circuit.

The second part of the analysis deals with the excitation of circuit fields by a given
space-charge modulation in the beam. This relation is expressed in the circuit
equation which generally takes different forms depending on the particular type of
circuit used. Simultaneous solution of the electronic equation and the circuit equa-
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tion, subject to the proper boundary conditions, yields a consistent solution of the
problem of determining the space-charge waves and the circuit fields of the com=
posite system represented by the beam and the circuit coupled together.

Basic equations governing space-charge flow

In the analysis of electron beam problems it is convenient to adopt a sign conven-
tion that results in positive numbers for electron beam velocity, current density,
and electron space-charge density. The choice of signs for the various field quan-
tities must be done in a way which is consistent with Maxwell’s equations. In the

m k s system used throughout this report, these are

- 3B
VvV X E = ~—
ot
vx!'-'l=1+-§-D-
t
(2.1)
v +-D=op
v -B=o0

Obviously, this set of equations is invariant to the following transformations

E-:—--E-]
H - -H
P e =l (2:2)
p =~ =P
u - u

These transformations also leave quantities involving products and ratios of two
field quantities invariant, such as energy flow E x H, impedance E/H etc. The
advantage gained by using this sign convention in analyses connected with electron
beam problems more than outweighs the minor disadvantages re sulting from adopt-

ing a sign convention different from the standard form.

Under the small-signal assumption all quantities can be written as a sum of a time-
average part and a time-varying part whose amplitude is much smaller than

the time-average part. The first-order evaluation of the time-varying quantities
results in linear equations. Thus, a sinusoidal excitation of frequency ® causes

a sinusoidal response of all time-varying quantities at the same frequency. Under

the assumptions stated above we can write, using complex notation
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E(z,t) = E_(z) + Re [E(z) &J®%) (2.3)
i(z,8) = i_(z) + Re [i(z) eJ®t] (2.4)
u(z,t) = u_(z)+ Re [u(z) eI®F] (2.5)
p(z,t) = py(z) + Re [p(z) &I®*] (2.6)

where E(z,t), i(z,t), u(z,t) and p(z,t) are the longitudinal electric field intensity,
the current density, the velocity, and the space-charge density, respectively.
Furthermore, E(z), i(z), u(z) and p(z) are the small-signal complex amplitudes
of the time-varying parts of the same quantities. Using the Eulerian approach,
treating the beam as a continuous "fluid'", made up of an infinite number of infinite=-
ly small particles with an infinitesimal charge, the space-charge flow is governed
by the following three equations:

a) The continuity equation
b) The definition of current in terms of velocity and space-charge density

c) The force equation
The continuity equation is given by

i(z,t) | dp(zt) _ (2.7)
oz at

Separation in time-average and time~-dependent parts yields

di
°(Z) =0, ie i_ = constant (2-3)
dz =

5_;(51 + jwp(z) = 0 (2.9)
z

The current is defined by
i(z,t) = u(z,t) p(z,t) (2.10)

Neglecting cross-products of second order, we obtain, upon separation in time-

average and time-dependent parts

i(z) = uy(z) py(2) (2.11)
i(2) = ug(z) plz) + py(z) ulz) (2.12)
In the Eulerian formulation the force equation is given by
du(z,t) _ 3uw(z,t) | iy ¢y 2u(zt) & g,y ' (2.13)
dt ot dz m
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where e and m are the charge and mass of the electron, respectively (note that
in our notation the electronic charge e is a positive number). Separation of the

equation into time-average and time-dependent parts yields
J 2| _ e
2 [2u6] = 5 B (2.14)
] -
jwu(z) + 5o [L\o(z) u(z)] = E(z) (2.15)

According to our initial assumptions, the time-average quantities do not vary with
the axial co-ordinate z. This means that the beam is drifting in a region of con-
stant DC potential Vo which is related to the DC velocity u, by the equation

vV -= on(z)dz = Qi‘e’- u ? (2.16)

o o

Equations (2.8) through (2.15) can be combined to two equations which take on par-

ticularly simple forms after introduction of the following variables

uy u(z)
U(z) = o (2.17)
o
Be = (2.18)

The quantity U(z) is the RF kinetic voltage which is proportional to the velocity
modulation u(z). The propagation factor B is associated with the DC electron

velocity u-

Substituting from Eqs (2.9) and (2.11) in Eqs (2. 15) and (2. 12), and introducing

the notations defined above, we obtain

[i8. + =] ula) = B(z) (2.19)

i

[ B 2] i) = fin, 3 Ula) (2. 20)

These two equations, which form the basis for the subsequent analysis, govern the
propagation of space-charge waves on a longitudinal electron beam. The first equa~-
tion is the force equation relating the acceleration to the electric field. The second
is essentially the continuity equation, relating the rate of change of the current

modulation i(z) to the kinetic voltage modulation U(z).

It is important to notice that the electric field intensity E(z) appearing in Eq (2.19)
is the total electric field due to both the charges in the beam and the imposed cir-
cuit field. Under the assumption of weak coupling (small perturbation) the super-
position principle obtains, that is, the electric field of the composite system is the

sum of the electric fields in the modes of the two sub-systems with the coupling
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. . .

removled In our case these are the electric f181d5 Eb(z) and Ec(z) of the funda -

menta BPRCE'Chal'ge mode on the beam with the external circuit removed and the
]

appropriate circuit mode, respectjvely. Thus, we have

E(z) = E(z) + Ec(z) (2.21)

In the next section we shall show that the space-charge field can be eliminated
from Eq (2.19) by expressing E_ interms of the current density i.

Relation between space-charge field and current density

The space-charge field Eb(z) can be related to the current density i(z) through
the use of Maxwell's equations (2.1). We have, by taking the divergence of the

curl equation for H
veli+ joe Eb] =0 (2.22)

Observing that the current density i is directed in the positive z-direction, we
have

v.E - -_'mle _L_aai z) (2.23)
jwe, z

In the truly one-dimensional beam,there are no transverse fields, in which case

v. f‘b = BEb(z)/az. Thus, from Eq (2. 23)

E,(z) = -jmleo i(z) (2.24)

This case requires infinite beam cross-section and has less practical interest than
the beam with finite cross-section. In the latter case, the space-charge field has

a transverse component E_, and from Eq (2.23) we find

9 1, 1 9
52 [Eb{z) + Joe, 1(z)] = -.; e (rEr) (2.25)

This equation serves as an illustration of the fact that the longitudinal field in the
finite beam is modified by the transverse fringing field. A rigorous analysis of the
finite beam subject to the appropriate boundary conditions (15) shows that the longi-
tudinal space-charge field of the fundamental space-charge mode is obtained by
multiplication of the expression in Eq (2. 24) by the square of a factor R, the plasma
reduction factor, which is always less than unity. The reduction factor depends on
the details of the geometry of the beam with its surrounding conducting boundaries,

and the propagation factor B, . Thus, for the finite beam Eq (2. 24) must be modi-

fied to
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2

E (z) = - i(z) (2.26)

jweo
In the subsequent analyses we shall assume that the plasma reduction factor R is
constant throughout the -entire interaction length. Also, according to the basic
assumptions stated in the introduction, the beam is sufficiently thin to justify the
one-dimensional beam model with no variations of the longitudinal electric field
and current density over the beam cross-section. We can then write Eq (2. 26) in
terms of the complex amplitude of the current I(z) rather than the current density
i(z). The equations are further simplified by introducing some new parameters re-
lating to the propagation of space-charge waves, namely the plasma frequency mp,
the reduced plasma frequency mq, the reduced plasma propagation factor Bq' and

the RF beam impedance W. These quantities are defined by

2 _ e P
= S (2.27)
wg = RB, (2.28)
W
By = - (2.29)
u
o
2V, B
w i (2_30}
IO ﬂe

With the use of these definitions the expression for the space-charge field becomes

Eb(z) = jﬂqW 1(z) (2.31)

Beam modulation in gener:l cascaded interaction regions

Substitution of Eq (2.27) through (2.31) in Eq (2.19) and (2. 20) results in the follow-
ing equations between the kinetic voltage U(z), the RF current I(z) and the circuit
field Ec(z):

[ipe + =] vt

I:j e * %] 1(z)

These equations are reminiscent of transmission-line equations, and in fact can be

iBy W Iz) + E(2) (2. 32)

, 1
iBg W U(z) (2.33)

shown to be identical with these in a co-ordinate system moving with the time-

average velocity of the beam, provided the circuit field is zero (17).

The first-order coupled "transmission-line'' equations above can be combined to
yield two second-order differential equations, one for the current and one for the

kinetic voltage
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2
971 31

— + 2jp — - 2 a2\; » !

5z PRy, - (- e 0)n - isg o+ B (2. 34)
3%y du

— e 2d - 2 _ 2 _ /. 9

352 | P 5, (ﬁe By )U ® (Jee+§z-) E_ (2.35)

where th ici i

e the explicit dependence of I, U and Ec on the axial co-ordinate z has been
omitted. It is noted that the left-hand sides of the two differential equations are
identical,

We shall assume that the beam is subject to modulation by the RF fields in a num-

ber of cascaded modulation regions as shown schematically in Fig 2.1.

— £, —= |ee—r I.p—-.
Electron (1) (2) (r) (p)
beam
_— 1 | 1 |
- 1 T =
u(o) x| | *p |
1(0) o ’ '_P-}
e i R ' IT AT
2' | !r lp I | £p
e — |
P, T | |
) : .

Fig 2.1 Schematic diagram of the arrangement of cascaded, uncoupled
modulation regions

The longitudinal RF field distribution and interaction length of each of the p ad-
jacent modulation regions, which supposedly are uncoupled in the absence of the
beam, are completely arbitrary and may consequently include field-free drift tubes.
For reasons of generality we shall assume that the beam at the entrance to the
modulation region (z=0) has an initial space-charge wave modulation specified by
U(0) and I(0). The modulations U(0) and I(0) and their derivatives with respect

to z are interrelated through Eqs (2.32) and (2.33).

Equations (2.34) and (2. 35) are readily solved by means of Laplace transforms.
Using the notation in Fig 2.1, we find
=B (z-x)

3 z
~jBeZ 0) "IBe® A P X
Iz) = 1(0) e ¢ cos 5qz + jmw_l &R qu + JW] E(x)e sin ﬂq(z-x)dx
[e]
(2.36)
z

-jp =z
sinaqz+f E(x) e
©

=B (z=x)

~iBgz
U(z)=U(0) e cosp, 2 + jI(0) W e cosgq(z-x)dx

(2.37)
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where the subscript of E(x) has been omitted. In the subsequent analysis consider-
able simplifications of the algebraic manipulations result through introduction of
two operators A and S, operating on functions of the electronic propagation con-

stant B_. These operatorsare defined by

0]

af(s,) = % [f(B.+8,) - £(B - B,) ] (2.38)

1 - 2.
8£(p,) = ¥ (B +B) + (B~ B)] (2.39)
By means of the difference and sum operators A and s, the superposition of slow
and fast space-charge waves in the cascaded modulation regions is expressed in a
particularly simple way. For the following analysis it will be useful to list some of
the properties of these operators. They are linear and commutable with respect

to differentiation and integration

A [alfl(ﬁe) + azfz(ﬂe)] = ctlAfl(Be} + aZAfZ(Be) (2.40)
df(Be) d

A = — | af(g,) (2.41)
dae dae

Aff{ﬁe,x)dx = fAf(ﬁe,x)dx (2.42)

with identical results for the sum operator 5 Further, the following important

relations hold:

Rel af(s,) 8 (8, )*] = 3 & l€(s,) (p,)* ] (2.43)
Im [ Af(p,) # €8 )") = 3 Im [£(p + B ) (B - B,)"] (2.44)
lim [ Aaf(B,)] = df(s,) (2. 45)
By~ 0
im [ £4(8,) ) = f(8,) (2.46)
By~ 0

Equations (2.43) and (2. 44) are useful in connection with problems involving evalu-
ation of energy flow on the beam, while the relations expressed in Eqs (2.45) and
(2. 46) provide the link between the space-charge wave theory and kinematic ana-
lyses based on the assumption of zero space-charge. For negligible space-charge,
operation on a function by the difference operator A is equivalent to differentia-

tion, and operation by the sum operator é leaves the function unchanged.

Expressing Eqs (2.36) and (2. 37) by means of the operators 4 and f, we obtain
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-iB 2 -jp,z ~ -3 (z-x)
I(z) = 1(0) & [e ¢ ]- Uwo) A[e ¢ ]-%V-AIE(x)e Pe dx (2.47)
o
-iB = -ig =z A -ip (z-x
U(z) = U(0) 8 [e N J'I(O)W AE PP ] + g /E(x)e 2 )dx (2.48)
o

The integrals on the right-hand sides can be expressed as a sum of integrals over
each gap. In doing this it is natural to introduce a separate co-ordinate system for
each gap with origin at the center. Following the notation used in Fig 2.1, let X,
be the co-ordinate referring to the rth gap. The relation between x, and z is
then given by the equation
4y
X, =z - —— (2.49)
2

Furthermore, it is convenient to express the electric field in each meodulation gap

as a product of a normalized distribution function F(x) and an amplitude factor V

which, by definition, is the RF gap voltage. For the rth gap

E(xr) = F(xr) Yo (2.50)

In the subsequent application of the modulation theory to multi-cavity klystrons
with interaction gaps being parts of high-Q cavities, the distribution function F(x)
can be chosen real (and V complex). The validity of the general modulation theory

of this chapter, however, is not restricted to real values of F(x).

The choice of normalization of the distribution function F(xr) is irrelevant, and

can be specified in any convenient manner. In the present report we shall use the

following normalization:

4/2
i [F(xr) F(x )*dx_ =1 (2.51)
-jr/z

where 'tr is the length of the rth gap.

Equations (2.50) and (2. 51) are equivalent to the following definition of the RF gap

voltage L
2/2
r
vovE o= A f E(x,) E(x ) dx_ (2.52)
_Ir 2

which shows that the chosen normalization leads to an rms definition of gap voltage

(in the spatial co-ordinate). The often used voltage definition as the line integral
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of the RF field, to which Eq (2. 52) reduces for a conventional gridded gap with
constant RF field, fails in many important cases for which the RF electric field
reverses direction within the gap. A typical example is the sinusoidal standing-

wave type interaction field which is characteristic for resonated slow-wave struc-

tures.

We shall define a coupling coefficient for each gap as the Fourier transform of

the normalized RF field. For the rth gap

/2 2ja
1 it jgexr : j'jexr
Mr(se) = v, / E(xr)e dx_ = F(xr)e dx (2.53)
-4./2 -A/2

Using these new notations, the RF current and kinetic voltage modulations are
readily evaluated from Eqs (2.47) and (2.48). At the position X5 in the last gap

these quantities are given by
-ip (x t& ) -iBglxtd, o)
1(x)=1(o):§|:e - P'O]-UO)A[e e PO}
P w
p-l . - e
A -jB (Lp +x ) v -iB x p y
. _r e, p __P e p e
Z -~ A[e M _(8,) " A le ] F(y )e P dypj[

r=1 - -lp/z

(2.54)
=i _(x ) _ ‘2
U(xp) = u(0) ¢ l:e J e( p“lp’o} . Jae( ot )_‘j
& ' *p .
-jB (z 1- -iB x iB,y
+z Vré[ P, PM(B)]+Vpé|} pf (s e pdyp}
r=1 -zp/z
(2.55)

where 48 is the spacing between the centers of the rth and pth gap, and ,tp 0
is the dxstance from the input end (z =0) to the center of the pth gap. '

If it is recalled that the operators A and 4 express superposition of two waves,
the interpretations of the expressions in Eqs (2.54) and (2. 55) are straight forward:
the current and kinetic voltage in the output gap are expressed as superpositions

of slow and fast space-charge waves partly due to the initial beam modulations,

and partly originating in the modulation gaps. Two space-charge waves due to the
initial current and kinetic voltage modulations I(0) and U(0) propagate along the
beam with propagation factors (B_+ ﬂq) and (B, - ﬁq) for the slow and fast wave,
respectively. These waves propagate unaffected by the modulation fields. On
these are superposed the slow and fast waves which are excited by the modulation
fields. The slow and fast waves at the position X, in the output gap due to the

modulation at the rth gap are given by
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Ir(xp)

~i(Bat B, )L . .
%, - p)—Mr(ﬂe-aq) i(By-B )L, _+ p)]

v,
-— M
2w | MrlPet Bg)e
(2.56)

Ve -i(B, + B, )2 ) -j(B_-p x
u (xP) ‘2— [Mr(ﬁe'l'ﬁq)e P, T P +Mr(ae_ aq) e q)up r+ p)]

r

(2.57)
where the Fourier transforms
M, (8, t ) = f F(xr)ejme e dx, (2. 58)
-2/2

can be interpreted as the coupling coefficients of the slow and the fast wave, respec-
tively. Since the coupling coefficient M(B ) is a function of B , the two coefficients
M (ﬂ + B ) and M (ﬂ ) are generally different, meaning that the slow and the
fast space-charge waves are excited with different amplitudes. For a given DC
beam velocity (B given) the difference between the two coupling coefficients tends
to increase with increasing B They are identical only if ﬁ is zero, i e for a
beam with negligible space- charge. The significance of the oceurrence of two dis-
tinct coupling coefficients will become clearer when the power relationships in the
gaps are considered. It will be shown that the beam loading is simply related to the

two coupling coefficients, being proportional to the difference between their squares.

In the subsequent analysis we shall introduce the following simplified notations:

B+ By = B (2.59)
Be = By = By (2.60)
M. (B + Bg) = M: (2.61)
M, (B, - Bg) = M, (2.62)

and similarly for other quantities associated with the slow and fast space-charge
waves. The superscript plus and minus will thus refer to quantities associated with
the slow and fast wave, respectively. Although it may be argued that the opposite
choic—e:vould be preferable, the above superscript notation is more natural in con-
nection with the sum and difference operators 4 and A used in this report because
the superscript then indicates the operation that has to be performed, namely addi-

tion or subtraction of ‘ae and Bq wherever these quantities are involved.

It follows immediately from Eqs (2. 56) and (2. 57) that the ratios between the kinetic

voltage and the current for the two waves are given by minus W and plus W, res-

pectively.
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)+ (2.63)

+
Ur(xp) -W Ir(xp

U (x,) W(x) (2.64)

which illustrates the characteristic in-phase and out-of-phase relationships between

current and kinetic voltage for the two space-charge waves originating in each modu-
lation gap.

Extraction of power from the electron beam

In this section we shall evaluate the electromagnetic power that is extracted from

or imparted to the beam when it flows through the same structure as the one shown
in Fig 2.1, consisting of a total of p cascaded interaction regions. Since the inter-
action regions are not coupled mutually, the power balance for each region can be
evaluated separately. As shown in Appendix A, application of the normal-mode
theory for resonant cavities (2) gives the following expression for the complex energy
flow Pp to the electron beam from the particular circuit associated with the pth

interaction region:
zp/a 1 /2
3 o e
f I(xp) E(xp) dxp = 3 v f I(xp)p(‘xp) dxp (2.65)

o
T ]

P

-zp/ 2 -,cp/ 2

where E(x_) is the circuit field, and I(x_) is the beam current. It is significant
that the space-charge field, according to normal-mode theory, contributes nothing
to the enery, flow except indirectly through its effect on beam current modulation.
By direct substitution of the current from Eq (2. 54) in Eq (2. 65) we find

-Ja'zp ] ]: W ]
o Al *® £ e’p,0| _ 1 U(0) ,, = ® e*p, 0
fp > 1(0) v 8 I:Mp e 5 A (MR

2W rp rp
r=
zp/z x
B x. By
o Bl e © P f e°P gy d 2.66
+ Vpr A j‘ (xp e F(yp)e ¥y 0%, ( )

The increase in beam energy flow in the pth gap is thus a sum of terms due to:

a) Initial current and velocity modulation I(0) and U(0)

b) Modulation in the preceding gaps by the gap voltages V,, V, --- Vp._1 (transfer
terms

¢) Modulation in the pth gap itself (beam loading term)
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We shall define appropriate transfer admittances Yp .r and beam loading admit-
tances Ye on a voltage-power basis. The tranlfex: admittance Y from the
P,T

rth to the l;th gap is defined by ’

N 1 = _jﬂe‘p, r
Y, . = -wa (MrMp e ) (2.67)
The beam loading admittance or the electronic admittance of the pth gap is defined

by

L/ : x
p/ 2 p
. LA By,
Yeop = "W [ Flx, ) f ¥ (yp)e dy dx (2. 68)
P "P/?'

The circuits considered in this report are resonant cavities; therefore, the phase
of the electric field is the same everywhere in the gap, and the distribution function
F(x_) can be chosen real. Under these circumstances Eq (2.68) is readily separated
into its real and imaginary parts, with the following result:

1 lp/Z X
= - — l i
Yo o w A MF,Mp 3 f F(xp) F(YP) sin [ﬁe(y x )] dypdxp}
-“P/z -;p/z
(2.69)
The real part of Ye p is the beam loading conductance G p given by
1 £ 1 2 2
= -—A M )= — M - - M +
GG:P FAY (MP P) 4w l:l P(B“- a‘l)l | l:’(ae ﬂq)l :|
2 ¥ Z]
= M~ - |M 2.70
e N (2.70)

This important relation shows that the beam loading of a gap is equal to the differ-
ence between the squares of the coupling coefficients of the fast and the slow space-

charge wave divided by four times the RF beam impedance.

Substitution of the admittances defined in Eqs (2.67) and (2. 68) in Eq (2. 66) yields

-jP tp -JiB lp
_a £ L e“p,0| _1U(0) , = I: 2 e ,0]
f’;-zx(o)vPS[Mpe ] z_i-lw VoA M te
p-
éz Vv Yot dv vy (2.71)

which is the fundamental electronic equation on which is based the space-charge
wave analysis of multi-cavity klystrons with arbitrary, extended interaction regions

done in Chapters 3 and 4. Before turning our attention to the discussion of klys-
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trons we shall evaluate the flow of energy on the beam, using the small-signal kine-
tic power theorem for longitudinal beams, and show that the results derived in this

chapter are consistent with this theorem.

The small-signal kinetic power theorem for longitudinal electron beams

Amplification of electromagnetic energy in electron beam amplifiers is obtained by
conversion of part of the kinetic energy of the electrons to electromagnetic energy.
Regardless of details of the amplifier structure, signal level, etc, it follows from
power conservation principles that the difference in the average flow of kinetic
energy into the structure and out of the structure must be equal to the electromag-
netic power delivered to the RF structure surrounding the beam.

It is less obvious that a similar power conservation relation exists between the
small-signal solutions of Maxwell’s equations. The derivation of this relation for
a longitudinal beam starts from Maxwell’s equations (2.1). Under the assumptions
stated in the introduction to this chapter, all time-dependent quantities can be ex-
pressed as the sum of a time-average part and a time-varying part whose ampli-
tude is much smaller than the time-average part, as shown for the z-components
in Egs (2.3) to (2. 6). In giving the derivation of the theorem we shall have to con-
gsider the transverse components as well. For reasons of generality the assump-~
tion of a one-dimensional beam is dropped, but the electron motion is still con-
fined to the z-direction. Therefore, the relevant time-varying vector quantities

can be written

E(7,t) = E(F) + RelE(7) ) (2.72)
fi(F,t) = B (F) + Re[A(F) &) (2.73)
i(f,6) = i (F) + Reli(F) %] (2.74)
u(%,t) = u (F) + Relu(F) IOt (2.75)
p(F,t) = p (F) + Relp(¥) /") (2.76)

where T is the radius vector to a given position in the beam.

Upon introduction of these definitions into Maxwell’s equations and separation in

time-average and time-varying parts, we find for the latter

v x E(T)

- jou, A(F) (2.77)

v x H(r)

a i(r) + joe, E(r) (2.78)

where iz is a unit vector in the z-direction. Equations (2.77) and (2.78) are the

small-signal solutions of Maxwell’s equations.
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Forming the scalar product of é(;)* and Eq (2. 78), then subtracting it from the
scalar product of H(r) and the complex conjugate of Eq (2.77), we find

-v-[l-':”x ﬁ]:E:i+jm{EOE.f}*_u H-l‘.i*] (2'79)

where the independent variable r has been omitted, and E_ is the electric field
along the z-axis. Equation (2.79) is the small-signal form of Poynting’s theorem
for longitudinal beams. The theorem can be transferred to an alternate form,
usually referred to as the small-signal kinetic power theorem, first suggested by
L J Chu (18) for longitudinal beams and later extended to other beam configurations
by others (20,21). The alternate form is obtained by noting that the product E:i
can be rewritten by use of the force equation (2.19) and the equation of continuity
(2.20). We find

E¥i = -jo 2 p w™+ 35_ (U™) (2.80)

Z e o z

where U is the kinetic-voltage modulation defined in Eq (2.17), and u is the RF
velocity. Noting that

% u™) = v- (U a) (2.81)

we obtain by substitution in Eq (2.79)

o

- V.[%(E*XH) + ﬁU“iz;z] = '&jm [eoﬁ-ﬁ*- Mo -I:I,'!-—reE pouu*] (2.82)

Equation (2.82) is the complex small-signal kinetic power theorem in differential

form. Integration over a volume V bounded by the surface o gives the integral

form of the power theorem:

- i, a = - -
-f [#(E*xH) + ‘zl"'U*iaz] ndo = 32 jmf[F-oE-E* - uoH-H* - % pouu*]clv
o v (2.83)

Separation of the equation into its real and imaginary parts gives

(2.84)

]
o

Re § [$(E*xA)+ $ U 3,17 a0
a

Imf [#(E*xH) + +u% é.z] n do %mf[eoﬁ SR uol-'l.f-i*- % pouu*]dv (2.85)

a v
The interpretation of the small-signal power theorem should be done with some
caution since terms involving cross-products and squares of the small-signal amp-
litudes were neglected in the derivation. As shown by Haus and others (20, 21
the theorem gives the power flow correct to second order in the small-signal quan-

tities.
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The real part of the kinetic power theorem (2.84) is a relation between first-order
RF quantities, stating that the electromagnetic power extracted from the electron
beam inside the volume V is balanced by a net flow into the volume of kinetic
energy. The quantity %Ui*iz can therefore be interpreted as the complex kinetic-

power density Sk in the beam.
8, = PU™ia, (2.86)

With the assumption of a one-dimensional beam the current density i and kinetic
voltage U are uniform over the beam cross-section. The real kinetic energy flow

on the beam is then given by
P = #Re(U*D (2.87)

where I is the RF current.

It is immediately obvious from a consideration of Eqs (2.79), (2.84) and (2. 26) that
the real power extracted by the beam can be evaluated either on the basis of the
small-signal Poynting theorem (2.79) as the real part of the volume integral of
%E:i (]EZc being the circuit field), or from the kinetic-power theorem (2.83) as
the surface integral of the real part of the kinetic- power density §k' As shown in
detail below, both these methods are equivalent, and neither of them seems to offer
computational advantages compared to the other, although conceptionally the intro-

duction of kinetic energy flow associated with the electron beam is appealing.

On the other hand, the surface integral of the imaginary part of the kinetic power
density Sk is not equivalent to the imaginary part of the volume integral of ﬁ'E:l
The latter, according to the normal-mode theory of resonant cavities, is the reac-
tive beam power that is balanced by the reactive power in the external cavity, (see
for instance the circuit equation (A.7)). Thus, evaluation of the electronic suscep-
tance B from the surface integral of the imaginary part of the kinetic power den-
sity §k obviously is erroneous. Even if the additional volume integral of

wp, uuxm/Ze in Eq (2.85) were included, the result would be in error by an amount
that corresponds to the reactive power as sociated with the space-charge field Eb'
Although not done here, it can be shown that this extra reactive power is associated

with energy stored in the electron beam system, oscillating periodically between

potential electric energy stored in the space-charge field and kinetic energy asso-
ciated with the longitudinal RF electron velocity u. This component of reactive
power, which plays no active role in the reactive power balance in the circuit itself,
accounts for the fact that the space-charge field Ey doeg not appear in expression

(A. 5) for the complex power extracted by the beam.

From this discussion it appears that evaluation of the reactive power balance in
the circuit-electron beam system should be done with some caution in order not to

arrive at erroneous results.
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In the following section we shall show that the use of the real small-signal power

theorem (2.84) presents an alternate method for derivation of the results in Sec-
tion 2. 5.

Application of the power theorem to cascaded modulation regions

The real energy flow on an electron beam traversing the cascaded interaction re-
gions shown in Fig 2.1 is readily evaluated from Eq (2.87) substituting the kinetic
voltage U and the current I from Egs (2.54) and (2. 55). For simplicity the ini-
tial beam modulations U(0) and I(0) are set equal to zero. At the exit cross-

section xp = ZP/Z of the pth gap, we find that the kinetic energy flow is given by

=3B &
] (2.88)
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This equation can be written in the alternate form
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which shows explicitly the contributions to the beam energy flow from:

a) Interaction in each gap given by the first sum (beam loading terms)

b) Interaction between non-adjacent gaps given by the double sum (transfer loading
terms)

According to the small-signal power theorem (2.84) the difference between the kine-
tic energy flows Pp, 2 and Pp,l , referred to the output and input cross-sections
of the pth gap, respectively, must be balanced by a flow of electromagnetic energy
Pp from the pth circuit into the beam. Using Eq (2.89) we obtain

P =P - P

P p, 2 p,1
p-l =
1 3¢ * 1 3* ( * Je’e"p,rj
= -— V. V*A(MMY) -— Re ) V.V A|M M e (2.90)
4w P P ( P P) 2w Z rp r p
r=1

By comparison with Eqs (2.67) and (2. 70) we find immediately

p-1

1 = k.3

- v v®y ] (2.91)

by =88 [Evpvp Y, *? Z r'p p.r
r=1
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Comparison of this equation with the real part of the previously derived electronic
equation (2. 71), setting I(0) = U(0) = 0, shows that these are identical. Thus, eva-
luation of the real power P_ from Eq (2.65), as done in this paper, is consistent
with the small-signal power theorem (2. 84). The two methods are therefore equi-

valent.

