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A REVIEW OF THEORY AND MATERIALS FOR OPTICAL
PARAMETRIC OSCILLATORS IN THE INFRARED

1 INTRODUCTION

The 3 — 5um and 8 — 12 um transmission windows in the atmosphere are utilized in
many military applications, such as laser radar, infrared imaging systems, and missile
seckers. Efficient laser sources in these wavelength regions are therefore strongly desired
in electro-optic countermeasures applications. Except for the 9.2-10.8 um CO, laser
and some 3 pm laser systems, practical laser systems that emit in these wavelength
regions do not exist. However, laser radiation in these wavelength regions can be
generated by the use of various nonlinear wavelength shifting devices, in particular
optical parametric oscillators (OPOs).

In an OPO a strong pump laser beam is down converted in frequency by the nonlinear
process. The principle behind this is that a pump photon of frequency ws is annihilated
and two photons with frequencies w; and w, are created by the interaction between the
pump photon and the nonlinear optical medium. The generated photons obey energy
conservation, 1.e.

w3 =w; +wz (1.1)

By a careful selection of nonlinear material and external parameters, it is possible to
obtain efficient frequency conversion from available laser pump sources (e.g. a Nd:YAG
laser at 1.06 um) to the desired wavelengths. Another important quality of OPOs is
that, in theory, any given pair of (w;,ws) that obey (1.1) can be generated. The set that
is actually generated is determined by the working conditions for the OPO. A change
in these conditions (usually a change in the orientation of the nonlinear material) may
cause another set to be generated. The result is that the output from an OPO is
tunable over a wide frequency range, and this is very useful in many applications, such
as electro-optic countermeasures and remote sensing.

The most important consideration in the design of an efficient OPO is the choice of
the nonlinear material. To date, OPO operation has been demonstrated in a large
number of materials, and several of these may be chosen for the intended application.
Experimental trial-and-error measurements for different materials is a time consuming
and costly procedure. It is therefore important to establish a reliable numerical tool
with which the performance of different materials can be predicted and compared,
and the proper material choice can be made. These simulations requires detailed
knowledge of a number of the material parameters, such as the transparency range,
the birefringence, the nonlinearity, and the damage threshold.

In Chapter 2 we introduce the theory of OPOs and second order nonlinear interactions
in general. The basic theory of OPOs is well covered in textbooks [1, 2]. There is
no need to repeat this theory here, so we have only summarized it briefly to establish
our notation. A large part of Chapter 2 is devoted to details about phase matching
and acceptance angles. These details are not covered in textbooks, but they are very
important in practical OPO design. The equations describing second order nonlinear
interactions exist in many different forms in the literature. Confusion can easily arise



when equations from different sources are compared or combined, so for ease of reference
we have included the basic equations in many different forms.

In Chapter 3 we summarize the properties of some relevant nonlinear materials. For
some of the materials, we briefly describe some published experimental results with
devices using them. A large number of references have been included, but nevertheless
many interesting references have been omitted. During the work with this report, we
built reference databases which should be useful if more references or more detailed
notes on a reference is required.

Chapter 4 covers some additional topics related to OPO design, like choice of resonators
and resonant wavelengths.

For the convenience of the reader, we have listed the references after each section (each
material) in Chapter 3. In the other chapters, the references are listed at the end of
the chapter.

References

[1] R-W. Boyd. Nonlinear optics. Academic Press, 1992.
[2] Y. R. Shen. The principles of nonlinear optics. Wiley, 1984.



2 THEORY

In this chapter, we review the basic mechanisms that underlay optical parametric am-
plification and oscillation. We first introduce the nonlinear polarization and its proper-
ties. Then there is a section on choice of coordinate axes and nomenclature for second
order interactions. The equations for three plane waves interacting via the second order
susceptibility exist in various forms corresponding to different representations of the
fields. There are also different equations for degenerate and non-degenerate processes.
(A non-degenerate process is one with 3 distinct interacting waves, while a degenerate
process involves only 2 waves, of frequencies w and 2w respectively). We present the
equations for both cases in many varieties. By collecting all these equations in one
place, and clearly stating the relations between them, we hope to sort out the possi-
ble confusion once and for all as far as future work in our group is concerned. After
discussing solutions of the plane wave coupled amplitude equations, we consider phase
matching and the related topics of tuning and acceptance intervals. The problems with
birefringent phase matching, walk-off and small acceptance intervals, are pointed out,
and quasi phase matching is discussed as a possible solution. Since transverse effects
turn out to be important in nonlinear devices, we briefly discuss the coupled amplitude
equations with diffraction and walk-off. The next section discusses the effects of pump
and signal bandwidths in OPOs. Finally there is a section on noise initiation of OPOs.

2.1 Nonlinear polarization and susceptibility
2.1.1 Representation of the fields

Two different representations of the real electric field and polarization are often used
in the literature. They are

o /_ " dwB(w) exp(—iwt) P = /_ " daPlpyenl-iud) (2.1)
- % /_ Z e () epl—it) P % f_ : dP' (1) exp(—iwt) 2.2)

where tilde indicates real, rapidly oscillating quantities, and boldface is used to denote
vector quantities. Because the fields are real, E(—w) = E(w)* and P(—w) = P(w)",
where superscript * denotes complex conjugation. We shall follow the convention in
Equation (2.1), but we sometimes state results corresponding to Equation (2.2) for
comparison.

2.1.2 Nonlinear polarization

In general, the spectrum of the polarization can be written

Pw) = & (x<1>(w) B + [ ax®,w-w) BB - o)+

][ dw'do" X (w,w',w",w — ' — ") : B(W)EW")EWw-w —w"):-- ) (23)



where ’* denotes tensor product and x(™ are the susceptibility tensors. Note that
Equation (2.3) represents one of the two conventions for nonlinear susceptibilities used
in the SI system: In the other convention, the factor € is included in x™), for n > 1,
leading to different values for these. See [1, Appendix A]. If we had written the fields
as in Equation (2.2), Equation (2.3) would have had a factor 1/2 in the second order
term, 1/4 in the third order term, etc.

x™ is a tensor of rank (n +1). x{ is the linear susceptibility leading to linear
absorption and refractive index. x(? is the second order susceptibility responsible
for sum and difference frequency generation (SFG and DFG). These effects include
second harmonic generation (SHG) and optical parametric amplification (OPA). The
third order susceptibility x® is responsible for nonlinear refractive index and 4-wave
mixing. In general, X « x™, so unless the intensity is extremely high, the lower
order polarizations are more important than the higher order. We concentrate on the
second order susceptibility. Third order polarization can usually be ignored in devices
based on second order polarization. For simplicity, we often omit the superscript in
x@ and write just x, unless this can cause confusion.

Being a third rank tensor, x(?) has 27 elements. In practice, many elements are zero
or equal to each other because of symmetries of the material. These symmetries are
determined by the point group. The form of x? for different point groups is shown in [1,
Section 1.5]. The x®-tensor is also simplified by symmetries related to the frequency
arguments. The reality of the fields imply that x(—ws, —ws, —w1) = Xx(ws,ws,w1)".
Intrinsic permutation symmetry, which is a consequence of the notation, implies that
Xijk(ws, w1, ws) = Xikj(ws,wz,w:). If the absorption is negligible, x is real and we also
have full permutation symmetry, which means that all indices can be permuted as long
as the frequency arguments are permuted in the same way. If the frequencies involved
are far from any resonance in the nonlinear medium, x is essentially independent of
frequency. In that case, all the indices can be permuted. This is called Kleinman

symimetry.

When only a few discrete frequencies are present, we can represent their amplitudes in-
dividually instead of using the continuous spectrum as in Equation (2.3). For instance,
two input signals of frequencies w, and w;, are represented by E, = E(w,), Ey = E(ws),
and their negative frequency counterparts E} = E(—w,) and Ej = E(—w;). We usually
write equations only for the positive frequency components. The two input frequencies
give rise to polarization components at (w,+ws) and |w, — ws|. These polarizations can
drive new waves, and the new waves can interact with each other, and with the orig-
inal waves, to produce even more new frequencies and make the representation very
complicated. In practical devices, only one particular interaction is phase matched.
Phase matching is explained in Section 2.4. All the signals that are generated by non-
phase matched processes are very small. Thus we can usually restrict our attention
to three interacting waves for a non-degenerate process or two waves for a degenerate
one. When there are three interacting waves, it is customary to denote the frequencies
wy, wo, and w3 with ws = w; + we and wyp > w.

We first consider the non-degenerate case and then the degenerate. The equation for



the second order polarization P® in a non-degenerate process can be written

sz) = ZGDX(W]_,CU3, UJQ) : E3E;
PP = 2egx(we, ws, wi) : EsE; (2.4)
P?) = 2¢gx (w3, w1, w2) : E1Ey

The factor 2 comes from the intrinsic permutation symmetry. If we had used the
conventions in Equation (2.2), this factor would be cancelled by the factor 1/2 in the
second order polarization term, so the constant in Equation (2.4) would be just €.
On component form, we have, (taking wave 3 as an example)

P = 2eqxijk(ws, wa, wi) Ba; B (2.5)

where summation over repeated indices is implied. The equations for the other waves
are similar. In a practical device with phase matching, each wave has a fixed linear
polarization, so in a plane wave model we can write E,, = E,e, where e, is a unit
vector in the direction of the field. The wave E,, is coupled to the nonlinear polarization
through the scalar product of the polarization vector P and the unit field vector ey,
so we can define an effective nonlinear polarization and an effective susceptibility X.s
by, (again taking wave 3 as an example)

Pé,ﬂf = 2€Xijk(ws, wa, wr)esiezjern i By = 2€pX s En En (2.6)

In Section 2.3 on the equations for the interacting waves, we use this effective suscep-
tibility.

The term degenerate is sometimes used about any process with only two frequencies,
w and 2w, involved. We use a more restrictive definition and classify a process as
non-degenerate whenever there are three distinct interacting waves, even if w; = ws.
This is possible because in practice second order interactions take place in birefringent
crystals. At frequency w there are two eigenmodes with different wave vectors, so there
may be two distinct waves. Let them have amplitudes E,, and E;; and polarization
unit vectors e;, and e;;. Then the general equation for the polarization P; at 2w, valid
for both degenerate and non-degenerate processes, is

P; = eox(2w,w,w) : (Ere€10 + Eners)’

2.7
o Eg(x 7 elaehE‘fa +X : elbelf,Eﬁ, + 2)( : ehelehEm) ( )

It is possible that ¥ has a form such that all terms on the right hand side are
nonzero, but only one of them will be phase matched and contribute efficiently. If
this term is E?, or E%, the process is degenerate, and if it is E;,F; the process in
non-degenerate. Note that the factor 2 from the permutation symmetry appears only
in the non-degenerate case.

