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WAVELETS FOR DETECTION OF TRANSIENT SIGNALS
1 INTRODUCTION

This report documents the work done by the author in connection with the fourth
year subject “Prosjekt 2” at the Norwegian University of Science and Technology, De-
partment of Mathematical Sciences. The work has been carried out at The Norwegian
Defence Research Establishment (FFI) as a part of the development project CHESS
(Composite Hull Embedded Sensor System), which is a joint undertaking between FFI
and the Naval Research Laboratory, Washington DC.

The goal of the CHESS project is to develop a real-time system to monitor and analyse
the load on the hull of a high speed Surface Effect Ship (SES) which is currently being
built at Kveerner Mandal, Norway.

This report focuses on the problem of detecting signals arising from slamming, heavy
impacts between waves and the hull of the ship. These signals tend to be oscillatory
and of relative short duration, masked by non-white noise. There are several reasons for
the interest in these transient signals; firstly, one would like to know during operation
if ship is going so fast that the plates in the hull risk being subjected to unsustainable
loads; secondly, there is reason to believe that changes over time in the vibrational
frequency and its higher harmonics might indicate structural damages.

Two other reports on wavelets and wavelet-based detection schemes related to the
CHESS project have already been published [1], [2]. This report should be seen in
conjunction with them, so we do not needlessly repeat the discussion in those. Instead,
we try to present a coherent and mathematical overview of wavelet theory and signal
transforms. In particular, we have tried to develop a common notation.

First, we briefly review selected parts of wavelet theory in Sections 2 and 3. Several
methods for detecting and characterising transient signals are suggested in Section 4.
These methods are implemented in MATLAB and tested on experimental data. Some
results of these tests are presented in Section 5. Finally, we point out some areas into
which more effort should be put.



2 TIME-FREQUENCY SIGNAL REPRESENTATIONS

Frequency analysis of signals and functions is a method which is indispensable in many
parts of science and engineering. Fourier analysis is the most well known of these
techniques, where a function is analysed as a linear combination of sinusoids. The
relative magnitude of the coefficients of such a linear combination gives information on
the importance of different frequency components of the function.

However, as a sinusoid with given phase and frequency does not change character over
time, such a linear combination weights frequency components equally at all times.
This is a problem if we are interested in knowing the frequency components of phe-
nomena which are transient or non-stationary. What we then need is a transform
which can characterise a function by its frequency contents at different times. A tuto-
rial and an extensive literature survey on several such time-frequency signal transforms
(STFT) can be found in [3]. We will restrict ourselves to review the short-time Fourier
transform and the wavelet transform.

2.1 The short-time Fourier transform

The short-time Fourier transform (STFT) of a function f(-) € L*(R) is defined as
(TSTF f)(w,t) = f = f dof(We ™ T(u—1), we L*(R) (2.1)

where w(-) is a window function. The reason for the complex conjugate appearing in
(2.1) will soon become apparent. We recognise this as the ordinary Fourier transform
of f multiplied with a shifted version of w. Thus, if w(u) is located around u = 0,
then, for each t, (T57F f)(w,t) will be the (approximate) ‘instantaneous’ frequency
distribution of f near that time.

What we really mean by instantaneous frequency is a little unclear, however. We
know that precise simultaneous measurements of time and frequency are mutually
incompatible; the uncertainty principle states that this as an intrinsic property of
functions. We will confine ourselves to make an intuitive interpretation, and refer to
[5] for more details.

Before we proceed to find an inverse of (2.1), we give an example. A discretization of
the STFT can be computed by taking the DFT of a signal multiplied with a suitable
window function. This is shown in Figure 2.1, where a Gaussian window is used as in
[2]. The signal shown is data from a full scale measurement of the strain on the hull of
a ship. We clearly see two strong transients, and from the bottom of the STFT plot we
can identify a recurring component every 0.5s, consisting of oscillations around 2 - 3Hz.
We can also identify higher frequency components, especially in the transient around
time 2s. In the original computer plots, we see a well defined 20Hz component, and
a few much fainter higher frequency components, which might represent higher order
vibration modes. This might be difficult to see on print due to poor printing resolution.
There are also theoretical justifications for this interpretation; finite element models
show that the frequencies around 2.5Hz correspond to beam mode vibrations, whereas
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Figure 2.1 A signal with two large transient and its discrete short-time Fourier
transform.

the plates in the hull will undergo plate vibrations with a fundamental frequency around
20Hz and super-harmonic components at higher frequencies.

To find an inverse, or synthesising, transform we write

flw,t) = F (fw)w(u—1)). (2.2)

Applying the inverse Fourier transform, we get

fwmw—n=[“mﬂwwm (2.3
Writing
Ju (1) = 2™y (u — t), (2.4)

we get upon upon multiplying (2.3) by w(u — t), integrating over t and reversing the
order of integration

£)C = [[ dodtfw, Oguue (25)

where C = ||w||2,. We have for convenience suppressed the limits of integration.
Using an inner product formalism, we thus have the following formulae for analysis



and synthesis;

F={f, gup)2®), (2.6)
f=CHf, o) 2me)- 2.7

The latter equation can be written

F={f,9"Y 2@ (2.8)

where we have introduced the reciprocal family g~ = |]g||£22(R)§w,t. Substituting the
(2.6) into (2.7), we have a resolution of the identity,

f= //Wdfﬁw’t(fagw,:)z,zm) (2.9)

In operator terms, this is

Id = f dw df?“”%*, gw,t>L2(R): (210)

where Id is the identity operator. The above equations are all part of a broader
structure. To better understand that theory, we first need to investigate the concept
of frames.

2.2 Frames for General Signal Transforms

By using the theory of (generalised) frames, we will be able to obtain a general theory
for many Fourier and wavelet types of transforms. The advantage of this approach is

[6]

...that certain types of theorems (such as reconstruction formulas, consis-
tency conditions, and least-square approximations) do not have to be proved
again and again in different settings; instead they can be proven once and
for all in the setting of generalised frames. Since the field of wavelets is so
new, it is important to to keep a broad spectrum of options open concerning
its possible course of development.

Frames are very reminiscent of the familiar concept bases. In fact, any basis is a frame,
but the opposite need not be true. In a space with a finite dimension, say N, a basis is
a set of N linearly independent vectors. Since these vectors are linearly independent,
they span the space. A frame in the same space would also be a set of vectors spanning
the space, but they may be linearly dependent. Hence, a frame can contain more than N
vectors, and may therefore be redundant. In infinite dimensional spaces, the situation
is similar.

In order to be as general as possible we shall make slight use of measure theory; we
have provided a short review in Appendix A for readers unfamiliar with this concept.



Definition 1 (Frames) Let H be a Hilbert Space and let M be a measure space with
measure . A frame in H indezed by M is a family of vectors {em, € H : m € M} such
that

1. For every f € H, the function f: M — C defined by

f={(f.em) (2.11)
18 measurable.

2. There is a pair of constants 0 < A < B < oc such that for every f € H,

Al < 1F 122 < BIFIE (2.12)

The vectors {ey,} are called frame vectors, A and B are called the frame bounds, and
(2.12) is called the frame condition. From the frame condition, we see that f € L?(u)
since A and B are finite. Therefore (2.11) can be written (Tf) (m) = (f,e)x, where
we have introduced the frame operator T : H — L?(u). We call f(m) = (Tf) (m)
the transform of f with respect to the frame. Sometimes we will write T} if we want
to emphasise that we are using the transform with respect to some function ¢ as in
(T f)(m). For example, with this notation the Fourier transform of a function f would
be written (Tjzriut f)(w).

To reconstruct f from its transform, we need the left inverse of T. We will call this
operator the synthesising operator S. We first note that since T is an operator on
Hilbert spaces, it has an unique adjoint, T*, [7].