A further simple illustration of the significance of the small-signal power theorem
is obtained if we consider a single interaction region in which the circuit is loaded

by the beam. The beam loading power P is evaluated from Eq (2. 70)

_vv* -M"
P = 2VV'G_ = o a(MM¥) = - (Mi+ PMTM™) (2.92)

From the small-signal power theorem (2. 84) this power must be balanced by a cor-
responding increase in kinetic energy flow on the beam leaving the gap. That this
is indeed the case is shown by evaluation of the energy flow from Eq (2.89) for the
special case of one single interaction gap. Hence, the beam loading power in a

single gap is exactly equal to the energy flow on the beam after the gap.

If we consider the kinetic energy carried by each of the two space-charge waves,
we find using Eqs (2.87) and (2. 64) that the fast wave carries positive energy and

the slow wave negative energy, both in the positive direction. In general

P = ¥Re 5 v O™ & twrir™® (2.93)
2w
P+ _ %RE(U+*I+) _ '_Z'IWU+U+* @ %W I+I+* (2.94)

In the cascaded modulation regions studied in this section the relative contributions
to the kinetic power from the two space-charge waves are readily found from Eq

(2.88). The fast-wave power is given by

P P
. -i(B - 8,0

P = _1._ 1Y VEM M * e LT (2.95)

p.2 Wl L VrlaeMa
=] q:
and the slow-wave power by
P i
3Bt B, &

P; = LWEZV VM+M;* e 9,r (2.96)

The sum of P;,Z and P;' 2 is equal to the net RF kinetic power Pp,Z associated

with the beam.

The sign of the net energy flow P 2 given by Eq (2. 88), obviously will be deter-

mined by the spacings between the modulatmn gaps and the relative phases of the
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gap voltages Vis VZ’ -—- Vp that modulate the beam. The preceding analysis is
general in the sense that nothing has been assumed concerning the excitation of the
gap voltages, whether this is done from external signal generators or by the beam
itself. In the particular case of a multi-cavity klystron amplifier studied in the
next chapter, the net beam energy flow at some arbitrary position beyond the input
cavity is always negative if the amplifier gain exceeds unity. This conclusion fol-
lows immediately from the small-signal power theorem (2.84) applied to the struc-
ture shown schematically in Fig 3.1, where the input cavity gap is excited from an
external signal source and the subsequent 'floating' cavities by the RF modulation
in the beam itself. Thus, since the initial kinetic energy flow is zero, the kinetic

energy flow PP 2 immediately after the pth gap is given by

P = Pj-P_ =P, 5= 0. =P (2.97)

where Pi is the input power from the generator and Pc, 1 pc,Z’ --- Pc, p are

the power dissipated in the p passive cavities or circuits associated with the p

gaps. The equation can be written

P 1 P > P
P =P 122 SBa= . . _SP
p,2 : P, P, P,
i i i
= - - - sisEs - 2.98
P, [1 G - G, Gp} (2.98)
where Gl' GZ' -=- G_ are the power gains referred to the various cavities. If

the structure is to serve as an amplifier, at least one of the G's must exceed unity,
which results in negative kinetic energy flow Pp 2 Of course, the same applies
to any longitudinal beam amplifier in which the power gain is obtained by energy

transfer from the slow space-charge wave carrying negative energy.

For a more thorough discussion of the physical interpretation of the positive and
negative kinetic energy flows associated with the two space-charge waves, the

reader is referred to the literature (19,20, 21).
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MULTI-CAVITY KLYSTRONS WITH EXTENDED INTERACTION REGIONS

Introduction

This chapter presents a general small-signal theory of multi-cavity klystrons with
arbitrary, extended interaction fields based on the space-charge wave modulation
theory in Chapter 2. The generality of the klystron theory presented here thus ex-
ceeds that of narrow-gap klystron theory which is obtained as a special case of the
general theory. Moreover, the theory is more rigorous than conventional klystron
theory, accounting fully for space-charge forces and density modulation effects in

the interaction gaps.

The analysis is valid under the same assumptions as those stated in the introduc-
tion to Chapter 2. General formulae for the frequency response are derived using
an approach based on evaluation of the power balance in each interaction region.
This procedure applied to a p-cavity klystron leads to a set of p linear algebraic
equations in the p RF gap voltages, which can be solved by standard methods.

The solution expresses the voltage gain of a p-cavity klystron very simply in terms
of a determinant of order p-1, from which a number of significant results concern-

ing klystron theory can be derived.

Figure 3.1 shows schematically the general type of klystron amplifier that we shall
study. The amplifier structure consists of p cascaded interaction regions, each
associated with a single resonant cavity. It is characteristic for klystron opera-
tion that each cavity is electromagnetically isolated from its neighbors, the only
coupling being provided by the electron beam. Since the electron beam by nature

is a unilateral transmission system, a signal can be propagated from cavity to cav-
ity only in the forward direction. The propagation of a signal from the output cavity
towards the input cavity is therefore prohibited because no possible signal paths
exist. This characteristic feature of klystrons as opposed to traveling-wave tubes
accounts for the fact that the klystron basically is a stable device, permitting opera-
tion at very high gain and power level without danger of oscillations due to feed-back

from the output to the input.

i[:l;l:r"::y Intermediate floating cavities S:‘ff:';:
(1) (2) (r) (p-1) (p)

Beam

Ipi lPL

Fig 3.1 Schematic drawing of a multi-cavity klystron with extended gaps
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In the klystron shown in Fig 3.1 the signal from the signal source flows through
the input transmission line into the first cavity, the input cavity. The RF gap volt-
age developed across the gap modulates the initially unmodulated electron beam.
The signal propagates in the forward direction as space-charge waves on the beam,
is amplified by cumulative interaction in the subsequent p-2 intermediate "floating"
cavities excited by the beam itself, and is finally extracted in the last cavity, the

output cavity, and dissipated in the external load as useful power.

The analysis starts with the power balance in each interaction region, expressed

in a relation which we shall refer to as the circuit equation.

Circuit equations

A general circuit equation for arbitrary resonant cavities interacting with electron
beams has been given by Slater (2) in his normal-mode theory of resonant cavities.
In Appendix A some of the results from this theory are stated without proof, and

rewritten in a form that is suitable for the applications that we have in mind.

In addition to the assumptions stated in Chapter 2 we must introduce additional as-
sumptions concerning the circuits. We shall specify these as resonant cavities
characterized by relatively high Q-values, with their resonances sufficiently sepa-

rated to justify the assumption that only one resonant mode is excited in each cavity.

Under these circumstances the circuit equation for a cavity excited by a beam (no
excitation from external sources) is particularly simple, as shown by Egs (A.11)

and (A.13) in Appendix A. For the pth cavity we have

Q 1
P = -%v vy =-%vv*(—P-)——(1+2jQ 5 ) (310
P PP CP PP Rsh’p QL’P L,pp

where 6; is the complex power extracted by the beam in traversing the pth inter-
action region. From power conservation principles this is equivalent to stating
that minus % is the complex power dissipated in the pth resonant cavity and its

associated external load. The circuit admittance YC p is therefore given by

&) 1
o B i 8 3.2
Yc,p - (R Q (I+ZJQL.p p} (asdd
sh, p L,p

The circuit parameters appearing in this equation are all defined in Appendix A for
the general type of cavities considered here. The important parameter Rsh/Q is
the characteristic impedance of the cavity, usually given in this form as the ratio
of the shunt impedance and the Q-value; Q) is the loaded Q; and 5 is the fre-

quency tuning parameter defined by

fB)mLLEE (3.3)
w
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where @ is the frequency of excitation and wp the resonant frequency associated

with the particular normal mode in which the cavity is operating.

It should be noted that the circuit equation (3.1) does not hold for the input cavity
which is excited from an external source. In this case the modified circuit equa-

tion (A.12) is the appropriate one.

General formulae for multi-cavity klystron gain

Derivation of general expressions for the gain of a klystron is now a relatively
simple matter from considerations of the power balance in the gaps. Simultane-
ous solution of the electronic equation (2.71), with the initial modulations 1(0) and

U(0) set equal to zero, and the circuit equation (3.1) yields the following relation

between the p complex gap voltages V,, VZ' - Vp:

V.Y + v (Y & ¥ =0
2 Tp P( c,p e,p) (3.4)

This equation holds for p equal to or larger than two. Therefore, starting with
the second cavity we can write a set of (p-1) linear homogeneous equations in p
gap voltages. This set can be transformed to a non-homogeneous set with p-1 un-
knowns by dividing through in all equations by V,. For convenience let the voltage
gain T of the p-cavity klystron be defined by

\'s
’?p = ;2 (35)
1

Since the RF gap voltages in general are complex, the voltage gain ‘qp will be a

complex quantity. Further, let us define a self-admittance Yp % as the sum of
L]

the circuit admittance Yc and electronic admittance Ye

» P’

Y =Y +Y .6
PsP <P e,p (3, 6)
Using these notations, we obtain the following set of p-1 linear equations in

Mar M3e =77 My

iz ¥ oy = =T q = 2,3, ===, p (3.7)

T=s
where the transfer admittances Y 5 and the self-admittances Yq q are obtained
’

from Eqs (2.67), (2.69), (3.2) and '(3. 6). For convenience, the admittances are

repeated here:

-iB. &
Yg,r © 'Wla [MrM:e ’ q.r] =44 £3:8)
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Using matrix notation, the set of equations (3. 7) can be written

W a[&uqmpj F(x)) F(y ) sin [B,(y,-x,) ] ay, dxq} (3.9)

LV p— ] P
¥3.2 Y33 i e B 7 ¥3.1
Yoz Tay Tgem O | 1% |7 | Ya,1 (3.10)
______________ " .
| Yoz Ty, o R Yp’p- ) hY;)' ]

The fact that the coefficient matrix is triangular is a manifestation of the unilateral
nature of the amplifying process in a klystron. The beam modulations or RF gap
voltage at some position along the beam are not affected by the gap voltages in any

of the subsequent gaps.

The solution of Eq (3.10) can be written as the following determinant:

2,1 -1 0 0 -m-=emamcama=- 0
73,1 3,2 -1 0 -===-==-==n=== 0
1 M2 a3 sl e ————— 0
1 : (3.11)
=1 0
Tp-1,1 Tp-1,27777777777777" To-1,p-2 =1
Tp,1  Mp,2 T TTTTTTTTTTTTTTT o, p-2  Tp,p-1

where the elements appearing in the determinant are the negative ratios of the trans-

fer admittances and the self-admittances
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A (3.12)

We shall refer to (3.11) as the gain determinant of the multi-cavity klystron.
Using standard rules for expansion of determinants, the voltage gain can also be

written as a multiple sum

P P P
" Z z """" 2 1 1 ---n " (3.13)
P,8 8 » 8 8,,8 e |
= _ p-2 p-2’' p-3 Ll ! 1’
51-2 8,= sl+l sp-Z_
sp_3+l

As examples, let us write explicitly the voltage gains of klystrons having two, three,

and four cavities, respectively. We obtain

2 =" (3.14)
3= M5, U (3.15)
My = 1433220 F Ta,2M2,1 Y30 Y T (3.16)

This procedure can be continued in an obvious way for p larger than four. By
noting that the gain of the two-cavity amplifier is equal to ‘l'[z |» @ very useful in-
terpretation can be made of the general gain expression (3. 11) or (3.13). Each of
the factors ﬂa, r appearing in Eq (3.13) represents the gain of a two-cavity klys-
tron consisting of cavity r and s. If the product under the multiple summation
sign contains q such factors, it represents the gain of an amplifier chain consist-
ing of q independent two-cavity amplifiers coupled in cascade. This product is
conveniently referred to as the cascade gain. Thus, by definition, the cascade
gain of the chain of q cavities including the input cavity and the output cavity but
otherwise selected arbitrarily from the total of p cavities, is given by

"3(1.81.52 """ Bq Z-P) "lp'

s T sy 8 sy 1%

®q-2 °q-2'%q-3

P P P
N = z 2 ----- z M(1,8),8, --=- ‘p-?.'p) (3.18)

From these relations the following procedure for evaluation of the overall voltage
gain of a multi-cavity klystron can be given: the cascade gain of an arbitrarily
selected set of two or more cavities including the input and the output cavity is eva-
luated using Eq (3.17). The overall voltage gain "7p of the klystron is then equal
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to the sum of the cascade gains of all possible sets that can be selected. The pro-

cedure is illustrated in Fig 3. 2 for a five-cavity klystron.

In the general case the number of terms in the sum (3. 18) is easily determined
using standard methods for expansion of the determinant (3.11), selecting one fac-
tor from each line and row. Starting from the first line, the number of possible

combinations is obtained as the following product:

2(3-1)(4-2)(5-3) ----- (p-1-p+3)

n

5

or s & 2P Sevmp (3.19)

In other words, the number of terms in the general expression for the voltage gain
is doubled for each added cavity. In special cases some of the cascade terms R i

may be zero, under which circumstances the total number of terms is correspond-
ingly lower than that given by Eq (3. 19).

(1) (2) (3) (4) (5)

l

OQutput

!

Input

Fig 3.2 Figure showing the possible signal paths in a five-cavity klystron ampli-
fier. The voltage gain is given by: mgs =7(1,2,3,4,5) +1(1,2,3,5)
+m(1,2,4,5) +m(1,3,4,5) + n(1,2,5) +m(1,3,5) +n(1,4,5) +7(1,5)

From these results it is clear that the gain function 1 of a multi-cavity klystron
is considerably more complicated than the gain function of conventional cascaded
band-pass amplifiers. This is due to differences in the mechanism of the amplify-
ing process. In the conventional cascaded amplifier there is only one signal path
between the input and output, and the overall gain is the product of the gains of all
the stages. In the klystron the excitation of the output cavity is the sum of modu-
lation components proportional to the gap voltages at all preceding gaps (see Egs
(2.54) and (2.55)). The interaction between non-adjacent gaps results in multiple
signal paths from input to output, and the overall gain is the sum of the cascade

gains over all possible signal paths.
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This characteristic of the klystron complicates the synthesis of stagger-tuned
multi-cavity klystrons with prescribed band-pass curve, or gain as function of fre-
quency, because the multiple signal paths may cause signal cancellations at com-
plex frequencies other than zero and infinite frequency, which are characteristic

for the conventional cascaded amplifier.

It has been shown that the pole-zero concept of modern network theory provides a
useful basis for the analysis and design of narrow-gap multi-cavity klystrons (22).
Because the results for the general-type klystron analyzed here are identical in

form, the pole-zero method is applicable in this general case as well.

From an examination of the determinant (3.11) we can draw the following conclu-
sions concerning the poles and zeros of the gain function: the positions of the poles
in the complex frequency plane, i e the complex frequencies for which the gain is
infinite, are determined by the zeros of the self-admittances.

¥ =0 (r =1,2, --- p) : (3.20)

The positions of the poles are thus determined by the resonant frequencies and the
loaded Q's of the cavities (including beam loading). The number of poles obviously
corresponds to the number of cavities (the pole due to the input cavity self-admit-
tance Yl, ] is not represented in the voltage gain Tp but appears in the power
gain expression (3.86)). Excluding the trivial zeros at infinite frequency, the num-
ber of possible zeros in the gain function ﬂp , 1 e the number of complex frequencies
for which the gain is zero, is easily determined from the determinant (3.11), or
better still, Eq (3.117). In the non-degenerate case the number of zeros is p-2,ie
equal to the number of intermediate floating cavities. From examination of the
gain determinant (3.117), it is observed that the positions of the zeros depend on
all the transfer admittances and the positions of the poles associated with the (p-2)
intermediate, floating cavities. The problem of tuning a p-cavity klystron may then
be considered in terms of adjusting the p poles and the p-2 dependent zeros in
such a way as to achieve a desired frequency response (23). In the present report
we shall not deal any further with this method.

Alternate form of the gain determinant

The determinant (3.11) specifying the voltage gain of a p-cavity klystron can be
transformed to an alternate form by taking appropriate linear combinations of the
columns. The linear combination is the same as the one used in Eq (B. 2) Appendix B,
leading to the difference equation (3.34). If we anticipate the results of the next sec-
tion, the alternate form of the determinant is most easily arrived at using the pro-
cedure shown below. Let us define explicitly the coefficients appearing in the dif-

ference equation (3. 34).

. .
» e Y + b Y FY 3.21
Sp Y I:ap p-2,p-2 © p p-l,p-2 p.p-Z] (3.21)
’
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1
T = -— |b Y
P Yp p [ p p-l,p-1 . Y1:>,p-1] (3:22)

h . ’ 2
where ap and bp are constants given in Appendix B. Expressed in terms of the

co)ef;mients SP and TP' the difference equation takes the following form, valid for
P2 4: '

Spqp_z + qu a1 - ‘qp =0 (3.23)

If we form a new set of linear equations using Eq (3.23) for p> 4, and the original
set (3.10) for p < 4, we obtain

-1 00 Qeemmm- - ™~ - r e
’- 1 0 0 0 Seasmil ”12 nzll
10 Qe
"t3,2 0 0 0 ’?3 ﬂ3'1
Sy T, -1 R 0 14 0 (3.24)
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0 + SRR s T =1 ; 0
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which has the solution
T, -l 0 0 0 mmmmmmeen 0
5,100 G2 ! 9 Yoo g
0 S T -1 0 =m=mmmemn 0
5,=| 0 0 Sg Ty B 0 (3.25)
----------------- 0 Spe1 Tpq 7
0 0 0 =----0 0 S T
P P

The only non-zero elements of this determinant are the elements along three adja-

cent diagonal lines.

The determinants (3.11) and (3.25) represent two alternate but equivalent formulae
for evaluation of the voltage gain. As we have seen, expansion of the determinant

(3.11) leads to a superposition of terms that are naturally interpreted as represent-
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ing the cascade gains of the various possible signal paths from the input cavity to
the output cavity. The study of synchronously tuned multi-cavity klystrons made
in sections 3.7 - 3.10 shows that expansion of the alternate determinant (3. 25)
leads to a formulation in terms of growing and attenuated ''gap voltage waves''.

In this formulation the terms representing interactions between non-adjacent gaps
are incorporated in the parameters expressing the overall exponential variation

of the gap voltage waves.

Criterion stating the condition for stability

The solution (3. 11) of the set of equations (3. 10) is finite only if the system deter-
minant is non-vanishing, i e if

-e= Y £ o (3.26)

D =Y ‘1'3’3‘1'4’4 -

2,2
In other words, qp is finite if all the self-admittances in Eq (3. 26) are different
from zero. If the additional requirement is made that the RF gap voltage V, of
the input gap be finite, we also have that Y, | £ 0. Therefore, we must have
Ll

S £ o (r=1,2, --- p) (3.27)

The physical meaning of these conditions is quite evident. By definition, the self-
admittance Yr, - of the rth cavity is the sum of the circuit admittance Yc, " and
the electronic admittance Ye’ - The vanishing of this sum is exactly the required
condition for start of self-supported monotron oscillations in the rth cavity. Be-
cause the present linearized theory does not aliow for saturation effects, the theory
therefore predicts an increase of gain towards infinity as the oscillation condition

Yr, 5 = 0 is approached.

From consideration of the physical system, the mathematical condition (3.27) can

be further specialized to yield the following criterion for stable operation:

ReY = G = G + G >0 (r=1,2, ---p) (3.28)

In other words, the magnitude of the beam loading conductance, if negative, must
be less than the circuit conductance. This condition is generally satisfied in klys-
trons of conventional design using narrow-gap cavities, and normally there are no
instability problems arising from this cause in such klystrons. However, as shown
by theory, and also demonstrated experimentally (9), this is not correct in the
general case of klystrons having extended interaction regions. Here, the electronic
conductance tends to increase with the length of interaction gaps and may assume
sufficiently large negative values to cause oscillations. Actually, the stability
criterion (3.28) imposes a restriction on the gap lengths and thus on the ultimate

performance of klystrons with extended interaction regions.
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Cascade gain approximation

Although the voltage gain of the p-cavity klystron is given by a relatively compli-
cated expression containing the sum of ZP_Z products, various approximations of
the exact formula can be derived. Of particular interest in this connection is the
approximation in which interactions between non-adjacent gaps are disregarded.

Such an approximation leads to a formula for gain that is in cascade form:
T~ Tp,p-1 Mp-1,p-2 77777 3,2 M2, 1 3.29)

The approximation involved in Eq (3.29) is small only if the voltage gain per stage
is large compared to the number of cavities. In order to show the correctness of
this statement we assume for simplicity identical cavities with identical gain per

stage, i e " — = 7p-1,p-2 = === 'qz' 1 In this case the cascade gain approxi-

mation (3.29) gives

= p-l

m. = (3.30)
p qs-ﬁ-l, s

where s can be chosen arbitrarily. An approximate criterion of the approxima-

tion involved in this expression can be obtained by comparing it with the p-2 pro-

ducts in the exact formula (3.13) containing one factor less. Each of these identi-

cal products represents the cascade gain from the input to the output with one of

the intermediate cavities removed. The sum of the products is given by

- p-3
qu - (p-z)nﬂ,s "zs+2,s {B2E)

Forming the ratio of the expressions in Eqs (3.31) and (3. 30) we find

A
ZM L (p-2) "1__1_34-2 3 (3.32)
‘7p ‘qs+l,s

Thus, we arrive at the conclusion that the cascade gain approximation holds if

2
Ms+l,s <o p=2 (3.33)
"?s+2,s

which reduces to the condition stated previously if 7_,, o and ‘79+2, g are of

the same order of magnitude.

This discussion leads to the conclusion that the cascade approximation of the volt-
age gain given in Eq (3.29) hardly is of much value when p exceeds a few cavities,
except possibly in special cases for which the spacings are such that the interactions

between every second cavity cancel (plasma transit angle equal to m).

In section 3.8 we shall study the special case of klystrons having identical, syn-

chronously tuned cavities and derive an alternate formula for klystron gain which
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also is in cascade form and, moreover, is valid for any number of cavities be-
cause the derivation is done without disregarding the interactions between non-

adjacent gaps.

General difference equation for voltage gain of multi-cavity klystrons having
arbitrarily tuned cavities

For klystrons with a relatively large number of cavities the general formula
(3.18) for voltage gain involves the sum of a considerable number of terms that
are all complex numbers. A discussion of the various factors that affect the gain
is therefore extremely difficult except on a qualitative basis. It seems natural to
look for a simpler formulation that lumps all these terms into mathematically
simpler expressions, perhaps a formulation similar to the wave description used
in the theory of traveling wave tubes. Although such an approach seems quite out
of the question in the general case with stagger-tuned cavities, the wave formal-
ism nevertheless is possible in special cases for which the cavities are tuned ac-
cording to a specific pattern, such as synchronous tuning and periodic tuning.
Admittedly, these very special tuning schemes are less interesting than the more
general stagger-tuning. Nevertheless, the wave formalism applied to these spe-
cial cases results in simple gain formulae that are interesting and illuminating,
first because the approach leads to considerable insight into the physical mechan-
ism behind the amplifying process in a klystron, and second because many of the
conclusions that can be drawn concerning the effect of the various relevant para-

meters on klystron gain also are qualitatively correct for stagger-tuned klystrons.

The approach used in the following analysis differs from that of the preceding sec-
tions in that the voltage gain is obtained by solving a linear second-order homogene -
ous difference equation, which is satisfied by the gap voltages of the klystron. As
shown in Appendix B, the RF gap voltages of three consecutive cavities are linked
together by the following quite general second-order difference equation or recur-
rence formula, valid for any gap parameter combinations and tunings of the indivi-

dual cavities:

+[b

Y
P, PP P -1,p- at p.p—ll'?p-l +la)Y

+b Y
p'p-2,p-2" Pp p-1,p-2+ ¥p, p-2Mp-2

RN peee— \ (3.34)

The quantities ap and b given by Eqs (B. 4) and (B. 5) as well as the self-admit-
tances and the transfer admittances appearing in the coefficients of this difference
equation are given by the characteristic parameters associated with the cavities
(p-2), (p-1), and p only. Equation (3. 34) holds for p equal or larger than four.
If p is less than four, the linear relationships between the gap voltages are ob-

tained directly from Eq (3.7).

If the parameters and spacings of th. .ndividual cavities constituting the klystron

are chosen in an arbitrary fashion, n . simple analytical solution of Eq (3.34) is
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possible, although in this case the recurrence form of the difference equation is
particularly well adopted for numerical calculations on a digital computer. On the
other hand, analytical solutions can be found in some special cases for which the

coefficients in Eq (3. 34) are specified functions of the independent variable p.

We shall solve the difference equation for the two cases which appear to be the

simplest ones, namely:

a) Czonstant coefficients, corresponding to synchronously tuned cavities and iden-
tical spacings between the gaps

b) Periodic coefficients, corresponding to a periodically repeated but otherwise
arbitrary stagger-tuning

The procedure followed in solving the above difference equation for these two cases
is essentially the same as that known for differential equations having constant co-

efficients and periodic coefficients, respectively.

In case a) the wave-type solution is readily obtained as a linear combination of two
exponential functions whose exponents are given in terms of the cavity parameters
by a second-order algebraic equation. In case b) it can be shown, using a theorem
similar to Floquet’s theorem in the theory of differential equations with periodic
coefficients (25), that the solution is a linear combination of two products, each of
which is given by an exponential function multiplied by a periodic function with
periodicity equal to the number of cavities in the periodically repeated stagger-
tuning pattern. The exponents are obtained as the solution of a determinantal equa-
tion, the order of the determinant being equal to the number of cavities in the period.
Noting that the solution of the equivalent mathematical problem in the theory of dif-
ferential equations with periodic coefficients involves an infinite determinant, it
appears that the solution of a difference equation with periodic coefficients is simp-

ler than that of a differential equation of the same type.

In this chapter we shall study only klystrons with synchronous tuning. The analysis

of periodic stagger-tuning is done in Chapter 4 using matrix algebra.

Gain of synchronously tuned multi-cavity klystrons in terms of growing and
attenuated gap voltage waves

The assumption of constant coefficients in the difference equation (3. 34) requires

identical cavities, synchronous tuning, and equal spacings, ie:

Y =Y = e= =Y
P, P p-1,p-1
Cp ™ Taelupet ™ = = Hg
G = G = -= =G
€,p e,p-l ¢ (3.35)
'&P,P'l - LP“IOP'Z = BE i
- + -
= M = -- = M
Mp p-1
M~ = M~ = - = M-
P p-1
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The derivations in Appendix B show that the difference equation (3. 34) in this par-

ticular case simplifies to the following:

1 I :

-ip £ G M -jesl G

9 -2 © (1-—5).:0332-3' sing £ | q _te C|1-2—=|1,_, =0
P Y q 2WY q P- Y P-

p = 4,5,6, ------ (3.36)

where the beam loading G_ is given by Eq (2.70), and M? is the average value of

the squares of the coupling coefficients of the slow and the fast space-charge waves.

Mm% = j=~:(iM+lZ + m'lz) (3.37)

For convenience, let us introduce the following dimensionless quantities:

Q

£ = —f (3.38)
o

g = E‘:—Y (3. 39)

eq = aq.e (3.40)

8 = ﬁel (3.41)

The ratio of the parameters ¥ and & is given by

-2 2
e _ Mot - IMTE

= 1 (3.42)
.
g M|+ Mt

which shows that # normally is much less than § , except in the special cases for
which the gap field couples mainly to one of the space-charge waves. Upon substi-
tution of the parameters ¥, £, 8, and Bq in the difference equation (3.36) it takes

the form
-j® o -j28 B
’7p-2e ] [(I-KJCOEBq-JEsqu]'qP_I+e (l-ZR)qP_Z = 0
p = 4,5,6, —==-=- (3.43)

The solution of the equation is obtained by setting

« oi8(p-1) ,p-1 (3. 44)

p
Substitution in Eq (3. 43) yields the following algebr-aic equation for «:
oP-3 ‘[czz- 200 [(1-&)cos B, - j& sin 8] + 1-20} = 0 (3.45)

Besides the trivial solution @ equals zero, the equation has two solutions @ and

a, given by



= 5§ =

[!1 .

= - -4 . . X . 2 7
a, (1-&) cos 8q = J& sin eqt j {1 -2K- [(1-R) cos 8y - j& sin eq} ] (3.46)

The general solution of Eq (3.43) is a linear combination of the two particular solu-
tions. Hence

-8 (p-1 wd -1
M = e P )(Aalp + Baf ) (3.47)

P= Zn 33 S

It should be noted that Eq (3.43) holds only when p is larger than or equal to four.
For the case that p equals four it relates '14. "3 and Mas and the solution (3.47)
is therefore applicable to any of these, i e for p equals two and upwards.