In a degenerate process, only one of the fields E;, and Ej; contributes. Writing just
E, for this field, the degenerate versions of Equation (2.4) are

P; = 2¢x(w, 2w,w) : E2E] (2.8)
P; = eox (2w, w,w) : E2 (2.9)

The same difference applies to the degenerate versions of Equations (2.5) and (2.6).
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2.1.3 Miller’s rule

As indicated by the notation, the susceptibility tensors depend on the frequencies. The
dispersion can be approximated using Miller’s delta [2, Section 2.8], which is defined

by
2
X-Eg]l(%? Wa, wl)

1 1 1
XD (ws)x 3 (w2)x (wn)

Ayix = (2.10)

This coefficient has small dispersion and it is almost constant for many crystals. It can
be used for estimating the value of x? at frequencies other than those at which it was
measured. Note that the correction factors introduced by Miller’s rule do not possess
Kleinman symmetry. This is consistent, because if Kleinman symmetry were valid, x
would not depend on frequency.

9.1.4 Contracted notation for nonlinear coefficients

The nonlinear susceptibility is often represented by the tensor d = x(*/2. Similarly,
det = Xeg/2. When Kleinman symmetry is valid (or when w; = ws), diji = digj. In
these cases, it is common to simplify notation by writing d as a 3 by 6 matrix defined
by dip = diji, Where p corresponds to jk in the following manner: 1211,2=22,3
=33, 4 = 23 (or 32), 5 = 13 (or 31), and 6 = 12 (or 21). In OPOs we usually have
w1 # ws, and often at least one of the interacting frequencies is close to an absorption
edge. Therefore, we cannot assume Kleinman symmetry, and the matrix notation is
not always appropriate in the context of OPOs.

Data on nonlinear susceptibilities are usually reported as elements of the d-matrix,
measured at a particular set of wavelengths. If the measurement is done with second
harmonic generation (SHG), which is often the case, use of the contracted notation is
justified. Unfortunately, the contracted notation is also used in most work on OPOs,
even when one of the wavelengths is near the edge of the transmission spectrum. Even
though the contracted notation is used, it is usually possible to infer from the descrip-
tion of the experiment which element of the d-tensor was actually used in the process.
Note that this problem only affects the elements d;, with p > 3, because these corre-
spond to two tensor elements that may be different. The other elements of the d-matrix
correspond to unique tensor elements.

2.2 Nomenclature

There is a lack of consistent nomenclature in reports of properties of nonlinear crystals.
The main problem is that different axes are used for reporting tensor properties like
Xijk- The refractive indices are reported in the frame of the principal dielectric axes,
xyz. The nonlinear coefficients are reported in a system of axes XYZ. The latter set of
axes is unequivocal, because it is defined in terms of crystal structure. The principal
axes xyz, on the other hand, may change due to dispersion in monoclinic and triclinic
crystals. Roberts [3] has discussed the problems and the relevant IEEE/ANSI stan-
dard. For some crystals, there is a de facto standard that differs from the IEEE/ANSI
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standard, and Roberts suggested a modification to the standard. Unfortunately, nei-
ther the standard nor the modifications have been generally accepted, so we follow the
conventions of the literature for ease of reference. To avoid confusion, we describe the
axes used for each biaxial material we discuss, and indicate when the system we use
differs from the standard.

In uniaxial crystals, we choose the principal dielectric axes such that z is the optic axis,
i.e. n, is the extraordinary index. The crystal is called negative uniaxial if n, < n, =ny
and positive otherwise. In biaxial crystals, it is conventional to choose the principal
axes so that n, < n, < n,. Then the optic axes lie in the xz-plane, making an angle
with the z-axis. The crystal is called positive biaxial if {2 < 45° and negative otherwise.

Propagation directions are specified by spherical coordinates in the XYZ axes, with 6
being the angle between the Z-axis and the propagation vector, and ¢ being the angle
between the X-axis and the projection of the propagation vector on the XY-plane.

The two waves generated in an OPQO are often called signal and idler. The term
signal may be used for the wave that is resonant (if only one is resonant), the highest
frequency, or the wave of interest (if the other is discarded). To avoid confusion, and
to emphasize the equal status of the two waves, we use the term signal for both.

2.3 Coupled amplitude equations for plane waves

In this section, we derive coupled amplitude equations for a non-degenerate second
order interaction. We follow the convention of Equation (2.1). After deriving the
equations, we present the results using the convention of Equation (2.2) and two other
representations of the field. We also present the equations for degenerate interactions.

2.3.1 Derivation of the equations

We consider linearly polarized plane waves propagating in the z-direction. In other
words, we assume that the amplitudes of Equation (2.1) have the form

Em = emem(z) t) exp(zkmz)

where e,,, is a unit vector in the polarization direction, km = wmn(wm)/c, n is the
refractive index, and c is the speed of light in vacuum. We make the slowly varying
envelope assumption, i.e. we assume that e,,(z,t) changes slowly with z and ¢t compared
to the optical period. We also assume that the medium is lossless, implying that x.s
is real and that it is the same for all the three waves. We denote . just by x.

From Maxwell’s equations, we can derive the wave equation

s £ = = (2)
V2E — V - (VE) = ppeo€E + poP (2.11)

where € = 1+ x) is the dielectric tensor and P is the 2. order part of the nonlin-
ear polarization. Note that the first term on the right hand side includes the linear
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polarization. The term V - (Vf}) can be ignored if we assume that e, is normal to
the propagation direction. This restriction is lifted in the more detailed treatment in
Appendix A. Inserting the expressions for the fields and polarizations, we can find the
equation for e,,, by multiplying both sides of Eq. (2.11) with exp(—ikn2) and equating
terms at w,,. For example, for ez we have:
2. 2 2 2
—Kles + 2ik3% = —wz?"'ea . z“"z;“"% - %
where Ak = ks — ky — k; is called the phase mismatch. Second derivatives of e3 were
ignored because of the slowly varying envelope approximation. By definition of ks, the
first terms on both sides of the equation cancel. If we assume steady state, the second
term on the right hand side vanishes. Alternatively, this term can be removed by going
to a moving frame with ¢ = t — nz/c and neglecting the difference in group velocity
between the 3 waves. This approximation is appropriate for pulse lengths down to a
few ps. In any of these cases, the equation becomes

2xe; e exp(—iAkz) (2.12)

2
6. U

2ik3—é-; = =g 2xe ez exp(—iAkz) (2.13)
or

Oe3 . ws ;

cix P _iAk 2.

o znscxeleg exp(—tAkz) (2.14)
The equations for the other fields are similar:

Oe W . .

-6_2:1 = z?—li-:xegez exp(tAkz) - (2.15)

Oe . Wa * .

Ef- = n—2-EX6381 exp(iAkz) (2.16)

If we use the convention of Equation (2.2), a factor of 1/2 appears in the driving terms
on the right hand sides of these equations.

It is sometimes useful to represent the fields by transformed amplitudes a such that
the intensity is I = |a|?. In the SI system, intensity and amplitude are related by

n = 2n

[=—(E) ="|e*=

7 () = 71
where angle brackets denote time average, Zo = +/fio/€0 = poc is the vacuum im-
pedance, and e and ¢’ are the slowly varying field amplitudes using the conventions of
Equations (2.1) or (2.2) respectively. Equating this expression for the intensity to |a|?,
we find

a=e -2—n—e’ 2L 2.18
“NVZ V27 (8

The equations for a become

n

—|¢']? (2.17)

a
3‘?— = iw;yazas exp(iAkz) (2.19)
0
a—a; = iwyyaza] exp(iAkz) (2.20)
0
% = twyya,az exp(—iAkz) (2.21)

/ 1
where Y=X m (2.22)
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Note that we get the same result regardless of whether we start with the amplitudes e
or €.

Another useful representation of the fields is the amplitudes b such that N = [b|? is the
number of photons per unit time and area. From the equation N = I/(hw) = |a|?/(fw)
we find b = a/v/Aw and

% = inbgb; exp(iAkz) (2.23)
% = inbsb] exp(iAkz) (2.24)
%bzﬁ = inb; by exp(—iAkz) (2.25)

huwnwaws
h =X\ ————— 2.26
IERT=X 2n1n2ngc3£u ( )

Note that in this representation, all the equations have the same coupling coefficient
7, with dimension s'/2. A dimensionless from of the equations may also be useful. Let
L be the length of the OPA, { = z/L, and ¢; = nLb;. The equations become

T = imd; expli(ARD)) (227)
%?3 = igaq} exp(i(AkL)C) (2.28)
%‘? = gy exp(—i(AKL)C) (2.29)

and the length of the OPA is 1.

In the equations presented so far, the relative phase of the slowly varying amplitudes
differ from the relative phase of physical fields because of the phase mismatch. The
relative phase of the the physical fields is

A® = arg(E3) — arg(E,) — arg(E;) = arg(es) — arg(ez) — arg(e1) + Akz
(2.30)

This is reflected in the factor exp(+iAkz) that is included in the driving terms. When
doing computations, it is important to keep track of the relative phases. It is possible
to transform the equations such that the slowly varying amplitudes reflect the relative
phase directly. By making the transformation a) = a, exp(—iAkz) we can write the
equations as

da} [0z = iwyyasa; — iAka) (2.31)
daz/0z = iwyyazay (2.32)
daz/ 08z = iwsyaias (2.33)
with A® = arg(as) — arg(az) — arg(a;) (2.34)

The transformation could equally well have been done to one of the other fields, or the
phase term could have been distributed on two or three fields. The same transformation
can be done with the equations for the amplitudes b or e.
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If one of the fields, say a;, is initially zero, and Ak = 0, we can transform the equations
to only real variables. Let

a3 = d3 exp(i¢s3) (2.35)
az = dz exp(id2) (2.36)
a1 = id; exp(id1) (2.37)
where ¢ = ¢3 — ¢ (2.38)

The real amplitudes d,,, are governed by the equations

0d, [0z = wyydsd (2.39)
adgfaz = wg‘}’dadl (240)
3d3/6z = —UJa’szdl (241)

If the phase relation (2.38) happened to be satisfied, these transformations could be
done even if a; was nonzero.

Now consider the degenerate case. We define E; = E(w) and E; = E(2w). As explained
in connection with Equation (2.7), a factor 2 in the driving polarization P, disappears,
so the degenerate equations corresponding to (2.14-2.16) are

Oe LW I .

8_2.1 |l exp(1Akz) (2.42)
332 1 2w

Fol e 2 exp(—iAkz) (2.43)

where Ak = ky; — 2k;. Apart from the small difference between n; and nj, both
equations have the same coupling constant. This is different from the nondegenerate
case. The equations for the a- and b-fields can easily be found by analogy.

2.3.2 Conserved quantities

Consider the total intensity I = I; + I, + I3. Using Equations (2.19-2.21) we see that

o1 ,0as
F 3% +a 23 5 1‘:?;1+cc—0 (2.44)

This result reflects the conservation of optical energy in a parametric process in a
lossless medium.

Using Equations (2.23-2.25), we find for the photon rates

dN; 0N, ON3 0N, ob,
— =— hy —
P P 5, Vhee —o= = bj 15, +cc ete (2.45)
These equations are called the Manley-Rowe relations. They show that the parametric

process can absorb a photon at w3 and create a pair of photons at w; and ws, or vice
versa.
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2.3.3 Solutions

The coupled amplitude equations can be solved exactly using Jacobi elliptic functions
[4]. However, these solutions are so complicated that numerical solution is often more
efficient in practice. In this section, we present solutions for some simple special cases
and then discuss the qualitative features of the general solutions. More detailed treat-
ment of the equations can be found in [4] and [1, Chapter 2]. A pedagogical presentation
of the analytic solution is given in [5].