We introduce G, the metric operator
G=T'T:H—H, (2.13)

and note that G is self-adjoint, so G = G*. Since now || Tf||z2) = (Gf, f)u, we can
write the frame condition (2.12) as

Alf, fle < (Gf, fYu < B{f, fn. - (2.14)

By subtracting the right and left hand sides of this inequality from the middle part,
we see that ||G|| < B, and ||G|| > A almost everywhere. Therefore, G is bounded, and,
more importantly, G™! exists and is bounded by A~!.

Now it is easy to show that S defined by S = G~T* is a left inverse of T. Indeed, if
Tf = g, then
8g =G IT*Tf) =G Gf = 4. (2.15)

However, one should note that S need not be a two-sided inverse, that is, TS # Id in
general. We recognise S as a pseudo-inverse-like operator; if g(m) is an arbitrary signal
in the transform space, f = Sg minimises the discrepancy ||Tf — g||°.
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It can be shown that the action of S is given by

Sg = (g, €™)r2(u)» (2.16)

where e™ = G~ ', is the reciprocal family to e,. The use of complex conjugation in
this definition is non-standard, but allows us to write the reconstruction formula as an
inner product.

We call a frame tight when A = B. The frame condition becomes

A(f, f)n = (Gf, f)u = B(f, f)n. (2.17)
In other words, (Gf, f) = A(/f, f) almost everywhere, so

G=AId and G '=A7'ld (2.18)
The reciprocal family is then given simply as

e™ = A", (2.19)
Thus, a general transform pair in a tight frame can be written

(TF) (m) = F(m) = {f, em) _ (2.20)
(8F) (&) = £&) = (F, ™o (2:21)

This is to be compared to (2.6 and (2.7). We will now discuss one very special class
of frame vectors, the wavelets {1,}. '

2.3 Wavelet transforms

In the short-time Fourier analysis, we have seen that a function is decomposed by
means of functions g,,; which are generated by translation of a window function, and
multiplied by an oscillating sinusoid, (2.4). In wavelet analysis, we likewise decompose
the function by means of basis given by

1 t—b

Yap(t) = ﬁw (T) ; (2.22)

Here, the different basis functions are generated from a mother wavelet by means of
scaling by a and translation by b. The normalisation constant ensures that all ¢, has
the same L2-norm. The wavelets should be well localised in both time and frequency
in order to separate different frequency components occurring at different times, see
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[8]. Under certain conditions, the wavelets will form a tight frame, as in the previous
section. The continuous wavelet transform and its inverse are [9]

(T £) (a,B) = F(a,b) = {f, Yan(®)) z2m) = _[ dt £ (&) Ban(®) (2.23)
(577) ) = 10 = vy = 65" [ S Fa st (2.24)

The measure y is given by du = dadb/a?, and (a,b) € Rx R. The frame constant can
be calculated explicitly by

Co= [ ool $w), (225)

which must be finite, according to Definition 1. This condition, called the admissibility
condition, is usually equivalent with demanding that [ 4 (¢) = 0. We shall not go into
further details on sufficient or necessary conditions for the decomposition to be valid.
The statement that [ 9(t) = 0 means that 9 is in some sense oscillating. We see that
for low scales a, the function v, will be compressed and thus oscillate faster, whereas
for high scales it is stretched out and oscillates more slowly. Hence, we can identify
high scale with low frequencies, and vice versa.

For practical purposes, there is limited interest in the continuous wavelet transform.
The discrete wavelet transform is much to prefer, as it is less redundant and there
exit efficient algorithms for calculating the inner products (2.23) and (2.24). The
DWT follows from the continuous transform by a discretization of the parameters a, b.
This is different from the discrete and continuous Fourier transforms, where there in
general is no such simple relationship. The discretization scheme usually adopted is
a = a}, b = kbya), where ag > 1,bp > 0 and 7, k € Z. This scheme leads to the wavelet
basis

bix = ay?*9(ag 7t — kby). (2.26)

We will consider only ag = 2, and by a simple rescaling argument, we can without loss
of generality assume by = 1, see [9], Chapter 1.

We have seen that the short-time Fourier transform and the wavelet transform both fit
nicely into the same theoretical framework. As for the dissimilarities, one of the more
crucial differences can be seen by comparing the basis functions in (2.4) and (2.22).
The basis used in the STFT has constant width at all frequencies, which means that
we are using the same time resolution to describe low-frequency and high-frequency
phenomena. This is obviously a problem if we need to analyse signals of transient
nature with different spectral distributions; if we use a very narrow window to catch the
highest frequencies, we are sacrificing good frequency resolution at the lower frequency
in the process. Similarly, if we use a broad window, we are in a sense averaging
out the highest frequencies. The wavelets are much more flexible; we have identified
high frequencies with low scale, and at a low scale the wavelet is narrow, giving good
resolution. Similarly, at large scale the wavelet is broad and analyses low frequencies
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well. This "zooming” capability of the wavelet transform is one of the reasons why
it has met a certain degree of success as a tool for analysing transient phenomena,
whether they are found in physics, economics, signal processing or image compression.

2.4 Multiresolution analysis

So far, we have formulated the theory of wavelets in an abstract mathematical setting,
and we have made use of Hilbert space formalism. As it stands, our formulation is not
direct amenable for algorithmization. We will see that the concept of multiresolution
leads to a formulation of the basic theory which lends itself to an easy implementation
on a computer. The resulting algorithm will be very fast, allowing us to compute the
coefficients in the expansion in O(N) time.

Definition 2 (Multiresolution) A sequence of subspaces is called a Multiresolution
Analysis if there ezists a sequence {V;};ez of closed subspaces in L*(R) satisfying

Vi CVin (2.27)
£(z) € V; & f(25) € Vi (2.29)
MV; =1{0} (2.29)
JEZ 3

UV =L*®) (2.30)
jEL 5

{¢(t — k) }rez is an orthonormal basis forVy (2.31)

These basis function also have to satisfy some additional requirements if they are
to generate a multiresolution analysis; see Chapters 1 and 5 in [9], and also [10].
Furthermore, we may generalise the dilation factor 2 in (2.28) to any rational number,
and the {¢(t — k)} may constitute a so called Riesz basis, but this will not be discussed
in this report. As for the interpretation of these spaces, we claim that with increasing
the spaces contain finer and finer details. See for example Chapter 6 in [12].

Let us introduce the wavelet spaces W; and finalise the multiresolution formulation for

the wavelet transform.

Definition 3 (Wavelet spaces) Assume that the sequence {V;};cz constitutes a mul-
tiresolution analysis. The wavelet space W is then defined as the orthogonal comple-
ment of V; in V;_,,

Vici=V; 0 W (2.32)

Thus, we can say that the wavelet space at level j contains the extra detail required
for going from Vj to the higher resolution space V;_;. Defined in this way the different
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spaces W; are orthogonal. If we have a high detail space at level 0, we may decompose
it in mutually orthogonal subspaces by iterating (2.32) as follows

J
Vo=V, ® (GB Wk) . (2.33)

k=1

Assuming that certain technical conditions are satisfied, we may derive an orthonormal
(or Riesz) basis for Wy. We denote this basis by {¢ (¢ — k) }xcz, and we will derive it
in Section 2.6. The crucial observation we now make, is that the wavelet spaces, and
consequently their bases, inherit the scaling property (2.28) from the scaling spaces.
Then an orthogonal basis for W; is {%(277t — k)}«, or {¥;x(t)}x where we recall the
notation from (2.26). We similarly define

¢;x(t) =2799(277t — k) (2.34)

Suppose now that we have a function f € V. From (2.33) we can conclude that
the family {¢ , Y1 ... ¥k} constitutes an orthonormal basis and tight frame for V4.
Since the frame is orthonormal, the reciprocal family is given by the complex conjugate
of the original family, as in (2.19). We may write (2.21) as

f6) =3 calkloap®) +3_ D7 dilklwse®). (2.35)
where

cslk] = (Tof) (J,k) = (F, bux) (2.36)
dj[k] = (T¢f) (Jsk) = <f=wj,k) j: 1,-.. ,J (237)

The latter pair are (2.20) for our particular choice of basis. These are the wavelet
synthesis and analysis formulae. We use the filter engineering convention of indicating
the time-like variable k¥ with brackets in anticipation of the next subsection. There
we will show how the coefficients can be calculated in an efficient way using sub-band
filtering.