The constants A and B are specified by the initial conditions, i e the gains 1
and M3 of the two first stages, which can be calculated from Eqs (3.14) and (3. 15).
Expressing M, and M5 in terms of the parameters ®, £, 8 and Bq' we obtain
from these equations

1,6’® = -2 (1 cos 8, + it sine) (3.48)

26 2
"‘[Sej = =2 (2&2 ainzeq + ¢ sinZOq - 2jKE sinZSq - ZKZ cos Bq-i-h'.cos Zeq) (3.49)

Substitution in Eq (3. 47) results in two linear equations in the unknowns A and B.

By solving we find

jicos 8 -gsing - jit/a
A = q g
L zTa‘
[l-zbt-[(1-K)cos€q-J§smﬁq]

(3.50)

jltcos8 -tsin8_ - ji/a
B = - 9 ! = ;o (3.51)
{l -28 - [(1-8)cos 8, = jE sine?_]z}

The constants A and B are generally different. For the special case that the

beam loading is zero (#® = 0) we have that A = -B.

Substitution of the expressions a,;, @,, A, and B in Eq (3. 47) yields a formula that
expresses the voltage gain of a synchronously tuned klystron in terms of the three
dimensionless parameters ¥ , £ and Gq defined in Eqs (3. 38), (3.39) and (3. 40).
The parameters can be interpreted physically by noting that # is proportional to
the beam loading, £ is equal to one half the maximum voltage gain of a two-cavity

klystron (cavities spaced a quarter of a plasma wave length), and Bq is the plasma

transit angle between consecutive cavities.

The general nature of the complete solution evidently is in the form of two gap volt-

age '"'waves'' where the exponential gains per stage of the two waves are given by
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the absolute values of 7 and @, respectively. Without making a detailed study
of the rather complicated expressions for @, and @, it is possible to make some
general statements concerning the nature of the two waves. Iirst, introducing

complex vector notations, we have

7

~ = lalle : (3.52)
Bp)
a, = |a,| e (3.53)
G G Y -G Y,
1-25::1-2?"':1-2 B 5 &8 - [1uzt]n ® (3.54)

Y +G Y +G
c e = e

In the last equation we have made the small unessential approximation of including
the electronic susceptance Be in the circuit admittance, for instance by making an
appropriate small detuning of the cavity. Also note that ¢, is the phase angle of

1-2#, rather than ¥ . At the resonance frequency ¢, obviously is zero.

It follows immediately from Eq (3. 45) that the two solutions o, and a, satisfy the

following relations:

i+ ;) i

*
oo, = |a| fe, e = 1-2K = |1-2R|e (3.55)
|al|!a2|= [1-22 | (3.56)
PP, = P (3.57)

The two components of the general solution (3. 47) can thus be written

|
P=0 -j(e+ vy~ 9)(p-1)

1 - 2%
T, 1 5 e (3. 58)
1 - -9, )p-1)
o2 = B.o:z]lp e 2 (3.59)

The following general comments can be made about the nature of the solutions:
From the fact that the beam-loading parameter ¥ normally is quite small, it fol-
lows from Eq (3. 56) that the product of |al | and IQZI is approximately equal
to unity. Therefore, since |C!ZI is the larger of the two, we conclude that the
two components "Tp,[ and "'p, 2 represent attenuated and growing waves, respec-
tively. The two waves propagate with phase velocities slightly different from the
DC beam velocity. In the numerical analysis in the next section it is shown that
9, is always negative, and since ¢, is approximately zero, the attenuated wave
has a phase shift 8 + ¥, per stage, meaning that the wave is traveling faster than
the beam. Conversely, the growing wave with a phase shift 8 - ¢, per stage

travels slower than the beam. It is shown later that if the gap spacing is chosen
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such as to maximize the gain (Gq = n/2), the two gap voltage waves are in exact
synchronism with the fast and the slow space-charge waves propagating on the
beam. These results are in accordance with what might be expected from consi-
derations of the interaction mechanism in terms of coupling between circuit modes
carrying positive energy and space-charge modes carrying either positive or nega-
tive energy. Synchronization of the circuit mode with the slow space-charge wave
carrying negative energy results in waves with growing amplitudes; synchroniza-

tion with the fast wave carrying positive energy results in attenuated waves.

Another significant point noted from Eq (3. 55) is the fact that the product a7, is
independent of the spacing of the cavity gaps. Furthermore, the product is also
independent of all cavity and gap parameters provided the beam loading is zero or
negligible. Thus, any optimization of cavity parameters and gap spacing that maxi-
mizes the amplitude of the growing wave is accompanied by a corresponding mini-

mum in the amplitude of the attenuated wave.

The attenuated wave, which is essential for matching input conditions, attenuates
very rapidly, particularly if the gain per stage is high. Therefore, beyond a few
stages from the input gap, the attenuated wave is negligibly small, and there the
overall voltage gain is equal to the growing wave -qp’ , given by Eq (3.59). Actually,
for practical klystrons with gain per stage exceeding a few decibels the attenuated
wave is negligible already at the second gap, as shown by the subsequent numerical
calculations. For most practical purposes, therefore, the voltage gain of a syn-
chronously tuned p-cavity klystron is given by Eq (3. 59) which is in simple cascade
form, i e the overall voltage gain is expressed as the product of p-1 factors a,,
each representing the complex voltage gain of one of the identical p-1 stages. Itis
significant that the derivation of this cascade gain formula is done without disre-
garding terms arising from interactions between non-adjacent gaps. The gain per
stage a, is the result of contributions both from cascade interaction between adja-
cent gaps and interaction between non-adjacent gaps. Equation (3.59) therefore is
superior to the approximate cascade gain formula (3. 29) derived previously in sec-
tion 3.6 by throwing away the terms arising from interaction between non-adjacent
gaps. On the other hand, the wave approach leading Eq (3.59) is applicable only
for the synchronous case, a limitation that does not apply to Eq (3.29).

A comparison of the two formulae for the synchronous case is interesting because
it illustrates how the gain and the phase shift per stage are affected by interactions
between non-adjacent gaps. According to the approximate equation (3.29) the volt-
age gain per stage is simply the voltage gain M, of a two-cavity klystron, which in
the present notation is given by Eq (3.48). For this discussion it is sufficient to
assume the frequency equal to the resonant frequency, in which case § is real, and

to neglect the beam loading factor & which normally is much less than § . In this
case Eq (3.48) yields

; 3.60)
|, | = 2&sin8, (

Arg m,= - (8 + n/2) (3.61)
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where ¢ is real. Thus, the simplified approach based on cascade interaction
alone indicates a phase shift per stage of - (8 + n/2) regardless of the plasma tran-
git angle 8 . The extra phase shift of w/z per stage in addition to 8 is explained
from the fact that the RF beam current that excites the gap voltage is in time quad-
rature to the RF velocity modulation in the preceding gap. This argument, of
course, is correct only if the RF beam modulations due to previous gaps are neg-

lected, as is done in deriving the approximate equation (3. 29).

The numerical data given in the next section (Fig 3.6) reveals that the voltage

gain per stage ]02 |, obtained using the wave approach, is higher than the gain
per stage | qzl evaluated from the cascade approximation. We can therefore draw
the conclusion that at least for synchronous tuning the cascade approximation (3. 29),
neglecting interaction between non-adjacent gaps, underestimates the voltage gain
per stage. The enhancement of voltage gain over that evaluated on the basis of cas-
cade interaction alone must be due to favourable phases of the extra current com-
ponents arising from interactions between non-adjacent gaps. It is significant that
the increase in gain is accompanied by a change in the phase shift per stage from
-(8 + v/2), predicted by the cascade approximation towards the value (8+ eq],

(see Fig 3.4). The latter would be the expected phase shift if the gap voltage wave
were in synchronism with the slow space-charge wave. Since the amplifying pro-
cess is based on power transfer from the slow space-charge wave to the circuit,
the above results are in qualitative agreement with what might be expected from

physical reasoning.

The detailed numerical data presented in the next section substantiates the above
qualitative discussion, and allows us to draw conclusions concerning many impor-
tant questions in multi-cavity klystron theory such as the effect of beam loading on
gain and bandwidth, optimum gap spacing, etc.

Numerical data for gain and phase shift per stage

In addition to the general comments and discussion given in the last section concern-
ing the general nature of the two gap voltage waves of a synchronously tuned klys-
tron, we shall present a number of graphs plotted from numerical data calculated

on an electronic computer, The graphs serve a twofold purpose, first that of pro-
viding some of the required information for the previous general discussion, and

second, they are useful for practical design purposes.

All the quantities shown in the graphs are functions of three independent variables
which are ¢, § and Sq defined in Eqs (3. 38) to (3.40). At the resonant frequency
the quantities ¢ and X are both real. We note that for frequencies below reso-
nance £ and # have positive imaginary parts, and vice versa. Furthermore, ac-
cording to Eq (3.42) the ratio #/e is real, and the phases of § and X are there-

fore the same.
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In Fig 3.3 are shown the absolute values of @, and @, evaluated from Eq (3. 46)
and plotted vs the gap spacing Bq. The parameters § and ® are chosen real,

i e the curves refer to resonance, which of course is the case having most inter-
est. Each curve is labelled with two numbers, referring to § and ¥ respec-
tively. Three different values of §¢ are chosen: 0.5, 2, and 5, corresponding
to low, intermediate, and high gain per stage, respectively. Each of the values
of £ is combined with three different values of the beam loading parameter:

0.2, zero, and -0.2.

The phase angles ? and ?, of @, and a, are shown in Fig 3.4 for the same
real values of the parameters ¢ and ¥ .

Figure 3.5 shows @) | and |a,| for two different frequencies located symmet-
rically with respect to the resonant frequency.

Figure 3.6 shows the ratio | az |/ |‘Qz | for the same real values of £ as those in
Fig 3.4, and ® = 0 (zero beam loading).

The graphs in Fig 3.7 are the absolute values of the initial values A and B of the
attenuated and growing gap voltage waves for the same real values of § and # as
those in Fig 3. 3.

In addition to the general comments made in the last section concerning the rela-
tive magnitudes of the growing and the attenuated waves, a study of the curves in
Figs 3.3 to 3.7 in connection with Eqs (3.46) to (3.51) allows one to draw a num-
ber of significant conclusions concerning synchronously tuned multi-cavity klys-
trons. These are the following.

Optimum gap spacing

First we observe from Fig 3.3 that the gain per stage |a,| at resomance is
maximum when the gap spacing is equal to a quarter of a plasma wavelength

(Oq = w/2), regardless of the beam loading. The same conclusion concerning the
value of the optimum gap spacing is reached if we discuss the gain of two-cavity
and three-cavity klystrons directly from Eqs (3.48) and (3. 49) rather than using
the wave formalism. It should be pointed out that, although this optimum is pre-
dicted by the simple conventional klystron theory, the result is not at all obvious
because the simple theory does not account properly for interaction between non-
adjacent gaps and density modulation effects within the gaps.

The curves shown in Fig 3.5 for complex values of §¢ and ¥, i e for freql.ienciel
different from the resonant frequency, in this case two frequencies located sym-
metrically on each side of the resonant frequency (Argf =Arg# =1t 1r/4), indi-
cate a shift in the optimum gap spacing from w/2 towards smaller values if

w <mr", and a shift towards higher values if w> . In these two cases the
cavity impedance is inductive and capacitive, respectively. The two curves are
symmetrically located with respect to Bq = 1r/ 2, a property that can also be proved'
directly from Eq (3.46). Thus, besides maximizing the gain at resonance, the gap
spacing Gq =n/2 resultsina frequency response curve that is symmetric with
respect to the mid frequency.
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It should be noted that the statements concerning optimum gap spacing do not
apply to the more interesting case of non-synchronous tuning. The optimum gap
spacings of a stagger-tuned klystron will be modified, depending on the details

of the stagger-tuning arrangement and, furthermore, on the frequency to which
the optimization is referred. Although this question is an interesting one, it does
not seem probable that very much could be gained by a further optimization of
drift lengths of stagger-tuned klystrons, and it is beyond the scope of this paper
to attack this very complicated problem which appears to be intimately related to
the problem of optimization of stagger-tuning pattern with respect to gain and
bandwidth.

Gain and phase shift per stage

Setting Sq = 1r/ 2, corresponding to optimum gap spacing for synchronous tuning,
we can easily write the analytical expressions for the maximum voltage gain. In

this connection it is interesting to determine both hzlmax’ |‘\13lmx. i
|ctz| from Eqs (3.48), (3.49) and (3. 46), respectively. We find
max
I'rlzl = 2§ (3.62)
max
2
I, | = 487 - 20 (3.63)
max
la, |
E min 2 2 % % ’
= -2X + 28 % -2R + . 64
la, | 1-20+2 28 (1-20 +£°) (3.64)
- max

Comparison of Eqs (3.62) and (3. 64) yields the following result already stated in
the general discussion in the previous section:

| a > |, if w<? (3.65)

2|
max max

Since the condition X < i’ is equivalent to G, < G_, the inequality (3.65) can be
interpreted as meaning that the interaction between non-adjacent gaps always en-
hances the voltage gain at synchronism provided the electronic conductance G is
less than the circuit conductance Gc. Of course, this statement is correct only
if the attenuated gap voltage wave can be neglected. A case for which the attenu-
ated wave cannot be disregarded is the three-cavity klystron. We have namely
from Egs (3.62)and (3.63)

I, < Iyl if >0 (3.66)

2
max max
meaning that for positive beam loading the maximum voltage gain of the three-
cavity klystron is less than the product of the gains of each of the stages considered
alone, a result which is in apparent contradiction to the inequality (3.65). The ex-
planation for the discrepancy is first of all that in this case the attenuated wave can-
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not be neglected; its phase at the third gap is opposite that of the growing wave
and reduces the overall gain. Second, in the discussion of gain on the basis of

Eq (3. 59) the initial amplitude B has been disregarded; evidently this is not per-
mitted for klystrons with only a few stages.

The curves in Fig 3.3 and perhaps particularly those in Fig 3.6 show that en-
hancement of voltage gain due to interaction between non-adjacent gaps actually
becomes more pronounced as ﬂq departs from the optimum value Sq = w/Z, par-
ticularly for small values of § . For high gain per stage (& large) the ratio

| az| /l'qz approaches unity regardless of Oq, as predicted by the cascade ap-
proximation (3. 29). For small gain per stage (& small) the ratio becomes in-

creasingly large as § approaches zero.

These results show that the gain of a klystron with relatively closely spaced gaps
(eq << w/Z) is considerably higher than anticipated from the cascade formula
(3.29), particularly if the cavities are heavily loaded (small § ) and tuned to a
frequency above the signal frequency (see Fig 3.5). Only a more thorough in-
vestigation of this scheme could answer the question as to whether gain and band-
width obtained in this way are comparable to those of ordinary stagger-tuned
klystrons.

Next, let us consider the phase shift per stage at resonance where ¢, + ¢, = 0.
The curves in Fig 3.4 show that ¢,, the phase shift per stage of the growing gap
yoltage wave, has a value between the plasma transit angle -8 _and - 1r/2, de-
pending mainly on the parameter §{ and, to a lesser extent, on the beam loading
parameter ¥ . For high gain per stage (& large) ¢, approaches -w/2 which is
the value predicted from the cascade approximation neglecting interaction between
non-adjacent gaps. For small gain per stage (& small), Py approaches -Bq in
which case the growing gap voltage wave is in exact synchronism with the slow
space-charge wave regardless of the gap spacing eq. The cascade approxima-

tion is therefore, as expected, grossly in error for small gain per stage.

Besides being a function of §, the phase shift per stage depends to a lesser extent
on the beam loading parameter ® except at the optimum gap spacing Oq = 1r/2,

in which case ¢, = - 'rr/Z regardless of beam loading. At this gap spacing the
growing gap voltage wave is in synchronism with the slow space-charge wave and
the attenuated wave in Qynchroniam with the fast space-charge wave. It thus ap-
pears that optimization of gap spacing with respect to gain is synonymous with pro-
viding synchronism between the growing gap voltage wave and the slow space-charge

wave.

3.9.3 Effect of beam loading on gain and bandwidth

If we return to the study of the curves in Fig 3.3, we are able to make a statement
concerning the effect on gain and bandwidth of the beam loading, and answer the
question whether cavity loading by circuit loss or by the beam is preferable. In

this connection it is significant that the beam loading is not properly accounted for
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by simply adding the beam loading conductance Ge to the circuit admittance Yc,
as is claimed in the conventional klystron theory. If this were correct, it would
be quite irrelevant as far as gain and bandwidth are concerned whether the cavi-
ties were loaded with circuit loss or by the beam. It follows from the more rigo-
rous theory developed in this report that the beam loading conductance G, in addi-
tion to appearing in parallel with the circuit admittance also enters into the trans-

fer admittance Yr g’ 28 is apparent for instance from Eq (B.9) in Appendix B.
1

Noting that the bandwidth is specified mainly by the value of the self-admittance

Y = Ye * Yc » which determines the effective loaded Q, the gain will depend expli-
citly on the beam loading G, through the transfer admittance even if Y, and thus
the bandwidth, is kept constant. In the present wave description, this point mani-
fests itself by the fact that with constant £ (meaning constant Y and therefore
constant bandwidth) the gain is a function of the beam loading parameter &, which
is proportional to G,. A study of Fig 3.3 or of Eqs (3.63) and (3. 64) reveals that
the quantities |73| max 27d | a2 Imax increase as the beam loading parameter

# decreases provided & and thus the bandwidth are kept constant. Therefore, the
rather important conclusion pertaining to synchronously tuned multi-cavity klys-
trons can be made that loading of cavities by circuit loss is preferable to beam
loading. For a given bandwidth (Y constant) the highest gain is achieved using
negative beam loading compensated by sufficient circuit loss. Evidently, in this
case the density modulations occurring in the interaction gaps in addition to the
normal velocity modulations have favourable phases and contribute to enhance the

overall gain.

Another observation made from the curves in Fig 3. 3 is that negative beam load-
ing causes a general broadening of the maxima. Therefore, also in this respect
negative beam loading is beneficial because the gain will be a less critical function

of gap spacing.

Even if the beam loading generally affects the gain and bandwidth as described,
the magnitude of the effect is quite small, as clearly observed from Fig 3.3, be-
cause # normally is much smaller than &, and only approaches £ in extreme

cases for which the cavities couple mainly to one of the space-charge waves.

From physical reasoning it seems natural to expect that the discussed possible
enhancement of gain at constant bandwidth due to negative beam loading should be
accompanied by a change in the phase shift per stage 9, in a direction which
brings the growing gap voltage wave nearer to synchronism with the slow space-
charge wave. That this is indeed the case is shown clearly by the curves in Fig
3.4.

Relative phases of the growing and attenuated gap voltage waves

To conclude the presentation of numerical data for synchronously tuned klystrons,
the absolute values of the initial values A and B of the attenuated and growing
gap voltage waves are plotted in Fig 3.7 for the same combinations of the para-
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meters ¢ and ¥ as those in Figs 3.3 and 3.4. Over the appreciable range of
parameters shown in the graphs, both |A| and |B| are of the order of unity, a
fact that permitted us to disregard these factors in the previous discussions.
The difference between the phase angles of |A| and |B| is exactly equalto =
(A = - B) for zero beam loading, and approximately equal to = for moderate
values of the ratio 2/& 5

In conclusion we shall show that the growing wave and the attenuated wave are in
phase at the gaps for which p is even, and out of phase at the gaps for which p
is odd. At least this statement is correct for gaps with optimum spacing Bq =n/2
and zero beam loading. Since in this case A = -B, Py =-9, = 1r/2, and

|a I.I = l/laz l, Eq (3.47) reduces to the following expression:

[l = 181 [loylP s (1P Jayl'P ] (3.67)

which shows that the above statement is correct. Thus, for a three-cavity klys-
tron (p=3) the attenuated wave subtracts from the growing wave at the third gap,
explaining the fact previously discussed that the voltage gain in this case is less
than the product of the gains of its two stages considered alone (see Eqs (3.62)
and (3.63)).

Space-charge waves in synchronously tuned klystrons

As a supplement to the discussion in the last sections of gap voltage waves in syn-
chromously tuned klystrons, it is instructive to study the growth of the associated
space~charge waves that propagate on the electron stream. Since the kinetic volt=-
age components U+ and U™ of th2 two space-charge waves are simply related to
the current components I+ and I” through the RF beam impedance W, it suffices
to study the current wave, which in the general case is given by Eq (2, 54). Noting
that the initial modulations I(0) and U(0) are zero, and using the notations defined
in the last sections, we obtain

L -j8(p-r+
R R CE =

where I_ is the RF beam current at the output cross-section of the pth gap, and

8 = ﬁ £ as before is the electronic transit angle between the centers of two adja-
cent gaps. We shall study the slow and the fast waves Ip and Ip separately. Ex-
pansion of Eq (3.68) by means of the difference operator A yields

+ -j(8+8 )(p+3) 2 j(8+8 _)r
1; = '%%v'e q Zvre q (3. 69)
r=1
. - -i(e-8_)p+t3) & j(8-8 )r
L =+2’[_w-e 9 zvre q (3.70)

r=1
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These formulae are quite general and hold for any stagger-tuning if the proper
gap voltages V  are inserted in the equatione. We shall, however, refrain from
a general study which is quite involved and rather confine the discussion to one
special case for which unessential details are avoided and the mathematical for-
mulae are particularly simple, namely a synchronously tuned klystron having op-
timum gap spacings (Bq = w/2).

If the synchronously tuned klystron is operated at the resonant frequency, the gap
voltage V_ is readily determined from Eq (3.47) by noting that in this case
P =-9, = ‘rr/Z., and both A and B are real. Thus, for r2>2

-j8(r-1) . i3(r-1) o -ig(r-1)
Vo=V, e v, Alallr e + Blcler b g & (3.71)

where the real constants A and B are of the order of unity.

Substitution in Eqs (3.69) and (3. 70) yields for the two components of the current

+ g T r ' A
MV, -j(e+Z)(p-3) & -
+ 1 2 r-1 r=-1
T 1+32|a2| +A) (-lay]) (3.72)
L r=2 r=2 t
MV, -ie-De-d) | 2 d T
- 1 2 r-1 r-1
1p = vl 1+ 32 (-layl) +AZIC!1I (3.73)
L r=2 r=2 —

Since the quantities inside the brackets are real, the phase shifts per stage of the
slow and the fast current components I; and I; are given by 6 + w/Z and 8 - 1r/2,
respectively, corresponding to propagation factors Be t Bq and Be - ﬁq , as ex-

pected.

The amplitudes of If and I” grow from gap to gap in accordance with the sum of
the geometrical series innidI: the brackets. Of these the ,-series represents
the current modulation due to the growing gap voltage wave, and the a, -series the
current modulation due to the attenuated gap voltage wave. By evaluation of the
series it follows immediately that each of the components I; and I; is the sum

of three current waves: one wave having constant amplitude, one growing wave,
and one attenuated wave. Some distance beyond the input gap no significant error
is made if the constant-amplitude wave and the attenuated wave are neglected com-

pared to the growing wave. Making this approximation, we find

N BM'V, o, P -i(®+3)(p-3)
1T - e (3.74)
P PAY ]oz2 |-1

BMV, (-la,| )P -je-F)p-%)

(3.75
ZW Iazl +1 )
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The equations show quite clearly that the amplitude of the slow wave I; exceeds
that of the fast wave I_, as is expected from the small-signal kinetic power
theorem (see section 2. 7). From a study of Eqs (3. 69) to (3.73) it is readily
seen why the slow space-charge wave grows more rapidly than the fast wave.
The growing gap voltage wave modulating the beam is in synchronism with the
slow space-charge wave and the effect on the slow wave I' is therefore cumula-
tive, i e the contributions from each gap add in phase, shown by the fact that all
the terms in the Q,-s<ries in Eq (3.72) have the same sign. On the other hand,
the phase of the growing gap voltage wave is unfavourable for modulation of the
fast space-charge wave. The modulation in one particular gap tends to cancel

that of the preceding gap, a8 indicated by the fact that the sign of the terms in the

a.-geries in Eq (3.73) alternates between plus and minus. The net amplitude

2
growth of the fast space-charge wave is therefore smaller than that of the slow

wave.

The additional small modulations given by the @, -series in Eqs (3.72) and (3.73)
are caused by the attenuated gap voltage wave which is in synchronism with the
fast space-charge wave. Therefore, the small current modulations due to the
attenuated gap voltage wave are cumulative for the fast wave and alternating be-

tween plus and minus for the slow wave.

The relative magnitudes of " and I depend, furthermore, on the coupling co-
efficients M+ and M~. Since the amplifying mechanism is one by which RF power
is coupled to the cavities along the stream from the slow space-charge wave carry-
ing negative kinetic energy, the occurrence of a growing slow wave is quite essen-
tial, The fast wave, however, increases its amplitude at the expense of power,
and serves no useful purpose in the amplifying process. The fast wave could be
eliminated altogether by arranging matters such that the gaps couple only to the
slow space-charge wave, in which case M~ = 0. We would then have a klystron
in which the slow wave is the only one occurring. If the practical problem of de-
signing gaps that couple only to the slow wave is disregarded (although design of
such couplers seems entirely feasible), such a hypothetical klystron would be
characterized by gaps having negative beam loading, which would require suffi-
cient cavity loss to avoid self-oscillations. The gain would be almost independent
of gap spacing and be somewhat larger than that of a similar klystron with zero

or positive beam loading, according to the discussion given in the previous two
sections. It appears improbable, however, that the small improvement in gain
and bandwidth would justify the added complexity.

General expression for power gain

The power gain of a multi-cavity klystron is determined by establishing the pro-
per relationships between the input power and output power and the RF gap voltages

of the input and output cavities by means of the formulae given in Appendix A.
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Relation between input power and gap voltage

The RF energy from the signal source flows through a transmission line into the
input cavity, as indicated in Fig 3.8a. The equivalent circuit shown in Fig 3. 8b,
referred to the position in the transmission line known as the ""detuned short"

position, is correct for any resonant cavity provided the cavity is excited in only

one of its resonant modes.

Beam Input cavity / m

| |—
"Detuned short" R—I I
/position sh, 1
R VA — AANAAA S
X
— e
Input transmission
/line
- v
e A o ——

|

- |

g 19
Signal source with available
power F, matched to the Rsh,lqext,l
input transmission line
(2) (b)

Fig 3.8 Configuration of the input cavity and signal source

(a) Input cavity excited from a signal source with available power Pi

(b) Equivalent lumped-parameter circuit

The input admittance Yis normalized with respect to the characteristic admittance
of the transmission line and referred to the detuned short position, follows from

Eq (A.12) in Appendix A. In the present notation the equation takes the form

= (2'5 +....1_ + _L_Rsh 1 Y (3.76)
Y] = Qest,1 \49%) Q, Q, el ‘

where Qext,l is a measure of the coupling from the input transmission line to the
cavity, 51 is the frequency-tuning parameter defined in Eq (3. 3), Q, is the un-
loaded Q, Rsh, l/Ql is the characteristic impedance of the cavity, and Ye,l is
the electronic admittance. The loaded Q of the input cavity by definition is given
by

 —1 (3.77)

11
Q9 Qeu,
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Substituting Eq (3.77) in Eq (3.76) and using Eq (3. 2), we can express the nor-
+Y
e

malized input admittance y, interms of the self-admittance Y, | =Y 1
L » L]
in the following way:
Rsh 1
& _sh, 1 5 .78
Y1 ° Qemt,1 —q - 1,1 "1 (3:78)

1

Although it normally is desirable to adjust the normalized admittance to unity at
resonance by appropriate choice of coupling between guide and cavity (adjustment
of Qext, l)’ the general case characterized by arbitrary input admittance will first
be considered. The assumption will be made that the signal source impedance is
matched to the input transmission line, so that the entire available power Pi is
transferred to the cavity and the beam when the normalized input admittance y,
is unity. Such an assumption does not restrict the generality of the results. If
y, is not unity, some of the power is reflected at the input terminal, only part of
it being transmitted into the cavity. For this transmitted complex power we shall
use the notation IPi. From elementary considerations of reflections at the input
terminal, the following relation between the available power Pi’ the transmitted

complex power Pi' and the normalized input admittance is obtained:

4y
ﬁ)i = P, ) < (3.79)
(L+y Ni+y)

where here, as throughout the paper, complex power is defined on the basis of the

product of current and the conjugate of voltage.

The transmitted complex power (Pi may be related to the RF gap voltage V, through
the self-admittance Y, , by noting that the power is dissipated in this admittance

L]
minus the coupled admittance from the input transmission line.