The phase mismatch factor exp(iAkz) is a very important feature of the equations. If
L is the interaction length and Ak - L is large, the driving polarizations at different
positions will cancel and the resulting frequency conversion will be weak. Techniques
for achieving phase matching, i.e. making Ak small, will be discussed in Section 2.4.

Consider first DFG with small conversion. The w, and w3 waves are assumed to be
undepleted, i.e. they do not change with z, and the incident w; waves is assumed to have
zero intensity. We use the equations for the photon number amplitudes, (2.23-2.25),
because these lead to the simplest form of the solutions. For b;, we find

bi(2) = Zigb;ba sin(Akz/2) exp(iAkz/2) (2.46)
and
Ni(2) = n® N3 Ny2?sinc?(Akz/2) (2.47)

This solution may not be very useful for practical frequency conversion, but it is im-
portant because phase matching acceptance intervals are usually defined in terms of
the width of the sinc? factor (Section 2.4). For SFG with small conversion, where b3
is generated from b; and b, that are taken to be constant, the solution has exactly the
same form:

_ 237]b1 bz

bs(2) A% sin(Akz/2) exp(—iAkz/2) (2.48)

and
(2.49)
N3(z) = 0Ny Noz?sinc?(Akz/2) (2.50)

Now consider the more complicated case where only one wave is taken to be undepleted.
If this wave is bz, we find for the other waves

ba(z) = [bl(oxcosh(gz) — 22 dinh(ge)) + b;(c)%smh(gz)] exp(iAkz/2)

9 9 (2.51)
ba(z) = [bz(oxcosh(gz) — 2B ginn gz) + b:m)-“’—""'smh(gz)] exp(iAkz/2)

g g (2.52)
where g = 1/n2N;3 — (Ak/2)? (2.53)

If g is imaginary, the hyperbolic functions can be replaced by the corresponding trigono-
metric functions, and g by g/i. In the low gain limit, i.e. when 1> N3 is small, the result
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reproduces Equation (2.46) when b;(0) = 0. For higher gain, the tolerance to phase
mismatch is increased compared to (2.46). A small phase mismatch reduces the gain
g, but as long as g is real there is still exponential growth. Both signals grow exponen-
tially because bs supplies energy to them both. If the undepleted wave is one of the
signals, say b, the solutions are qualitatively different because b;(0) and b3(0) both
limit the amount of energy that can be exchanged between the waves. The solutions
are always oscillating:

*

bi(z) = [bl((])(cos(gz) - %JE sin(gz)) + bs(0) i’?;z si.n(gz)] exp(iAkz/2)

(2.54)

b3(2) = [53(0) (cos(gz) + ok sin(gz)) + by (U)ﬂb—2 sin(gz)] exp(—iAkz/2)
%9 g (2.55)

where g = /72N, + (Ak/2)? (2.56)

The general solutions show oscillatory behaviour with periodic exchange of energy
between the three waves. The period and amplitude of the oscillations depend and the
phase mismatch and on the relative phase of the incident waves. If the phase mismatch
is large, the oscillations have short period and small amplitude. The amplitude and
period of the oscillations are maximized if the phase mismatch is zero and the relative
phase of the waves is A® = &; — ®; — ®; = *m. In this case, the photon numbers
Ni, N,, and Nj oscillate in the ranges [max({), Ny — Ngg), Ny + N30], [ma.x(O, Ny —
Nm), Ny + N30], and [0, N3o + mi!l(Nm,Ngo)] respectively, where Ny, Ny, and Nsg
are the initial photon numbers in each wave.

2.3.4 Nonlinear processes

The solutions to the coupled amplitude equations can describe a number of useful
nonlinear processes. If signals at w; and w, are incident, the sum frequency w3 can
be generated. This is called sum frequency generation (SFG). A special case is second
harmonic generation (SHG) where w; = wy. On the other hand, if a strong signal at w3
is incident, signals at w; (or ws) can be amplified while the difference frequency w; (or
wy) is also generated. This process is called optical parametric amplifcation (OPA) or
difference frequency generation (DFG), depending on the application. Note that the
abbreviations OPA, DFG, etc. are also used for the corresponding devices, i.e. optical
parametric amplifiers, difference frequency generators etc. If an OPA is placed in a
resonator, and the gain of the OPA is sufficient to overcome the loss of the resonator,
we have an optical parametric oscillator (OPO). In the context of OPAs and OPOs,
the wave at w3 is usually called the pump wave, while the other waves are called signal
or idler waves.

The oscillatory behaviour of the solutions of the amplitude equations have important
consequences for nonlinear devices. When one of the input waves is zero, as is often
the case in an OPA, all the energy can be transferred from the pump wave ag to the
signal waves. But after this has happened, back conversion, i.e. transfer of energy back
to a3 takes place. Back conversion is a major problem in practical devices because
the period of the oscillations depend on the intensities. Thus if the pump pulse has a
nonuniform profile in space or time, it is difficult to achieve good conversion efficiency
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over the whole spatial or temporal profile of the pulse. Since back conversion is limited
by the number of photons in the a; or the a; wave, it can be reduced by attenuating
one of these waves while keeping the other.

If all three signals have nonzero initial amplitudes, the relative phase of the signals
determines the point on the oscillation period where the nonlinear process starts, i.e.
if the nonlinear process starts as SFG (amplifying wave 3) or DFG (amplifying waves
1 and 2).

2.4 Phase matching and tuning

As explained in Section 2.3.3, efficient second order interaction requires that the phase
mismatch is small. The condition that needs to be satisfied for three collinear waves is

|AKL| < 2.78 (2.57)

where L is the length of the crystal and the figure 2.78 is the half-value point of the
sinc?(Ak L/2) factor in Equation (2.47). This value is of course somewhat arbitrary,
and some authors use 7 instead, e.g. [6]. For collinear waves, the phase matching
condition can be written

Ak = (naws — ngws — nywq) /e =0 (2.58)

where n; is the refractive index for wave 7, which in general depends on wavelength
and polarization. In an isotropic medium with normal dispersion, the refractive index
increases with frequency. This makes phase matching impossible. On the other hand,
in birefringent media, it is sometimes possible to achieve phase matching by using the
birefringence to cancel the dispersion. Many materials with second order nonlinearity
are birefringent. For a given propagation direction, there is a slow and a fast polariza-
tion eigenmode. If the highest frequency has the fast polarization, while one or both
of the lower frequencies has the slow polarization, phase matching may be achieved
for propagation in a certain direction in the crystal. Birefringent phase matching is
denoted type 1, 2 or 3, according to the table below [3]. Some literature uses the
classification I and II, with type II meaning both types 2 and 3.

Type wi Wo Wy
1 Slow | Slow | Fast
2 Fast | Slow | Fast
3 Slow | Fast | Fast

Phase matching is also possible for non-collinear waves. In this case, the phase mis-
match is given by the vector equation

Ak =k; —k; — k; (2.59)

For non-collinear phase matching, there is a condition similar to Equation (2.57) for the
transverse part of Ak. The transverse dimension of the interacting beams is often much
smaller than the interaction length, so a relatively large transverse phase mismatch may
be acceptable. In the so-called Cerenkov configuration, non-collinear cones of beams
interact, and the angle between the beams can adapt to eliminate longitudinal phase
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Figure 2.1  Tuning curves show signal wavelengths as functions of pump wave-
length for type 3 phase matching in KTP with propagation in the -
direction

mismatch [7]. Cerenkov phase matching has been exploited in a wave guide device
where one of the signals radiated out of the wave guide [8]. Because of the small
transverse dimension of the wave guide, this device accepted a large transverse phase
mismatch. Noncollinear phase matching is often called vector phase matching. It is
discussed in more detail in Section 2.4.4.

2.4.1 Tuning

The set of wavelengths that satisfies the phase matching condition depends on the
propagation direction in the crystal. Therefore an OPO can be tuned by rotating the
crystal. Tuning can also be achieved by changing any parameter that changes the
birefringence of the crystal, like temperature [9] or electric field [10]. Temperature and
electro-optic tuning have the advantage of leaving the crystal in one position, but the
tuning range is usually smaller than for angle tuning, If the pump source is tunable,
e.g. a Ti:sapphire laser, the OPO can be tuned by changing the pump wavelength.

Tuning curves giving signal wavelengths as functions of angle or pump wavelength can
be computed by solving the equation for the phase matching condition using Sellmeier
equations to model the dispersion. An example of pump tuning is shown in Figure 2.1,
and tuning curves for angle tuning are given in Chapter 3.

Temperature tuning must often be treated differently because dispersion equations with
temperature dependence are only rarely available. However, individual thermo-optic
coefficients for particular wavelengths and temperatures are more common, and these
can be used for computing temperature tuning curves for limited temperature intervals.
For fixed wavelengths, the phase mismatch changes with temperature according to

Ak 1 (0n on
——-—-( ;,(;3):.03—- ;gf’z)wz—anégj’l)ul) (2.60)

oT c

where ng is the fast index for the pump and n; and ny can be fast or slow depending on
the type of phase matching. For the general case of propagation outside the principal
planes, all the n; depend on all three principal indices. When the temperature changes
and the pump wavelength is fixed, the signal wavelengths will adjust to compensate
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for the temperature induced mismatch. Thus
OAk 0Ak

_3—102—sz + *B—T"AT =) (261)
or
. (8Ak/aT)
Awg =-AT (5Ak/3w2) (2.62)

where it is understood that w; = w3 — ws.

2.4.2 Acceptance intervals

Since phase matching depends on propagation direction, temperature and wavelengths,
any 2. order nonlinear process has a limited tolerance to variation in these parameters.
In processes with two input signals (SFG, DFG or OPA), the third wavelength is deter-
mined by the two input wavelengths. Changing the temperature, crystal orientation,
or one of the input wavelengths, will induce a phase mismatch which in turn reduces
the efficiency of the nonlinear process. In an OPO, on the other hand, the two signal
wavelengths are free to drift, and in absence of other frequency selective elements, they
adjust to minimize phase mismatch. Therefore, changing the operating parameters of
an OPO tends to tune it, without necessarily reducing the output power. If one wants
stable operation, the OPO, like the other nonlinear processes, has limited tolerance to
variation in operating parameters.