2.5 Wavelet transform by sub-band filtering

From the definition of a multiresolution analysis we see that Vo C V_; s0 ¢_; 4 is an
orthonormal basis for V_;. It follows that there exists a sequence hg[k] € 1?(Z), such
that

$(t) = V2> holk](2t — k). (2.38)
k
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As we shall see, this equation is fundamental — everything follows from it. Similarly,
as Wy C W_; C V_;, we may express a function in W, as a linear combination of
functions in V_q;

Y(t) = V2 ) lkle(2t ~ k) (2:39)
k

The two sequences ho[k] and h;[k] are both square sumable, and the two equations are
commonly called the scaling identity and the wavelet identity, respectively. They are
not independent; in Section 2.6 we will indirectly show that h;[k] follows from ho[k].
For explicit formulae, see [9]. To sum up; if we have the sequence hylk], we can, in
theory, solve (2.38) for ¢(t), and then find +(¢) from the wavelet identity. In this way,
we can find the all the expansion functions in (2.35). But there is more; The two
sequences hg[k] and hs[k] also give us a fast way of obtaining the inner products (2.36)
and (2.37) we need. Let us state a key theorem, which is the basis for the fast wavelet
transform FWT and its inverse.

Theorem 1 Let cj[k] and d;[k] be defined as in (2.36) and 2.87, respectively. Then,
for 3 =1,...,J the following relationships hold.

c;lk] = > holn — 2k]cj_1[n] , (2.40)
d;[k] =) " ha[n — 2K]cj1[n] (2.41)
ci-1lk] =Y (holn — 2klcjln] + haln — 2k]d;[n]) (2.42)

n

We see from (2.40) and (2.41) that if we have the fine-scale coefficients co[k], we can
recursively find the coarser scale coefficients. This is precisely the analysis step in a
wavelet decomposition.

On the other hand, if we have the coefficients c;[k] and d;[k] for j = 1,...,J in the
wavelet decomposition (2.35), we can recursively recover the finer scale scaling coeffi-
cients by means of (2.42). This process is the synthesis step in a wavelet reconstruction.

The relatively simple proof of these relationships as they are stated here can be found
in [11]. We restrict ourselves to note that the two sequences ho[k] and h;[k] are the
impulse responses of a high pass and a low pass filter, respectively. In fact, these
two filters are guadrature mirror filters. Such so-called QMFs have several desirable
properties, and there is a comprehensive literature on them in the field of filter theory.

The transform can be represented pictorially as in Figure 2.2. The symbol | 2 means
downsampling by two, that is, removing every second element of the input sequence.
Here, a capital letter, e.g. A, inside a filter symbol denotes convolution with the cor-
responding sequence {a,},. By making this connection between filter theory and mul-
tiresolution, we have almost done away with the inner product formalism. Further-
more, we have provided a framework for applying wavelets to many problems in many
different parts of signal processing.
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=t L o |2 = s

Figure 2.2  Schematical representation of the three stage wavelet decomposition
structure.

As one might expect, not just any two filters will give rise to a multiresolution analysis.
Details on filtering aspects, necessary and sufficient conditions on the various quantities
can be found in [9], [10] and [11] Chapter 5, amongst others.

2.6 Construction of the orthonormal wavelet bases.
In this section, we prove as advertised the following result:

Theorem 2 (Orthonormal wavelet basis) Let the sequence of subspaces {V;} in
L*(R) constitute a multiresolution analysis, and let {¢ox}rez be an orthonormal basis
for Vo. Then we may derive an orthonormal basis {1 }kez for the space W, defined
by V_1 =V & W

Following [9], we consider an arbitrary function f € Wy. We investigate this function

and construct a function v (our wavelet) whose translates span Wj.

Since V_; = Vo @ W, f is also in V_;, and f L Vo. We know that {¢_1 4}« is a basis
for V_;, and consequently we can express f as '

=Y fd-rp (2.43)

keZ

where fr = (f, #_1x). We will need the Fourier transform of f, so let us first find an
expression for f. From (2.43),

f = fiv2Fe(2t—k) (2.44)
k€Z
= ﬁka%ez”*“’fz"q?)(w/Z) (2.45)
kel

mg(w/2)$(w/2), (2.46)
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where we in the last equality have introduced the function

my(w) = % 3 T (2.47)

keZ

This equality holds almost everywhere. For future use, we record the fact that my is
periodic with period 1, and that m; € L?([0,1]). Much of this section is devoted to
finding this m;.

To do just that, we need the Fourier transform of the scaling function ¢; Starting from
the scaling identity (2.38), we get

" 1 . -
dw) = —= ) holkle ™ ?¢(w/2) (2.48)
W \/ﬁ% o|fk|E
= mo(w/2)$(w/2), (2.49)

where we have introduced the L2([0,1])-function mg(w) with period 1 defined by
mo(w) = 1/v/23, ho[kle?™™*. We also need another property of ¢, which follows
from the orthonormality of ¢o and Parseval’s Theorem;

do = (Do, Pok)r2w) VkEZ | (2.50)
= (Fdoo, Foor)r2w)y  Parseval's theorem (2.51)
= (¢, Pe™ ) 2R ' (2.52)
— f dw |q5|2e2m'wk (2.53)

-0
1
= f dw z |$(w + n) [Ze2miwrmk (2.54)
0 neZ
; ,
_ / dw e 3 3w + ). (2.55)
0 neL

The last equality follows from splitting up the integration domain into intervals of
length 1 and noting that "¢ = 1. Equation (2.55) is the inverse Fourier transform
of the function

> 16w +n)*. (2.56)

neZ

By taking the Fourier transform on both sides, we obtain

Spw+n)P=1 ae, (2.57)

nek

a result we will need later. The equality holds almost everywhere because the Fourier
Transform is an unitary operator on the class of all L!-functions differing only on sets
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with measure zero. Substituting (2.49) into this equation and splitting the sum into
two parts corresponding to odd and even n, we obtain

o ()33

ned
- S ()
+3|m (w) 3 (W) 2 (2.59)
nez
= Y |mow +md@ +m|, o =wf2
ner
+szg(w'+n+%)q§(w’+n+%)2 (2.60)
ne
= |mo(w)[2- 1+ |moe(w' + = )|2 8 (2.61)

In the last equality, we used the periodicity of mg and (2.57). Our main result is that
2 Lie
[mo(@)[* + [mo(w + )1 = 1. - (2.62)

Using the fact that f is orthogonal to V = span,{éo:} we can now finally investigate
f in more detail; )

0 = (fdox) VkeEZ (2.63)
= (Ff,Féor)  Parseval’s Theorem (2.64)
= (f,pe2mick) (2.65)
= [ dwfwidwiene (2.66)
= / d Y (Flw+m)dlw + m)emiesne) (2.67)

neL
< /dwe2’““"k2fw+n Soloa)- (2.68)
nek

In the two last equalities, we first divided the integration interval in intervals of unit
length, and then we used the periodicity of the complex exponential. The last equality
is the inverse Fourier transform of the function