Q 1
P = %vlvr(Yli-R ! ———) (3.80)
! sh, 1 Qe:ct,l

Combination of Eqs (3.78), (3.79) and (3.80) yields the desired relation between
the available power Pi of the signal source and the RF gap voltage Vl <

Y (3.81)

3.11.2 Optimization of the input coupling

At a given available power P; the maximum input gap voltage V, at resonance is
obtained for a certain optimum value of Qext, ; Which can be determined from
Eq (3.81) by differentiation. It should be noticed that resonance is defined as the
frequency at which the imaginary part of the self-admittance Y, 10 rather than
the imaginary part of the circuit admittance Yc,  alone, is zero. Using Eqs
(3.6) and (3.9) we find the optimum condition
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Q 1 R 1 G
(far) il q,2(S2) o
ext, | 1 ! . 2 c,1

opt

where G1 1 is the real part of Yl L G N as before is the electronic conduc-
tance } and G 1 is the loaded cn-cmt conductance Q /(Ruh IQL 1) An alter-
native way of wrihng the optimum input condition (3. 82) is the following

1 Q, 1
+ G =

e, l
B, i Roh, 1 Dext, 1

(3.83)

which is easily interpreted as meaning that the sum of the unloaded circuit conduc-
tance and the electronic conductance must equal the transformed external conduc-
tance, i e the generator conductance. This, of course, means that the generator
is matched to the cavity and the beam. We can easily convince ourselves that if

the optimum condition (3.82) is fulfilled, the input admittance y, given by Eq (3.78)
is equal to unity, and all the available power Pi of the generator is therefore trans-
mitted to the cavity and the beam.

If the beam loading is zero, the optimum condition simply is QL, l/Qext,l = é .
This situation is normally referred to as critical coupling. In this case the two
space-charge waves are excited with equal amplitudes, and the net power required
for their excitation is zero. Seen from the generator, the cavity behaves as if the

beam were not present.

With positive beam loading the amplitude of the fast space-charge wave exceeds
that of the slow wave, and a net positive power is required for their excitation.
Therefore, optimum power transfer occurs at a coupling stronger than the critical

coupling, QL I/Q > 4. Converaely, if the input gap has negative beam load-

ext, 1
ing, the amphtude of the slow space charge wave exceeds that of the fast wave,
and a net positive power is extracted from the beam. The optimum input condition

is obtained for weaker coupling, QL, I/Qext, 1'% 3.

.

With optimum coupling Eq (3.81),relating the available power P, and the RF gap

voltage V,, reduces to

=
B - E, 1790 q
p W YV et (3.84)
i 4 G, ,

It is interesting to study what happens if by some means the beam loading is made
larger, but otherwise the cavity parameters Rah,l/Ql and Q1 are kept constant.
In order to maintain the optimum condition given by Eq (3.83), the transformed
generator conductance must be correspondingly increased through reduction of
the external Q, by making the coupling between input transmission line and cav-
ity stronger. If the beam loading becomes sufficiently large, the optimum exter-
nal Q will be approximately equal to the loaded Q, meaning that the larger part
of the overall cavity loading is due to external loading and beam loading, both be-
ing approximately equal in magnitude. In this limiting case for which
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Qext, 1 = QL 1 << Ql’ a negligible amount of the available power P is dissipated
in the input cav1ty itself. The main part of P is transferred to the electron
beam and propagates in the forward direction in the form of an excess modulation
of the fast space-charge wave relative to the slow wave. This discussion has
some relevance to problems encountered in connection with fast-wave cavity coup-

lers for beam parmetric amplifiers (24), as discussed more thoroughly in Chapter 5.

Relation between output power and gap voltage

As already done for the input cavity, we shall next establish a corresponding rela-
tion between output gap voltage and output power. It will be assumed that the out-
put transmission line carrying the useful power from the output cavity (cavity no. p)
is terminated in a matched external load. This assumption does not in any sense
restrict the generality of the results. The power PL dissipated in the external

load is then simply given by

P. = % vpv* P e (3.85)
sh,p Jext,p

which is the required relation.

The power gain, defined as the ratio of the output power PL dissipated in the ex-
ternal load and the available power P of the signal source, is obtained by division
of Eqs (3.85) and (3.81). Recalling tha.t the ratio V /Vl is the voltage gain I

we obtain

P Q Q 1 1
L o g™ —R 1 — (3.86)

™
i sh,p sh,l Qext,loext,p Yl,lYl,l

This equation is quite general, holding for arbitrary input and output couplings, and
also for large-signal operation, if by T is meant the actual large-signal voltage
gain. In the present report we are concerned only with the small-signal perfor-
mance, in which case 'r;p is given by the formulae derived previously in this

chapter.

Optimization of output coupling at small-signal level

The output coupling can be adjusted to maximize the power gain in the same fashion
as previously done for the input coupling. Remembering that the voltage gain 15
contains the self-admittance Y 5,5 of the output cavity as a common denominator
(see Eq (3.13)), we obtain the followmg condition stating the optimum output coup-

ling at resonance and small-signal level:

Q 1 R 1 G

_L,p - - -shp G =_(1+_e;.2) (3.87)
Q 2 Q an P:P 2 G

ext, P ‘ot P c,p

It is significant that the optimum small-signal output coupling is identical with the

optimum input coupling given by Eq (3.82).
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If the external Q's of both input and output cavities are adjusted to their optimum
small=signal values according to Eqs (3.82) and (3.87), we find from Eq (3.86)
that the corresponding maximum small-signal power gain is given by

L oy g Ll (3.88)
- ;

| PPY Y,
At resonance this equation simplifies to

P G

L =
et o - 3.8
Py Te e By -89

Hence, for optimized input and output couplings at small-signal level, the power
gain is equal to the square of the voltage gain if the input and output cavities are
identical (Gl, y = GP.P). High-efficiency operation of practical tubes at large-
signal level requires stronger output coupling than that indicated by Eq (3.87).

In this case the power gain is given by the general Eq (3.86) rather than Eq (3.88).

3.12 Bandwidth considerations

Simple expressions for the bandwidth of a multi-cavity klystron cannot be given
even for the simple case that all the cavities are identical and synchronously tuned.
This difficulty is due to the complicating effect of interaction terms between non-
adjacent cavities. A rough idea of the expected bandwidth can be obtained by con-
sidering a special case for which the interaction terms between non-adjacent cavi-
ties can be disregarded, namely a klystron having large gain per stage compared
to the number of cavities. In this case the cascade gain approximation (3.29)
holds. If for simplicity the assumption is made that all the cavities including the
input and output cavities are identical, the small-signal power gain is obtained
from Eq (3.88), yielding

P .1 G G
L - (q, ¥ Je-1 71,1 p,p (3.90)
P 2,17%2,1 Y, ,Y*

1 1,075 1

where the voltage gain per stage M, | is given by Eq (3. 12);

x & ak
nz'l = Y (3.91)
2,2
Since, by our assumption, Y, ; = LW hakae Yp,p' Eq (3.90) reduces to
2
P =1 G
_L . (YZ,IY,ze,l)p Y_._l.'Yl_*._.F (3.9
i (¥),1Y1,1)
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In this expression the only quantity changing rapidly with frequency is the self-
admittance Y - Therefore, the frequencies for which the power gain is re-
»

duced to half its value at resonance are given by the relation

A
b 4 Y
(_I.IT_I,A) -2 (3.93)
G 1.1
Neglecting the slow variation of the beam loading admittance with frequency, we

obtain the following expression for the relative bandwidth (subscripts are omitted):

A® R 1
—_— = B8 =(1+ sh Q, G )_(21/9-1)& (3.94)
W Q & QL

If the number of cavities exceeds two, the following approximation holds to within

three per cent:

zl/p - e(l/p)losz w 1% % log 2 (3.95)

We shall also define an electronic Q by the relation

R
- A, (3.96)

1
= e
Q, Q

Substitution of Eqs (3.95) and (3. 96) in Eq (3. 94) yields

Aw 0.83 ( 1 1 ) 0,83 ( QL) ( )
—_— e _;. —_— =] = T—-— 1+ — 3.97
wo P QL Qe P QL Qe

Thus the relative bandwidth is inversely proportional to the total loaded Q (in-
cluding the electronic Q) and the square root of the number of cavities. The ef-
fect of positive beam loading is to increase the bandwidth, of negative beam load-
ing to decrease the bandwidth. The modified bandwidth due to beam loading is ac-
companied by a corresponding change in the power gain in the opposite direction.

This is easily observed from Eq (3. 92), which at resonance can be written

2(p-1
R /2)Q, |2V

(3.98)
1 + QL/QQ3

P -1
;_& = (Y, Y3, &
i

Hence, if the bandwidth is increased by a certain factor due to positive beam load-
ing, the power gain per stage becomes smaller by the square of this factor, and
vice versa. These phenomena obviously are caused by regenerative effects in
the individual cavities. The bandwidth becomes vanishingly small and the gain
extremely high in the limiting case for which the beam loading is negative and its
magnitude sufficiently large to cause the klystron to operate just below the start
of oscillations. This situation occurs when the sum of the electronic Q and the

loaded Q approaches zero.
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Since the beam loading and therefore the electronic Q are functions of the DC
beam velocity, gain and bandwidth of a klystron with appreciable beam loading
will be a function of the DC beam voltage. The above discussion shows that the
gain and bandwidth are expected to vary in opposite directions as the beam volt-

age is varied.

In the theory of cascaded band-pass amplifiers it is convenient to define a gain-
bandwidth factor GB as the product of the relative bandwidth and the square root

of the power gain per stage

1

aw (Pr \i2(p-1 .
GB = ._(_L) (p-1) (3.99)

o \P,

o i

In the cascade approximation of multi-cavity klystron gain discussed here, the

gain-bandwidth factor is readily evaluated from Eqs (3.97) and (3.98). We find

0.83 R_,
GB = ?p . |Y2'1| (3.100)

which shows explicitly that the factors containing the beam loading or the elec-
tronic Q have cancelled out, rendering the gain-bandwidth factor substantially
constant and independent of regenerative effects. It should not be implied, how-
ever, that the gain-bandwidth factor is entirely independent of beam loading, be-
cause the transfer admittance YZ, 1 contains a term proportional to the beam
loading (see for instance Eq (B.9), Appendix B). As discussed previously, this
term is due to the small density modulation taking place in the gaps in addition

to the velocity modulation.

General rules for scaling of the frequency band at constant gain

The expressions for bandwidth derived in the previous section are approximate
because interactions between non-adjacent gaps are neglected. A discussion of
bandwidth for synchronous tuning, taking full account of these terms, is rather
difficult, and even more so for the general case of klystrons with arbitrary,
stagger-tuned cavities. We shall refrain from a discussion of the rather involved
problems encountered in the analysis and synthesis of frequency response func-
tions with stagger-tuned cavities. Instead, we shall confine our attention to the
discussion of a particular problem which is solvable, namely that of scaling the

frequency band at constant emall-signal power gain.

Using the general gain formulae (3.86) and (3.11), we find that the power gain vs

frequency depends on a number of parameters or parameter combinations, listed

as follows:
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Input cavity (s=1):

R R Q
+ & sh, 1 sh, ] L,1 5
M}, M, (——'—-Ql Qext,l) : (—-'—Ql L) @)
Intermediate cavities (s=2,3, ----- p-1):
R Q
M. Mo, [ —2aE ol L (@ B (3.101)
s 8 Q W L,B 8
s

Output cavity (s=p) :

R R Q
+ i sh sh L,p Q 5
M, , (2 a [ R »(Qp )
P P Q ext,p Q W P P
P P

Note that these expressions include the effect of beam loading through the coup-
ling coefficients Mt and M”. The gain obviously stays constant if all the M-
parameters and the products inside the parentheses are kept constant. Within
the limitation indicated by this requirement the parameters can be scaled. We
shall show that the frequency response curve at constant gain is scaled by a fac-
tor k in bandwidth provided all the loaded Q’s are scaled in the ratios l/k, all
the characteristic impedances Rsh/Q in the ratio k, and the stagger-tuning pat-

tern scaled as described below. If the scaled parameter values are indicated by

primes, we obtain, using for each cavity the condition Q;5 = constant

Q Q Q 5! 5! 5!

i U7 (G TR “L,p _ 1 2 = ame B =k (3.102)
] ] i

Q.1 QL2 B 1 Pz S

Within the accuracy of the approximate expression for & given in Eqg (3. 3) we
obtain from Eq (3.102)

1 ] 1 " 1

W -w W=w W -

it % N 7Y - S | - S N (3.103)
-85 9% 2 WDy 9

. 9 . 1
where mO,l’ mO,Z' - @, are the original resonant frequencies, and wo’ 1

»
———a are the scaled resonant frequencies. By successgive subtrac-

A\
©o, 2 0,p
tions of both numerators and denominators in the various fractions of Eq (3.103),
the frequencies ® and @' cancel, and we obtain the new, scaled stagger-tuning
pattern expressed in terms of the new resonant frequency of the first cavity and

the original resonant frequencies.

1 (]

L} 1 1 1]
w -Ww w - w -
0.2 "Y1t _ Y03 "6 _ ... = _%p 01l .y (3.104)

@ 2" %,1  ®0,3 7 “0,1 ®o,p " %0,1
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The new frequency ' is related to the original frequency @ by
@' - mO,l = k(@ 'mo,l) (3.105)

showing that the frequency band is increased by the factor k. It should be noted
that the scaling rules still hold if the location of the new response curve is shifted

in the frequency band relative to the original one.

Furthermore, since from (3. 101) the product (Rah/Q)(QL/W) must be constant

for each cavity, the scaled values are given by

R d '
M g— = M = k (3.106)
Rop 1/QW Ry, o/ QW

This means that the product of the characteristic impedance Rah/Q and the in-
verse RF beam impedance 1/W must be scaled in the ratio k.

The scaling discussed here further requires that the coupling coefficients M~ and

+
M’ of the two space-charge waves are maintained at their original values in each

gap.

e =1,2---,p (3.107)

Provided the RF field distribution in each cavity is maintained, the requirements
stated in Eq (3.107) imply that the propagation factors Bq and B_ remain the
same (see Eq (2.58)). This again imposes a slight restriction on the possible
scaling of the RF beam impedance W, defined in Eq (2. 30), since the scaling

must be done without affecting the propagation factors.

The requirements expressed in Egs (3.106) and (3. 107) are equivalent to having

a constant ratio between the cavity admittance and the electronic admittance or

the transfer admittance.

It is noticed from (3. 101) that two additional requirements must be fulfilled, name-
ly the scaling of external Q’s at the input and output cavities. These requirements
are rather trivial, however, because no frequency dependent quantities are in-

volved.

The above discussion shows that if the stagger-tuning pattern of a given klystron
is already optimized with respect to gain and bandwidth, a further increase in
bandwidth at constant gain can only be obtained through:

a) Higher characteristic impedances Rsh/o of the cavities

b) Lower characteristic beam impedance W
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These results demonstrate quite clearly the significance of the characteristic im-
pedances of the cavities and the beam in multi-cavity klystron theory and design.
In this connection it should be pointed out that the characteristic impedance
Ruh/Q generally increases with the interaction length. For example Rsh/Q of
a shorted slow-wave structure having sinusoidal RF field distribution is propor-
tional to the number of standing waves, while the coupling coefficients are sub-
stantially independent of this number. Therefore, the use of such structures
offers definite possibilities of marked improvement in bandwidth over that ob-

tained with conventional narrow-gap klystrons (9).

The scaling problem discussed above, characterized by constant gain and scaled
frequency band, seems to be the only one that can be discussed in simple terms.
If we ask what happens if the loaded Q’'s, or the characteristic impedances are
scaled independently, no simple answers can be given to these questions, except
for special cases in which interaction between non-adjacent gaps and the beam
loading can be disregarded. The difficulties encountered in such a discussion
are due to the fact that the relative contributions to the gain from the various
terms in the general formula (3.11) depend on the loaded Q’s and the (Rsh/Q)'s
in a rather complicated manner. Thus, the following general statement can be
made :- In a multi-cavity klystron, separate scaling of all the loaded Q’s, or of
all the characteristic impedances Rsh/Q' does not result in a simple scaling of
bandwidth or gain, except in the case discussed above for which the scalings of
the parameters are interconnected in the way prescribed by Eqs (3.102) through
(3.107). Although not done here, it may be shown that this same conclusion can
be drawn from a treatment of the same scaling problem in terms of poles and

zeros of the gain function in the complex frequency plane.

To conclude the discussion of bandwidth, we shall emphasize the unique role
played by the input and output cavities relative to the intermediate floating cavi-
ties. This difference is quite clear already from the pole-zero description of the
response function (22,23). Each of the p cavities contributes to one of the p
poles in the complex frequency plane, while the p-2 zeros depend only on the p-2
intermediate cavities, and not on the input and output cavities. In our formula-
tion this point manifests itself by the fact that the self-admittances Yl,l and

Y of the input and output cavities are common factors in the denominators of
ﬂ' the zp—Z cascade terms (3.17) adding up to the overall gain (see Eqs (3.18)

and (3.86)), and thus can be brought outside as multiplicative factors.

On the other hand, each of the self-admittances Y, ; --- Y of the inter-
L

mediate cavities is found only in 2P=3 of the total of 2P~ ci-s{:'al:i;lterms (3.17),
i e in exactly half the total number of terms. Thus, it appears plausible that the
frequency response will depend more strongly on the loaded Q’s of the input and
output cavities than on the loaded Q's of the intermediate, floating cavities. The
practical consequence of this fact is that the required bandwidths of the input and
output cavities should be of the same order as the desired frequency band of the
multi-cavity klystron, while no such restrictions on the bandwidths of the inter-

mediate cavities are necessary. In practice, therefore, the frequency responses
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of the input and output cavities should be sufficiently broad to be considered as

constant. The actual frequency response of the entire klystron amplifier will then
be determined mainly by the general voltage gain function (3.11), i e by the para=-
meters of the intermediate floating cavities and the details of their stagger-tuning.

Reciprocity theorems for multi-cavity klystrons and interaction gaps with
distributed interaction

In this section some very important reciprocity theorems will be proved, pertain-
ing to general, extended interaction gaps and multi-cavity klystrons using cavities
with such gaps. The theorems are concerned with the reciprocity relations for
reversed direction of electron flow through the gaps. We shall show that by re-

versing the electron flow, the following theorems hold:

a) For any gap s the coupling coefficients M: and M; of the glow and the fast
space~-charge waves transfer to their complex conjugates Ma and M.*.

b) For any gap s the electronic admittance Y_, . and the self-admittance Y g
are invariant with respect to reversed flow. ' ¥

c) The transfer admittance Y, ; between any two gaps s and r is invariant with
respect to reversed flow, ie Y,  =Y_ ..
' ]

d) For any arbitrarily stagger-tuned multi-cavity klystron with arbitrary, exten-
ded interaction gaps the power gain over the entire frequency band remains the
same if the beam is reversed and the roles of the input and output transmis-
sion lines are interchanged such that in the new configuration the electromotive
force of the generator appears in series with the original output load, and the
original generator impedance serves as the new output load.

As a corollary to theorem d), we have the following theorem:

e) Assume that the cavities with their gaps are arranged symmetrically with re-
spect to the plane half way between the input and the output gap. Then, for each
stagger-tuning pattern characterized by the resonant frequencies ,,w,,0;-~ @ ,
there exists a second, different stagger-tuning pattern having exact]ly the same P
power gain vs frequency. The second pattern is obtained from the first by re-
versing the order of tuning, i e the new resonant frequencies are_mp. “‘p-l’ el

Reciprocity relation for the coupling coefficient

The coupling coefficients M~ and Mt are given by Eq (2. 58)

1/2' t x
Mt} = F(x)ej(ae ’d) dx (3.108)
M -2/2

where F(x) is the normalized longitudinal RF field distribution in the gap. If
primed quantities refer to the situation with reversed electron flow, we have from

Fig 3.9

F'(x) = F(-x) (3.109)
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therefore

0 2/2 ‘e t 2/2 it
o l = F'(x)eJ(Be P g - £ 1:"(-3()3“3e P 4 (3.110)
(M-)‘ -0/2 -2/ 2

Changing sign of the integration variable x, we obtain

+41 3/2. . +3¢
-j(p_t B )x M
(M-)'} } Flx)e i e ﬁ121 dx = { = (3.111)
(M7) 222 M
which proves theorem a). 515
|
[
|
|
Electron |
flow l
(a) g
|
-2/2 = ,; 2/2
v _—-—)(:——---—-'l
|/F (-x) = F(x)
|
|
|
|
Electron |
flow |
(b) !
-1/2 2 § \—/ 2/2
D

Fig 3.9 Longitudinal RF field distributions

(a) Example of RF field distribution of a gap with electron flow
in original direction

(b) RF field distribution of the same gap with electron flow reversed

3.14.2 Reciprocity relation for the electronic admittance

The electronic admittance Y, of a gap is given by Eq (2.68). Since a cavity inter-

action gap is characterized by real values of F(x), we have

2/2 i x .
=JB.x B
Ty '%A f F(x)e e f F(Y)eJ " gy (3.112)
-8/2 -2

where A is the difference operator defined in Eq (2.38). For the reversed beam
we find, using Eq (3.109)
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2/2 ’ x .
: 1 “iBex iBy
Y, = - WA F(-x)e j F(-y)e dy dx
-2/2 -2/2

Changing signs of the integration variables x and y, we obtain

1/2 s X

, 1 JB.x “Ip¥
Ye = +WA F(x)e / F(y)e dy dx
-¥/2 /2

Partial integration transforms the double integral to

‘/Z z x .
' 1 -_]ﬁex Jﬁe}f
Ye = -—“TA[F{x)e f Fly)e dy dx = Ye (3.113)
-2/2 -2/2

which proves theorem b).

Since the circuit admittance Y obviously is independent of the direction of elec-
tron flow, it is hereby also proved that the self-admittance Yg ¢ for any cavity

s is invariant with respect to reversed flow.

Y =Y +Y =Y (3.114)

Reciprocity relation for the transfer admittance

The transfer admittance Y, ; fromgap r to gap s, (r< s) is given by Eq (2. 67)

3¢ "jse"'a, r)

1
Yoo = - A(MrM & (3.115)

Evidently, with reversed flow, the transfer admittance Y;_ i from gap s to gap r

is given by

' Mune"jae”r, s )
2

Y, - -% alm

Since .2 ,r is equal to 1 , and the primed coupling coefficients satisfy theorem
a) stated in Eq (3.111), we obtam

X =

1 2 -jﬁe‘zs,r _
et W A(MrMs e ) = Y (3.116)

which proves theorem c).

Reciprocity relation for the power gain

The proof of this apparently important theorem is based on theorems a), b) and c)
already proved. Let us first consider the voltage gain Tp of a p-cavity klystron,
which from Eqgs (3.11) and (3.12) can be written as the following determinant :
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Y1 ¥z2,2 O B simimmas St 0
Yy 1 Yga Yag Oeeemmsmeme— 0
.11 . . F
M= 5 : ;) ¥ . » ; (3.117)
2’2 3'3 PIP * * .

p"]'l1 p“]"2
 S——— -Y
YPrl PIZ P, P'z p'p'l

If the direction of electron flow is reversed and the cavity resonant frequencies
maintained at their original values, the new voltage gain 'rt; can be evaluated

from the same general equation. The original gap indices are retained, i e the

new input gap has the index p, the second gap index (p-1), etc. We find
Y T 0 B a5 )
p-1,p 'p-1,p-1
Y Y Y - F— 0
) P-le p-zl P'l P-Zs p-z
'ql = (-I)P- ' : .
P oa% e Saye| ) : (3.118)
1 s [ v?
Ya,p Y2,p-1 TS %34 Tp.2
1 1 1
T Tl el o memme Ty g ¥z

The next step is to show that the determinants appearing in Eqs (3.117) and (3.118)
are identical. This result follows very simply using theorem c) on all the trans-
fer admittances in one of the determinants, and then interchanging rows and co-
lumns. Therefore, the ratio between the voltage gains 'q; and "lp for the re-

versed and original directions of flow is given by

M Y
P = PsP (3.119)
qp Yl,l

The equation shows that the voltage gains are the same in the two cases except for
a trivial impedance transformation equal to the ratio between the self-admittances

of the output and input cavities.

We shall prove next that the power gain with reversed flow is exactly the same as
the power gain for the original direction of flow. The proof follows very simply

from Eq (3.86), which is valid for arbitrary input and output loads. For the ori-

ginal direction we have
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Q Q, 1 1

- 4 » P
P, ®WRrR_ _R._ . Q_ Q Y,  Y*
i sh,p 'sh,1 ext, p | 60 i T |

(3.120)
ext, 1

With reversed beam and input and output interchanged, we obtain from the same

formula

Py Q Q 1 1
L ] v 1
(__) = 4n ,!" P (3.121)

P p'p £
i Rah,l Rsh,p Qext,poext,l Yp,pr,p

On account of Eq (3.119), the following identity obviously holds :

P,

1

(i)l = % (3.122)

which proves theorem d).

Theorem e) follows immediately as a corollary to theorem d). By symmetric
arrangement of cavities with respect to the center cavity, it is quite evident that
the klystron with reversed beam and the cavities maintained at the original reso-
nant frequencies is equivalent to the original klystron with cavities tuned in the

reversed order.

As an example, this theorem shows that a stagger-tuning pattern in which the
first cavities are tuned to lower frequencies and the subsequent cavities to higher
frequencies, results in exactly the same power gain and frequency response as
the reversed tuning pattern in which the first cavities are tuned to the higher fre-
quencies and the subsequent cavities to the lower frequencies. It should be borne
in mind, however, that all the theorems a) to e) hold under small-signal condi-
tions only. For efficiency reasons one would in practice prefer the pattern in
which the next to last cavity is tuned to a relatively high frequency, since this in

general enhances the large-signal bunching and thus the efficiency.
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MULTI-CAVITY KLYSTRON THEORY FORMULATED IN TERMS OF

MATRICES ASSOCIATED WITH CAVITY GROUPS

Introduction

The present chapter is concerned with a further generalization of klystron theory
based on a reformulation of the results of Chapter 3, expressing these by means
of appropriately defined matrix parameters associated with groups of consecutive
cavities rather than by scalar parameters associated with single cavities. We
shall find that this approach leads to a theory de scribing klystron performance

in terms of matrix relations which are formally identical to the scalar relations
derived in Chapter 3, which can be obtained as a special case of the more general

theory of this chapter.

The matrix formulation is particularly powerful for solving certain types of prob-
lems arising in connection with several klystrons coupled in cascade with common
beam, such as evaluation of the overall gain of two or more cascaded klystrons,

or of periodically stagger-tuned klystrons, and other related problems.

General matrix formulation

In the present analysis it is slightly more convenient operating with RF gap vol-
tages, rather than normalizing these with respect to the input gap voltage V, as
was done in the analysis in Chapter 3 (Eqs (3. 5) through (3.18)). The analysis
will be based on the set (3.4) of p-1 linear equations inthe p RF gap voltages
Vl, Vz, -—— Vp. The additional equation required to make the set complete is

furnished by Eq (3.81) relating the input gap voltage V, and the input power P,.

; n Beh, 1 -
Py = gvlvl_aT_Qen,lYl,lYl,l (4.1)

Let us define a complex quantity a, whose absolute value squared is proportion-

al to the input power Pi -

Py Q,
Q

(4.2)

ext, 1 Rsh, 1

Equation (3. 4) together with (4.1) form the following complete set of linear equa-

tions :
Yl,lvl = a
T, 1V ¥V =0 .
Y3'1V1 - Y3‘2V2+ Y3'3V3 =0 (4. 3)
p.d vV, + Y V, + ===+ Y V=
p.1 1 p,2 2 P:P P
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In matrix form this set of equations can be expressed as

! ! = {\ (44)
where the triangular admittance matrix Y of order p is given by
"Yl,l 0 0 0 msswssEs 0
YZ,I YZ,Z 0 0 ===ee---0
30 T3 Yaz 9 -
Y= (4.5)
b4 23 Y ---Y Y
| P, P, 2 p,3 p,p-l PP |

The voltage matrix V and the excitation matrix A in Eq (4.4) are column vec-
tors given by

Vl ’-a
v 0
i (4. 6)
Ni= . & =
: (4.7)
v 0 ’
| P | i © o

Under the assumption that the admittance matrix Y is non-singular (Det Y £ 0,

satisfying the stability criterion (3.27)), the solution of Eq (4.4) is

>

Y-Y'a-

1

(4.8)
Det Y

~
where Y is the adjoint matrix. Solving with respect to the output gap voltage V_,
we find

1 0 B semmesananea v,
--12' 1 1 0 ccemmmmmmcmma 0
"I R A (s 0 (4.9)
------ el e e § 0
Tl M2 "ot gl D

where s, x is given by Eq (3.12). If Vp is divided by Vv, = a/Yl’ 1 Eq (4.9)
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reduces properly to Eq (3.11) as required. After these introductory remarks we
shall turn to the problem stated in the introduction to this chapter, namely that of
lumping consecutive cavities together in groups and considering the composite

set of gaps belonging to each group as one interaction region, as indicated in Fig
4.1. As before, we shall use small letters for indices referring to the sequence
of cavities: 1,2,3, =-- 8, =---(p-1), p, and capital letters for indices referring

to the sequence of cavity groups: 1,2,3, --- 5, --- P,

The decomposition into cavity groups is done by observing that the triangular ad-
mittance matrix Y given by Eq (4.5) can be partitioned into a number of sub-

matrices using the procedure indicated in Fig 4.2. Here, the sub-matrices along
the diagonal are all triangular matrices of orders corresponding to the number of

cavities lumped together in the particular groups associated with the sub-matrices.

groupl group 2 group S group P

Fr—— _ - . S —

Beam (1) (2) (3) (s) (3+1) g (5+q} (P'l)! (P)

I i

! = !

| T
P]TI’ | il

i) = !s, 1 = !p, s 'JI 5,
|
Bp,1 =

Fig 4.1 Schematic drawing indicating the procedure followed in lumping
cavities together in groups
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Fig 4.2 Partitioning of the pth order admittance matrix Y into a number of sub-
matrices of orders less than p
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Corresponding partitioning of the voltage vector V and the excitation vector A

defined by Eqs (4. 6) and (4.7), respectively, gives

—_ - r
Vi Al
Y2 9
Y‘ = = é = E
Vs :
| Yp | 2]

(4.10)

Expressing the matrices Y, V and A interms of their sub-matrices and per-

forming the matrix nﬁultiplica.tion (4.4), we obtain the following set of linear mat-

rix equations:

(4.11)

This set is a generalized form of the set (4. 3), to which it reduces if all the mat-

rices are of order unity.