The tolerance to parameter variation is often expressed in terms of acceptance intervals.
The acceptance interval of a parameter is the interval within which inequality (2.57)
is satisfied. Because the interaction length L appears as a factor in the inequality,
acceptance intervals are usually given for the product of L and the parameter. For
example, the pump acceptance bandwidth L Aws in an OPA designed to amplify w; is
given by

dAk

Aw3 =2-278 or LA(.:J3 = 556/ (_&-w_)
3

dAk(w3 — Wy, Wa, wg)

L 35

(2.63)

It is understood that w; is held fixed while w; is allowed to adapt to satisfy energy
conservation. For signal bandwidth (gain bandwidth) we have similarly

L Aw, = 5.56/ (%%ii) (2.64)

where ws is fixed and w; = w3 — wy. Consider collinear type 1 phase matching with a
fixed pump frequency. The derivative

dAk 1 ( d‘ng dnl)
— =Ny —wy— 4+ twi— | =
2

(ﬁdg c dw da)l (265)
: —ng + A E-?nz+n A Lt |
c A TN

vanishes at degeneracy, i.e. when A; = A;. This makes the gain bandwidth very large.
At this point, the sensitivity to angle tuning is also very large because
dw;  dwy; dAk
df — dAk d

(2.66)
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Figure 2.2  (a) Contours of the surface Ak as a function of signal wavelength
and the angle a between signal and pump wave vectors. The pump
wavelength is A3 = 1.06 pm, and phase matching is type 2. The dotted
lines indicate the positions of the profiles shown in part (b). (b) Profiles
of the surface for a = 0 (solid), a = 1.7° (dashed), and o = 3.4°
(dotted)

This situation is illustrated by Figure 3.12 on page 56 where the tangent to the tuning
curve is vertical at the degenerate point.

The situation with dAk/dw, = 0 can also arise in type 2 or 3 phase matching, but
then away from degeneracy. As with type 1 phase matching, it leads to very strong
sensitivity to angle tuning. An example is seen at the turning points of the tuning
curve in Figure 3.4 on page 43.

With non-collinear phase matching, the wide bandwidth points occur at other wave-
lengths than with collinear phase matching. To understand non-collinear phase match-
ing, it is useful to consider the surface Ak as a function of wy and the angle o between
k, and Kks. ws is fixed and w; and k; are allowed to adapt. Phase matching is satisfied
at the contour Ak = 0. Tuning by changing one of the angles, say 6, while keeping
o fixed, corresponds to shifting the Ak surface vertically. The bandwidth is greatest
at the points where dAk/dw, = 0. Figure 2.2 shows the contours and some profiles
of the Ak surface for KTA with propagation in the xz-plane, type 2 phase matching,
and )\ = 1.06 pm. The wide bandwidth points correspond to the ridge of the contour
surface or the minima of the profiles. For collinear phase matching (o = 0), we can
see the wide bandwidth point corresponding to Figure 3.4. For o # 0, we see that the
wide bandwidth point is shifted.

The wide bandwidth point for non-collinear type 1 phase matching in BBO has been
exploited in an OPO with 100 nm gain bandwidth [11]. The OPO was tuned with an
external grating, without turning the crystal.

At the wide bandwidth point, the actual bandwidth of a type 1 phase matched OPA
is determined by the |dn/dw|, as can be seen from (2.65). Thus the bandwidth is max-
imized if this derivative has a minimum at the signal wavelength. This was demon-
strated experimentally in [12]. It is illustrated in Figure 3.12, where tuning curves are
shown for different pump frequencies. The gain bandwidth is greatest at A3 = 900 nm,
because the index has an inflexion point near 1.8 pm.
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The temperature acceptance interval is defined similarly to the spectral acceptance
interval:

(2.67)

LAT =556/ (d‘m‘)

dT’

Nonuniform temperature distribution in the nonlinear crystal can make the phase mis-
match vary across the interacting beams. Such local phase mismatch can reduce beam
quality and efficiency. In high power OPOs, even a small absorption in the nonlinear
crystal can lead to a temperature gradient that severely degrades performance. The
temperature acceptance depends on propagation direction, and it is sometimes possible
to reduce the problem by finding a direction that satisfies phase matching while having
a large temperature acceptance interval [13].

Acceptance angles give information about tolerance to misaligned crystals, misaligned
beams or divergent beams. Compared to the temperature and frequency acceptance
intervals, the concept of acceptance angles is more complicated because changing the
direction of a beam affects both the magnitude and direction of the phase mismatch
vector Ak. In many devices, one of the beams can adapt its direction to cancel the
transverse part of the phase mismatch. Otherwise, the tolerance to transverse phase
mismatch is determined by the width of the beams. When specifying acceptance angles,
one must be careful to state which beams change directions, which beams are fixed,
and if one beam is allowed to vary freely to minimize phase mismatch. Otherwise an
acceptance angle is not meaningful.

As an example of acceptance angle, we consider an OPO with divergent beams. If
the beams have the same divergence angle, they can be regarded as locally collinear,
with different parts of the beams having different propagation directions in the crystal.
Then the local change of propagation direction has the same effect as a rotation of the
crystal. The full acceptance interval of the angle 6 is

L A6 =5.56/ (%:) (2.68)

and similarly for the other angle ¢. If the modes are not matched, the beams can be
regarded as locally non-collinear. If only one signal is resonant, the other signal is free

to propagate in the direction that minimizes transverse phase mismatch. If we assume
that propagation is in the z-direction, the acceptance angle A3 for the pump is

dAk,
dfs

L A63 = 5.56/ ( (2.69)
where the wavelengths are fixed, and it is understood that the direction of the nonres-

onant signal can vary to eliminate the transverse part of Ak. Acceptance angles for
the signal are similarly defined.

The sensitivity of Ak to variation in the direction or divergence of one of the beams
depends strongly on the geometry and on which of the other two beams is held fixed
and which is allowed to adapt. A change in direction of a beam will tune the OPQO,
while divergence can reduce efficiency. Consider for example collinear type 2 phase
matcing in the xz-plane of a crystal. Suppose that beam 2 is extraordinary (polarized
in the xz-plane) while beams 1 and 3 are ordinary (polarized along y). When the angle
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Figure 2.3  (a) Non-tangential collinear type 2 phase matching. (b) Tangential
collinear type 2 phase matching. (c) Tangential non-collinear type 1
phase matching. In parts (a) and (b), k3 = ko + k; is not shown
because the vectors overlap

0 between the propagation direction and the z-axis is varied, n, and n3 remain constant
while 1, changes as the radius of an ellipse, as shown in Figure 2.3(a). Phase matching
is satisfied because ks (not shown) is exactly equal to k; + kp. Suppose now that the
direction of ks changes slightly (phase matching becomes slightly non-collinear), while
beam 1 is fixed and beam 2 is allowed to adapt to minimize phase mismatch. The end
of ks follows the outer circle in Figure 2.3(a). The end of k; follows the ellipse in the
figure. The resulting phase mismatch is represented by the distance between the ellipse
and the outer circle. Figure 2.3(b) illustrates the situation where beam 2 is fixed and
beam 1 is allowed to adapt. When beam 1 adapts, the end of k; describes a circle that
is tangential to the circle of k3. The figure shows that the resulting phase mismatch is
much smaller than in part (a) for the same change of the direction of k. This situation
is called tangential phase matching (TPM) [6]. TPM is also possible with non-collinear
phase matching, In fact, the possibilities for TPM are richer because, for example, a
circle may be tangent to an ellipse as shown in Figure 2.3(c), where beams 1 and 2 are
ordinary and beam 3 is extraordinary.

These examples illustrate the fact that TPM always applies to a paricular pair of
beams. In collinear phase matching, we always have TPM for the two beams with the
same polarization (ordinary or extraordinary). In the examples here with type 2 phase
matching, one of these beams was the pump wave. In type 1 collinear phase matching,
the two signal beams are tangential. This can lead to large divergence of the signal
beams. This divergence can be reduced by using non-collinear phase matching [14].

There are at least two other interpretations of TPM. The phase mismatch Ak can be
expanded in a Taylor series in the relevant angle parameter, A8 or Ag, for the beam
that changes direction. If the first order term in this series vanishes, phase matching
is tangential. The Poynting vectors are always normal to the index surface. Therefore
the Poynting vectors of two tangentially phase matched waves are parallel.

A special case of TPM is when all beams propagate along a crystal axis. This is called
non-critical phase matching (NCPM), and it satisfies the TPM condition regardless of
which beam is held fixed, i.e. all three pairs of beams are tangentially phase matched.
Examples of acceptance angles for TPM and non-TPM are given in Section 3.3.7.
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2.4.3 Problems with birefringent phase matching

With birefringent phase matching, the phase matching condition, (2.58), determines
which propagation and polarization directions must be used for a given set of inter-
acting wavelengths. In some cases, it may be possible to phase match the same set
of wavelengths with more than one type of phase matching. In uniaxial crystals, the
propagation direction that satisfies the phase matching condition is not unique. Even
in biaxial crystals, there may be more solutions for the same type of phase matching.
On the other hand, it happens that there is no solution that satisfies phase matching
for a given set of wavelengths, even if they are all within the transparent range of the
crystal. The number of solutions is determined by the dispersion and birefringence
properties of the crystal.

Equation (2.6) shows that x.s depends on the propagation direction and polarizations
of the interacting waves. In other words, x.g is determined by the phase matching type
and propagation direction used. For some combinations, X.s is small or even zero, so
the possibility of phase matching in a crystal is not sufficient for an efficient nonlinear
interaction. If more than one phase matching type or propagation direction is possible,
the choice can be made to maximize Y.

When a wave propagates in a birefringent crystal, the electric field vector E and the
displacement D are parallel only in special cases: They are parallel when polarization
is along a crystal axis, and in uniaxial crystals they are always parallel for the ordinary
polarization (polarization in a plane normal to the optic axis). The displacement D and
the magnetic field H are always normal to the propagation vector k, and the Poynting
vector is defined by S = E x H. Thus the angle between S and k is equal to the
angle between E and D. This leads to the phenomenon called walk-off, the transverse
intensity distribution of a beam walks away from the propagation direction. Since
the beams interacting in a nonlinear process with birefringent phase matching have
different polarizations, they do not all have the same walk-off. For narrow beams, this
limits the interaction length. Walk-off also affects the quality of the generated beams.
The problem with walk-off can be reduced by using one crystal after another, with the
second crystal reversed with respect to the propagation vector. Then the beams walk
away from each other in the first crystal and together in the second crystal.

Walk-off does not occur in non-critical phase matching. Unfortunately, NCPM can
only be used for the special sets of wavelengths that happen to be phase matched
along one of the axes. Temperature tuning is possible, but the tuning range is small. If
the pump laser is tunable, a noncritically phase matched OPO can be tuned by tuning
the pump.

2.44 Non-collinear phase matching

The performance of an OPO can sometimes be improved by the use of non-collinear
phase matching. Reduced threshold, improved conversion efficiency and greater pump
acceptance angle was reported in [15]. The disadvantage was that the signal spectrum
was wider. The reasons for the improvement were that the non-collinearity partly
compensated for walk-off, and that phase matching conditions could be made near
tangential, increasing the pump acceptance angle. The polarization directions in non-
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collinear phase matching differ from those in collinear phase matching of the same
frequencies. In some cases, this can increase deg-

2.4.5 Quasi phase matching

Quasi phase matching (QPM) is another way to avoid the problems inherent in bire-
fringent phase matching. As the name implies, Ak # 0 in QPM. Normally the driving
term in the coupled amplitude equations would oscillate as exp(iAkz). The trick of
QPM is to "rectify" these oscillations by changing the sign of x for each half-period
of the oscillations. Thus the relative magnitude of the driving term oscillates between
0 and 1, but it always has the same sign. When the QPM period is optimal, the os-
cillation introduces a factor 2/m in x.g, but this reduction is small compared to the
advantages gained. An alternative interpretation of QPM is that modulation of x with
period A provides wave vectors K = +1/A that can cancel Ak. QPM has several at-
tractive features: It can work for any wavelengths within the transparent range of the
material by appropriate choice of QPM period. Walk-off can be avoided by choosing
the propagation direction along a crystal axis. QPM can be used with any polariza-
tions of the interacting waves. Thus one is free to choose the polarizations that interact
through the greatest element of the x tensor. In many common nonlinear materials,
like the KTP-family and LiNbQs, X333 is much greater than any of the other elements.
This element can be used with QPM, but not with birefringent phase matching.