> flw+n)é #(w +n), (2.69)

neZ

which is equal to 0. Taking the Fourier transform, we conclude that

wa+n w+n)—0 (2.70)
nel
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We can use the Cauchy-Schwarz inequality to argue that the above equation converges
absolutely almost everywhere, which means that the convergence is independent of the
order of summation. We now substitute (2.46) and (2.49) and split the sum into parts
corresponding to odd and even n, quite similarly as we did above. The result is

ms(w)me(w) + my(w + 1/2)me(w +1/2) = 0. (2.71)

Now, both mq and m; are periodic with period 1. Furthermore, as a consequence of
(2.62), mo(w) and mg(w + 1/2) cannot both be zero for a given w (except on sets of
zero measure). Thus, ms(w) and mo(w + 1/2) must be linearly dependent; there must
exist a function A with period 1, satisfying

my(w) = Mw)me(w + 1/2), (2.72)
Mw) + Alw+1/2) =0. (2.73)

It is convenient to introduce a function v with period 1 and write

AMw) = e™v(2w). (2.74)
With this definition, A automatically satisfies (2.73). We have found

ms(w) = ¥ v(2w)me(w + 1/2), ) (2.75)

and we can write (2.46)

flw) = v(w)e™ my(w/2+1/2)d(w) (2.76)

$w) |
v(w)h(w), (2.77)

where we have introduced %, a candidate for a basis on W,. Since v has period one,
we can expand it in a (formal) Fourier series; -

flw) =v(w)h(w) =) e ki (w). (2.78)
keZ

Now, since

F~H (¢ exp(—2miwk)) = p(t — k), (2.79)

we get upon taking the inverse Fourier transform of (2.78)

fO) = ww(t- k). (2.80)

kel
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This is exactly what we want; we have shown that we can represent f in Wy by means
of a linear combination of translates of ¥. The choice for ¢ is not unique; if p(w) is
any function with period 1 satisfying |p| = 1 almost everywhere, we can chose

P = ™ m(w + 1/2)d(w/2) p(w). (2.81)

Now we need to show that (¢ — k) is indeed an orthonormal basis for W,. Without
loss of generality, we assume p = 1. This analysis is similar to what we have already
done; we will use the definition of 1, the periodicity of mq and a property of ¢. We
calculate the sum

’ +n4+1\ - (w+n)|?
SWenf = ¥ jmo (“52) 6 (457) 2.8
neZ neZl
= |mo(w/2+n+1/2) ) |p(w/2+n)
neZ
+Imow/2+n+ 1)) |dw/2+n+1/2)]° (2.83)
nel
= |mo(w/2)|* + |mo(w/2+1/2)> by (2.57) (2.84)
= .1 by (2.58), (2.85)
which is valid almost everywhere. Now we prove that 1) are orthonormal.
(Yo,0, Vo) 2@ = (Fboo, Fok)r2(w) Parseval’s Theorem (2.86)
= (4, 458_2”@’:)142(112) (2.87)
o / dw |,¢’;‘2621r£wk (288)
—00
1 _
= / dw €73 " | (w + ) (2.89)
0 ne
1
= dwe®™* by (2.85) (2.90)
0
= Bok- - (2.91)

The last thing we need to show is that the formal series (2.80) is valid, i.e. we show
that the Fourier coefficients v in (2.80) satisfy

> el < o0, (2.92)

keZ

which is equivalent with the condition

/1 dw |v(w)]? < oo. (2.93)
0
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We show this in three steps. First, we calculate
1 1
f G lulep = / dwo [Mw/2 (by (2.74)) (2.94)
0 0
5
= 2/2dw|/\(w)|2. (2.95)
0
We also have

| sl = [ don@mito+ 19 o 2:72) (296)

= f:dw])\(w)mo(wr 1/2)[?

% f ' do A @)mo(w + 1/2)P (2.97)

/; ? G A@)ma(w + 1/2)

3 / o A+ 1/2)mo(w + 1)[2 (2.98)
- fo  dw @) (tmo(w + 1/2)2 + [mo(@)P) (2.99)
" / " dw [Mw)[. | (2.100)

where we have used (2.73) to get (2.99), and (2.62) to obtain (2.100). Therefore, we
can conclude

/ @)l = 2 [ )P (2.101)
0 0
= 9 1a’w|'m)e(m)|2 ] (2.102)
0
= 2-%2[}%[2500 (2.103)
kEZ

where he inequality follows since f € Wy, C L*(R). We conclude that the expansion
(2.80) is valid, and the Theorem is proved.
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3 SPECIAL TOPICS AND FURTHER GENERALISATIONS

Below, we first briefly discuss some practical aspects of the wavelet transform which
may confuse the newcomer to wavelets, especially since they sometimes are touched
lightly upon in the some of the more popular introductory texts. Then we point out
an important generalisation of the basic multiresolution scheme we presented in the
previous Section.

3.1 The Fast Wavelet Transform

In order to be able to reconstruct a function f from its wavelet transform, we assumed
that is was an element in the scaling space V;, see (2.35). In many cases, f will not be
in Vy, but some larger space. The input to the FWT algorithm as defined in Theorem 1
is co[k] = (f, do k), which means that we are actually calculating the wavelet transform
of Py, f, the orthogonal projection of f onto V, given by

Prof =Y (f, bok) G0k (3.1)
P

If we are to use the wavelet transform to extract information from a signal f ¢ Vj, we
must make sure that V; is capable of describing all the details we are interested in, so
that we do not lose essential information by taking the orthogonal projection of f on
Vo. The choice of V4 could be done out of knowledge of the Nyquist frequency for our
signal and physical considerations.

The input to the FWT algorithm is another cause of concern; when one is computing
the expansion coefficients

csk] = (f, bs) (3.2),
G = (i) G=1r...J (3.3

by means of the FWT as stated in (2.40) and (2.41), one needs to provide the initial

coefficients cy[k] in order to start the algorithm off. Often, we cannot calculate them
directly, either because it would be impractical, or more often because the function
whose wavelet transform we seek is only known at some sampled values. Here, and in
the following, we assume without loss of generality that the sampling period is unity.
The usual way of dealing with this problem is to state that at a high resolution 0, the
scaling functions are quite narrow, so ¢ x(t) ~ §(t—k). Because of this approximation,
we are somewhat justified in letting co[k] = f(k). However, this means that we are not
calculating the wavelet transform of f(t). Instead, we are calculating the transform of
the function

F@)=>_f0e-1 (3.4)
{

which may or may not be a good approximation to the real f(t). In particular, if ¢(k) #
do,k, We have in general f'(k) # f(k) for k € Z,which arguably seems unreasonable.
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In [12] the authors make the case for prefiltering the samples before inputting them
to the filter bank which implements the FWT. By a suitable choice of filter L, we can
force the following to hold

Fk) =" (Lf) Dok —1). (35)

k

At present, it does not seem to be any consensus among researchers in the on how to
handle this problem. The Wavelet Toolbox for MATLAB do not show any concern
about the fact that they use samples as approximations for the initial inner products,
and neither will we in this preliminary report. However, the problem should be ad-
dressed at a later stage, possibly in conjunction with any other preprocessing of the
data such as noise removal and bandpass filtering to avoid aliasing.

3.2 Time invariance

For all the nice properties of the wavelet transform, it is an unfortunate fact of life that it
is not time invariant. With this we mean that there is in general no simple relationship
between the wavelet transform of a function and the transform of a shifted version of
the same function. On the other hand, the Fourier transforms of two such functions
differ only in that the latter would be modulated by a sinusoidal component. It is
clear that time invariance is something which is desirable if we want to use wavelets for
detecting signals occurring at unknown times; if we have a detector capable of detecting
a signal occurring at time ¢ = 12s, but which is not capable of detecting the same signal
occurring 3s later, then it is tempting to say that we have a badly designed detector.
To substantiate the claim that translation invariant detectors perform better, see e.g.
[14],[15]. Several methods have been proposed to deal with this problem. Most utilise
the following property in some from.