The general solution of Eq (4. 11) obviously is identical to the solution (4.9) of
Eq (4. 3), if the elements in the determinant are replaced by the appropriate mat-
rix elements. Therefore, the voltage vector V of the Pth cavity group is given

by the following determinant of matrices:

1 0 P
i b LB
Y= |"%Hi Ty + ey
- - - - l
Mo Mg e “2p, P-1
where the matrix
-1

Bs.mr =" ¥ss Zs.m

o

o

(4.12)

(4.13)
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represents the cascade gain matrix between group R and group 5. This is the
generalized form of Eq (3.12) in the single-gap klystron theory. In expanding
the matrix determinant (4.12), care must be observed in multiplying the mat-

rices together in the correct order such that terms with highest indices appear
first. In analogy with Eq (3.13) we find by expansion

P P P
YP=§; Z"‘z p,s. s .5, . ""Ms.,s %s,1 Y1 (4.14)
& B . TP TP TP e
1" 5=l 8p =
Sp.4t]

As examples, the voltage vectors of the four first groups .re given below. The
first one follows from Eq (4.8) rather than Eq (4. 14).

1

Vi =%
LR ]

(4.15)
V3 = (5,10t 15,0 V)

Ve = (M4,3%3,2%2,0 * 24,3%3,1 F Bg,2%2,1 * 1410 Y

This procedure can be continued in an obvious way for P larger than four.

Before proceeding with a further study of the various admittance matrices enter-
ing into Eqs (4. 13) to (4,15) we shall state the matrix equivalents of the electronic
equation (2, 71) and the circuit equation (3.1).

Electronic matrix equation and circuit matrix equation for groups of cavities

The electronic equation

In the matrix formulation the equivalent of the electronic equation (2.71),relating
the complex power Pp extracted by the beam in the pth interaction gap and the
RF voltages V;, V,, === Vp of all the preceding gaps,is given by the following

expression, which we shall speak of as the electronic equation of group P:

P-1

£ LIV g Ly
P27, 'pYprRYrR* 2Vp Ye
R=1

v (4.16)

P ~P

where \7; is the Hermitian conjugate of YP' The quantity Pp is the complex

power extracted by the beam in all the interaction gaps belonging to the Pth group.

The last matrix product in Eq (4. 16) does not depend on any voltage column vec-
tors other than the vector VP of the Pth group itself. The matrix Ye P’ there-
~ ~e,

fore, can be interpreted as the electronic admittance matrix of the Pth group of
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gaps. The quantity

A -
ep = 2 VpY, pVp . (4.17)

represents the complex beam loading power of the Pth group of gaps. By berform-
ing the matrix multiplication in Eq (4.17) it is found that 6; p 18 the sum of
terms proportional to the square of the gap voltages (ordina;y beam loading terms
of the gaps), and terms proportional to cross-products of gap voltages within the
group P (transfer loading terms). In the matrix formulation all these contribute

to the overall complex beam loading of the Pth group of gaps.

Ag shown later, the real and imaginary parts of Q p are determined by splitting
the matrix :_fe Pinto the electronic conductance mat'rix Cre P and the electronic
R}

susceptance matrix Be P
s

Returning to Eq (4.16), the remaining terms on the right-hand side are transfer
terms containing matrix cross-products of voltage vectors Vp and Vp. The mat-

rix Yp go conveniently referred to as the transfer admittance matrix, will be
’

studied in more detail later.

The circuit equation
In the matrix formulation the equivalent of the circuit equation (3. 1) is given by
- A%
tPP = -4V Xc,P!P (4.18)

where pp is the complex power extracted by the beam (the same as in Eq (4.16)),

and the circuit admittance matrix Yc P is a diagonal matrix in which the diagonal
Lt |

e | --- of the gaps forming

elements are the circuit admittances Y s
c c,ptl

s P
the pth group.

Combination of the electronic equation (4.16) and the circuit equation (4.18) re-
sults in the set of matrix equations (4. 11), which were already derived directly

from Eq (4. 4) through partitioning of the admittance matrix Y.

Definitions of characteristic matrix parameters of cavity groups

The general matrix formulation developed in this chapter is formally similar to
the theory of multi-cavity klystrons of Chapter 3 in the sense that the expressions
for the gap voltages V,;, V,, --= Vp (Eq (3.13)) formally are the same as those
for the group voltage vectors V,, V,, --= YP (Eq (4.14)). From the subsequent
evaluation of the appropriate matrix parameters of each cavity group it appears
that the similarity goes beyond these relations. We shall find that the equations
specifying self-admittance, electronic admittance, circuit admittance and trans-
fer admittance in the multi-cavity klystron theory of Chapter 3 all are applicable

in generalized form in the present matrix formulation of klystron theory.
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Self-admittance matrix

Referring again to Fig 4.2, the Sth group of cavities is represented by the square
matrix Yg g located on the main diagonal of the Y-matrix. If the Sth group con-
=S, =

sists of q + 1 consecutive cavities beginning with the sth cavity, we find from

Eq (4. 5) that the self-admittance matrix YS s is a triangular matrix given by

R 0 [P 0 |
8,8
Ys+1,s Ys+l,s+l W g
¥5.8° (4.19)
Y Y L memeeeaa-
L s+q, s s+q, s+l s+q, st+q

The diagonal elements are the self-admittances of the cavities constituting the
Sth group ; the off-diagonal elements are the transfer admittances between the

various gaps of the same group.

Circuit admittance and electronic admittance matrices

Exactly as done in Eq (3.6), the self-admittance matrix Y-S g can be split into
L}

a circuit admittance matrix ‘£c s and an electronic admittance matrix Ye s
» ~E,

g8 ™ Ye;8 * Le,s (4. 20)
where xc,S and :-[e,S are given by
B4  J— 0 o
c,s
0 c,s+1 77 9 &
e (4.21)
L Ommmmmmmmmmmmmes 0 c, s+q
and
b § 0 ~mmmmmmmmmm 0
e,s
Ys-l-l, 8 Enill, e == 0
s R (4.22)
P Ye, s+q
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The elements of the diagonal circuit admittance matrix !c, g are the circuit ad-
mittances of the q+l cavities constituting the Sth group. The diagonal elements
of the electronic admittance matrix Xe, g are the electronic admittances of the
same cavities; the off-diagonal elements are the transfer admittances between

the same cavities.

The electronic admittance matrix Xe g can be split further into the electronic
conductance matrix Ge s and the electronic susceptance matrix Be S by ob-
~e, “ta
serving that Ye g like any square matrix, can be written as a sum of a Hermi-
~ %y

tian matrix and a skew Hermitian matrix.

= oL 1 _ -
!e,S B Z(Xe,s * Ye,S) cl Z(Ee,s Ye,S) - ge,S = J---e,S (4.23)
where ;’: s is the transposed conjugate matrix or the Hermitian conjugate of
»
!e,S'

The Hermitian part of Xe S is the beam loading matrix ge S given by
’ »

r .
* 3 *
G Yss+1‘,_a Ys-i-Z,s . Ya+g,s
e,s 2 2 2
v*
s+l,s G st2,s+1
2 e, s+l 2
1 % Y Y
G ==(Y Y )= s+2,s s+2,841 . (4.24)
~e,5 2'~e,5 "e,S 3 2 > Ge,s+2

Yu+q,a Ys+q, stl .. G
z 2 e, s+q

The skew Hermitian part of Y 4 divided by j is the electronic susceptance mat-
=Ry

rix ge, g+ Biven by

B v* B ] ]
B stl,s st2, s s+qg, 8
e,s 2j 2j 2j
v
_stl,s g .st2,8tl
2] e, s+l 2j

s+2,8 s+2,84l o (4.25)
2j 2j e,84+2 ~====-=-

ol N
ge,S "Z_j(xe,s- Ye,S) =

Ys+q, G Ys+q, s+l B
2j 2j e, s+q _J'

L

Note that Ge g and B, g are not real matrices. Their significance will be
~Ey =y

clearer if the following matrix products are formed:
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P, s = * Vg Ge s Vs (4.26)
[ -

Pos ® ¥V¥58,5Ys (4.27)

where Vg is the voltage vector of group S. It is then found that the real num-
bers Pe s and 25-}; g are the real and imaginary components of the complex beam
L] »

loading power ﬂ! g of the Sth group of gaps. Thus

= ' e = X i
€5 * PestiPes = 2Vg Ye5¥s (4.28)
which is in accordance with Eq (4.17).
In the same way, the product
I R \
€. s =FVsi,s5Ys (4.29)

is the complex circuit power extracted by the g+l cavities forming the Sth group.
Hence

1 ~%
s = Bs* €5 =FVsYss¥s (4.30)

is the sum of the complex circuit power and the complex beam loading power for

the Sth group.

In exactly the same way as the beam loading G_ of a single interaction gap pre-
viously was expressed in terms of the coupling coefficients of the slow and fast
space-charge waves (see Eq (2.70)), the beam loading matrix ge,S can be ex-
pressed in terms of appropriately defined coupling coefficient matrices Iﬁ[; and
Mg, characteristic for the Sth group of cavities. It will be convenient to define

these as line vectors, rather than column vectors

O ot
Mg ™= [Ma Mg =" Ms+q] (4.31)
Mg = [Ms L S Ms+qJ $ (4.52]

Further, we shall need to define a diagonal position matrix I&‘S specifying the

positions of the gaps of the Sth group

4, O© ) e 0'1
4 ‘25+1,1 QpE=ses 0

DR | s s —— (4.33)
° P Aitq,1
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where the diagonal elements are the spacings between the centers of the inter-

action gaps of group S and some arbitrary reference point, here chosen as the

center of the input gap (see Fig 4.1).

Using the definitions (4. 31) to (4. 33) and the definition (2. 67) of transfer admit-
tance, we find that the beam loading matrix Ge 5 defined in Eq (4. 24) takes the

simple form

(4. 34)

which is analogous to Eq (2.70) in the single-gap theory.

From standard theory on matrix functions, the exponential function of the position
matrix LS appearing in Eq (4.34) is equal to a matrix of the same order having
eigenvectors that are the same as those of {-"S' and eigenvalues that are related

to the eigenvalues of I-‘-'S by the same exponential function.

Hence

- iB L 7
e © Al 0 T 0
i L
e atl; 1 0 comemmmeem 0

B Lg
(3] =

.................................. (4.35)

[ 0 =mmmmmmeee e e‘lﬂe!’s+q,l_

As in single-gap theory, it does not seem possible to express the electronic sus-

. & -
ceptance matrix B, g asa simple function of the matrices Mg and Mg-
]

Transfer admittance matrix

We shall next consider the transfer admittance matrices represented by the off-
diagonal matrix elements in the Y-matrix in Fig 4.2. In contrast to the self-
admittance matrices, these are not necessarily square matrices, except in the
special case that all the groups 1,2 --- §, --- P have the same number of cavi-
ties. If, as before, the Sth group consists of g+l cavities, and the Rth group of

k+l cavities, the transfer admittance matrix ZS R evidently is given by
2
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Ys,r Ys,r+l """"" Ys’r+k
Yerl,r Yatl,rel 777770 ¥kl ek

1‘[S.R & Ya+2,r Ys+2,r+l """""" Yg+z’r+k . (4. 36)
L_Y5+q-r YS‘HL rél T Ys+q, r+k

The matrix elements of gs’ R 2are the various transfer admittances between the
gaps belonging to the Rth and the Sth group. The transfer admittances between
gaps belonging to the same group are contained in the electronic admittance mat-
rix (4.22) of that same group. Again using Eqs (2.67) and (4. 31) through (4. 33),

we find that Y

Is R can be expressed as the following matrix product:
L

18 ks okn

(4.37)

—
XS,R = wA(e R €

The relation expressed in Eq (4.37) is the matrix equivalent of Eq (2.67) in the
single=-gap theory.

Gain and optimum spacing of two cascaded identical multi-cavity klystrons with
common beam

As an example of the type of problems that lend themselves to solutions by the
matrix formalism,we shall study in some detail a relatively simple cavity confi-
guration, namely that of two cascaded identical groups of cavities, as illustrated
in Fig 4.3. The identical groups, each consisting of g arbitrarily tuned and
spaced cavities, are located a distance L apart and the gaps traversed by the
same beam. As before, let Y-l and V, be the voltage column vectors of groups

1 and 2, respectively. Noting that the self-admittance matrices 1‘1'1. 15X =Y,

5T !
we obtain from the first two equations of the set (4.11)

=i

v, = ¥ él (4. 38)
vo = -y 1y, v.=-yly yla (4. 39)
V2 ¥ Laaki Y ik :

where the self-admittance matrix Y is given by Eq (4.19), the transfer admit-

tance matrix Y, ; by Eq (4. 36) or (4.37), and the excitation vector A, by Eq
»

(4.7), i e
’-a B i 1-|
0 0
A= 0 =a 0 (4.40)
0 0
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In Eq (4. 40) the absolute value of the only non-zero element a, defined in Eq (4. 2),
is proportional to the square root of the input power P..

! q . E, &l
| | |
Vi V2 V3 ¥ Var1  Vqrz Vo3 |qu
eam () (V) N N
—— PR — RE——
U U U U U
By By Py ®q | o o wg
Input 1st group 2nd group Qutput

Fig 4.3 Sketch showing the configuration studied in the text, consisting of two
identical cascaded groups of cavities spaced a distance L apart

The matrix equations (4. 38) and (4. 39) express the various voltage components
of the vectors Vi and YZ in terms of the quantity a, i e the square root of the
input power Pi' In particular, the relations between the gap voltages qu and
Vq of the last cavity in each group can be established in an obvious way by evalu-

ation of the matrices ‘_I.-l and !'1 Y Y-l (for calculation of the ratio qu/vq

2,1 =
it suffices to know the first element in the last line of each of these matrices)

We shall next proceed to evaluate the optimum spacing L between the two groups,
defined as the spacing that maximizes the gain of the composite structure. Dur-
ing this optimization the configuration of each group, including gap spacing, tun-

ing, etc, is not changed.

If we define a column vector § by

o o

s = , (4. 41)

..

[ ]

the gap voltage qu of the last cavity is given by the matrix product

Vg = 5 Y (4.42)
where S is the transpose of S. Using Eq (4. 39) we find
= e=1
Vag = S ¥ Y, Y (4.43)

In this equation the transfer matrix !2 | is the only matrix depending on the group
L
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spacing L. Since maximization of qu with respect to L thus involves only

this matrix, it is convenient to introduce a new line vector R by the equation
R = -5 ¢! (4.44)

whereby

Yoq = B2 ¥ (4.45)

1 ~1

Evaluation of Y, , from the general formula (4.37) yields

_ 1 ’jﬂei-'-‘z ~ 3 jseI:I
}_’2’1 = - W A(e M5 M, e (4.46)
Noting that M, =M, =M and L, =L, + L1, where 1 is the unit matrix, we
find
-jB L -8 L., . -6 L,
¥21 --%A(e e” e lM*lxle e (4.47)

Expansion of the expression in the parenthesis by means of the difference opera-
tor A yields

-iB L -8 L, ., 8L
"52’1 =e ° [--&; coaﬂqL A(e o=l *Igle = 1)

p -jp L, . jB L
+‘v'iv' sin g L é(e el fmM e e“l)] (4. 48)

The first term is recognized as the beam loading matrix ge defined in Eq (4. 34)

-iB L, - ip L
G, = -ﬁ A(e ® lM"l‘\ge e=~l (4. 49)

Furthermore, defining a mean square coupling coefficient matrix by the equation

- 3B Ly ~,  IBL
yzzs[e e IM*!:{e e~l (4. 50)
we find that Eq (4. 48) reduces to
-jBeL |
22,1 = a [de cos SqL o M sin BqL] (4.51)

In the single-gap theory Eq (4.51) has its equivalent in Eq (B. 9), Appendix B.
The matrix MZ is equivalent to the mean square coupling coefficient MZ defined

in Eq (B.10).

Substitution of Eq (4. 51) in Eq (4. 45) yields
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=3 gel_, o
: 2
Vo = € R [z(_:e cos B L+ % M sin ﬂqL] Y, (4.52)

where now sin Bql.. and cos BqI.. are the only terms that are functions of the group

spacing L. Forming the complex conjugate

~

Y P L -4 (M) R*

2q 1 e co8 B L -17(M7) sinp LR (4.53)
: £ 4

and multiplying qu by qu, we find

—— - ~ =)= o
+ R [zge Y, V9 - Aty v*(MZ) ]R"coa(zaqL) (4.54)

The optimum value of ﬂqL , making IVZq|Z an extremumn, is determined by dif-
ferentiation. We find

2
dIV | 1 - =)=
2 " oy ~ ~
—9 _ -2 sin (28 L) g[zgey_l Y16, ~—3 ~z‘-‘f1 vi (MZ) ]H" =0  (4.55)
d(ﬂqL) 2W
For convenience let us write
2

a|Vvyl 5

— 29" - .24in(2p, L)RTR® = 0 (4.56)

d(g L) %

q
where the Hermitian matrix T is given by
oy 1 2 " =5\
T =2G VY, VIGs - — MV, VI M (4.57)
ZW

Equation (4. 56) is solved by sin (2 5qL) =0, ie

ZBqL = nmw n=1,2,3 -== (4. 58)

Whether this condition yields maximum or minimum is determined by forming the
second derivative
2
dzlvg | ad
—=35 = -4cos(2B,L)RTR =4(-1)""'RT (4.59)
g/ %= =
d(BqL)

The sign of the second derivative thus depends on the sign of the matrix product
RT R* and on the even or odd character of the integer n. We shall list the two

possible cases without studying the matrix product in detail. The second deriva-
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tive is negative, corresponding to a maximum of ]qu | 353
a) RTR® >0 and =1 = 2k, k=1,2,3 --- (4. 60)
Optimum spacing and output voltage are given by
Bl = km (4.61)
lvqufnax = 2RG, Y, VFErR" (4.62)
b) 5:1_‘"* <0 and n=2k+1, k=1,2,3--- (4.63)
Optimum spacing and output voltage are given by
Bl = (2k+ 1)% (4. 64)
|v‘,_q|2 = LR M2 v, v (;2)* R* (4. 65)
max w

The question whether case a) or b) applies cannot be decided without a closer
study of the matrix product R Ii* In the special case that each of the groups
consists of one cavity only, the configuration degenerates to a simple two-cavity
klystron, and the matrix product RT R™ reduces to VlV’f'i (™ -6t™) where

W and E are defined in Eqs (3.38) and (3.39). In view of Eq (3. 42) the difference
e - ¢ gﬂ is always negative and the optimum spacing is therefore equal to

kw + n/2 as specified by Eq (4.64). This is in accordance with well-known re-
sults from simple klystron theory.

In the general case, however, the matrix product R T R™ can be either positive
or negative. The optimum spacing is therefore either kw or kw + w/Z depending

on the detailed arrangement within each cavity group.

Alternate matrix formulation

The matrix formulation used in the theory developed in the preceding sections
has been built on the set (4.3) of linear equations in the RF gap voltages

Vl , VZ' --=- V . It will also be useful to consider an alternate description based
on Eq (3.24) which, as we remember, resulted from taking suitable linear com-
binations of the set (3.10) or the equivalent (4.3). Rewriting Eq (3. 24) in terms
of RF gap voltages, we obtain the equation



- 96 -

E 0 0 0 0 —mmme o] [v,] [¥]
2,1 - 0 0 [ JREme— 0 v, 0
13 'l3,2 -1 0 0 -==cmm== 0 F s
0 Sy, T, -l R 0 <= (4.66)
0 0 55 T5 -] cmmmm—aa 0 s .
e 0 s T -1 v 0
P P | P

which can be written

g ! = - é (4.67)
X
1,1

where the column vectors V and A are the same as those in Eq (4.6) and (4.7),
and U is the triangular matrix on the left. Exactly in the same way as done pre-
viously, the matrices U, V and A can be partitioned in the manner indicated by
Eq (4.68).

- : L] ] - 1 - — - -
YGhat 2 19 {01 ! 2 vi o |
baint NG s I SO I | It AR
! A A :
Uaa) Yaz) 8 18 ¢ == 10 % 9
----- | ST F——— EpEt el g Sy - - - -
: ' ' ' "
9 ) My piHaal & ¥ == 1 4 ¥s 0
..... Wbt St Wl SN et | Mihos V| eeeee| (468)
1 ] 1 o —
2§ 0 i%ai¥e = 18 Y4 Y, 4| 2
] ] 1 ] ] ]
B e T Fomm———— pmmme |- -———
1 ] 1] ] ]
1 1 ] ] 1
1 ] 1 1 ]
..... AU TR SR SUROUUN U | R S
] ] 1 L} ]
] 1 ] ] ]
1 1 1 1 ]
[ SR - pR R TG SRSy pe——— || RS I
] [} 1 ] ]
] 1 1 1 ]
= 1 = ' ' :-P,P-ll'gP,P ~P ~ J

The partitioning shown in Eq (4. 68), in which the only non-zero off-diagonal ele-
ments are of the form gS,S-l , is possible only if each group contains two or
more cavities. The trivial case of one cavity in each group is of course repre-
sented by the original Eq (4. 66).

Of the sub-matrices in Eq (4. 68) the matrices along the diagonal are all square
matrices of orders corresponding to the number of cavities in the associated
cavity group. The off-diagonal matrices are in general rectangular, but reduce
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to square matrices if all the groups contain the same number of cavities.

Performing the matrix multiplication in Eq (4. 68) we obtain the following set of

matrix equations:

¥a,1 % =3
Y11
Ba 1Y ¥ gl =0
(4.69)
Us2¥z * Ug,pds = ?
Yis¥s * Uy aly =0
U + U = 0

Up, p-ilp.1* Ip,pYp

We see from this that any two consecutive voltage vectors XS-I and VS are re-

lated through the following first order matrix difference equation, or recurrence

formula:

PseiVei * Has¥s ™ 0 s >2 (4.70)
Or

Yg = 25 Y5 b&TH

where the group gain matrix Qg is given by

=1 .
= - Ed
gs = - Ys,s Us,51 w8 (4.72)
a 1 -1
@ =Y - Ui A (4.7
(|
The difference equation (4.71) evidently is solved by the matrix product
¥p *%p Bpa, =~ Bs " 2sda i (4.74)

This formula is useful in that it is in cascade form, i e the overall gain is ex-
pressed as a matrix product of the 'group gains'. We shall later take advantage
of this property for evaluation of the gain of periodically stagger-tuned multi-

cavity klystrons.

Matrix parameters in the alternate formulation

The partition matrices 95 5 and US S-1 of the matrix U in Eq (4.68) are
’ Iy A -
given by the expressions below. Again we assume that the Sth group contains

g+l cavities, of which the first is the sth cavity.
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< 0 0 " R— 0
: PR 0 | R 0
Sgp2 Tz L e 0
gs,s = (4.75)
0 Sa+3 Land ol s 0
K " S By Tyiq -1 |

where the elements Sg and T_ are given by Egs (3.21) and (3. 22) for values of
s equal to or larger than four. For s smaller than four the corresponding ele-
ments are obtained directly from Eq (4. 66).

8 ="M4.1

Ty =M, , (4.76)

If the groups S and S-1 consist of g+l and r+l cavities, respectively,
gS §-1 is an r+l by g+l rectangular matrix given by
»

8 0 00 Oseessss
0 0 0 S, T, ]
0 0 0 ~=m=cus 0 - .
Us.s.1=| 0 0 | JyE—— 0 0 (4.77)
o 0 0 =ven=- 0 o

Periodic stagger-tuning

If we take advantage of the mathematical apparatus developed in this chapter, the
analysis of periodic stagger-tuning is straight forward. Although this problem
can be analyzed using the scalar difference equation (3. 34), noting that the co-
efficients in this case are periodic with respect to the variable p, the matrix for-
mulation derived in this chapter simplifies the analysis considerably. It turns out
that the periodic stagger-tuning is represented by a matrix difference equation

with constant coefficients, the solution of which is a linear combination of one grow-

ing wave and one attenuated wave, quite analogous to the results obtained in Chap-
ter 3 for the case of synchronously tuned cavities. If the periodic tuning pattern

is repeated sufficiently many times, the attenuated wave obviously can be neglected
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and the increase in voltage gain per period will be constant. We shall analyze
the problem using several slightly different approaches which lead to solutions

that are all equivalent but differ in their mathematical form.

The situation which we shall study is shown schematically in Fig 4. 4. Each of the
P identical groups consisting of g+l cavities has the same stagger-tuning pattern

characterized by the resonant frequencies ©;, w,, --—wq+1.

|
ey

l Yl ! YZ YP
sam (1)) N N
% 92 g4 g{ ® %41 % % ®g+1
lst group 2nd group Pth group
Input Output

Fig 4.4 Details of the periodic stagger-tuning analyzed in the text

Matrix cascade gain formula

Using the approach shown in Section 4.6 for the special case of identical groups,
i e periodic stagger-tuning, we have that the group gain matrix ag defined in
Eq (4.72) is independent of S.

By = %y = ~—8py =9p =% | (4.78)
It should be noted that @, is different from the other a's if there are only two
cavities in each group. This is a minor detail, and if we assume g2 2, we also
have @, = @. Hence, Eq (4. 74) reduces to

P-1

Yp =2 V) (4.79)
where @ is a square matrix given by the matrix product in Eq (4.72). In Eq
(4.79) each of the RF gap voltages within the Pth group is expressed as a linear
combination of all the RF gap voltages in the first group.

We shall next present an alternate formula, in which the gain per group is given

by a scalar rather than a matrix.

Gain in terms of growing and attenuated waves

Let us consider the first-order matrix difference equation (4.71). We shall show

that the difference equation has particular solutions of the form
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Vs = k¥Vg ) s22 (4.80)

where k is some scalar constant independent of S. Equation (4.80) can also be

expressed in a different, but equivalent way

P-1
Vp = k ¢ P21 (4.81)

where Q is some constant column vector independent of P.
Substitution of Eq (4. 80) in Eq (4. 71) yields

a Vg = kV (4.82)

which is an eigenvalue equation, k representing one of the g+l eigenvalues, and

Y—S the associated eigenvectors. The equation can also be written

(@ - k1) Vg =0 (4.83)

where 1 is the unit matrix, This homogeneous system of equations has non-

trivial solutions only if

Det(a -k1l) = 0 (4.84)

The qt+l eigenvalues k are determined by this algebraic equation of order q+l.
It turns out that the equation is degenerate because only two of the k’s are dif-
ferent. This is most easily shown by expressing Eq (4.84) in a slightly different
form, obtained by premultiplication of Eq (4. 83) by the square matrix QS,S de-
fined in Eq (4.75). Instead of Eq (4.84) the following equivalent determinantal

equation is obtained:
=1 | _
Det (k Qs,s-l + gS,S) =0 (4.85)

By means of Eqs (4. 75) and (4.77) this determinantal equation can be written in

the form

T -1 0 0 R xls
s 5

Set1 Tayp =1 ¢ Qosminams = &
0 Setd. Tepz "L e g

=0 (4.86)

O i i == 53+q-—1 s+q-1 =t

"k Bl st e 0 Sg+q Ts+q

Because of the degeneracy the factor k appears only in two of the elements. A

little consideration shows that the expansion results in the following second-order

equation for k:
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8+q

S iTl' ('Si) -D =0 (4.87)
=g

where D is a determinant obtained from Eq (4.86), replacing by zero the two

elements containing k.