Early experiments on QPM were done by slicing and reassembling crystals. These
experienced problems with losses and damage at the interfaces. More recently, work on
QPM has focused on periodic poling of ferroelectric crystals. Inverting the ferroelectric
domain orientation in such a crystal has the effect of changing the sign of x. Domains
can be inverted by modification of the growth process, exposure to electron beams,
or, most commonly, application of a strong electric field [16]. Since the domain walls
have to be parallel to the unique direction of spontaneous polarization, the propagation
direction must be normal to this direction. This does not give full freedom in choice of
polarizations, but it usually allows the greatest x-element to be used. More details on
QPM can be found in [17, 18, 19].

Periodic poling has been demonstrated in LiNbQs, LiTaO3, KTP, RTA, RTP, and CTA.
See Chapter 3 for more details on QPM in specific materials.

2.5 Coupled amplitude equations with transverse effects

In real nonlinear devices, transverse effects are important, and the plane wave equations
discussed in Section 2.3 cannot give a quantitatively correct description. In detailed
models, it is necessary to include diffraction, walk-off, transverse variations of the beams
and divergence of the beams. Coupled amplitude equations including these effects are
derived in Appendix A. The equations are

683(3':1‘9‘3 Z) =tanp 363 +t8-llp % _ _i_v2e3+
Y 0

0z > dx

et (2.70)
iws=—e; ez exp(—i(ks — kg — k1)2)
cng
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and similarly for the other waves. These resemble the plane wave equations, but the
walk-off terms (tan p(e/0z)) and diffraction terms (i/(2ko)VZe) have been added. p.
and p, are the walk-off angles in the two directions.

2.6 Signal bandwidth

As explained in Section 2.4.2, phase matching determines the gain bandwidth of an
OPA. This bandwidth is often in the order of 100 GHz. Nevertheless, single frequency
operation of CW OPOs is relatively simple because the OPA acts like a homogeneously
broadened laser. When one mode reaches threshold, depletion of the pump reduces the
gain of the competing modes. A recent experiment compared line widths of OPOs
with ring and linear cavities [20]. The ring OPO had the predicted small linewidth,
but the spectrum of the linear OPO was much broader. The reason for this was not
understood.

Pulsed OPOs tend to have large bandwidth because many modes are amplified to signif-
icant intensities before depletion takes place. Even though many modes are oscillating,
output signals tend to be smooth because saturation reduces intensity fluctuations [21].
Thus the output signal is mainly phase modulated.

OPO linewidth can be controlled using frequency selective elements or injection seeding
like in lasers. If there is a choice of phase matching types, this can also affect the
linewidth. For example, as explained in Section 2.4.2, type 1 phase matching near
degeneracy leads to large bandwidth. A detailed experimental and numerical study of
linewidth and injection seeding of a pulsed OPO is reported in [22]. They studied a
BBO OPO pumped by the third harmonic of a Nd:YAG laser. The spectrum of the
unseeded OPO had large pulse to pulse fluctuations, with 100% variation of the energy
in individual modes. The fluctuation in the total signal energy was only 6-8%. 2 nJ
of seed light was enough to cause single mode operation.

The width of the resonant signal of an OPO is not necessarily increased by a multi
longitudinal mode pump. Each pump mode can in principle interact with a separate
mode of the non-resonant signal and drive the same resonant signal, possibly a single
mode. However, the width of the non-resonant signal will increase corresponding to
the pump width.

2.7 Noise initiation of parametric oscillation

We are primarily interested in OPOs as wavelength converters. Thus we work with
macroscopic fields, and we are not concerned with the quantum properties of the fields.
For our purpose, most OPQ calculations can be done classically. However, the classical
equations cannot describe how the OPO starts. Equations (2.23-2.25) shows that if
the signal fields are initially zero, they will remain zero. An OPO starts from sponta-
neous parametric emission, which is a quantum phenomenon. When simulating OPOs
numerically, it is usual to add a noise term to the classical equations to approximate
the effect of spontaneous emission. This noise term makes the OPO start, but of course
it does not model other quantum properties of the generated fields.
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The correct magnitude of the noise terms can be estimated by comparing classical
and quantum solutions to the OPO equations and selecting noise terms that make the
results agree. We do this for the case with plane waves and perfect phase matching.
When the OPO starts, the pump beam is intense and can be modelled classically.
After the signal waves have grown to macroscopic amplitudes, classical and quantum
behaviour are essentially equal. Therefore we only need to compare the solutions for
the initial parts of OPO operation, before pump depletion becomes important. Thus
we can use simplified equations like (2.25), and the corresponding solutions like (2.52).
If we take bs to be real, the classical solutions for the photon numbers become

Ni(2) = byb} =N, (0) cosh?(nz) + N2(0) sinh?(n2)

— i(51(0)b2(0) — b3(0)83(0)) cosh(r12) sinh(nz) (271)

and similarly for N;. In quantum optics, the equations for the field operators cor-
respond to the classical equations for the fields. The solutions are also very similar,
see [23, Section 22.4.1]. In our case, the field operators are simply

b1(z) = b1(0) cosh(nz) + ib}(0) sinh(nz) (2.72)
by(2) = b(0) cosh(nz) + ib} (0) sinh(nz) (2.73)

We now take both fields to have zero photons initially and find the expectation value
of the number operator:

(W(2)) = (Na(2)) = sinh®(72) (2.74)

For large 7z, cosh ~ sinh. Classical and quantum results correspond if we take b;(0) =
1, b2(0) = 0 or b1(0) = 0, b3(0) = 1 in the classical equations. Another alternative is
|61(0)| = 1/2, ba(0) = ib1(0). Noise terms become more complicated when transverse
modes are taken into account. In practice, it turns out that simulation results are not
very sensitive to the exact values of the noise terms.
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3 MATERIALS FOR SECOND ORDER PROCESSES

In this section, we review the materials KTP, KTA, RTP, RTA, CTA, LiNbOs, LilOs,
KNbOs, LiTaOs, AgGaS,, AgGaSe;, ZnGeP,, CdSe, CdGeAs;, GaSe and GaAs. These
materials are the most promising for OPO operation in the 3-5 pm or 8-12 pm bands.

3.1 Material parameters

The crystal data most important to OPO design are

e Transmission spectrum

e Dispersion data for phase matching calculation
e Second order nonlinear coefficients

e Optical damage thresholds

e Availability and cost

e If the OPO is operated at high power at a wavelength with non-negligible absorp-
tion, thermal conductivity, thermal expansion and the temperature dependence
of the refractive indices also become important.

e For very high intensity, typical of picosecond and femtosecond pulses, the nonlin-
ear refractive index n» becomes relevant. This has been measured only in a few
crystals.

e Robustness with respect to mechanical stress, temperatures and moisture.

For some materials, we include examples with tuning curves, d.g, walk-off and accep-
tance intervals. We also include examples of published experiments and results with
the material.

A problem when reporting material properties is that some crystals exist in multiple
varieties. Variation in composition, doping or growth technique can affect the crystal
properties. Phase matching conditions (angle and temperature) can be sensitive to
very small changes in the material.

3.1.1 Transmission range

Published transmission ranges differ widely for some materials. One reason is that
the definition of transmission range is somewhat arbitrary. For definite information,
we need the full absorption spectrum, not only the ends of the so-called transparent
range. We have not found such spectra for all materials. Sometimes the spectrum of
the transmission through a particular crystal is shown, instead of the spectrum of the
absorption coefficient. If the crystal length is known, the absorption coefficient can be
computed from the transmission.
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Absorption data are further complicated by variation between samples. The spectrum
can be sensitive to small impurities or water content. In some crystals, the transmis-
sion depends on the propagation direction and polarization. The conclusion is that
the transmission spectrum should be measured for the actual crystals to be used in
experiments.

3.1.2 Refractive index data

The refractive index depends on wavelength and temperature. The wavelength depen-
dence is normally represented by Sellmeier equations. Such equations can be derived
directly from measured index data, or from indirect data in the form of phase match-
ing angles. Roberts [1] recently proposed a new technique for combining data of both
these types, and weighting them according to confidence. Using this technique, he
obtained new Sellmeier equations for KDP, AgGaSe; and AgGaS,. Like the transmis-
sion spectrum, the dispersion data may vary between different samples of the same
material.

The temperature dependence of the refractive indices is important for temperature
tuning and temperature acceptance intervals. In general the temperature dependence
of the refractive index is complicated, and it cannot be decoupled from the dispersion.
Nevertheless, it is common to approximate it by a linear change in the refractive indices
within a temperature range:

ni(T) = ma(Ty) + (T~ To) (3.1)
Published values of dn/dT" (the thermo-optic coefficients) vary wildly, and the wave-
length at which they were measured, is not always specified. Thermo-optic coefficients
for unspecified wavelength and temperature should be treated with great suspicion.
For some materials, like LiNbO; and KNbQj, there exist modified Sellmeier equations
that include temperature dependence. In some cases, thermo-optic coefficients can be
fitted to a model-based equation of the form

d
2nd——; =GR+ HR? (3.2)

where R = \2/(A2 — A\2)) and ), is a bandgap that was introduced in the model [2, 3].

3.1.3 Nonlinear coefficients

As explained in Section 2.1.4, the d-matrix notation is commonly used for reporting
the second order susceptibility. We follow this convention when citing other peoples
work, but we emphasize that care must be exercised when using these data at three
different wavelengths. Dispersion of the d-tensor can be approximately modelled by
Miller’s rule (see Section 2.1.3). This is typically more accurate than the nonlinear
susceptibility data themselves [4].

Methods for measuring the d-coefficients include phase matched SHG [5], Maker fringes
(using non-phase matched SHG) [6], phase matched parametric gain [7], and parametric
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fluorescence [8]. In the Maker fringe method, the interaction length is varied by rotating
the crystal. A variation of this method is the wedge technique, where the interaction
length is changed by translation of a wedge shaped crystal. In our tables, we abbreviate
the measurement methods: spontaneous parametric generation = SPG, Maker fringes
= MF, phase matched second harmonic generation = PM SHG, wedge technique =
WT. Accurate data for nonlinear coefficients are exceptions, and published data often
differ by 50% or more. There are several reasons for this:

o Different methods of measurement give different results. For example, it has
been found that parametric fluorescence consistently leads to higher d-values
than second harmonic generation [5, 9]. This problem is currently unresolved.

e The nonlinear coefficients depend on wavelengths. Some workers are not careful
to report the wavelengths used in the measurement.

e The elements of the d-matrix are not always measured individually. When the
propagation direction is not along a crystal axis, two or more elements may
contribute to the measured effective nonlinearity. Deconvolution of these results
may introduce errors.

e All the measurement methods are difficult to implement experimentally with
high accuracy. For instance, the results may be sensitive to the transverse and
temporal profiles of the pump pulses.

e Many experiments measure only some elements of the d-matrix. This makes
it difficult to find consistent and complete data. If only an effective value is
measured, it is common to use ratios from earlier reports to estimate the values
of the individual d-matrix elements. Thus new reports are not always independent
of former data, and errors may propagate.

e d-coefficients are often measured relative to another material. Therefore the re-
ported data depend on the accuracy of the d-coefficients of the reference material.

e Some experiments determine only the magnitudes of the d-elements, and not the
signs. The relative signs are important when d.g for an interaction is a linear
combination of d-elements.