Theorem 3 Let S be the right shift operator such that Sf(t) = f(t+1), and let T, be a
transform as in (2.36). Then, fore =¢ ore =1 andq=qo+2q;, ¢y =0,1,...2971
we have

(Tos®+0? £) (j, k) = 8% (TS®1) (5, ). ' (3.6)

This property follows by simple changes of integration variables.

Theorem 4 To compute the J-wavelet transforms of all N shifts of a sequence of
length N = 2" takes O ((J + 1)N) storage space. This can be performed in O(N log, N)
time.

The reasoning behind proof is as follows. Since gy can take 27 values at level j, Theo-
rem 3 states that we need to calculate 27 wavelet transforms. Now, the the number of
coeflicients in the DWT of a sequence of length N is halved at each level. Then, at level
J the total number of coefficients we need to store equals the number of coefficients
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in the DWT at that level multiplied with the number of DWTs we must calculate;
N277.2 = N. We have J detail levels, so to store all detail coefficients, we need JN
storage space. At the last level J we also must have the approximation structures of
27 shifts, each having N2~7 approximation coefficients. In order to store the entire
wavelet decomposition structure of all possible shifts, we thus need N(J + 1) coeffi-
cients. As for the time estimate, we use the fact that that the wavelet transform is an
O(N) algorithm, and that it is applied to 27 sequences of length N2~/ at each level.
Since J < log, N, the theorem follows.

There exists other translation invariant schemes, for example as developed in [15].

3.3 Wavelet packets

This section deals briefly about an important generalisation of wavelets. The best
way to understand wavelet packets is to look at Figure 2.2, and reason as follows; the
coefficients d;[k] represent the highest details in our signal. If the parts of the signal
we are interested in belongs to the approximation space V;[k], it makes perfectly sense
to further decompose these coefficients, as in Figure 2.2. However, if the first wavelet
space W, contains important parts of the signal, possibly different high frequency
components, then we should probably decompose it in order to separate the different
components. In short, it may be valuable to consider the full binary tree decomposition
structure as in Figure 3.1. This gives us more freedom in choosing the decomposition
structure of a signal. The extra freedom can be used to good effect; in the literature,

= - Vi

o~ Va2 o Vo3

= Vi1 o V53

= V22 Via

Voo

= V12 = Vis

= Voa = Va3

= Vo2 | Vis

= Vo3

Figure 3.1  Schematical representation of how the initial space V; is decomposed
using a three-stage wave packet decomposition.

wavelet packet detectors generally outperform traditional wavelet detectors [14]. The
current trend in the signal processing literature also seems be in favour of wavelet
packet-based detectors.
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In the wavelet packet decomposition structure, we decompose at each level j our initial
space Vj into 27 spaces. We identify the decomposition space not only by a scale index
Jj, but also by a frequency indez These new spaces satisfy

V:;i,n = Vi+l,2n > V}‘+1,2n+1, n= 0, 1, ey 2j - 1. (37)

It is clear from Figure 3.1 that wavelets are a special case of the more general wavepacket
formulation; Vo ; =V and Vi ; = W,

There are exists several strategies for choosing the decomposition structure. One
method which has received much attention, especially in the field of data and im-
age processing is Coifman’s Best Basis Algorithm [17]. The idea behind the algorithm
is to minimise a cost function which is small when most of the coefficients in the de-
composition are small. One performs a full wavepacket decomposition and out of all
possible decompositions, one finds the one which defines a global minimum in the cost
function.

In our application, detection of signals whose waveform is approximately known, it may
be most efficient to choose a structure which concentrates the energy of the transients
in as few coefficients as possible. This means that we can choose the decomposition
structure a priori. A related technique is used to with good results in [16].
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4 TRANSIENT DETECTION AND CHARACTERISATION

As stated in the introduction, one of the goals of the CHESS-programme is to develop
a sensor system to monitor the strain on the hull of a ship. During operation, data
will be continuously fed into a data processing system. On the basis of these data, the
system decides in real time whether a transient has occurred. If a transient is detected,
the system may characterise the transient by estimating time of arrival, duration,
amplitude, frequency, and possibly other parameters as well. The results should be
presented to the user, that is to the Captain of the ship. On the basis of this output,
the captain should be able to operate the ship in such a manner that there is minimal
risk of damage to the structure.

Detecting whether a signal is present in a noisy background is a classical problem with
a wide area of applications. Consequently, there exists an extensive literature on the
area. A good survey article is [21], upon which much of this chapter is based.

4.1 Preliminary considerations

We designate the transient we wish to detect by s(t), and the measured signal from
the sensors by z(t). Assume that s(¢) has support [0,7], and that we observe z for
t € M, where [t;,t; + T] C M. Then we.can formulate the following hypothesis test.

Hy: z(t)
Hli z:(t)

n(t)

s(t — t:;;0) + n(t), (4.1)

where ¢ € M and n(t) is noise, and we assume that we know the time of arrival #;
and the characteristic duration T of the transient. The vector # represent unknown
parameters, e.g. frequency, damping, and amplitude. To simply assume that the noise
is zero mean white noise is convenient, but not reasonable. The measured strain on the.
hull is among other things dependent on sensor location, on the direction and speed
of the ship relative to the oncoming waves. In spite of these considerations, we will
assume as a first approximation that the noise is indeed zero mean white noise. As
we shall see, we will get reasonable results with this crude approximation. However,
further studies on noise estimation, whitening and removal is recommended.

For a given observation of z with ¢ € M, we need a formal way of choosing between Hj
and H;. This is done by comparing a statistic with some threshold level. We call this
statistic a detector. In its simplest form it is a ‘black box’, where data z(t) is input, and
the single output y(t) is used to distinguish between the hypotheses. To make a good
statistic, it should be chosen in such a way that the output under the two competing
hypotheses are, on average, very different. This requirement will be made precise in
Section 4.2. We also state the obvious; the detector cannot detect a transient which
has not yet arrived. In filter jargon, the detector has to be causal, i.e. it must not be
dependent on future data.
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4.2 Matched filter

We would like to make our detector optimal, in some sense. This is commonly done by
running the input signal = through a linear filter, which is designed to maximise the
output (power) signal-to-noise ratio (SNR,) when a signal is present, that is, under
H;. Such a filter is called a matched filter. We designate the impulse transfer function
of this filter by harp. If we input z(t) = s(t) + n(t), the output is given by

x*hMF =S*hMF+n*hMF. (42)

The output signal to noise ratio SNR, is defined as

_ ‘.5‘ * hMF(T)I2

SNRD - E[ln ¥ h,Mplz] '

(4.3)

When the noise is white, it follows form Scwartz’s inequality applied to the above
equation that the optimum impulse response hjsr is proportional to a delayed time-
reversed version of s. This is a well-known result in signal processing theory, and we
write

const -s(T'—t) te[0,T]

haer(t) = { 0 otherwise (4.4)

The disadvantage with this matched filter technique is that we need to know the wave-
form of the transient we wish to detect a priori. In our case, the transients must be
assumed to vary in frequency and damping, and possibly in other respects as well.

A standard method for estimating such unknown parameter is to run our signal through
a bank of parallel filters, each filter being matched to a transient with slightly different.
parameters. The estimate of the parameter at a given time would then be the parameter
corresponding to the filter with largest output.