T. -1 0 0 mmeemmm 0
Sga1  Tewtr -1 0 -=--mmmooe- 0
D = " Suz Tu+2 =1 -emmoomem- 0 (4.88)
g Sa+q-1 s+qg-1 -l
0 B moracem e B ss+q Ts+q

Solving Eq (4.87) with respect to k, we obtain the two values kI and kZ. satis-
fying Eq (4.80)

ky .  otg S
- l_(?) - (‘Si)J (4.89)
A 1=8

N D

k

The general solution of the difference equation (4.71) is a linear combination of

the two particular solutions:
Vp = kF1 e + k7710, P21 (4.90)

where the unknown column vectors QI and QZ must be chosen such that Eq (4. 90)
satisfies the initial conditions. Substitution of vV, at P=1 and Y, at P=2

in the equation gives two linear equations in 1)1 and ?2_. Expressing these vec-
tors in terms of V, and V, and substituting in Eq (4. 90), we obtain

1 P-1 P-1
g [(Y.z “lV) kT - (Y -k Yg) K :l £l (4.91)

The analysis done here serves as a simple proof of the equivalent of Floquet's
theorem (25) known from the theory of differential equations with periodic coeffi-
cients. Equation (4.80) or the equivalent (4.81) is Floquet’s theorem in matrix
form for difference equations with periodic coefficients, stating that particular
solutions can be found with the property that two values of the dependent variable
taken one period apart differ by a constant factor only. In the theory of differen-
tial equations the determinantal equation has an infinite number of terms (Hill’s
determinant). The present theory shows that for difference equations the order
of the determinant is equal to the number of terms in the period, and its evalua-

tion is therefore correspondingly simpler.
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The matrix equation (4. 91) holds for any of the corresponding q+l scalar com-
ponents of YP’ V5 and }_’1. The analysis of synchronous tuning in Chapter 3 re-
sulted in the analogous equation (3. 47) which expressed the solution as a sum of
one attenuated and one growing gap voltage wave with gain per stage equal

and a, for the two waves, respectively (see Eq (3. 46)3). In the prese:t ant:ly:ils
of periodic stagger-tuning, the solution (4.91) is also expressed as a sum of two
waves with gain per period equal to kl and kz. It will be shown below that also

in this case one wave is attenuated and the other growing. We have from Eq (4.87)

st+q
k k, = i‘l;]; (-s,) (4.92)

In evaluating the product on the right-hand side we shall assume, for simplieity,
that the coupling coefficients for all the gaps are the same, i e M: = M; ---
and M) =M, ---, This assumption also implies that the beam loading is the
same in all the gaps. In this case the coefficients 5; and T, are obtained by

comparison of Eq (3.23) with Eq (B.11), Appendix B. We find

-jp. L. . , sinp L. . Tor o 2G

Si = -e © i,i-2 . q-i,i-1 i-2,i=-2 (1 _ __e_‘._) (4.93)
sinpobin,i-2  Yii Tid,i=2

o - 1 sing L. .~ X, . G

L = 2e  €1,1 l(z qi,i-2 iwlsd-1 e coquti -
Ha Bl i T Yii
. MZ -
= JW amﬁqli’i_l) (4.94)

Evaluation of the product in Eq (4. 92) by means of Eq (4.93) yields

5 +q
-jp 2L ® 2G
Kk, =e ¢ T (1- ——“-) (4.95)
AT Tie2,502

where L is the periodic length. For zero beam loading, G_ = 0, and the expres-

sion simplifies to

ey | Ixy | =1 (4.96)

Even with Ge slightly different from zero, the product of the absolute values of
k1 and kz is of the order of unity. Since k, is the larger of the two, and the
overall gain per period is large if the period includes several stages, we must

have

|, | > 1, Ik | «< 1 (4.97)

It is therefore entirely justified to neglect the attenuated wave compared to the
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growing wave. For P 22 the gain is thus given by the growing wave in Eq (4.91).

1
" igow Y-k Yk

P-1
2 L

P22 (4.98)
Since the gain per period presumably is considerably larger than unity, we must
have that V,>>V,, and in view of Eq (4.97), fkll << 1 and Ikzi >> 1, There-

fore, Eq (4.98) can be simplified further by introducing the approximations

V, -k, V, = V
¥ Al ~2 (4.99)
k, -k =~ Kk
yielding
P-2
Yp = V, k, s P22 (4.100)

Thus, the increase in gain per period of a periodically stagger-tuned multi-cavity
klystron is constant and equal to k,, which can be found from Eqs (4.88) and (4. 89).
For a klystron with several stages in one period, ln(2 necessarily must be relative-
ly large, permitting the following approximation of Eq (4.89)

k) =0 (4.101)

kZ = D
where D is the determinant (4.88), whose elements are given by Eqs (4.93) and

(4.94) for arbitrary resonant frequencies of the q+l cavities in the period.

It must be expected that the formulae derived here for periodic stagger-tuning re-
duces to those derived in Chapter 3 for synchronous tuning, if in Eq (4.88) we put
T, = Topj 5= Ta+q =T and Ss+1 = Sa+2 = --- Ss+q =S5. Since each period has
q+l cavities or q stages, the quantities appearing in Eqs (4. 90) and (3.47) must
in this special case be related by the following equations :
-j9q q
k, = e a (4.102)

k, = e 9 a (4.103)
Rather than proving these relations rigorously, we shall only show that the last re-
lation is satisfied if the gain per period is large. In this case we found that
kz-u D >> 1, Furthermore, for the synchronous case the determinant D in Eq
(4.88) evidently satisfies the following recurrence formula

Dq+l - TDq - SDq-l =0 (4.104)
which is identical with the difference equation (3.23), or rather (3.43). Under the
assumption stated above, kZ ~ D >> 1, the complete solutions of either equations
are approximated by the larger of the two particular solutions. Since Eq (3. 43)
is solved by Eq (3.44), the relation (4.103) is proved.
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GENERAL GAP THEORY OF EXTENDED INTERACTION REGIONS

Introduction

The small-signal multi-cavity klystron theory developed in Chapters 3 and 4 is
based on a formalism in which the RF current and velocity modulations on the
beam are not appearing explicitly in the various expressions for klystron gain.
Instead, the propagation of the signal from gap to gap is expressed in terms of
appropriately defined self-admittances and transfer admittances representing
the beam coupling between the various gaps. Mathematically this formalism is
simpler than the more direct approach based on a description in terms of the
beam modulations. For a thorough physical understanding, however, it is also
useful to study the modulation phenomena taking place in input and output regions
of the general types considered in this report.

The analysis carried out in the present chapter will be concerned mainly with the
two following subjects:

a) The small-signal RF current and velocity modulations imposed on a beam
traversing an extended modulation region of the general type considered in
this report

b) The excitation of a general cavity gap by a beam with specified current and
velocity modulations

Both of these subjects can be analyzed by means of some of the results derived
in Chapters 2 and 3. The results arrived at in this chapter serve as a further
illustration of the previously discus sed differences between the present theory and
the less complete cqnventi.onal narrow-gap klystron theory, arising from the neg-

lect of space-charge forces and density modulation in the gaps.

We shall find in the general case that the interaction region can be represented

as a non-reciprocal two-port, in which the terminal excitations are the beam cur-
rents and kinetic voltages at the input and output cross-sections of the gaps.
Furthermore, we shall find that the two-port is reciprocal only if the beam load-
ing Ge vanishes, in which case the two-port can be represented by a passive,
reciprocal network consisting of transmission-line sections and lumped resonant

circuits.

Launching of space-charge waves by extended modulation gaps

The situation which we shall first study is shown schematically in Fig 5.1, and
applies for instance to the input gap of a klystron. An interaction gap of arbitrary
length and with arbitrary longitudinal RF field distribution is traversed by a beam
having zero initial kinetic voltage and current modulations at the input cross-

section of the gap, i e at the position x = - 2/2.
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The modulation imposed on the beam due to the longitudinal RF gap field can be
found from Eqs (2.54) and (2. 55), setting p=1 and I(0) =U(0) = 0. The modu-
lations at some position beyond the gap region, x 2 /2, are given by

-ip_x
vs‘l:e N M(ﬂe)] (5.1)

-ip x
- % A[e = M(Be)] (5.2)

U(x)

I(x)
where V is the RF gap voltage defined by Eq (2. 50) or (2. 52), and M( 56) is the

gap coupling coefficient defined by Eq (2. 53).
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Fig 5.1 Modulation of a beam in a single extended interaction gap

If we rewrite Eqs (5.1) and (5. 2) using the definitions (2.38) and (2. 39) of the

sum and the difference operators ,d and A, we obtain

-jBx ¢ _ iB* -ip_x
U(x) = %e - (M e 4 + Mte 4 ) (5.3)
{
-Jhixy . JB -iBx
I(x) = E‘%e . (M Sl mte @ ) (5. 4)

where M' and M~ are the coupling coefficients of the slow and the fast space-
charge waves defined in Eq (2. 58). In general, the coupling coefficients are com-

plex, and if we write

i +
ArgM
+ = M+eJ 8

il . (5.5)
M~ = M_ e e T (5.6)
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+ -
where Mo and MO are absolute values, we find

3 B +,2 -2 7
() U™ = VVE M)+ (M) s 5 _
= + MM cos (2B x-ArgM’ + ArgM’) (5.7)
2 e 2 q !
2 [, 4.2 -2 7
I(x) I(x)* = VM) + (M) -MYM” cos (28 x-ArgM’ + ArgM”
Py s oM, * rg rgM ) (5.8)

As shown in Fig 5.1, the periodically repeated maxima of |U(x)| and minima of
|Ax)| occur at the positions for which the cosine term in Eqs (5.7) and (5.8) is

equal to plus one.
ArgM' - ArgM”
B x=km + i k=0,1,2,3 -==- (5.9)
q 2
The minima of |U(x)| and maxima of |I(x)| are shifted m/2, occurring at
ArgM+ - ArgM~
x = (k+3)m + ——-—-3-—2 , k=0,1,2,3--- (5.10)

The maxima and minima are given by

M+ M

06N paxe = VI — (5.11)
U e = 1V Mo~ Mo (5.12)
10l oy = %‘Mz;M; (5.13)
116 i = I%I M+;M;| (5.14)

The launching of the fundamental pair of space-charge waves on a stream by a
single modulation gap is fully described by Eqs (5.1) through (5.14). Comparison
of the general results derived in this analysis with conventional narrow-gap klys-
tron theory brings out some important differences which are due to the fact that
the latter operates with only one coupling coefficient. Unless Mt =M" , corres-
ponding to zero beam loading (see Eq (2.70)), the two space-charge waves are ex-
cited with different amplitudes, and the space-charge standing-wave pattern behind
the modulation gap is characterized by the fact that the velocity modulations or the
current modulations of the two waves never cancel completely, but leave resulting
minimum modulations proportional to the difference between the coupling coeffi-
cients. This, of course, is in accordance with power conservation principles for
longitudinal beams, discussed in Section 2.7. It should also be noted that two dif-
ferent modulation gaps, one with positive beam loading, M > Mt & and the other

with negative beam loading, M: > Mo' can launch space- charge waves having
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jdentical space-charge standing-wave patterns. In the first case the net kinetic

energy flow is positive, in the second case negative. A knowledge of the standing-
wave patterns of I(x) and U(x) is therefore not sufficient for a complete specifi-
cation of the space-charge waves. In addition, the sign of the net energy flow

must be known.

If we imagine that the standing-wave pattern is extrapolated back into the modula-
tion region, a correct representation is obtained by assuming an infinitely narrow
hypothetical gap located near the center at the position corresponding to k =0 in
Eq (5.9). This hypothetical gap, then, imposes a velocity modulation given by
Eq (5.11) and, in addition, a small current modulation given by Eq (5.14). The
current modulation is neglected in the conventional narrow-gap klystron theory.
For narrow gaps the approximation involved is, of course, quite small, because

the two coupling coefficients are approximately equal.

Nevertheless, the fact that for non-zero beam loading the periodic minima of the
fundamental space-charge modulation are never zero is worth while noticing in
some types of experimental work involving exploration of space-charge waves by
sliding a cavity along the electron beam for measurement of the standing-wave
pattern. Obviously, great care should be observed in drawing any conclusion as
to the cause of observed non-vanishing minima, because these may be due partly
to the effect described above arising from non-zero beam loading of the modula-
tion gap, and partly to higher-order space-charge modes launched on the beam

in addition to the pair of fundamental space-charge waves discussed in this report.

Characteristics of modulation gaps with coupling to one of the space-charge
waves, Fast-wave cavity couplers

We shall here discuss the special situations arising when one of the two coupling
coefficients M’ or M~ vanishes. If M" is zero and M~ different from zero
we obtain a case of considerable practical interest in connection with low-noise
beam parametric amplifiers based on fast space-charge wave interaction (24).

The modulation gap then serves as a fast-wave coupler, exciting only the fast

space-charge wave. From Egs (5.3) and (5. 4) the kinetic voltage U(x) and the

current I(x) excited by a fast-wave coupler are given by

U(x)” = %M- e-j(ﬂe-ﬂq)x (5.15)
-j(B_ =B )x
I(x)" = %1 M e ie, a‘l) (5.16)
or
U(x)” = W Ix) | : (5.17)

which has the characteristics of a pure traveling wave in which the current and

the kinetic voltage are in phase everywhere. The positive beam loading of the
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gap launching the fast wave equals the positive RF kinetic power P carried in
the forward direction by the fast wave.

P* o= swrI'r™ = L M *yy™ (5.18)

1
2 8w
Conversely, if M~ is zero and m* different from zero, the gap is a slow-wave

coupler exciting the slow wave only. In this case the modulations are given by

-ie.+8,)
u(x)t = {-M" e e Qg" (5.19)
. -iB_+B_)
x)* = E—%M*e e Fq’* (5. 20)
or +
ux)t = - wix) (5.21)

The wave launched by this slow-wave coupler also is a pure traveling wave in which

the current and the kinetic voltage are in opposite phase everywhere. The nega-

tive beam loading of the gap equals the negative RF kinetic power P+ carried in

the forward direction by the slow wave.

1 + o 1 LW s e
= - W I = -—M v %
P 3 I W M v (5.22)
Evidently both fast and slow-wave couplers can be realized using extended-inter-
action cavities for which either M or M~ in géneral can be made zero by proper
choice of DC beam voltage. In order to see this, let us assume that the Fourier -
transform of the longitudinal electric field, i e the gap coupling coefficient M(Be)
defined by Eq (2.53), is zero at ﬁe = Be pe By a slight increase in beam velocity,
as specified below, we obtain:
+ /
M = M(ae+aq) =0 ‘
i for B, = B By (5.23)
M™ = M(B,-8) ¥ 0

In this case the gap acts as a fast-wave coupler. On the other hand, a slight de-
crease in beam velocity, as specified below, leads to the following relations:
M™ = M(p -Bg) = 0

far B, = B, _*+B (5.24)
i - e,0 "q

M = M(B +8) £ 0

In this case the same gap acts as a slow-wave coupler. Examples of such couplers

with sinusoidal RF field distributions are given in Section 5.12. 2.

For efficient operation of a fast-wave coupler of the cavity-type discussed here,
the signal generator would have to be appropriately matched to the coupler such
that reflections would not occur, If this matching condition is satisfied, the input
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cavity serves as a perfect coupler between the generator and the beam. In the
ideal coupler all the input power Pi is transferred to the fast space-charge

wave on the beam as shown schematically in Fig 5.2. Ina practical coupler

some small fraction of.the power would be dissipated as losses in the coupler
itself. The required optimum coupling is readily determined using the general
equations derived in Section 3.11, relating the unloaded cavity Q, the external

Q, the characteristic impedance Rsh/Q , and the electronic conductance Ge'

For a coupler with loss, the optimum coupling for perfect match between the
generator and coupler is specified by the following relation derived from Eq(3. 82):

R, 1 1
( ) G, = - (5.25)
Q Qext Q

The input power P; is divided between circuit loss Pc and beam loading power

P~ transferred to the fast space-charge wave. The ratio between these is given

by

P Q 1
£ o o2 . (5. 26)
P Q-Qext RahGe

For an ideal lossless coupler the ratio PC/P_ is zero. This situation evidently
is approached if the beam loading conductance Ge is considerably higher than
the unloaded circuit conductance l/Rsh. In this case Pi =~ P~ if the external Q

is adjusted to its optimum value given by

1
Q = Q ] ——e—— (5.27)
ue - Ge(Rh/Q)

Resonant cavity with
/no internal loss

/ M+=0, M-£0
o o

Beam

\lnput transmission
line

o)

Fig 5.2 Schematic diagram of the power relationship in an ideal fast-wave

coupler of the cavity-type characterized by M; =i0, M; £0
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All the input power P, is transferred to positive kinetic power P~ associated
with the fast space-charge wave propagating on the beam :

P " ms P, = — M M™yyv* (5.28)
The kinetic voltage U(x) and the current I(x) of the fast wave excited by the

coupler are given by Eqs (5.15) and (5. 16), respectively.

Excitation of an extended-interaction cavity by a modulated beam

We shall here study the converse problem, namely the small-signal excitation of
a cavity by an electron beam modulated in the fundamental space-charge mode.
The configuration to be studied is shown schematically in Fig 5.3 and may, for

instance, refer to the output cavity of a klystron.

The RF kinetic voltage and current modulations at the input and output cross-

sections of the gap are U1 . Il and UZ i IZ , respectively.

je———— Gap length £ —
I I

Modulated beam
e

Uz

2

I

l ‘i
—_—
Ena.x } /,

U, 7
(b s |
s
|- S< ' P
I // Sso |

Uinin I ~~L_—-

Fig 5.3 Excitation of an extended interaction cavity by a modulated beam

Again using some of the results from Chapters 2 and 3 we shall determine :

a) The induced RF gap voltage V in terms of the input modulations U; and I,
or some suitable linear combinations of these

b) The output modulations U,, I in terms of the input modulations U, and Il

The last relation determines the two-port matrix of an interaction gap of the gene-

ral type analyzed here.
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From Eqs (2.71) and (3.1), setting p =1, we cbtain the following relation between
the induced gap voltage V and the input mcdulations U1 and Il :

vV = - -,1;. [I1 S(M* e-jﬁez/a)- % A(M" eqjﬂej/z)] (5.29)

Rather than expressing V in terms of the input modulations Il and ‘[.T1 we shall
rewrite V in terms of the modulations I(x) and U(x) at the arbitrary position x.
This reference position can be chosen either outside or within the interaction re-
gion, if in the last case I(x) and U(x) are the original modulations that would
exist on the beam if the irlte.raction region were removed. The transformations
from I, and U, to I(x) and U(x) are simply affected by means of the relations
expressed in Eq (2.54) and (2. 55) for the special case that p=0 (pure drift action).

We obtain
vV = - % [I(x) é(M*ejﬁex) . %ﬁ A(M*ejﬂex)] (5.30)

where x as before is measured from the center of the gap. In Eqs (5.29) and
(5.30) Y is the self-admittance of the cavity, i e the sum of the circuit admit-

tance Yc and the electronic admittance Ye i

If the cavity is moved axially along the beam, the induced gap voltage V will
vary periodically with x in accordance with the periodic modulation U(x) and
I(x) onthe beam. The fact that the induced gap voltage V is a linear combina-
tion of both the current I(x) and the kinetic voltage U(x), rather than being a
function of the current alone, has some important implications, which we shall
discuss in the following. In this discussion it will be convenient to let x refer to
one of the positions for which the current is maximum (or the kinetic voltage is
minimum) as shown in Fig 5.3. We shall then have to put I(x) = Imax and

U(x) = U in inEq (5.30), For evaluation of the induced voltage V it will be use-

ful to state some relations between I I : 3 B and Umin that follow

max’ “min max
immediately from Eqs (5,3) through (5. 14)

|ul (5.31)

w | 1]
max max

lul

u

. w lI|min (5.32)

If the amplitude of the fast space-charge wave exceeds that of the slow wave, we

have

3
Re (Imax Umin) =W IIIma.x Illmin (5.33)

In the opposite case, if the slow wave dominates,

* —_—
Re(I . U». ) = -w 1] e L (5.34)
In both cases
3¢ *® =
Im (I a.xU i) = Im(I inU ax) =0 (5. 35)
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Multiplying Eq (5. 30) by its complex conjugate and using the relations above, we

find after performing some algebraic manipulations

" MT+MT TR
VI m—— ¢ | }1] 8.2 gl 28
YY”E max 2 min 2
+ -
ArgM - ArgM
2 2 - i g g
= [lllmax - |Ilmin] M:Mo sin® (ﬁqx - = )} (5.36)

where the upper and lower signs apply when the net energy flow on the beam is
positive or negative, respectively. In this equation the square of the induced gap
voltage is expressed in terms of the two modulation variables represented by the
current maximum and the current minimum rather than the current and the kine-
tic voltage. Again, it is important to notice that the space-charge waves are not
fully determined by Illmax and IIImin and their positions, i e the standing-

wave pattern of the current. The sign of the energy flow must also be specified.

The exploration of space-charge standing-wave pattern on a longitudinal beam by
means of a cavity that can be moved along the beam can now be discussed using
Eq (5.36). The periodic maxima and minima of the observed power (proportional

to VV™) occur at the positions x, and x, given by

+ -
B x, = kmw + ArgM -ArgM k =0,t1,%f2 --- (5.37)
q1 2
Arg MT -Arg M~ i
2 = (luulf)1r+—5-——-3——z , k=0,t1,%2 --- (5.38)

for the maxima and minima, respectively. The periodic maxima and minima are
obtained from Egq (5.36) by substitution of x; and x, from Egs (5.37) and (5. 38),
and taking the square roots of the resulting expressions. We find

Mt M7 M - M

Ivlmax = |¥I(l1|max . ¥ lIlmin —2_) (5.39)
1 M!-M] M+ M7

lvlmin - [{;‘ IIlmax _T— ¥ iI‘min “_2__ (5.40)

In the expression for lvlmin we shall have to use the absolute value of the right-
- +
hand side because the expression may become negative when M is larger than Mo’

i e by positive beam loading in the gap.

Again, the upper and lower signs in Eqs (5.39) and (5.40) refer to the cases for

which the net energy flow on the beam is positive and negative, respectively.

The conclusions that can be drawn from examining Egs (5. 39) and (5. 40) are the

following :



-113 -

a) For the general case in which M; and M, are different, the induced maxi-
mum and minimum voltage [V| _  and |Vlpin are linear combinations of the
maximum and minimum RF beam current hlmax and II Imin' and depend,
furthermore, on the sign of the net energy flow on the beam.

b) Only in the special case for which the beam loading is zero (Mz = Mg = Mg)
are the beam current maxima and minima simply related to the observed gap
voltage maxima and minima, respectively. Because in this case ¥5S o,

Y = Yc' we have

Ivlmax |Y
Ivlmin = —IT M lIlmin
1Y,

(5.41)

(5. 42)

This is a situation approximated to a fair degree by a narrow-gap re-entrant
cavity often used for experimental exploration of space-charge waves on linear

beams.

From the above analysis it also follows that the converse problem of determining
the beam current maxima and minima from information obtained by measuring gap
voltage maxima and minima, as the cavity is moved along the electron beam, has
no unique solution in all the cases that can occur. This conclusion follows immedi-
ately if Eqs (5. 39) and (5.40) are solved with respect to lllnax and IIImin’ proper
care being taken of the various combinations of signs that can occur. The final re-
sults are conveniently listed in the following table. Here, the quantity X charac-
terizes the type of gap used in the observation of the space-charge wave pattern.

By definition

" M - M)
oMo+t i)
o (<}
For a gap with positive beam loading, X is positive, and vice versa.
Characteristics of the space-charge waves
Observed
Case gap voltage Sign of Appropriate formulae for beam
ratio beam current standing-wave ratio ex-
[v] . /|Vl energy pressed in terms of the observed
min max flow gap voltage ratio
v|_, (i P + |v
I 05 17 M <1 | sign(-X) Mlmin = X1 Vg5 1V b
VT e M T Vg Miax
Vil . Il ; -
i 0< Vi <|X|| sign (- X) lyin K- ¥/ 1V
M R E 412 .
[v]_. 1. vl . /v 5
mr I'X|S Vz-mn <1 | sign + %) | |mm & l Im:.n I Irnax 1Kl
[ [max lIimax 1= 1XI lvlmin/ lV[max

Table 5.1 Possible space-charge waves associated with the gap voltage ratio

]—VJmin/ Ivimax as observed with a gap specified by the gap para-
meter X = M - M:)/(M;+ M;)_
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The use of the table is quite simple. The first column lists the three possible
cases that can occur, determined by the relative magnitudes of the observed gap
voltage ratio and the presumably known absolute value of the gap parameter 7(_ .
as indicated by the second column. The third and fourth columns give the sign
of the beam energy flow and the appropriate formulae for evaluation of the cur-

rent standing-wave ratio.
The conclusions which can be drawn from a study of Table 5.1 arethe following :

a) Unambiguous determination of the beam current standing-wave ratio from the
observed gap voltage ratio |V|min Vlrnax is not possible in the general case
with different from zero. For a given gap ( 'i given) there exist in general
two different space-charge waves with dlfferent current standing-wave ratios
gunng rise to the same gap voltage ratio mi max The first of these
is always the wave listed in Table 5.1 as cas ‘i the second is one of the
two waves Ilsted as case Il or case III depending on the relative magnitudes of

the observed V ? max and the presumably known absolute value of ‘z

b) If we have a priori knowledge of the sign of the beam energy flow, unambigu-
ous determination of the current standing-wave ratio from the observed gap
voltage ratio is possible by proper choice of gap. By arranging matters such
that the gap parameter and the energy flow have the same sign, the wave
listed as case III in Table 5.1 evidently represents the only possible space-
charge wave associated with a given gap voltage ratio. Therefore, we may
conclude that in order to avoid ambiguous results, a beam having positive
energy flow should be explored with a gap having positive , 1 e positive
beam loading, and vice versa.

c) Unambiguous determination of beam current standing-wave pattern is always
possible by choosing a gap having zero beam loading, ie = 0. This, how-
ever, seems very difficult to achieve in practice. In this connection it should
be pointed out that the neglect of beam loading in narrow-gap conventional
klystron cavities, which probably are the types of cavities that have been used
most extensively for exploration of current standing-wave pattern on linear
beams, in many cases leads to entirely incorrect results as shown in the ex-
ample below. The results of such measurements should therefore be inter-
preted with great care.

A numerical example will serve to illustrate the statement given above. Assume
a conventional klystron cavity for which the gap coupling coefficient is given by
M= sin(e/Z)/(B/Z) where 8 = Bez is the gap transit angle. Evaluation of the
parameter X from the defining equation (5. 43) yields the curve shown in Fig 5. 4,
where the calculated ratio X./(a.\ /w) is plotted vs the gap transit angle 8 . If
we choose 8 equal to w, which 1s a reasonable value, X will be exactly equal to
the space-charge parameter ® fo , whose magnitude is far from negligible. Let
us assume that wqﬁo = x, = 0.1, and that the gap voltage ratio observed by slid-
ing the cavity along the modulated beam is IVlmin/lvlmax =0.1. From Table
5.1 the space-charge wave giving rise to this gap voltage ratio may be either one

of the following :

i) A wave carrying negative energy listed as Case I in the table, with current
standing wave ratio

lemi.n

lIImax

ii) A wave carrying zero energy with current standing wave ratio

= 0.198 (5. 44)

IIlmin =0 (5. 45)

|I|max
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Fig 5.4 Curve showing the parameter X/(m"/m) for a conventional narrow-
gap cavity plotted vs the gap transit angle 8
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The actual space-charge wave on the beam may be either one of the waves i)
and ii). For neither of these does the current standing-wave pattern correspond
to the observed gap voltage ratio. The discrepancy is particularly large if the
magnitudes of X and Ivlmin/lvlmax are approximately the same as in this

example,

The discussion clearly shows that great care should be observed in interpreting
data from such measurements. The simple conventional theory is quite insuffi-
cient and may lead to appreciable errors even if conventional narrow gap cavities
are used. Reported discrepancies between theoretically predicted noise standing-
wave pattern on a drifting beam, subject to transformations by passive beam trans-
ducers, and experimental measurements are often ascribed to higher order space-
charge modes not accounted for in the one-dimensional model of the beam (26.27).
It appears possible that the observed discrepancies, which are particularly pro-

min/lllmax
terpretation of experimental data caused by the effect di scussed above.

nounced for small values of |I| , at least in part may be due to misin-

Excitation of fast-wave cavity couplers by a modulated beam

In supplement to the study made in Section 5.3 of beam modulation by fast-wave
cavity couplers, we shall here deal with excitation of a fast-wave coupler by a
modulated beam, as shown schematically in Fig 5.5. The fast-wave coupler is
characterized by having M: =0 and M; ,1- 0. Thus, a possible slow-wave com-
ponent on the beam propagates through the coupler without contributing to the in-
duced voltage, as is easily verified using Eqs (5.30) and (5.21). We need there-
fore consider only the fast-wave modulations U(x)” and I(x) given by Eqs (5.15)
and (5.16).

Fast space- MZ=O, M;£0 pi-.-o
charge wave
———
= 4WII ™
P
Resonant cavity with
no internal loss
L max

Fig 5.5 Schematic diagram of the power relations in an ideal fast-wave output
cavity coupler for which M =0, M 310
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The induced gap voltage, evaluated from Eq (5.30) for the special case at hand,

is given by

1 (B - Py) (5.46)

- j
- - — & -
vV = ¥ M I(x) e

The useful power output dissipated in the exte rnal load is related to the gap volt-
age V through Eg (3.85)

1 -x( Q ) 1
P, = = VV [ — (5.47)
L
2 Rsh Qext

where Rsh/Q is the characteristic impedance of the cavity and Qe:d: is the ex-
ternal Q. Substitution of V from Egq (5.46) yields

2
(RQ ) Ql (5. 48)
sh’ “ext

_1 M I(x)”
Py, ™ z’ Y

Remembering that Y is the sum of the circuit admittance Yc and the electronic
admittance Y _, the optimum value of Qe b maximizing the output power P, is
readily determined. We find that the optimum coupling at resonance for maximum
output power is the same as the optimum coupling (5. 25) for maximum transfer

of power from the generator to the beam for the input fast-wave coupler:

(e -(2=), -3

ext ‘opt

Substitution in Eq (5. 48) yields the maximum power in the external load expressed

in terms of the initial kinetic beam power P1

(P

Q

) = P, [1-(0_'”5.)_‘325.] (5. 50)
L) max .