In the SI system, when using the convention in Equation (2.3), d has units m/V. Some
authors report the d-coefficients in esu (electrostatic units). For conversion, use the
formula

4dr

Im/V =30

esu

from [6, Appendix A].

3.1.4 Damage thresholds

Data on damage thresholds are often uncertain. There can be significant differences
between samples due to minor defects in the crystal or surface. Data obtained at
different wavelengths or pulse lengths are difficult to compare.
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3.2 The KTP isomorphs

These are a family of materials with formula MTiOXO4, where M is K, Rb, T, NH,
or Cs and X is P or As [1]. Five of them, KTiOPO, (KTP), KTiOAsO, (KTA),
RbTiOPO, (RTP), RbTiOAsO, (RTA), and CsTiOAsO4 (CTA) have been used in
nonlinear optics. KTP is very much used for OPOs and second harmonic generation.
KTA has also been used in a number of devices, while experience with the other
materials is relatively small. The materials share a number of desirable features: High
nonlinear coefficients, high damage thresholds, mechanical robustness, and they are
nonhygroscopic.

The KTP isomorphs are all positive biaxial with point group mm2 (Cs,). Most of
the literature on KTP isomorphs reports nonlinear coefficients in a frame XYZ that
coincides with the principal dielectric axes xyz. Z is the axis of rotational symmetry.
We follow this convention although it swaps X and Y-axes relative to the standard
[2]. Note that some literature follows the standard. With point group mm?2, the only
nonzero elements of the d-matrix are d;s, dos, d31, ds2, and dss. If Kleinman symmetry
is va.hd, d31 = d15 and dsg = d24.

The KTP isomorphs have similar refractive indices and nonlinear coefficients. How-
ever, small differences in dispersion can be very important in particular applications.
For example, different materials allow noncritical phase matching at different wave-
lengths. Reported d-coefficients for the 5 materials differ, but not more than different
measurements in the same material. When comparing the KTP isomorphs, reference
[1] is useful because it contains measurements of all the 5 materials, apparently car-
ried out in the same laboratory and with the same methods. The KTP isomorphs are
ferroelectric, with spontaneous polarization along the z = Z axis. Periodic poling has
been done in KTP, RTP, RTA, and CTA.

The form of the d-matrix restricts the possible polarization directions of the interacting
waves. The interacting polarizations can be ZZZ, ZXX, ZYY, and permutations of
these. The ZZZ interaction is not very useful in birefringent phase matching because
not all the waves can have large field components in the Z direction. The ZXX and
ZYY interactions require that one of the waves has a significant polarization component
in the Z-direction. Thus # should not be too small. For 6 > 2, where Q is the angle
between the Z-axis and the optics axes, it is the slow wave that has polarization in the
Z-direction. To satisfy phase matching, this has to be one of the signal waves. Because
of this, type 2 or 3 phase matching is most common in the KTP isomorphs. Type 1 is
also possible, but deg is relatively small.
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3.3 KTP (KTiOPO,)
3.3.1 Transmission range

Most of the literature, including suppliers’ data sheets, state that the transparency
range is 350-4500 nm [1, 2, 3]. Litton [4] claims only 350-3500 nm, and they also state
that there is an absorption band near 2800 nm. The transmission spectrum published
in [5] shows large absorption for A > 3 pm, and it is slightly different for polarizations
along the y- and z-axes. The crystal was x-cut and 15 mm long. We have measured the
transmission spectra of two 20 mm long x-cut flux-grown KTP crystals from different
suppliers, and they both agree well with [5]. Transmission spectra of KTP are shown
in Figure 3.1.

1 3
""-\ "
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Figure 3.1 Left: Transmission spectrum of 8 mm long KTP crystal with z-
polarized light propagating in the z-direction. Data from [6]. Right:
Transmission spectra of 20 mm long KTP crystal from Casiz, propa-
gation in the z-direction. Solid curve: z-polarized light. Dotted curve:
y-polarized light. Data were measured by us. The absolute level 1s
uncertain, so the transmission was scaled to unity at A = 2.5pm

In spite of the absorption, KTP OPOs have generated wavelengths as large as A=
3.96 ym. Absorption in the crystal reduced the power for A > 3.5 um [7]. This result
indicates that some KTP crystals may have better IR transmission than the crystals
we measured.

3.3.2 Refractive index

There are numerous published Sellmeier equations for KTP [8, 9, 10, 11, 12, 5]. The
latter two cover the widest wavelength range and appear to be the most accurate.
The equations in [12] are based on minimum deviation measurements in hydrothermal
KTP, in the wavelength range 350-2400 nm. In [2], the authors claim that these
Sellmeier equations are valid for the whole transparency range up to about 4500 nm.
The equations in [5] are based on phase matching angles in flux grown KTP. The
wavelength range is not explicitly stated, but the equations seem to perform well at
least in the range from 450-3300 nm. Many Sellmeier equations were compared with
experimental phase matching angles in flux grown KTP in [13]. The equations in [12]
agreed very well with experimental data at least to 2800 nm. The equations in [5]
had deviations of up to 1.5° in phase matching angle, while the other equations were
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worse. Dmitriev et.al. [3], recommend the Sellmeier equations in [11] for the whole
transparency range. These equations appear to us to be less accurate than [12]. Litton
[4] uses the equations from [12], and Casix [14] and Castech [15] use those from [5].
Cristal Laser [16] provide their own Sellmeier equations. The Sellmeier equations in
[12] have the form

B)?
2 __ _BA . 32
n“=A+ X _C2 DA
where
Axis | A B C D

X 2.1146 | 0.89188 | 0.20861 | 0.01320
y 2.1518 | 0.87862 | 0.21801 | 0.01327
z 2.3136 | 1.00012 | 0.23831 | 0.01679

The Sellmeier equations in [5] are

B

P2
x—¢

n=A+

where

Axis | A B C D

X 3.0065 | 0.03901 | 0.04251 | 0.01327
y 3.0333 | 0.04154 | 0.04547 | 0.01408
% 3.3134 | 0.05694 | 0.05658 | 0.01682

Reported thermo-optic coefficients differ widely. This is not surprising, because the
temperature derivatives of the refractive indices depend on both temperature and wave-
length [17]. Reference [18] gives expressions for the thermo-optic coefficients obtained
by fitting experimental data for the wavelength range 502-1129 nm and the tempera-
ture range 15-40°C to the following function:

dn/dT = (AX3 + BA™24+CX7' + D)10~°K™* (3.3)

where
Axis | A B C D
1.427 | -4.735 | 8.711 | 0.952

X
y 4269 |-14.761 | 21.232 | -2.113
zZ 12.415 | -44.414 | 59.129 | -12.101

The same equations were fitted to other experimental data in [19], leading to some-
what different coefficients. Some other example thermo-optic coefficients are given in
Table 3.1.

Reported values of the nonlinear index are shown in Table 3.2.
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Source | x y z A, pm
(18] 0.61 | 0.83 | 1.45 | 1.064

[2] 11 |13 |16
[19] 1.65|25 |34 |1.064
[3] 2 2.7 |4
[17] 19 [25 |[3.7 |1.064
[16] 0.56 | 0.65 | 1.12

Table 3.1  Thermo-optic coefficients of KTP. The table shows 10°dn/dT for each
of the principal azes z, y, and z. Some of the sources did not specify

A
Reference | ny, 10~°cm?/W | A, nm | Polarization
[20] 46 532 |zory
21] 23 532 |zory
21] 23 1064 |z
[29] 14-21 1064 | in xy-plene

Table 3.2  Nonlinear refractive index of KTP

3.3.3 Nonlinear coefficients

Nonlinear coefficients also differ widely. The early data from [1] are often quoted,
but most of their coefficients are much higher than more recent results. The most
common method to measure d is phase matched type 2 second harmonic generation
in the xy-plane. This yields an effective value deg which is a linear combination of
dos and dis. Using type 1 phase matching outside the xy-plane it is also possible to
measure dss in this way. By Kleinman symmetry, ds; = dis and d3z = da4. References
[23, 19, 24] argue for Kleinman symmetry. With the Maker fringe method, all the 5
nonzero d-coefficients can be measured independently. These data do not support the
assumption of Kleinman symmetry, but the discrepancies may be due to measurement
errors. Measured values of the d-matrix elements are summarized in Table 3.3.

Source | dis | doa | d31 | dsz | dzs | Method | Wavelength, pum

[1] 61|76 [65 |5 13.7 | MF Probably 1.064
[23] 1.4 265 |14 |265]10.7 | PM SHG | 1.064
[5,19] [19|34 |19 |34 |81 |PMSHG | Nearl

5] |19[36 |254|435|169|MF Measured at 0.88, scaled to 1.064
[15] |26(33 |19 |35 |13.7
[26] 41 SPG 0.527, 0.9, 1.269

Table 3.8  Nonlinear coefficients of KTP, in pm/V

The values of d5 and dy, found by [25] are supported by many reports of deg [27, 13, 28].
Reference [28] measured deg for SHG for many different KTP crystals and found that
some crystals had multiple ferroelectric domains, leading to reduced deg.
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3.3.4 Damage

The threshold is lower for surface damage than for bulk damage. Casix [14] and Castech
[15] state that the surface damage threshold is at least 450 MW/cm? for 10 ns pulses
(4.5 J/cm?) at 1.06 um. Ahmed [29] report thresholds at least twice as high. For more
data on damage thresholds under various conditions, see [3, 30] and references therein.

KTP is also susceptible to temporary damage in the form of grey tracks [23, 31], but
this damage is only induced by intense visible light, e.g. in SHG experiments, so it is
not a problem in IR OPOs. ‘

3.3.5 Thermal data

Sources agree that the specific heat is about 700 J/(kg:K). Reference [2] states that
the thermal conductivity is 0.02 to 0.033 W/(cm-K), depending on direction. This is
supported by a recent report [32] of values in the range 0.022-0.026 W/(cm-K). Casix
and Castech state 0.13 W/(cm-K), but this must be wrong. For thermal expansion,
see [2].

3.3.6 Price and availability

KTP can be grown with hydrothermal or flux processes. The difference between crystals
grown with different processes appears to be small [2]. Hydrothermal KTP is supplied
by Litton Airtron, all other suppliers use flux processes. We have purchased a 3 x 3 X
20 mm crystal from Casix for $950. Litton charges at least 5 times as much. Crystal
Associates quotes $1100 for 5 x 5 x 15 mm.