4.2.1 Time domain

In the time domain, the filter output is given by convolution with the transfer function
(4.4);

yt) = [ 4t 2(r)haer(t — 7) (45)
= _/dt:z:(‘r)s(T-t+T) (4.6)

/T dtz(r+t—T)s(r). (4.7)
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The last equality follows by making a change of variables, and noting that s has compact
support. In discrete time, we have similarly

T

y(t) =Y z(r+t—T)s(r). (4.8)

=0

We will now describe how the filtering can be done in the transform domain.

4.2.2 Transform domain

As proposed by Eriksen in [1] and further developed by Urnes in [2], the matched
filtering can be done in in the transform domain when we have a decomposition by
means of a tight frame. In that case, the frame condition (2.12) states that for some
constants A, B,

A(f!f)Hz(Gf:f)H=B<f:f>H' (49)

This implies that the metric operator is given by G = Ald.. But we also have
(Gf, fYa = (Tf, Tf)r2(u)- In terms of the norms,

ITfIIz2q = AllFllz- _ (4.10)

Since we are working in Hilbert spaces, we can use the polarisation identity to construct
a valid inner product on L?(u) from its norm, which is proportional to the norm on H,
which in turn is expressable in terms of the inner product on H. In that way, the fact
that the norms on the two spaces are equivalent enables us to get an equivalence of
the inner products on the two spaces. This is precisely a Parseval’s Theorem for tight
frames.

Theorem 5 (Parseval) Let H be a Hilbert space with measure p, and let {em}mem
be a tight frame in H indezed by M. The transform T : H — L*(p) defined by
T = (f,em)n satisfies, for any f,g € H

(Tf,Tg)r2w = A(f, 9)n- (4.11)

This Theorem can be used to prove the following result;

Theorem 6 (Wavelet domain matched filtering) Let the matched filtering of a
signal x with a reference signal s(t) be defined as in (4.5), so that the output is given

by

i) = /(; dtz(t +t—T)s(r). (4.12)
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This output y(t) can equivalently be computed in the wavelet transform domain when
we are using a orthonormal wavelet J-level wavelet decomposition. It is then given by
the equation

o0

y(t) = Y (Tex) (4,k)(ToS%s) (5 +a1)

k=—00

+ 30 3 (Ty2) (G k) TyS%s) Gok + 1) (4.13)

k=—o00 j€D

where D = {1,2,...,J} and T —t = go + 12 as defined in Theorem 8.

The proof goes as follows. If we have an orthonormal basis, A = 1, and we can then
write the filter output (4.6) as

y(t) = /w drz(r)s(T —t+7) (4.14)
<.’L‘, ST_tS>L2{]R) (415)
= (Tz, TST*s)ge), (4.16)

where the last equality follows from Theorem 5 and S is the shift operator. The
Theorem then follows by writing out the inner product (4.16) explicitly.

Because of Parseval’s Theorem, the output of the wavelet based matched filtering is
identical with that of the time-domain matched filter. However, -if we restrict the set
D to contain only the scales where transient has significant amounts of energy, we
have a potentially better detector; this approach separates different components of the
signal into different scales, thereby effectively increasing the signal-to-noise ratio. By
combining this detector with noise reduction and wavelet packet best basis algorithms,
one should be able to enhance its performance even more.

4.3 Non-parametric detectors

In the case where we do not know the waveform of the transient, we must retort to
non-parametric methods. In [18] it is claimed that in this case, there does not exist a
“uniformly most powerful approach”. If we merely are interested in detecting whether
there is a transient present in an interval, an intuitive statistic would be the energy
in that interval. This detector is rather crude; it does not indicate if one or many
transient arrived, nor does it provide much information about their characteristics.
Another promising class of detectors are based on the magnitude or energy in the
wavelet coefficients.

4.3.1 Energy detector

If the signal we are trying to detect has a duration T, we can define the detector

y(t) = ||z “iﬂ{[z-r,t]y (4.17)
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Since we are working with samples, the detector

y(t) = Hzlf?z([g_r,q; (4.18)

is more appropriate. In both cases we use only data up to time ¢.

For tight frames, there is a simple relation between the energy in the time and transform
domains, ||z[|32(z) = A~!||z[|% 2. This observation could be used as a starting point for
defining an energy detector in the wavelet domain. However, want an energy detector
on a finite time interval, and it is not clear what the corresponding interval in the
transform-domain would be. We leave this detector for future work,

4.3.2 Maximum transform coeflicient detector

The wavelet coefficients can be interpreted as a measure on the correlation, or similarity,
between the analysing wavelet and the signal itself. A large detail (approximation)
coefficient at a given time k and scale j indicates a relative large degree of similarity
between the wavelet 1);; (scaling function ¢;,) and the signal z. By this argument,
we can base a detector on

e <]

(T8 (.k) = / drz(T + q)e;k(7), | (4.19)

—o0

where ¢ = ¢ or e = 9. Using Theorem 3 and letting ¢ = gy + 12/, we define the
maximum wavelet coefficient detector as

yj(g) = (TyS™z) (4, k + q1). (4.20)

By restricting the j to only take the values which corresponds to the scales where most
of the energy or our transients are located, it is possible to "tune’ this detector so as to
only give high values for signals which are similar to the ones we wish to detect.
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5 PRACTICAL EXAMPLES

The process of designing the signal processing system has just about started up. There-
fore, results presented in this section are very much preliminary, and serve mainly as
demonstrations of the methods we are developing.

5.1 Matched filter

We present examples of matched filtering in both domains. At the top of Figure 5.1 we
show an excerpt of a long signal, and identify one very large transient at time ¢ = 339s.
Below the signal are the magnitude of the output of two matched filter detectors. Both
are matched to the same transient, but one of them is performing the filtering in the
wavelet domain, using only the the scale where most of the transient’s energy is located.

Signal with one large transient and detector outputs
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Figure 5.1 A signal with a large transient and detector output based on matched
filtering in the time domain wavelet domain using two scales only.

We see that both detectors perform well, in the sense that they give a sharp spike at
the instant the transient occurs. As we discussed in Chapter 4, our detectors will be
causal, and their output at time t+7 will give us an indication as to whether a transient
arrived at time ¢ or not. In Figure 5.1 we have shifted the matched filter output T
seconds to the left, to better compare the time of arrival to the maximum matched
filter output. most of the energy in the transient is located. We have also scaled the
plots, so that the spike has the same height. Comparing the signal-to-noise-ratio in the
to MF plots, we observe that it is several orders of magnitude less for the wavelet-based
matched filter. This is because a wavelet decomposition separates different phenomena
into separate scales.

If we performed the matched filtering in the wavelet domain, using all scales, our
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detector output would be equivalent to the time domain output. In Figure 5.2 we
illustrate this by plotting the magnitude of difference of the detector outputs from

Difference between output of MF in time and transfordomain
10 ; T T T T ; T T

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Sample
Figure 5.2  The absolute value of the difference of matched filter detector outputs
performed in time and wavelet domain.

timed domain and wavelet domain matched filtering. For the most part it is a few
orders of magnitude above the machine accuracy ¢ = 2 - 10718, The relatively large
discrepancy in the beginning is probably due to how the MATLAB Wavelet Toolbox
handles sequences with lengths that are not a power of 2.
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6 SUMMARY AND FURTHER WORK

6.1 Summary

In this report we have reviewed the basic theory of dyadic orthonormal wavelet expan-
sions which are computable by a fast algorithm, and discussed several generalisations
of the basic wavelet transform. Then we looked at how we could use these techniques
for detecting imperfectly known transient signals occurring at unknown times.

In the Section 2 we showed how a signal could be transformed by means of inner
product with a possibly linearly dependent set of functions. This approach was shown
to provide a common framework for both the short time Fourier transform and the
discrete and continuous wavelet transform. We defined the concept of multiresolution
and using this we showed how the wavelet transform could be performed efficiently by
a filter bank.