A small fraction P; of the initial kinetic beam power PI remains as a small
fast-wave modulation on the beam after the output coupler. Using Eqs (5. 46) and
(5.57) we find

2
Q
P‘;‘ = PI [(_e_"t_)c‘ll'i] (5.51)
Q

Another small fraction P_ of the initial kinetic power is dissipated in the coupler

itself due to its internal losses:

2
B = P; [(Qext)opt _ (Qext)opt:l (5.52)
= Q Q

It is noted that the relation P; + P+ Pc = PE , required by the small-signal power
theorem (2. 84), is satisfied by these expressions. If the product GeRsh/Q is suf-
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ficiently large, the optimum condition (5.49) shows that Q, x-t/ Q <<1. In this
case a practical coupler approaches the ideal coupler shown in Fig 5.5 in which
the entire kinetic power PI is transferred to the external load, the remaining
kinetic power P£ after the coupler being zero. Returning again to the general
case with lossy couplers, we note that although the maximum output power is
transferred to the external load if Qe - satisfies the condition stated in Eq (5.49),
a slightly different load will maximize the total power dissipated in the external
load plus the coupler itself. In this case the beam will be matched completely to
the coupler, and the initial fast-wave kinetic power in its entirety is transferred
to the circuit. This situation arises if

R 1
—sh G, = — (5.53)
Q Q.
Then we have
P, +P_ = P| (5. 54)
P, =0 (5. 55)

Obviously, an amplifier based on fast-wave interaction consisting for instance of
the input coupler shown in Fig 5.2 and the output coupler shown in Fig 5.5 has a
power gain that never exceeds unity. Otherwise the small-signal power theorem
would be violated. The results of the detailed calculations done in Sections 5.3
and 5.5 are in agreement with this requirement. Gain larger than unity can be
achieved through parametric amplification of the fast space-charge wave in the
region between the input and output coupler (24). The additional power required
for amplification is then supplied by an external RF generator, the "pump'. For
low-noise amplification the input fast-wave coupler serves the double purpose of
simultaneously modulating the beam and removing the fast-wave noise power that
exists on the beam before the input coupler. The equations derived in sections
5.3 and 5.5 show that complete removal of fast-wave noise can be achieved by a
cavity-type input coupler having its loaded Q adjusted according to the relation
(5.53).

For a general discussion of parametric amplifiers and fast-wave couplers differ-
ent from the cavity types discussed here, such as traveling-wave couplers, the
reader is referred to the literature on the subject (24, 28).

General two=-port representation of extended interaction gaps

The linear relations between the beam current and the kinetic voltage modulations
Il and U I j:anl U, referred to the input and output cross-sections of a gap as-
sociated with a "floating'' cavity can be found using Eqgs (5.29), (2.54) and (2. 55),
setting p =1 in the last two equations. We obtain

-jp &/ -j
_— _;{ [11 #(m*e iBGL z) ) 1_;1 a(me Jﬁellz)] (5. 56)
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u; = U é(e- e1) -, W A(e.j °l)+ v d(M e jsez/z) (5.57)
-ipt, U -ig L, Vv -iB £/2
L 5§ é(e ) r A(e )-W A(Me ) (5. 58)

Substitution of the gap voltage V from Eq (5.56) in the other two equations yields
two linear relations between the input and output modulations. These linear trans-
formations of the kinetic voltage and current, taking place when the beam traverses
the interaction region, can be represented by a linear two-port whose matrix re-

lates the output and input quantities

U2 A B U1 U

(5.59)

"
n
1]

I C D I I

2

The elements of the matrix K follow very simply from Eqgs (5. 56) through (5. 58).
We find

é(e-jael) + = A(M*e-jaez/z) ﬂ(M e-jﬂez/z) (5.60)

A wY

B =-W A(e-jﬁez) - j} E!(M*e-jae‘/z) S(M e-jﬁez/z) (5.61)
C = -%’ A(e-jaez) -%Y A(M*e-jﬂe!/z) A(M e_js"t/z) (5.62)
D = S(e-jﬂee) + ;1; A(M e-jﬂedz) s’(M"e-jae‘e/z) (5.63)

For the special case of narrow symmetric gaps, similar relations have been ob-
tained by A Bers (29) using a different approach. His results agree with the more
general results of this section if we set M* =M , & relation which holds for gaps

having symmetric RF field distributions.

The matrix elements (5.60) through (5. 63) can be interpreted in several ways as
done by Bers for the case of symmetric narrow gaps. The first terms in all the
elements are independent of the specific nature of the interaction gap and are the
result of pure drift action between the input and output cross-sections. This drift
action is equivalent to that taking place in a drift tube with metallic walls or in

free space. The drift matrix is given by

a 4 cos Bq.t j W sin ﬁq.t

C D i %r— sin ﬂqt cos Bq&
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where the drift matrix elements are determined from the identities

Ay = ﬂ(e-w’z) = cos B 2 e-jﬂez (5.65)
By = -W A(e-jﬁez) = jWesinpd e-jﬂeL (5. 66)
Cq = ‘Tff A(e-jﬁet) = j%vain By e-js"L (5.67)
D, = ﬂ(e-ja‘g) = cospt Pt (5.68)

One particularly interesting representation of a general extended interaction gap
is obtained by writing the gap matrix K as a product of matrices that may be
identified with drift and gap parameters, respectively. We shall assume, as
shown schematically in Fig 5.6, that the drift matrices D, and D, are associ=-
ated with the lengths £, and 2, of the interaction gap (ll + £, = 2), and the
matrix C with the circuit itself.

g = L2+ Al fz=£/z-m, 1 I,
- g o s s b—o—
‘ |
| | | U; ’ B= [ ] 1 Uz
o £/2 : b2 —w & cC D 8
1
—  [BE (b)
Beam |
/ 5L ‘zl ‘z 13
U1 | Resc\/na.nt UZ [A——""D"—
: cavity | U, { D, c D, 1 u,
I Ll —a——— o —
iB L
(a) s - =003

Fig 5.6 Representation of interaction gaps by linear two-ports

(a) General interaction gap of length ) 4
(b) Representation by a linear two-port with matrix IS

(c) Representation by cascaded two-ports associated with drift
and gap parameters

For convenience, the factor ex‘p(-—jﬂel) ig taken outside the matrix product.

Then, by definition
-jp L
K = D,CDje ° (5.69)
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where, in general, D, and 131 are different. They are equal only for gaps
characterized by symmetric or antisymmetric field distributions. The matrices

D, and D, are given by Eq (5.64) by insertion of the proper drift lengths.
[(cos ﬂqzl j W sin Bq£11
D, = (5.70)
1
jwlin qul cos 5qj,1
[ cos Bq.ez j W sin aqtzw
D, = (5.71)
|
stin ﬂq.!z cos aqtz

where the drift lengths Il and 12 are determined from the requirement that the
gap matrix C be independent of drift lengths. The matrix C is obtained by pre-
multiplication and postmultiplication of Eq (5.69) by the inverse of the drift mat-
rices ‘92 and D,, respectively:

- . gL
gzgzllfgllee (5.72)
If
Or 1 Sip
c = ; (5.73)
C2,1 )
equation (5. 72) yields
1 j . ig (£ - 2)
C, 4 =1-—G +——1rn(MM+*e Ll ?‘) (5.74)
’ vy © 2wy
1 ) jp_ (e, - 2,)
Cy, = -_[M+M+*+M M™*+2 Re(MM™*e 12 )1 (5.75)
, 4Y
o - i (&,-4,)
oM T [V PR M™ - 2Re(M M™e 1 17720 (5.76)
2,1 o
C22=1-—Ge———Im(MM e 4 ) (5.77)
' Y 2WY

The gap coupling coefficients M~ and M+ appearing in these equations are, in

general, complex. Let

M = M SATEN (5.78)

+
Mt = M} eJATEM (5.79)
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& 3 v . &
where M and Mo are the absolute values of M~ and M'. Using these rela-
tions, we find that the elements of the matrix C are independent of the lengths

11 and 12 if these are chosen in accordance with the relation

s + -
sq(zl-lz) = ArgM’ - ArgM (5.80,
Then
) ) 1
€1y =Cpp =1-356G, (5.81)
1 MM 2 1,
" =__(____) S e Bl 5.82
1.2 Y 2 Y ( )
1 - M 1 c?
Cpp = o2 °) = w8 (5.83)
2,1 7 TRz, Y w2 '

where M is the arithmetic mean of the coupling coefficients M: and M; , and
Gﬂ3 is the beam loading. Hence, the two-port in Fig 5.6c representing the gap

parameters has the matrix

- -
1 1 -2
1 "fGe -?ﬁ
C = (5.84)
- 2
1 Ge 1_1(:,
TR ¥ % |

which is identical with the result obtained by Bers (29) for a symmetric, narrow

gap, for which both MY and M are real, and therefore 2, = L.

The analysis done in this section shows that also an arbitrary, extended interaction
gap can be represented by the chain of two-ports shown in Fig 5. 6c. The two-
ports represented by the drift matrices D, and 132 are associated with pure drift
action through the drift lengths 21 and £2 , the sum of which is equal to the
length £ of the interaction gap. These matrices, except for opposite signs in the
off-diagonal elements, are analogous to the matrices relating the line voltage and
line current of lossless transmission lines. In fact, by a trivial sign transforma-

tion of the variable U they become identical.

The gap matrix C is specified entirely by the circuit parameters Y = Yc +Y,,
ff[z, and G.(2 , representing the self-admittance, the square of the mean coupling

coefficient, and the beam loading, respectively.

Representation of interaction gaps by passive networks

The question whether the cascaded two-ports associated with the general inter-
action gap shown in Fig 5.6 can be represented by passive, reciprocal networks

cannot be answered without a closer investigation. It turns out that such a repre-



-123 -

sentation is possible for the drift matrices D, and D, but not for the gap mat-
rix C except in the special case for which the beam loading is zero. If we con-
sider reciprocity first, obviously the two-ports representing the drift-matrices
D, and D

~1 2
nants of the matrices are equal to unity. Furthermore, it is noted from Eqs (5. 70)

satisfy the requirement for reciprocity, namely that the determi-

and (5.71) that the two-ports associated with the drift matrices D, and D, can-
not be represented directly by simple transmission lines, without redefining either
U or I with opposite sign. An equivalent method achieving essentially the same

result is to consider the inverse drift matrices

cos Bq.!l -j W sin Bqll
-1
El = (5. 35)
-j ‘—:’: sin qul cos Bq‘!l
with a similar expression for 132- . Evidently the inverse drift matrices are

equivalent to transmission-line matrices.

For a beam in a drift tube or in free space the following relation holds:

U, U,

g ® 2 (5. 86)

where the matrix 121-1 according to the discussion above can be represented as
shown in Fig 5.7 by a two-port consisting of a section of a transmission line hav-
ing the characteristic impedance W and the same phase shift aq‘l between in-
put and output. Although the plasma phase shift in the drift tube and the phase shift
in the equivalent transmission line are different functions of frequencies, the vari-
ations with frequency are very small over the relatively narrow band of the cavity.
It is therefore entirely justified to neglect these variations and consider the trans-
mission-line representation of a beam in a drift tube correct for all the frequen~-

cies within the band.

Except for the trivial factor exp(jBeL) there is one-to-one correspondence between
the beam kinetic voltage and current of the space-charge wave propagating on the
beam and the line voltage and line current of the electromagnetic wave propagating
on the equivalent transmission line. The positive or negative energy flow on the
beam is always in the positive direction, i e in the direction of the beam. Since
the inverse of 131 rather than 131 represents the transmission-line matrix, it
follows from Eq (5.86) that flow of energy on the equivalent transmission line is

in the negative direction if the beam energy flow is positive, and vice versa.
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Beam I Energy flow

|

|

| | assumed positive
(a) | !

I |

I |

Direction of
energy flow

U, -

Fig 5.7 Representation of a drifting beam by transmission lines

(a) Drifting beam in a drift tube or in free space. The beam energy
flow is assumed positive.

(b) Equivalent transmission line representing the drifting beam.
The energy flow is in the negative direction if the beam energy
flow is positive, and vice versa.

The reciprocity relations of the gap matrix C given by Eq (5.73) can be inves-
tigated by forming the determinant of C by means of Eqs (5. 74) through (5. 77).

We obtain

G
= s = 1-2-2
Det C = cl,l Cz,z Cz,l C, » 1-2 ~ (5.87)

The requirement for reciprocity, 2 determinant equal to unity, is satisfied only
if the beam loading vanishes. Therefore, repre sentation of the gap by passive,
reciprocal networks, if at all possible, requires zero beam loading. In this case

the gap matrix C reduces to

L =
l “-."Y—'M
c
c = (5.88)
0 1

which evidently can be represented by the simple passive, reciprocal network
shown in Fig 5.8. Here, the direction of energy flow in the equivalent two-port
is positive if the beam energy flow is positive, and vice versa, while the opposite

was true for the transmission-line two-port representing the drift matrices.
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| & assumed positive
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Narrow gap
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Direction of
energy flow
(b) U, l ‘Uz

Fig 5.8 Representation of a narrow gap by a passive network

(a) Infinitely narrow gap excited by a beam. The beam energy
flow is assumed positive.

(b) Network representation of the gap matrix C of a gap having
zero beam loading. The energy flow is in the positive direc-
tion if the beam energy flow is positive, and vice versa.

After having discussed reciprocity and energy flow relations of the separate two-
ports and their network representations, we shall next consider the chain of cas-
caded two-ports representing the general interaction gap. The matrix equation
relating the input and output modulations of the general gap in Fig 5. 6a is given
by

W)

> & D, ¢ D, (5.89)

2 i

From a study of this equation we are led to the conclusion that although the drift
matrices ]31 and D, and the gap matrix C are represented by passive networks
if considered separately, representation of the matrix product ]22 c ]-:-)1 by the
cascaded networks associated with D,, C and D, is not possible because the
energy flows are in opposite directions in the networks representing gap and drift

matrices.

However, even if representation of a general gap is not possible by means of trans-
mission lines having the same total phase shift as the phase shift of the drifting
beam across the interaction gap, a little consideration shows that representation
certainly is possible with transmission lines of different phase shifts Bqtl and

3q.&'2 if these are chosen according to the following relation:
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Bql-'l = nw - Bq"l n=1,2, --- (5.90)
Bq"'z = nmw=- ﬁq"'z n=1,2, --- (5.91)

By substitution in Eqs (5.70) and (5.71) we find that the associated drift matrices

In)l' and 92' are related to the original ones by the relations
D, = (-1)“(131)'1 (5.92)
n,~ty=1
D, = (-1) (92) (5.93)

Substitution in Eq (5. 89) yields

U, Hy

9B
=e ° (@) cp (5.94)

I L
By modifying the lengths of the transmission-line sections we have been able to
express the matrix product in terms of inverted drift matrices. Since inversion
of a drift matrix corresponds to switching the direction of energy flow in the two-
port representing the matrix, the matrix product in Eq (5.94), according to the
preceding discussion, can be represented by the cascaded networks shown in Fig
5.9 where we have chosen n=1. In this equivalent of a gap with zero beam load-
ing, the direction of energy flow is positive if the beam energy flow is positive,

and vice versa.

I
Energy flow
Beam assumed positi;?
(a)
U, | u,
I I 1
| j =
!
| m=- Bq‘sl LR ﬁq‘Z
} = =2
i | 2R | | -
18 o o = D——
(b) e Direction of
energy flow
UIT U,

Fig 5.9 Representation of a general gap by passive networks
(a) General gap having zero beam loading.

(b) Representation by passive networks. The direction of energy
flow corresponds to the sign of beam energy flow.
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An alternate gap representation by active networks is obtained if Eq (5.89) is

solved for the input modulations in terms of the output modulations by inversion

of the matrix product.

u . u
1 Br 5. " 2
=e° plgtp;! (5.95)

In the two-port representation the inversion corresponds to switching the direc-
1

tion of energy flow. In this case the matrices D, and D£
by the transmission lines in Fig 5.7 with the original drift lengths ‘&1 and Lz,

can be represented

but the matrix g-l is no longer represented by the passive network shown in Fig
5.8, but by a similar active network with a negative series impedance Z, ie

an impedance whose real part is negative. This leads to the active network repre=
sentation of a gap shown in Fig 5.10. Here, the direction of the energy flow is op=-
posite that of the sign of the beam energy flow.

To summarize the results, we have shown:

a) Interaction gaps of the general type discussed can be represented by reciprocal
networks only if the beam loading is zero.

b) For gaps with zero beam loading two network representations are suggested,
of which one is passive and one active. The passive network shown in Fig (5.9)
involves a cascade of a transmission-line section of length = - ﬁqll , @ lumped
series impedance MZ/YC having positive real part, and a transmission-line
section of length w - Bgdy, the relative magnitudes of L, and 2, being such
that Eq (5.80) is satisfied. The direction of energy flow through the cascade
is the same as the sign of beam energy flow.

L=k 4+ F
[ |
|
Energy flow
Beam assumed positive
—
Ul U2
I I
L | () L
|
I I
=-M“Y ! -
g | a3 | &
—————————p-{ 14 Tt

Direction of
! ] v, <tnersgy flow

(b)

Fig 5.10 Representation of a general gap by active networks
(a) General gap having zero beam loading.

(b) Representation by active networks. Direction of energy
flow is opposite that of the sign of beam energy flow.
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The active network representation shown in Fig 5.10 is a cascade of a trane-
mission-line section of length B 2;, a lumped series impedance -M2/Y
having negative real part, and a transmission-line section of length aqf .
The direction of energy flow through the cascade is opposite the sign of beam
energy flow.

Loaded transmission-line analog of multi-cavity klystrons with extended inter-
action regions

The passive network representation shown in Fig 5.9 is the basis of a transmis-
sion-line analog of multi-cavity klystrons (16) that exactly simulates the actual
small-gignal klystron performance with the following restrictions that are imme-

diately understood from the preceding discussion:.

a) The beam loading of all the cavities must be zero. This is a rather severe

restriction which is not satisfied in actual klystrons except under special cir-
cumstances. The errors introduced by non-zero beam loading, however, are
not expec)ed to be significant in most practical cases for which normally the
ratio Go/Y _ <1 (see Eq (5.84)). If this condition is satisfied, the network
analog will probably be sufficiently accurate for practical purposes.

b) The frequency dependence of the phase shifts of the transmission-line sections
are disregarded compared to the more rapid frequency dependence of the cav-
ity admittance Y.. This assumption is well satisfied in practice, the approxi-
mation being of the same order as the approximation involved by neglecting the
frequency dependence of the plasma drift angles in the actual klystrons.

c) It is assumed that Eq (5.80) is satisfied, at least approximately, over the fre-
quency band of the klystron. It is noted, in particular, that the equation is al-
ways satisfied for gaps with 1ymmetric or anti-symmetric RF field distribu-
tions, in which cases Arg MY = Arg M~ for all frequencies, ie .ll = £,

With the restrictions mentioned above under a), b) and c), the transmission-line
analog shown in Fig 5. 11 simulates accurately the small-signal behavior of multi-
cavity klystrons with arbitrary, extended interaction regions. The analog shown
in Fig 5.11b is obtained directly by cascading a series of gap representations of
the type shown in Fig 5.9. In the analog the beam modulations U and I are re-
presented directly by the line voltage and line current except for a trivial exponen-
tial factor exp(J Bez) . The proper boundary conditions are established by open-
circuiting the transmission line at the position corre sponding to the input cavity,
thus forcing the current to be zero, as required. The RF power is fed from a
generator into the line at the opposite end. Since the beam energy flow in the klys-
tron is always negative, the energy on the line will flow in the correct direction

from the right to the left, according to the discussion in connection with Fig 5. 9.

In the analog the characteristic impedance of the transmission-line sections cor-

responds to the characteristic impedance of the beam, and the lumped geries im~-

pedances correspond to the cavity impedances, i e they are parallel LC circuits.

The analog shown in Fig 5. llc refers to the special situation for which all the
plasma drift angles are equal to w/2. Inthis case the transmission-line sections
can be eliminated altogether by successive simple transformations of the two-ports

consisting of two quarter-wave sections and one parallel resonant circuit in series
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Fig 5.11 Transmission-line analog of multi-cavity klystrons with arbitrary
gaps having zero or negligible beam loading

(a) Multi-cavity klystron structure with RF beam modulations
given by U and I.

(b) Transmission-line analog based on representation of the inter-
action gaps by the networks shown in Fig 5.9. The line voltage
and line current correspond to the beam modulations U and I
multiplied by exp(jﬂez).

(¢) Ladder-network analog in the special case for which all the
plasma drift angles between centers of consecutive gaps are
w/2. Inthis case no transmission lines are required.
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between these into one single series resonant circuit in parallel. The resulting
ladder-network analog is a stop-band filter, the stop-band corre sponding to the
pass-band of the klystron.

Although it is not immediately obvious, it can be shown, using the general rela-
tions for arbitrary extended gaps developed in this chapter, that the RF gap volt=-
ages of the various extended interaction gaps along the electron stream are re-
presented in the analog by the voltage drops across the lumped series impedances,
modified by the coupling coefficients. Referring to Fig 5.11b, the pth gap voltage

is given by the relation

1 1
Vv = — (U - U S = AU .
T vl P, 2 p.l) M P (2361
o p
where UP , and Up » are the transmission-line voltages immediately before

and after the series impedance MZ/Y . Therefore, the voltage gain of the klys-

tron is represented by

v AU, M,
M, =L =_—L (5.97)
P v, U, M
P

where AU_ is the voltage drop across the series impedance representing the out-
put cavity, and U, is the line voltage at the open-circuit position corresponding

to the position of the input cavity.

The duals of the networks shown in Fig 5.11 are also possible analogs of multi-

cavity klystrons, but will not be considered here.

The suggested simple network analogs may have potential uses for optimization

of stagger-tuning pattern, particularly for klystrons having a large number of
cavities, because in these cases analytical and numerical synthesizing methods
are exceedingly difficult to handle. In a practical analog one would scale the klys-
tron parameters to a convenient lower frequency for which full advantage can be

taken of simple L.C resonant circuits and low-frequency measuring technique.

Some general properties of the coupling coefficient

In the next sections a relatively detailed study will be made of the relevant gap
parameters that characterize small-signal interaction with longitudinal beams.
These parameters are the gap coupling coefficient M(B,) and the gap electronic
admittance Y_, defined by Eqs (2.53) and (2.68), respectively. Actually, the gap
is characterized by two coupling coefficients M~ and M+, associated with the
fast and the slow space-charge waves. However, since these are derived from

the zero space-charge coupling coefficient M(ﬂe) , a study of M(ﬁe) suffices.

We shall prove some general properties satisfied by the coupling coefficient of any
gap having arbitrary longitudinal RF field distribution:
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a) The absolute value of the coupling coefficient of any gap is always less than
unity

b) The coupling coefficient of a gap having symmetric RF field distribution is
real

¢) The coupling coefficient of a gap having anti-symmetric RF field distribution
is imaginary

In order to prove the first statement let us consider the expression for the coup-

ling coefficient

Y2 o jpx
M = f F(x)e © dx (5.98)
-2/2

We shall allow complex values of the normalized longitudinal RF field distribution

F(x). Using Schwarz’ inequality and the normalization condition (2. 51) we find

2/2 22 . . £
- Jﬁex 'Jﬂex 3
MM™ 52[\ F(x)F(x) dx[ e e dx =IJ‘ F(x)F(x)"dx =1 (5.99)
/2 /2 /2

- - -

or

M| €1
which proves the property listed above under a).

The properties listed under b) and c) follow immediately from the reciprocity
theorem a) derived in Section 3.14, stating that the gap coupling coefficient trans-
fers to its complex conjugate if the electron flow through the gap is reversed.

Hence, for a symmetric RF field:

M =M ie M is real (5.100)
For an anti-symmetric RF field:
M = -M® ie M isimaginary (5.101)

The coupling coefficient of a gap whose RF field distribution is neither symmetric

nor anti-symmetric is, in general, complex.

Series expansion of the coupling coefficient in terms of sinusoidal field components

For a gap with arbitrary longitudinal RF field distribution, series expansion of the
coupling coefficient M in terms of the Fourier components of the gap field is use-
ful in that it shows explicitly the relative contributions to M from the various
Fourier components. The problems arising in connection with the realization of

a specified RF field distribution by practical structures are irrelevant to the pre-
sent discussion. We shall assume, however, that the RF field has the character
of a pure standing wave, i e that F(x) is in phase everywhere, and that the deri-
vatives dF/dx at the two cross-sections corresponding to x = -.C/Z and x = 1/2
are both zero. These restrictions mean that the types of interaction gaps analyzed
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here are those which are typical for high-Q cavities having conducting metal boun-
daries at the cross-sections x = -£/2 and x = 2/2.

-4/2 272 \

|l e Gap length £ —==

Fig 5.12 Sketch showing the gap boundary conditions : dF/dx = 0
at x=-£/2 and x = 2/2

The Fourier expansion of F(x) is based ona fundamental period of twice the gap
length for reasons that are obvious if we consider the periodic gap field in a re-
sonated section of some slow-wave structure. These structures resonate at a set
of frequencies for which the pe riodic RF field distributions comprise a whole

number of half periods.

Referring to Fig 5.12, the mathematical extension of F(x) in the region
b/2<x<3 2/2 will be chosen such that

F(x) =F(4- x)
(5.102)

F(-x)= F(L+ x)

The Fourier expansion, valid in the interval - L/2<x<3 £/2 and therefore, in

particular, over the gap itself, is given by the cosine series

F(x) = F + z F, cos{nn(x/L - 1/2) 1] (5.103)
1

where the coefficients are obtained from

38/2 /2
¥, =% [ F(X)COSI.nﬂ'(x/.L'l/Z)}dx =§‘ fF(x)cos[mr(x/.&-l/Z)]dx (5.104)
-2/2 -2/2
3L/2 2/2
F, = El?, f F(x)dx = % fF(x)dx (5.105)

“2/2 =52
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The Fourier components satisfy the following relation derived from the normaliza-

tion condition (2.51):

L/2 o
L[ F(x)2dx = 22 F02+ %p,zz Fnz = (5.106)
/2 n=

-

The Fourier components F for n2 1 represent a set of standing waves each of
which can be considered the superposition of two waves traveling in opposite direc-

tions. The propagation constant B of these waves is

By * nwn/L (5.107)

The integer n therefore represents the number of half waves over the interaction
length £. For evaluation of the coupling coefficient M in terms of the Fourier

components it is convenient to introduce a velocity parameter € defined by

™
<

en=1__‘i=1-_'l (5.108)
Pa Yo

where Be = Cﬂ/uo is the propagation factor associated with the DC electron velo-
city u_, and ¥, the phase velocity of the wave constituting the nth Fourier com-
ponent. The parameter € is a measure of the deviation of the beam velocity

from synchronism with the nth Fourier component.

Substituting the series expansion of F(x) in the expression for the coupling coef-

ficient and using Eq (5.108), we obtain

sin(p £/2) = . 1-¢ sin(nme /2)
M =.LF°—-—{/—+%£E F_ e”’“‘/2 n/ /“ (5.109)
Be 2 - l-enz nwe /2
The first term in the equation, recognized as the coupling coefficient of a gridded
gap with constant field, multiplied by £Fo, represents the contribution to the coup-
ling coefficient from the average RF field component F. The remaining terms

represent contributions from the various sinusoidal components of the field.

As expected, interaction with a given component is strong only if the beam is nearly
synchronized with the same component. Under these circumstances the small in-
teraction with the remaining components can often be neglected. In particular,

this is true for resonated sections of slow-wave structures in which normally one
of the Fourier components of the longitudinal RF field is dominating. Thus, if all
the components except the nth component are zero or negligible, i e if the RF

field is sinusoidal, the coupling coefficient is given by

1-e sin (mren/Z) ejmr/Z

1
. (5.110)
Ne 3= en/z mren/z

M
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or 1

MO=|MI =

1-e ain(nwen/z)

N2 1 - en/Z mren/Z

(5.111)

The factor A2 in these equations is due to the normalization condition (5.106).
The absolute value of Mz. calculated from Eq (5.111), is plotted in Fig 5. 14
(appearing at the end of the chapter) as a function of the velocity parameter € and
the number of half waves n. The non-symmetry of the curves, which is particu-
larly pronounced for small n-values, can be shown to be due to interaction with
the reflected wave. This interaction becomes negligible for large values of n ;
the maximum of M: is then equal to 0.5 for all values of n and occurs at syn-
chronism. This fact is significant because it shows that for sinusoidal field dis-
tributions the lengths of the interaction gaps are not limited by transit time con-
siderations, as are conventional klystron gaps. Since the characteristic impedance
of a resonator generally increases with the length of the gap, the use of resonators
and gaps with sinusoidal field distributions evidently provided a possibility for en-
hancing the gain or bandwidth of multi-cavity klystrons. Results from experimen-

tal tubes using such resonators tend to confirm these theoretical considerations (9).