3.3.7 Tuning calculations

Figure 3.2 shows tuning curves for a KTP OPO with type 2 or 3 phase matching in
the XZ-plane for 3 different pump wavelengths. The curves are based on the Sellmeier
equations in [12]. In this phase matching geometry, deg = dz4sin 6. For Az = 1.064 pm
and \; = 3.8 um, walk-off of the \;-wave is 2.8°, and the acceptance intervals are
LAT =195 cm K, L A8 = 1.5 cm mrad, L A¢ = 9500 cm mrad, L A3 = 4.3 cm nm,
and L A); = 930 cm nm. Note that the gain bandwidth is large because the tuning
curve is steep at this point.

The difference between tangential and non-tangential phase matching can be illus-
trated by the pump-acceptance angles in type 2 phase matching when the signal
wavelengths are 3um and 1.64pum. If wave 1 (3 pm, polarized along y) is fixed,
L A63 = 1.1 cm mrad. On the other hand, if wave 2 (1.65 um, polarized in the xz-plane)
is fixed, L Af; = 59 cm mrad.

Noncritical phase matching is possible at 1.57 ym and 3.3 pm in the x-direction and at
1.52 pm and 3.54 pm in the y-direction. For the x-direction (6 = 90°, ¢ = 0) and with
thermo-optic coefficients from [19], we find dAk/dT = —9.5m™" /K. We also find that
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Figure 3.2  Tuning curves for KTP for different pump wavelengths. Solid: A3 =
1.064 um, dashed: A3 = 0.9 um, dotted: A3 = 1.2 um

dAk/d)\; = 284 m~'/nm. Combining these with Equation (2.62) we find d)o/dT =
—0.034 nm/K. This is in reasonable agreement with a directly measured temperature
tuning coefficient of —0.022nm/K [32]. The temperature acceptance interval is L AT =
58 K cm. The acceptance bandwidth for the pump is about 1 cm nm. The acceptance
bandwidth for the 1.57 um signal (i.e. the gain bandwidth) is about 2 cm nm. The
acceptance angle is about 3500 cm mrad. This is large because of the noncritical phase

matching.

3.3.8 Examples

A large number of papers on KTP-based OPOs have been published, e.g. [33, 5, 34, 7].
Marshall and Kaz [33] achieved 47% conversion from 1.064 pm Nd:YAG radiation to
1.61 pm in a noncritically phase matched OPO. The KTP crystal was 20 mm long,
and the peak pump fluence was 2.3 J/cm?. The output energy at 1.61 ym was 10 mJ.
With an x-cut crystal the output wavelength was measured to be 1.61 ym, and with a
y-cut crystal it was 1.54 um. These differ from the wavelengths that we calculated in
Section 3.3.7. KTP and KTA based OPOs designed for ruggedized laser systems are
reported in [35]. Reference [36] compares a NCPM KTP OPO and stimulated Raman
scattering for conversion of Nd:YAG radiation to eye-safe wavelengths. A KTP based
OPO for use in airborne military systems was described in [37].

McCahon et.al. generated 175 fs pulses in a synchronously pumped OPO. The pump
source was a mode-locked Ti:sapphire laser giving 750 mW at 830 nm. The hydrother-
mally grown KTP crystal was 2 mm long and cut at § = 43° in the xz-plane. The
resonant signal could be angle tuned from 1.05-1.16 pm, and the nonresonant signal
from 2.9-3.96 pm. Output was 22 mW at 3.55 pm or 13 mW at 3.96 pym. The an-
gle between the wave-vectors of the pump and the resonant signal was about 1° to
partly compensate for walk-off. Power was reduced at the long wavelength because of
absorption in the crystal.

Periodic poling has been done in hydrothermal KTP[38]. A period of only 4 pm was
achieved with a sample thickness of 1 mm. Flux grown KTP is difficult to pole because
of greater conductivity, but it has recently been achieved [39)].
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3.4 KTA (KTiOAsO,)

KTA is not as much developed as KTP, but it is a very promising material. KTA shares
most of the good properties of KTP, and it has better IR transmission. Some reports
indicate that is has higher nonlinear coefficients and damage threshold [1]. KTA is
often doped to promote growth of single domain crystals [2, 3]. Doping may affect
crystal properties.

3.4.1 Transmission range

Most sources agree that the transmission range starts at 350 nm, but there is some
disagreement about the longer end of the wavelength range. Reports vary from 4 to
5.3 um. Figure 3.3 shows two transmission spectra of KTA.

The material KTi;_,Zr,OAsO, for x up to 0.3, has been reported to have somewhat
better IR transmission the pure KTA [4].
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Figure 8.3  Transmission spectra of KTA. Solid curve: 3 mm long crystal, z-
polarized light propagating in the z-direction. Data from [5]. Dotted
curve: 5 mm long crystal, propagation along @ = 23° in the zz-plane.

Data from [6]

3.4.2 Refractive index

Sellmeier equations for KTA are reported in [7]. They are based on minimum deviation
measurements in the range 0.41-3.6 pm. The equations have the form:

BX?

_P2A py2
SVIro” DA

nf=A+

where

Axis | A B C D

N

1.90713
2.15912
2.14786

1.23522
1.00099
1.29559

0.19692
0.21844
0.22719

0.01025
0.01096
0.01436
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These equations are for (nominally) undoped KTA. The dispersion of KTA can vary
significantly because of small impurities [8]. A set of Sellmeier equations given in [9] is
probably inaccurate because it used data from contaminated crystals [10].

3.4.3 Nonlinear coefficients

Measured values of the d-matrix elements are summarized in Table 3.4. These data
are consistent with Kleinman symmetry.

Source | dis | doa | d31 | dap | ds3 | Method | Wavelength, pm
[2, 3] 28|42 16.3 | MF Near 1
[9] 25145 PM SHG | Near 1

Table 8.4  Nonlinear coefficients of KTA, in pm/V

3.44 Damage

Bosenberg et.al. [1] report at least 1.2 GW/cm?® for 7 ns pulses at 1064 nm. They
tested several KTA and KTP crystals and found that all the KTA crystals had higher
damage threshold than any of the KTP crystals.

3.4.5 Thermal data

Thermal expansion is reported in [11]. Thermal conductivity is in the range 0.018-
0.021 W/(cm-K), depending on direction [12].

3.4.6 Price and availability

Crystal Associates can supply standard sizes up to 5 x 5 x 15 mm. For this size, they
charge $1350.

3.4.7 Tuning calculations

Figure 3.4 shows tuning curves for a KTA OPO with type 2 or 3 phase matching in the
X7Z-plane. The pump wavelength is 1.0642 yum. The curve is based on the Sellmeier
equations in [7]. In this phase matching geometry, deg = dassinf. Note that with
type 2 phase matching and 6 in the vicinity of 41°, two pairs of signal wavelengths are
simultaneously phase matched. This is possible because the refractive index changes
rapidly near 4 pm and slowly near 1.45 um, so that the left hand side of the phase
matching condition winy + wyng = wsng has a maximum near Ay = 145 ym. It is
possible that this effect is a result of using the Sellmeier equations outside the range
of wavelengths in which they were fitted to experimental data. Nevertheless, the effect
is worth the comment because it may occur in other crystals even if it is not really
present in KTA.
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Figure 8.4  Tuming curve for KTA

Noncritical phase matching is possible at 1.53 pm and 3.47 um in the x-direction and
at 1.50 pm and 3.64 pm in the y-direction.

3.4.8 Examples

A KTA-based OPO is reported in [1]. The KTA crystal was x-cut and 10 mm long.
The OPQ was noncritically phase matched and had a flat-flat cavity with two-pass
pump. The pump was a Nd:YAG laser giving 7 ns pulses. With 60 mJ pump, the
OPO gave 9 mJ at 1.5 pym.
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3.5 RTP (RbTiOPO,)

There is relatively little information on RTP. We obtain data from [1, 2], and [3], which
cites a Russian report. We are not aware of any commercial supplier of RTP, and we
have not found reports on any OPO using it.

3.5.1 Transmission range

A transmission spectrum of RTP is shown in Figure 3.5.

1
e
= r—— ]
So0.8 5, \
[1)]
8 N
: \
e
m0-4 \
9]
0.2 !
| L
2.5 3 3.5 4 4.5 5

Wavelength, um

Figure 8.5  Transmission spectrum of RTP. 3 mm long crystal, z-polarized light

propagating in the z-direction. Data from [1]

3.5.2 Refractive index
From [3], wavelength range not specified:

2

_ N2
T DX

where

Axis

A B C D

0.01666

X
¥
vA

2.56666
2.34868
2.77339

0.53842
0.77949
0.63961

0.06374
0.05449
0.08151

0.0211
0.02237

From [2], wavelength range 0.45-1.5 pm:

nt= A+ s

where

B)?

2 =2

— DX?

Axis

A

B

C

D

N < M

2.15559
2.38494
2.27723

0.93397
0.73603
1.11030

0.20994
0.23891
0.23454

0.01452
0.01583
0.01995
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Figure 3.6  Tuning curve for RTP

3.5.3 Nonlinear coefficients

Cheng et.al. [2] measured d3; = 3.3 pm/V, d32 = 4.1 pm/V, and ds3 = 17.1 pm/V
using Maker fringes at 1.064 yum. Zumsteg et.al. [4] measured the same d-coefficients
for RTP and KTP, but these data are much higher than more recent measurements of
d in KTP, so they are probably not reliable for RTP either.

3.5.4 Damage

900 MW /cm? for 17 ns pulses at 1.06 pm [3].

3.5.5 Tuning calculations

Figure 3.6 shows tuning curves for an RTP OPO with type 2 or 3 phase matching in
the XZ-plane. The pump wavelength is 1.0642 um. The curve is based on the Sellmeier
equations in [2]. In this phase matching geometry, deg = dz4Sin f. The tuning curve
may be inaccurate because the Sellmeier equations are used outside their range.

Noncritical phase matching is possible at 1.69 ym and 2.87 pm in the x-direction and
at 1.61 pm and 3.15 pm in the y-direction.

3.5.6 Examples

Periodically poled RTP has been used for frequency doubling [5]. A 3 mm long and
0.7 mm thick crystal was poled with 6.6 um period.
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3.6 RTA (RbTiOAsOy)
3.6.1 Transmission range

Transmission spectra of RTA are shown in Figures 3.7.
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Figure 3.7  Transmission spectra of RTA. Solid curve: 3 mm long crystal, z-
polarized light propagating in the z-direction. Data from [1]. Dotted
curve: 10 mm long crystal, propagation along 6 = 42° in the zz-plane,
polarization not specified. Data from [2]

3.6.2 Refractive index

The following Sellmeier equations are based on measurements with the minimum de-
viation method in the wavelength range 0.4-3.6 pm [2]:

BX?

2
n2=A+m—-D)«
where
Axis | A B C D

X 2.04207 | 1.17785 | 0.20157 | 0.01035
y 2.14941 | 1.09267 | 0.21462 | 0.01067
zZ 2.18962 | 1.30103 | 0.22809 | 0.01390

Sellmeier equations for the range 0.4-1.5 pm are given in [3]. These equations agree in
their wavelength range.

3.6.3 Nonlinear coefficients

Cheng et.al. [3] measured d3; = 2.3 pm/V, dz2 = 3.8 pm/V, and d33 = 15.8 pm/V
using Maker fringes at 1.064 pm.