Section 3 discussed selected topics in some more detail, and pointed out how the
wavelet transform could be generalised with bi-orthogonality, multiwavelets, M-band
or wavepacket decompositions.

Methods for detecting and characterising transients were addressed in Section 4, and
we constructed detectors based upon matched filtering in both the time and time-scale
domain. We saw how we could estimate unknown parameters in the transient by pass-
ing the signal through a filter bank matched to transients with different parameters.
‘The matched filters were based upon knowing or having a good model of the transients
we were seeking. Detectors which which were not based upon any assumptions regard-
ing the waveform of the transients were presented; one was based on the energy of the
signal in the time domain, another was based on the energy in the transform domain.
The latter was the more promising, because it allowed us to separate the energy of
phenomena which occurred at different scales, or frequencies. It is also possible to use
base a detector directly on the wavelet transform coefficients.

6.2 Further work

Here we point out some of the areas which should be investigated further.

A wavelet packet based maximum wavelet detector shows good promise for our appli-
cation. By computing a good basis, either as we go along, or using a fixed basis based
on a analysis of the transients we wish to detect, we are able to concentrate the energy
of the signal in a few coefficients.

Another way to think of this is to regard the ensemble of all possible transients as
basis functions spanning a subspace of the space spanned by all possible signals. A
good maximum wavelet coefficient detector should use wavelets that ‘mostly’ are or-
thogonal to this subspace. That makes the inner product between elements of this
subspace and most of the wavelets small - except for a characteristic few wavelets.
This point-of-view is related to the sub-space analysis concept, which has received a
certain degree of attention in the system identification community the last few years.
Most of the literature used so far in the CHESS project has its origin in the signal
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processing community. One should investigate how problems related to transient de-
tection and characterisation are handled in other engineering fields. In particular, the
system identification community and their journals could prove to be valuable sources
of information.

As for practical implementation work, it is clear that some of the algorithms has to be
hard coded in Fortran, C++ or some other low level language. The main bottle neck
in our Matlab programmes is Matlab’s infamously slow for-loops. We can reduce the
number of these loops by better algorithms, but where we have to do non sequential
memory accessing, they are hardly to avoid.

A preliminary study indicates that gains in execution time when the for-loops are
relegated to a machine code programme are about two to three orders of magnitude.
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List of symbols and acronyms

Ck, Cslk]
djk, dj[K]
f
H

huF
Id

L2(p)
n(t)
S

Meaning

Characteristic function on T'. Equals unity if z € T, zero otherwise.
Convolution; Adjoint.

Downsampling by two, removes every second component of a sequence.
Fourier transform of f, f(w) = [ dt f exp(2miwt).

Inner product.

STFT of f; general transform of f.

Orthogonal direct sum.

Mother wavelet.

Scaled and translated wavelet, v; ;(t) = 279/2¢(277¢ — k).

Yok (2)-

Scaling function.

Scaled and translated scaling function, ¢;(t) = ¢(277t — k).

Gk (t)-

Complex conjugate of z.

Continious scaling parameter.

Continious shift parameter.

Level J approximation coefficients.

Level j detail coefficients.

Fourier transform operator.

Hilbert space.

Impulse transfer function of a matched filter.

Identity operator.

Space of functions which are quadraticly integrable with measure p.
Noise.

Left shift operator, Sf(n) = f(n + 1); synthesising (inverse) operator.
Signal, transient we are looking for.

Transform, transform with respect to the funciton ¢.

Scaling space j.

Decomposition space at scale j, frequency n.

Wavelet space j.

Window function.

Input to detector or filter.

Acronym Meaning

DFT
DWT
FWT
MF
SNR,
STFT
QMF

Discrete Fourier transform.
Discrete wavelet transform.
Fast wavelet transform.
Matched filter.

Output signal-to-noise ratio.
Short-time Fourier transform.
Quadratic mirror filters.
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A Measure theory

Here we present some basic results from measure theory and the Lesbegues integral.
Although these considerations are not truly essential to grasp the basics of wavelet
analysis, they provide the formal justification of much of that which we have done. For
example, one frequently needs to change the order of integration, which is allowed if
the conditions of Fubini’s theorem are satisfied. Another advantage is that we can use
the Lesbegues framework to represent integrals and sums with the same symbol.

In order to state some key results, we need a few technical definitions. The eztended
real numbers are the set R = RN {—o00,00}. With this we mean that R consists of R
and the two symbols (not numbers) —oo, co.

Definition 4 (Algebras and c-algebras) A family A of subsets of a set X is called
a algebra if the following hold:

1. 0, X € A.

2. If E € A then the complement E° satisfies E€ € A.

8. If (E,)Y_, is sequence of sets in A, then UN_ E, € A.
If (En)Y, is sequence of sets in A, and UL, E, € A, we call A a o-algebra.

We call an ordered pair (X, A) consisting of a set X and a o-algebra A of subsets
of X a measurable space. An element in A is called a A-measurable set. When the
o-algebra is fixed we will simply say that it is measurable.

Definition 5 (Measure) A measure 1 15 function from an algebra A of subsets of a
set X to the extended real numbers, )

u:A—-R (A1)
such that

1. p@) =0
2. u(E)>0 VE€A
8. If (E,) is any pairwise disjoint sequence so that U, E, € A, then

oo

(U1 En) = D u(Ey). (A.2)

n=1

We will now define the concepts needed to define the integral.
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Definition 6 (Simple function) A measurable real-valued simple function takes only
a finite number of values. It can be represented as

é(r) = Z a;1g, () (A.3)
where E;

Definition 7 (Integral of a simple non-negative function) The integral of a sim-
ple non-negative function ¢ with respect to the measure u is defined as the extended
real number

[dus=3 asu(E) (A.4)

We note that the integral may be infinity. The integral of a function f is introduced
as the supremum of integrals of piecewise constant functions ¢ satisfying ¢ < f.

Definition 8 (Integral of a non-negative function) Let f be a non-negative func-
tion f belonging to the measure space (X, A), and let E € A. The integral of f with
respect to the measure y is defined as

[ aute) ) = swp [ duia)oa) (A5)

where the sup is taken over all ¢ satisfying 0 < ¢(z) < f(z) forallz € X.

Now we let X = R and define the algebra A to be the family of finite unions of the
form

(a,b), (=00,8], (a,00], (—00,00). “ (A.6)
We can define a measure on this algebra by

#((a,8]) = g(b) — g(a), (A7)

where g is a monotonous right continuous function. Unfortunately, A thus defined
is not a o-algebra, and, consequently not measurable. We work our way around this
problem by extending A to an o-algebra A* D A, and extending the measure u to
an outer measure u* which satisfies pu(E) = p*(E) for all E € A. According to the
extension theorems of Carathéodory and Hahn, this can be usually be done in an
unique way, see [22]. We call yu* the Lesbegues-Stieltjes measure generated by g. The
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o-algebra A* is usually lager than necessary. Therefore, one often works with smallest
o-algebra that contains A, but we need not consider this.

The definition of the integral was only valid for non-negative functions. It can be
extended to all functions by splitting f into positive and negative parts so that f =
f* — f~, and then integrating.

The usual measure employed is obtained by picking g(z) = z in (A.7). It is readily seen
that this is the length of a interval. For brevity, we often write this as du = dz In higher
dimensional spaces, we can define measures by taking a product of the measures on each
of the constituting single dimensions; for example, the continuous wavelet transform is
based on the two-dimensional measure du = da db/a?.

Measure theory also provides a seamless transition from continuous integrals to discrete
sums, as we shall now see. For this, we need a measure on the natural numbers N,
which we will call the counting measure. The o-algebra we need is the set of all subsets
of N, and let E be an element in this algebra. Define u(E) be the number of elements
in E when E is finite, and if £ is infinite, we assign to u(E) the symbol co. With this
measure,

[dut@)a@) = Y atw), (A8

=—00

as promised.