Some general properties of the small-signal electronic admittance

L

The general expression for the small-signal electronic admittance of an arbitrary
gap characterized by the longitudinal RF field distribution F(x) is given by Eq

(2.69), for convenience repeated here

3/2 x
1

1 s o ;
Y = = — AISMT+j F(x)F(y) sin[p_(y-x)]1dx dy} (5.112)
e w 2 o -fz _'j/‘z e

In this equation W is the RF characteristic impedance of the beam, given by Eq
(2.30), and A is the difference operator defined in Eq (2. 38).

The zero space-charge approximation of the electronic admittance is derived by
making the observation that if the space-charge density in the beam is negligible,
such that ﬁq/ae is much less than unity, Eq (5,112) reduces to the following ex-
pression obtained by simple application of the transformation rule (2.45) and the

definition of W:

1/2 x
1 d 2 P ;
¥ = — GG .0 ga—e {Mo + 23-)//2 -[/ZF(x)F(y) gin| ﬁe(y-x)] dx dy} (5.113)

where Gu = IO/VO. Equation (5.113) is in agreement with results obtained using

purely kinematic analyses neglecting space-charge (10).

For arbitrary space-charge, the real and imaginary components of the electronic
admittance of a gap with specified longitudinal RF field distribution F(x) can be
evaluated either analytically from Egq (5.112), or by a graphical method suggested
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by the form of this equation and described in the following: If Eq (5.112) is re-

written in terms of Go rather than W, we obtain

Y 1 b2 x
1 2 .
Yo = G_e - Be = A{Mo+ 2j f LF(x)F(y) sin [p (y-x)] dx dy} (5.114)
o q =22 -k/2
where s A is the electronic admittance normalized with respect to Go' If we

limit our attention to the real part of the expression, i e the beam loading, we
obtain

2 2
G 1 1 1 M (B_+B )-M"(g -8)
—= - -_p — aM?) = .—-p 2 e d "oeTg (5,5
G 4 ®© o 4 € 2B
o q q

Rey, = 8, =

The form of this expression suggests the graphical method shown in Fig 5.13 for
evaluation of B, for any value of the space-charge parameter ﬂq , if a plot of
2

Mo vs P, is available for the particular gap considered.

A
2
M (s,)

Fig 5.13 Graphical method for evaluation of electronic conductance from
a plot of the square of the coupling coefficient

From a comparison of Eq (5.115) and the geometrical relations in Fig 5.13 it is

observed that the beam loading is proportional to the slope of the straight line
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labeled ab. For negligible space-charge this line approaches the tangent a'b' i
in which case g, is proportional to the derivative of M;’ with respect to B
(compare Eqs (5.113) and (5.114). In general, if 8 is the angle between the hori-

zontal axis and the line ab, the beam loading is given by

Ge 1
ge = E- - - Z ﬂe tan 8 (5.116)
o

The imaginary part of Eq (5. 114) can be determined by essentially the same gra-
phical method as shown in Fig 5.13 if Mﬂ2 is replaced by the appropriate function,
which is twice the double integral in Eq (5.114).

For a given gap with specified DC beam velocity (ﬁe fixed), the question whether
the electronic conductance and susceptance always decrease with increasing space-
charge is a very interesting one. It turns out that although this is true in many
cases, it is not generally true for any RF field distribution and beam velocity, as
is readily observed from a study of the graphical method shown in Fig 5.13, or
perhaps better from the subsequent analytical method. Let g_ and (ge)o be the
normalized electronic conductance with and without space-charge, respectively.

Taylor series expansion of Eq (5.115) in terms of Bq yields

2 ) sl P
g -(g.) :-lg Eﬂ.___o—+il__°+-....-.. (5.117)
€ €0 4 %31 3p3 51 3p°
e e

and similarly for the electronic susceptance, if M: is replaced by the appropriate

function.

The conclusions that can be drawn from Eq (5.117) concerning the effect of space-
charge on the small-signal electronic conductance in a general interaction gap

are the following:

a) Space-charge effects are of second order in the space-charge parameter Bq'

b) As the space-charge parameter PBq is increased from zero, the sign of the
first derivative of g, with respectto Bg is ch?’ate1'121‘11113(:13 by the sign of the third
derivative of Mg with respect to 8 . I o°(MJ )/BBe > 0, the electronic
conductance becomes smaller as the space-charge increases from zero, and
vice versa.

c) The rate of change ofz £, with increasing space-charge is determined by the
odd derivatives of Mg with respect to Be. It is a general characteristic of a
Fourier transform that the rate of change with B, increases with the length
2 of the interaction region, regardless of the details of the RF field distribu-
tion. Therefore, it is anticipated that space-charge effects are relatively
more pronounced in long gaps. For most practical gaps of moderate lengths
the following discussion indicates, however, that the zero space-charge ap-
proximation is sufficiently accurate if the space-charge density is not exces-
sive.
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Electronic admittance of gaps with sinusoidal RF field distributions

As previously stated, a more detailed knowledge of the gap parameters of reso-
nated slow-wave structures is of considerable practical interest. The longitudi-
nal RF field distributions in such structures are essentially sinusoidal standing
waves. In this section the electronic admittance of such fields will be evaluated
for relatively wide ranges of the relevant parameters which are the velocity para-
meter e defined in Eq (5.108), the space-charge parameter Bq/a where B is
defined in Eq (5.107), and the number of half standing waves n. Inorderto evall

ate Eq (5.114) for a pure sinusoidal field it is convenient to define two functions

(bn(e) and y_(e) by the following expressions:

1 {1 2 | i /2y]°
N ] (5119

!/2 x
WH{G) = 2 F(x)F(y) ain[ae(y-x)] dx dy
/2 -2/2
s o & __l1-¢ sinnme .
T nme 1-¢/2 [1 1-¢/2 nmne ] (5.119)

It is noted that d)n(e) is equal to the square of the coupling coefficient M .

Making the proper substitutions of € and Bq/a in Eq (5.114), we obtain the nor-

malized electronic conductance and susceptance expressed in terms of the two

functions Cbn(e) and \Un(e).

1 d (e +2)-9 (¢ -2)
= —(1-¢) = e 5.120
S 8( ) = ( )

1 vole+) -y (e -2)
b = —(l-€) = L (5.121)

e 8 Q
where Q is a space-charge parameter defined by
B

a = 3‘1 (5.122)

It should be noted that the quantities Cbn(e +Q) and #n(etﬂ) are functional sym-
bols indicating that the independent variable is (e tQ). These functions can be in-
terpreted as determining the coupling between the circuit field and the fast space-
charge wave (upper signs), and the slow space-charge wave (lower signs). In
discussing Eqs (5.120) and (5.121), two significantly different cases may occur:

a) The gap field couples to both space-charge waves simultaneously, i e all the
four functions ¢n(€ tQ) and wn(e tQ) are different from zero

b) The gap field couples only to one of the waves, in which case either q)n(e +2)
or ¢ (e -Q) is zero
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A study of the function ¢n(E) in Fig 5.14 reveals that the question whether case
a) or b) applies depends essentially on the product of n and 2 only. We find
that if the following inequality is satisfied, the circuit cannot couple to both space-

charge waves simultaneously:
ng 2 2 (5.123)

This result is obtained from Eq (5.111) or Fig 5.14 by observing that the width of
the main peak of the function Mj(e) is.given approximately by Ae = 4/n (asymp-
totically correct for large n). Therefore, if the inequality (5.123) is satisfied,
either €+Q or €-Q2 will fall outside this interval, meaning that the main peaks

of the functions @ _(e+2) and ¢n(e -2) do not overlap. Thus, if the small secon-
dary peaks of d)n(e) are neglected, the statement above is shown to be correct.
Even if the inequality (5.123) is a sufficient condition for coupling to one wave only,
it is by no means a necessary condition, since by proper adjustment of DC beam
velocity either ¢n(e +Q) or ¢n(e -Q2) can always be made equal to zero.

We shall study the two cases a) and b) separately.

Gaps with simultaneous coupling to both space~-charge waves

This case is typical for moderate values of n and 2, and is probably of most in-
terest since the condition nQ < 2 is likely to be satisfied in practical resonators
for possible use in klystrons (9). For the purpose of evaluation of the functions
(5.120) and (5.121) by graphical methods essentially similar to the methods shown
in Fig 5.13, curves have been prepared of the functions ¢ (e) = M (E) and ¥ (e )
shown in Figs 5.14 and 5.15 for values of n ranging frorn one to s'].x. The addi-
tional curves for n = 50 illustrate how the functions become sharply peaked for

large n.

The graphical method is quite illuminating in the sense that it clearly brings out
the physical interpretation of the terms ¢n(¢ +Q) and ¢n{e -Q) etc as represent-
ing coupling between the circuit field and the fast and the slow space-charge waves,
respectively. Of course the graphical method suffers from being less accurate
than numerical methods. The set of curves shown in Figs 5.16 to 5.20 at the end
of the chapter are obtained from an electronic computer. Here, the normalized
electronic conductance g, and susceptance b, are plotted vs the velocity para-

meter e for values of n from one to six and for Q equalto 0, 0.1 and 0.2.

Around synchronism, where the interaction is strongest, the general behavior

of the electronic conductance is such that it changes from a positive maximum be~
low synchronism to a negative maximum above synchronism, the maxima increas-
ing with the number of half waves n. The preceding qualitative discussion con-
cerning the reduction of the maxima of g, due to space-charge is confirmed by
these curves: the reduction becomes more predominant as 2 increases, especi-
ally at the higher n-values, but is nevertheless negligible for moderate values of
Qand n (n< 6 and 2< 0.1).
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The electronic susceptance b is maximum at or near synchronism; otherwise
the general comments made above concerning the dependence of the electronic

conductance on n and 8 apply equally well to the electronic susceptance.

Gaps with coupling to one space-charge wave only

If the inequality nQ 2> 2 is satisfied, it is not possible to haveé appreciable coup-
ling to both space-charge waves simultaneously. Obviously this inequality is a
sufficient condition but not a necessary one. Practical fast-wave couplers for
possible use in parametric amplifiers should be designed such that the coupling

to the slow wave is zero and the coupling to the fast wave is maximum. Expressed

mathematically
¢ (e-2) =0 (5.124)
¢ (e+2) = max (5.125)

From the curves in Fig (5. 14) it is found that these equations are approximately

satisfied for
ne = -1 (5.126)
ng = 1 (5.127)

Thus, the beam velocity for a fast-wave coupler of this type must satisfy the re-
quirement € = -Q. The corresponding relations for a slow-wave coupler are

ne=1 and €=Q.

In evaluating the electronic admittance of a gap with coupling to only one of the

space-charge waves it is convenient to write
¢'=-etaq (5.128)

where €' is zero for maximum coupling. Noting that (1 -e)/ﬂ is identical to
ﬂe/aq = m/wq , Eqs (5.118) and (5.119) yield the following expressions for g and

be valid in a small velocity interval around the points of maximum interaction:

: 1 B, [sin(nme'/2)7%
+ e
g, =t — =2 | ———— (5.129)
16 B, nre'/2
1 1 sin nwe'
b =1<= EB.___._ ] & e, (5.130)
e 8 a nme' nmwe'

where the upper and lower signs refer to the situations for which the gap couples

to the fast and the slow waves, respectively.

The maxima of g, and b, are readily evaluated from Egs (5.129) and (5.130).
We find
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Pe
(ge)max = 0.0625—6—— (5.131)
q
Be
(be)max = 0.08 o (peak to peak) (5.132)
q

Thus, the maxima of g and be are inversely proportional to Bq/ﬁe or mq/w
regardless of the value of n if the conditions stated previously for coupling to

only one wave are satisfied.

The sketch shown in Fig 5.22 of the functions g, and b, evaluated from Eqs
(5.129) and (5.130) serves as a further illustration of the points stated in the above

discussion.

To conclude this section, we have established that the electronic conductance and
susceptance of an interaction gap with sinusoidal RF field distribution varies with
the number of half standing waves n in the following way. For small n and Q
(ng << 2), the field couples simultaneously to both space-charge waves, and the
maxima of g, and b, are roughly proportional to n. As n is increased to-
wards nQ = 2 the field couples predominantly to one of the space-charge waves,

yielding the maxima of g, and b, substantially independent of n.

For practical klystrons based on extended-interaction cavities consisting of reso-
nated slow-wave structures with essentially sinusoidal RF field distribution, opera-
tional stability requires that the magnitude of the negative electronic conductance

is smaller than the value causing self-oscillations, as specified by the stability
criterion (3.28). From the numerical data and discussion presented in this sec-
tion these considerations determine the maximum safe value of n and thus the
maximum characteristic impedance Rsh/Q' The requirement of stable operation,
therefore, puts a restriction on the enhancement of gain and bandwidth that can be

expected from the use of extended interaction gaps rather than narrow gaps.
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Fig 5.14 Graphs of the function ¢n(e) = Mf from which the small-signal electronic conductance of a gap with

sinusoidal RF field distribution can be determined by the graphical method suggested in Fig 5.13
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The space-charge parameter Q = 0.1
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The space-charge parameter f = 0.2




Al
1
T 1
T SR
Cooy s
HENEEEEE
_.~, 1 —..: -
A E N HHHHHHHT
Ba il ] i 13 [
-ﬂ‘ : = —
= L
s T THA + . &
o a8 . .
] 88
3 -
-1.0 0.8 -0.6, 0.4 ? 0.2 ¥ 0.2 0.4 0.6 0.8 1.0
€= |-
uO

Fig 5,19 Normalized small-signal electronic susceptance of a gap having sinusoidal RF field distribution.
The space-charge parameter 2 =0




bg s

i
-
3

g

= LFT -

?

-1.0 . =0. -0, 0.4 0.2 v 0.2 C.4
€= '-. PRt

Uo

Fig 5.20 Normalized small-signal electronic susceptance of a gap having sinusoidal RF field distribution.

The space-charge parameter Q = 0.1




r.mi

1

1

-

1A §

- 8%1 -

1

0.8 1.0

-1.0 0.8 0.6 -0.4 0.2
1 €= |_
(-]

Fig 5.21 Normalized small-signal electronic susceptance of a gap having sinusoidal RF field distribution.

The space-charge parameter 2 =0.2




- 149 -

02— ———————

Fig 5.22 Sketch showing the electronic conductance and susceptance of a
gap with sinusoidal RF field distribution for the case that nQ 2> 2
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APPENDIX A: GENERAL CIRCUIT EQUATIONS OF CAVITIES WITH
EXTENDED INTERACTION GAPS

A general circuit equation for arbitrary resonant cavities interacting with elec-
tron beams has been given by Slater in his normal-mode theory of resonant
cavities (2). We shall state without proof some of the results from this theory
that are useful for the applications that we have in mind, and rewrite the equa-

tions in terms of the notations used in the present report.

In principle, the normal-mode theory is applicable to any configurations of the
resonant cavity and the electron beam inside its volume, regardless of geomet-
rical details. Slater arrives at his theory by defining two sets of orthogonal
vector functions, one of which is solenoidal and the other irrotational. The vec-
tor functions satisfy the wave equation inside the cavity with appropriately chosen
boundary conditions on the cavity walls. The electromagnetic field quantities in
the cavity are then expanded in terms of these orthogonal functions or normal
modes. The solenocidal part of any of the vector fields is expanded in terms of
the solenoidal normal modes, and the irrotational part of the field in terms of
the irrotational normal modes. In particular, the electric field vector E is

given by
E =E +E (A.1)
where the solencidal part ﬁc and the irrotational part E-:b can be interpreted

physically as the circuit field and the space-charge field, respectively. The sole~
noidal circuit field f:r.: is given by the solution of Maxwell’s equations within the

volume bounded by the cavity walls with no free electric charges in the volume.
As shown by Slater, the irrotational space-charge field Eb' which is due to the
free distribution of charges in the beam, is derived from a scalar potential satis-
fying Poisson’s equation. The problem of finding Eb is essentially an electro-
static problem of determining the field from a known charge di stribution, subject
to the proper boundary conditions. The space-charge field is thus a local field,
which accounts for the fact that it does not contribute to the energy flow from the

beam to the surrounding circuit.

It follows from the normal-mode theory that if the internal and possible external
cavity losses are negligible (high values of the loaded Q), and the resonant fre-
quencies associated with the normal modes are spaced sufficiently far apart, the
excitation of the particular mode that is closest to the operating frequency will

be predominant. If this assumption is satisfied, as assumed in the present re-
port, the circuit field Ec will simply be given by the particular normal mode that
is excited, the contributions to the field from the remaining normal modes being

negligible in comparison. For this situation the formulae stated in the following
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are those derived by Slater, some of them in the original form and some modi-

fied in accordance with the notations used in this report.

Figure A.la shows a cavity with an electron beam that enters the interior volume
through fine metallic grids in the cavity walls, or alternatively, through short
sections of waveguides with cut-off frequencies above the operating frequency.

The details of the geometrical configuration of cavity and beam are chosen arbit-
rarily. The cavity is coupled to the external system through a number of trans-
migsior lines of which two are indicated in the figure. The reference planes 5,
and S, normal to the transmission lines are the positions to which we shall refer
the input admittance when looking into the cavity. These positions, characterized
by the fact that the cavity admittance behaves as that of a lumped parallel resonant
circuit, are often referred to as '"detuned short' positions because the input ad-

mittance becomes zero for frequencies far off resonance.

52 \
N To load
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Fig A.1 Resonant cavity and electron beam configuration

(a) Cavity with arbitrary shape in which the electron beam interacts
with the RF electric field over an extended region of length £

(b) Lumped-circuit equivalent for one of the resonant modes
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Under the assumption that one single cavity mode is excited, the input admittance
y; atthe reference plane S; in the transmission line (1) is given by

® o 1 1 1 [i'-f:: dv
Y1 = Dext, 1 j(_'—)“ = + + — (A.2)
% m Q Qext, 2 G0 % IEc' Ec dv

where y; is normalized with respect to the characteristic impedance of the
transmission line, and the second transmission line is terminated in its charac-
teristic admittance. Of the remaining quantities in the equation, Q is the unloaded

Q-value of the cavity; Q and Q_, , are the external Q's associated with

line (1) and (2), respectivz,lay:;l ®_ is the resonant frequency of the single mode
that is excited in the cavity; ® is the signal frequency; €, is the permittivity
of free space; i is the complex amplitude of the RF current in the beam; and

ﬁc is the complex amplitude of the RF electric field intensity of the solenocidal cir-
cuit field. The two integrands on the right are integrated over the volume bounded

by the cavity walls and the reference planes S; and S,.

The unloaded Q is defined in the conventional way by

Q= o =22 (A.3)

where W, is the stored electromagnetic energy in the circuit field, and P is

m ;
the power dissipated on the surface of the cavity walls due to their finite electri-
cal conductivity. The external Q is also given by Eq (A.3) where in this case P

is the power dissipated in the external load.

The stored energy W_ alternates periodically between electric and magnetic

energy, and is thus given by the maximum electric energy

1 = =3¢
wem = EGO\/‘EC'Ech (A.4)
Vv

The last integral in Eq (A. 2)

P = lfi.ﬁ*dv (A.5)
e 2 c

v
is the complex power extracted by the beam in traversing the interior region of
the cavity. It is significant that the space-charge field E, does not contribute to

the complex energy flow ﬁi except indirectly through its effect on the RF beam
current i through the modulation processes in the interaction region.

By introducing some additional quantities, which are characteristic for the cavity
and beam configuration, we shall give two alternate forms of Eq (A.2). In analogy
with the definition (A.3) of the Q-value of a passive circuit, we shall define an
electronic Q by the relation
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w
Q, = o, —= (A.6)
Re P
e

Equation (A.2) can then be written

_ 1 1 1
¥ _Qextll[(za+ImP)+—+QeXt2+a—] (A.7)

where we also have introduced the frequency-tuning parameter 5 defined by

1 w w ® -
a:—(—~—°)~ (A.8)
2 @, w w,

Equation (A.7) is quite general in the sense that the concept of an electronic Q

representing the effect of the beam is applicable for any beam configuration.

In many practical cases the beam configuration is such that it is possible to define
a typical interaction length £ and an interaction voltage or gap voltage V. In
particular, for a thin linear beam the longitudinal electric field E(x) does not
vary appreciably over the beam cross section. In these cases it is natural to re-
write Eq (A.2) in terms of admittances or impedances associated with the cavity
and the beam. If V is the gap voltage, to be defined later, the cavity shunt im-
pedance R, is defined on a power-voltage basis by the relation

Vv

0. L (A.9)

R =
P

sh

o=

where P is the power dissipated internally on the cavity walls. The characteris-

tic impedance of the cavity will be defined by

*
Rsh vv

Q

(A.10)

D=

wowem

The characteristic impedance R_ /Q depends only on the geometrical configura=-
tion and the frequency. The theory of multi-cavity klystrons shows that R /Q

is the deciding circuit parameter as far as ultimate gain and bandwidth are con-
cerned; it seems therefore natural to consider Rsh/Q as a "figure of merit" for

klystron cavities.

Further, we shall define a total electronic admittance [Ye] by a similar relation

2
(vl = v‘:* (A.11)

where Pe is given by Eq (A.5). The total electronic admittance [Y_,] should not
be confused with the electronic admittance Y_ as defined in Eq (2.68). In general

[Ye] is the sum of Y.,

terms (transfer admittances) arising from RF modulations imposed on the beam

due to modulation by the gap voltage itself, and other

prior to the cavity in question. Only for the case of initial zero beam modulation

is [Ye] equal to Ye'
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Introducing these new notations into Eq (A. 2) we obtain

= 2'a+l+—l—+R5h[Y] A.12
¥y = ext, 1 J Q a Q e (A.12)
2

ext

If also transmission line number (1) is terminated in its characteristic admittance

in the same way as line number (2), the admittance looking into the cavity is

-y = -1, and Eq (A.12) transfers to

Q
Rsh

L +zn8)+ (¥,] =0 (A.13)
QL

where QL is the loaded Q, given by

i - + L (A.14)

Qext,l Qext,Z

D=

o -
QL
Equation (A.13), expressing the complex power balance in a cavity excited in one

of its modes by an electron beam, can be considered as the circuit equation for

this mode. Its form suggests the lumped-circuit equivalent diagram shown in
Fig A.lb, consisting of the total electronic admittance [Ye] and the circuit ad-

mittance Yc coupled in parallel. The circuit admittance Y  is thus given by

Q

Y = N
sh QL

e R

(1+2jQ,58) (A.15)

According to Eq (A.13), we have

Y. # lvd =09 (A.16)

The gap voltage V appearing in Egs (A.9) and (A.11) was introduced in a formal
way without giving a specific definition of its meaning. Actually, since the gap
voltage is not contained in the final equations (A. 12) or (A.13), its definition is
irrelevant. The only restriction on the definition is that it should satisfy the ob-
vious requirement that V must be proportional to the amplitude of the RF electric
field intensity. Since the longitudinal RF field distributions of the extended inter-
action regions considered in this report are quite arbitrary, the conventional de-
finition of gap voltage as the line integral of the electric field intensity across the
gap must be rejected. Otherwise a number of RF field distributions such as anti-
symmetric fields, pure sinusoidal fields, etc, would yield V identically zero re-

gardless of the electric field strength.

The physically most appealing definition of gap voltage seems to be the one that is
associated with the maximum absolute value of the Fourier transfer of the longi-

tudinal electric field :

2/2
E(x) e
-J/Z max

jB_x
€ (A.17)
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where E(x) is the longitudinal electric field and L the length of the interaction
gap. Inthis case V has a definite physical meaning, specifying the maximum
kinetic voltage modulation imposed on a beam with negligible space-charge tra-
versing the gap with the appropriate DC beam velocity that maximizes the Fourier
transform, (see Eq (5.3)). However, due to the complexity of Eq (A. 17) we shall
adopt the following simpler definition of V used throughout this paper:

2/2
vv* = lf E(x) E(x)* dx (A.18)
I

This equation can also be written
vV = .NEE” : (A.19)

where EE™ is the mean square of E. The definition (A. 18) thus implies that the
gap voltage V is an rms (root mean square) voltage in the longitudinal co-ordinate.
For the simple configuration of a narrow gap with constant field the general defini-

tion (A.18) reduces to the conventional one, namely V =EZ.
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APPENDIX B: DERIVATION OF A SECOND-ORDER DIFFERENCE
EQUATION FOR THE VOLTAGE GAIN

The system of linear algebraic equations (3.10) can be transformed to a second-
order linear homogeneous difference equation by forming a linear combination of

the last three equations. Assuming p equal or larger than four, we find

p-3

{apr-Z.r % bpr-l.r N Yp,r) M

=2

H

+(a Y +b Y +Y
( p p-2,p-2 p p-l,p-2 P.p-Z)"‘p-Z

+ (b Y + il 4 =0 .
( p p-l,p-l % l)qp-l p.p"p (B.1)

PP~

where a, and bp are suitable constants which are functions of p but not of r.
Evidently this relation reduces to a linear combination of 'qp " «qp_l , and "Tp-z
if the following relation is identically satisfied:

apr_er + bpr-l,r + Yp,r =0 for r=2,---p-3 (B.2)

We shall show that a, and bp can be chosen such as to satisfy this requirement.
Expressing the transfer admittances Yp-Z, % Yp-l, - and Yp, . explicitly in
terms of the coupling coefficients of the slow and the fast space-charge waves us-

ing Eq (2.67), and rearranging terms, we obtain from Eq (B.2)

o b it M
-ip' 2 -jp_2 #
M e P p-Z,r[a M b M o P LepeZ e, Jaetp,p-z:l

+
p p-2 p p-l P
_ -iB2 ; e CiBL2 - TEd
“M e g r[apMpi:Z + bpMpfl g = 2 prliprdiy Mp*e P,P-2| =g

r=2, -=-=-p-3 (B. 3)

where ﬁ: = ﬂe+ Bq and a; = P Bq' For arhitrary values of r this equation
is satisfied only if the quantities inside the two brackets vanish identically. This

requirement yields two equations for determination of the quantities a, and bp.

We obtain
tee __ jB 2 - -ip 2 '
M M *e q P;P'l = M * M+'x e q plp-‘l 'JB 2 >
a & —B-L P Pl B e ©PPT (B.4)
P iB -jg_ 2
=% eJ t‘.l‘zp-l,p-2 oM™ MTE e } q p-1,p-2

Mp-l p-2 p-1 MP-Z
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7 Gl " M t*..’ﬁ.qu‘p-2 O e el e-Jqup“p-2
b = —P=2 P p-2_p
P o o toe Pqlp-l, p-2 _ te -
qQ7p=i,P-4¢ _ e x
Mp-l Mp_ze J Mp-l Mp_ze

-iB_ 2
-1

-iB_2 g ©BF (BB}

q~p-1,p-2

If ap and bp are chosen according to these equations, Eq (B.1) reduces to the
following second-order homogeneous difference equation:
+ (b Y + ¥

(bp p,p-1 Tp-1

Y
p,pTp p-1,p-1

+ +b Y + ¥ =0 B.6
(ap¥pz,p-2 " Pp p-1,p-2 p.p-Z)q -2 B%)
where the quantities appearing in the coefficients depend only on parameters as-

sociated with the cavities p-2, p-1, and p.

Although the general expressions for a, and bp given in Eqs (B.4) and (B. 5)
are relatively complex, they simplify considerably if the coupling coefficients of
+ L+ P
pe2 = Mp—l = MP and Mp-Z - MP"l = Mp'
In this slightly less general case, to which we will confine our attention, a, and

all the gaps are the same, ie if M

bp are given by

sing_£ -ip 2
o = - Pq’p,p-1 , “Te'p,p-2 (B.7)
Em“ﬂcl‘ep-l.lv--2

sing 2 -jg 2
b =9 Pap=2 " €Pip-l (B.8)

P .
5in Bqbp-1,p-2

In this case the transfer admittance Yp 5 defined in Eq (2.67) can be written

-ip_2

_ e’p, T L 2
Yp,r = e {ZGe cos Bq’e'p,r + W M~ sin Bq”p,r) (B.9)

where the beam loading Ge is given by Eq (2. 70), and Mz' is defined as the
arithmetic mean of the squares of the coupling coefficients of the slow and the

fast space-charge waves

2 =
M° = %(|M+| + M7 ) (B.10)

Using Eq (B.9) for evaluation of the coefficients in the difference equation (B.6),

we obtain
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Y = Ze-mezpnl"l
PP P
(1 sinp £ 2 MZ
X — 9 EI E- Y ) - ar
2 sinp £ p-l,p-1 " CeO%Pgly oy - i sin pq’p,p-l) . |
q P‘I:P'Z
-jB_2 sin p
ro o2 Wolppt (y - =0 (B.11)
sinp 2 p-2,p-2 e] Tp-2
qp-1,p-2

If the generality is restricted still more by the assumption of equal cavity spac-

ings, ie, zp,p-l = lp_l'p_z = --- = £, Eq (B.11) simplifies to

-ig 2 M
Yp,p"p - 2Ze (YP'I.P-I - G,) cos Bql - ;; sin pql Mp-1

-j2B A
+ e e[

LT zce] Tp-2 = O (B.12)

In the difference equation or recurrence formula derived here in various forms
(Eqs (B.6), (B.11) and (B.12)), the RF gap voltages of any three consecutive

cavities are related by linear expressions valid for arbitrarily tuned cavities.
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