B Computer Programmes

Some of the computer programmes we have developed during the work are listed here.
A short documentation is also included.

B.1 Short documentation

We represent the shift invariant wavelet transform by an array with several fields,
as indicated in figure B.1. The approximation coefficients are stored in W.cA, and

W.cA W.cD W.type W.struct W.Ts W.info

Figure B.1 ) : .
Graphical representation of the data structure where the discrete

wavelet transform is stored.

the detail coefficients are stored in W.cD. Using the notation of Theorem 3, we find
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the detail coefficient (TS%+%?% f)(5, k) in W.cD{q0,j}(k+q1) and the approximation
coefficient (TS®+9% f)(J k) in W.cD{q0} (k+q1). The other fields store the wavelet
structure L as defined in the Wavelet Toolbox [20], the type of wavelet used, sampling
interval and an arbitrary user supplied text string.

B.2 Programme listings

e Time invariant Wavelet Transform

function out=tiwt(x,J,type,Ts,info)
% Translation Invariant Wavelet Transform

if nargin <3
error(’too few input arguments’)
elseif nargin > 5
error (’too many input arguments’)
else
W.cD=cell(2°J,J);
W.cA=cell(2°J,1);

for q0=0:2"J-1 % For all shift necessary
qf= gfactor(q0+1); % See doc.
[C,L]=wavedec(rshift(x,q0),J,type);
if q0==0 Lout=L; end i
% q0=0:2"J-1, but Matlab’s arrays starts with 1.
% Therefore, the
% ’mathematical correct’ q0 is replaced with q0+1
% in array indices.
% Get cAJ first, then cDj (j=J,..1); Totally J+1 coefs.

W.cA{q0+1}=C(1:L(1)); % get cAJ

for j=1:J-qf
% gf, because at we don’t need all scales at all shifts
k=J+1-3j; )
% W.cD{q0+1}{j} shall contain cD(J+1-j),qv. Wavedec
W.cD{q0+1, j}=detcoef (C,L,k);
end
end
W.type={type};
W.struct=Lout;

if nargin==
W.Ts=Ts; % Sampling period
elseif nargin==
W.info=info; ’ Comments etc.
end
end
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out=W;
The ordinary wavelet transform

function out=wt(x,J,type,Ts,info)
% Wavelet Transform

if nargin <3

error (’too few input arguments’)
elseif nargin > 5

error(’too many input arguments’)
else

W.cD=cell(J);

W.cA=cell(1);

[C,L]=wavedec(x,J,type) ;
% Get cAJ first, then cDj (j=J,..1); Totally J+1 coefs.
W.cA=C(1:L(1)); % get cAJ
for j=tud
k=J+1-j;
% W.cD{j} shall contain cD(J+1-j),qv. Wavedec
W.cD{j}=detcoef (C,L,k);
end
end
W.type={type};
W.struct=Lout;

if nargin==
W.Ts=Ts; % Sampling period
elseif nargin==
W.info=info; J Comments etc.
end
end

out=W;
Detector

function y=detectb(x,bank,Wx,Wbank,which_d_scales)
% performs time and wavelet based matched filtering
% Amund Solvi Bremer

% 7.08.1997

[transN Nfilters]=size(bank)

%--time domain mathed filtering
y.tdmf=zeros( length(x), Nfilters); % preallocation

for i=1:Nfilters % mathed filter for each transient
y.tdmf (:,i)=mfcorrelator(x,bank(:,i));



41

end
h--wavelet domain matched filtering

y.wdmf=zeros( length(x), Nfilters); % preallocation
for i=1:Nfilters

y.wdmf (:,1) = wdmf (Wx,Wbank(i),which_d_scales);
end

Wavelet based matched filtering

function y=wdmf (Wx,Ws,which_d_scales)

% Wavelet Domain Matchet Filtering. y=wdmf(Wx,Ws,which_d_scales)
% Wx- Wavelet transform of the signal x

% Ws- Time invariant WT of the signal s we are looking for

% whichd_scales = [0 1 0 0 1] (e.g.)

% -> filter at detail levels two & five.

J=length(Ws.structure)-2; % Corresponds to L in [C,L]=wavedec...
1x=Wx.structure(J+2); % Length of original x, see Wav. Toolb.
1s=Ws.structure(J+2); % Lemgth of original s.

y=zeros(1,1x); % Preallocate output y

for t=0:1x-1s; ¥ Upper limit on MF output
for j=find(which_d_scales(2:J+1)) % which levels to include
[q0, gil=factor2jb(t,j); % should maybe make a global table
k=J+1-3;
% W.cD{q0+1}{j} is to contain cD(J+1-j),qv wavelet t.b
lcoefs_s=length(Ws.cD{q0+1,k}); %can be optimized

y(t+1)=y(t+1)+. ..
sum( Wx.cD{k}(ql+1:qi+lcoefs_s).* Ws.cD{q0+1,k});

end
end
h
%approximation now
A
if which_d_scales(1)==1,
=

for t=0:1x-1s
[q0, qil=factor2jb(t,j); % should maybe make a global table
lcoefs_s=length(Ws.cA{1+q0}); % ’const’ length
y(t+1)=y(t+1)+sum(Wx.cA(qi+1:ql+lcoefs_s) .* Ws.cA{1+q0});
end

Script for testing

% dettst.m - script for testing detectors
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% Amund Solvi Bremer, FFI-E

% uncomment the following line to convert the

% script into a function (useful for profiling).
%function dettst();

type=’db6’
inputdata=’signal’
inputtrans=’bank’
load (inputdata)
load (inputtrans) ;

£s=600; % Sampling frequency

detailbank=[ 0 1100;0 0 100 1
differentbands=size(detailbank,1);

J=4;

Nfilters=size(bank,2)

Wx=tiwt(x,J,type); ADWT of signal

for i=1:size(bank,2);

Wbank (i) =wt (bank(:,i),J,type); %DWT of transients
end

for i=1:differentbands

details=detailbank(i,:)
y(i)=detectb(x,bank,Wx,Wbank, details);

end

t=[0:1ength(x)-1]1/fs; %time axis

for i=1:differentbands+1

figure(3)

if i==

subplot(differentbands+1,1,i)

plot(t,x)

title(’Singal and matched filter output - time’)
else

subplot (differentbands+1,1,i)
plot(t,y(i-1).tdmf)

end

figure(4)

if i==1,plot(t,x)

subplot(differentbands+1,1,1i)

title(’Signal and matched filter output - transform’)
else

subplot (differentbands+1,1,i)

plot(t,y(i-1) .wdmf)

title([’bands no ’ int2str(detailbank(i,:))])
end

end
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e Auxillary programmes

function y=mfcorrelator(x,s)

hcorrelates x & s, takes central part, pwz.
%06.08.97

1s=length(s);

lx=length(x) ;

y=filter(s(ls:-1:1),1,x); %This is the fastest way
y(1:1s-1)=[1;

y(1x)=0;

function [q0,qll=factor2jb(x,j)

% factor2jb.m - factors input x as 27 j*ql +q0,
% where b<27j.

% By Emil Urnes, FFI

% mod. A.S. Bremer

qi=floor(x/2"j);

q0=x-q1%27j;

function out=gfactor(q0)
% internal functon for tidwt.m.
% Amund Solvi Bremer, FFI-E
if q0 <= 0 |
error(’q0 zero or negative’)
elseif q0 == 1
out=0;
else
out=floor(log2(-0.5+q0));
end

function X = rshift(x,n);
% Shifts x n elements to the right, pads with zeros
% Amund Solvi Bremer, FFI-E
X=zeros(1,length(x)+n);
X(n+1:length(x)+n)=x(1:1length(x));