3.6.4 Damage

Crystal Associates [4] states 400 MW /cm? for 10 ns pulses at 1064 nm.
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3.6.5 Thermal data

Thermal conductivity is in the range 0.016-0.017 W/(cm-K), depending on direction
[5].

3.6.6 Price and availability

Crystal Associates can supply standard sizes up to 5 x 5 x 15 mm. For this size, they
charge $2250.

3.6.7 Tuning calculations

Figure 3.8 shows tuning curves for an RTA OPO with type 2 or 3 phase matching in
the XZ-plane. The pump wavelength is 1.0642 ym. The curve is based on the Sellmeier
equations in [2]. In this phase matching geometry, deg = dogsiné.

Noncritical phase matching is possible at 1.61 pm and 3.15 ym in the x-direction and
at 1.54 ym and 3.42 pm in the y-direction.

3.6.8 Examples

Reid et.al. [6] built a femtosecond OPO with a 2 mm RTA crystal. When pumped with
880 mW at 825 nm, it generated 185 mW at 1.27 um. The other signal was at 2.4 pym.
Powers et.al. [7) made a femtosecond OPO that was tunable from 2.15-3.65 pm.

Periodic poling has been done in flux grown RTA, and frequency doubling was done
in a 1 mm thick crystal with 4.2 pm period [8, 9]. RTA has much lower conductivity
than KTP, and this makes poling easier.
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3.7 CTA (CsTiOAsO,)
3.7.1 Transmission range

A transmission spectrum of CTA is shown in Figure 3.9.
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Figure 8.9  Transmission spectrum of CTA, 5 mm long crystal, propagation in the

z-direction, polarization not specified. Data from [1]

3.7.2 Refractive index
From [2, 3], wavelength range 0.45-1.5 pm:

B)?

e s T
A - (C? A

nt=A+

where
Axis | A B C D

X
y
A

2.34498
2.74440
2.53666

1.04863
0.70733
1.10600

0.22044
0.26033
0.24988

0.01483
0.01526
0.01711

A recent report [4] indicates that these may be somewhat inaccurate.

3.7.3 Nonlinear coefficients

Cheng et.al. [3] measured d3; = 2.1 pm/V, d32 = 3.4 pm/V, and dg3 = 18.1 pm/V
using Maker fringes at 1.064 um. Boulanger et.al. [4] measured d;5 = 1.09 pm/V and
dos = 1.7 pm/V with phase matched SHG at 1.32 pm.

3.7.4 Damage

Crystal Associates [5] states 400 MW /cm? for 10 ns pulses at 1064 nm.
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3.7.5 Price and availability

Crystal Associates can supply CTA on a research basis.

3.7.6 Tuning calculations

Figure 3.10 shows tuning curves for a CTA OPO with type 2 or 3 phase matching in
the XZ-plane. The pump wavelength is 1.0642 um. The curve is based on the Sellmeier
equations in [3]. In this phase matching geometry, deg = dp4sin6. The tuning curve
may be inaccurate because the Sellmeier equations are used outside their range.

Noncritical phase matching is possible at 2.0 ym and 2.27 pm in the x -direction and
at 1.71 pm and 2.81 pm in the y -direction.

3.7.7 Examples

A femtosecond OPO which was tunable from 2.59-4.12 pm is reported in [6]. It was
pumped by 1.12 W at 809 nm and generated 235 mW at 1.12 pm.

CTA has been periodically poled by Karlsson et.al., but the results have not been
published yet. '
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3.8 LiNbO; (LNO)

LiNbO; has been used in nonlinear optics since the 1960s, and it is one of the best
developed nonlinear materials. Several varieties of LNO are in use. Congruently grown
LNO contains 48.6% Li and 51.4% Nb (atomic percent). (Congruent growth means
that the crystal and the melt has the same composition. This is only possible for
one particular composition.) Stoichiometric LNO contains 50% Li [1]. The reason for
using different varieties is that LNO is susceptible to photorefractive (PR) damage.
This means that light changes the refractive index of the material, thereby reducing
the optical quality. Such damage is temporary, and it can be erased by heating the
crystal to the damage annealing temperature, which is in the range 100 — 200°C. PR
damage can be avoided by operating the crystal at high temperature. Congruent
LNO allows noncritical phase matching for SHG of 1.064 um at room temperature,
but not at the temperatures required to avoid PR damage. To allow NCPM at high
temperature, crystals with higher Li content (e.g. Stoichiometric) were grown. Later
it has been found that MgO doping removes the problem of PR damage even at room
temperature. Doping concentrations of 4.5-7 mol% are common. ZnO doping is also
used [2]. When using reported data on LNO, one must be aware of the difference
between LNO of different compositions. Analysis of LNO composition is discussed in

3).

LNO is negative uniaxial with point group 3m (C3,). The axes are chosen so that
xyz = XYZ, with n, <nz =ny.

3.8.1 Transmission range

Transmission spectra of MgO:LNO and pure LNO are shown in Figure 3.11. The ab-
sorption depends on polarization direction, with better IR transmission for polarization
along the z-axis (extraordinary). Although absorption starts at about 4pm, an LNO
OPOs was operated with one signal at 4.83um [4], but the power was reduced for long
wavelengths.
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Figure 3.11  Left: Transmission spectrum of 7% MgO:LNO, 20 mm crystal, unspec-
ified polarization. Data from [5]. Right: Transmission spectra of pure
congruent LNO, 9 mm crystal. Solid curve: e-polarization. Dotted
curve: o-polarization. Data from [4]
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3.8.2 Refractive index

Edwards and Lawrence [6] provide dispersion equations with temperature dependence
for congruent LNO in the wavelength range 0.4-3.2 pm:

Ay + B F
X2 — (A3 + BoF)?
where F = T? — T}, T is the temperature in Kelvin, Ty = 297.5K, and the coefficients
are

n? = A+ ¥ ByF — A)? (3.4)

Coefficient | Ordinary (x,y) | Extraordinary (z)
A, 4.9048 4.5820

Ay 0.11775 0.09921

Az 0.21802 0.21090

Ay 0.027153 0.021940

B; 2.2314-10~% | 5.2716-1078

B, —2.9671-1078 | —4.9143-107%
Bs 2.1429-10"% | 2.2971-107%

There is evidence that these equations are inaccurate for high temperatures and long
wavelengths [7, 8]. Eckardt et.al. suggested a modification of these equations for
LNO with 5% MgO [9): By changing A; for the extraordinary polarization to 4.55207,
the computed results agreed with their experimental phase matching temperature.
Jundt et.al. [10] provide equations of the same form as (3.4) for stoichiometric LNO
in the wavelength range 325-1064 nm. Yao et.al. [11] provide Sellmeier equations for
(7 mol %)MgO:LNO. The coefficients for the o-polarization were later improved [5] by
fitting to phase matching angles in the range 2.2-3.4 pm. Note that for type 1 phase
matching in LNO, the long wavelengths are o-polarized while the short wavelength is
e-polarized, so the limited range of the Sellmeier equation for e-polarization is not a
problem. The equations have the form

B
2 2
n =A+:\—2_—:,—DA

where

Source | Polarization | A B C D

[11] o (xy) 4.87615 | 0.11554 | 0.04673 | 0.03378
[5] o (x,y) 4.86687 | 0.11916 | 0.04263 | 0.02751
[11] e (z) 4.54686 | 0.09478 | 0.04539 | 0.02672

Composition dependent Sellmeier equations for LNO are proposed in [12]. More Sell-
meier equations and references are given in [13, 6].

Ghosh [14] provides equations for the thermo-optic coefficients according to Equa-
tion (3.2) with the coefficients

Polarization | 10°G 10°H | g, pm
o (x,5) -173.556 | 163.038 | 0.280
e (2) -23.966 | 177.681 | 0.281

Reported values of the nonlinear index are shown in Table 3.5.
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Reference | ng, 10~%cm?/W | A, nm | Polarization
[15] 53 532 | x
[16] 82 532 |z
[16] 9 1064 |z
[17] 39 X

Table 8.5 Nonlinear refractive index of LiNbOs

3.8.3 Nonlinear coefficients

The nonzero d-coefficients are ds; = dsg, dis = das, dz2 = —dzy = dis, and ds3. If
Kleinman symmetry holds, dis = d3;. d-matrix elements are given in Table 3.6.

Source | dis dao ds1 dss | Doping | Method | Wavelength, pm
[18] 21 |44 |33

[13] -5.44 | -2.76 | -5.95 | -34 SPG

[19] 43 |21 |-43 |[-27 PM SHG

[20] -4.7 5% MgO | PM SHG | 1.064

Table 3.6  Nonlinear coefficients for LNO, in pm/V

3.8.4 Damage

The threshold for permanent optical damage in pure (probably congruent) LNO is
reported to be about 3 J/cm? [21]. The threshold could be significantly higher on
small spots. MgO doped LNO has higher damage threshold. Casix [2] and Castech
[18] claim 5 GW /cm? for 12 ns pulses at 1064 nm, but these data seem very optimistic.

LNO is susceptible to two types of temporary damage. Photorefractive (PR) damage is
local, light-induced changes in the refractive index. These changes destroy the optical
quality of the crystal. PR damage is only induced by visible light [22]. Nevertheless,
such damage is a problem in IR OPOs pumped at 1064 nm because of the green
second harmonic of the pump. The intensity can be sufficient to cause PR damage
even though the SHG process is not phase matched. PR damage can be erased by
heating the crystal to the damage annealing temperature, which is usually in the range
100-200°C, depending on the material composition. PR damage can be avoided by
operating the OPO crystal at high temperature, 60-200°C is usual for periodically
poled LNO. PR damage is also avoided in MgO or ZnO doped LNO.

The other type of temporary damage is dark traces [23, 24]. These too are induced
only by visible light, and they occur in frequency doublers for 1064 nm. Dark traces
have not been a problem in IR OPOs, so the threshold for this damage appears to be
higher than for PR damage. Dark traces occur in pure and doped crystals.

3.8.5 Thermal data

Reviews of thermal properties are given in [25] and other chapters in the same book.
All thermal properties depend on the exact composition of the material, and they may
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Figure 3.12  Tuning curves for LNO. The pump wavelengths are 1.0642 pm (solid
curve), 0.9 um (dashed), and 0.8 um (dotted). Gain bandwidths are
very large near degeneracy, especially for the 0.9 um pump

also depend on temperature. Reported data differ widely, and in many reports the
composition of the sample is not specified. Thermal conductivity seems to be about
0.04 W/(cm-K) at room temperature, and it decreases at higher temperatures. Specific
heat is about 650 J/(kg-K) at room temperature, increasing with temperature.

3.8.6 Price and availability

LNO is available from most crystal suppliers and in large sizes. Casix quotes $850 for
10 x 10 x 50 mm. Crystal Technologies supplies periodically poled LNO. The price for
a single 50 mm long, 0.5 mm thick crystal with 8 different gratings is about £2000,
dropping to £800 a piece for more than 5 pieces.

3.8.7 Tuning calculations

Type 1 phase matching using the d3;-element (ZXX) is most common in LNO, although
type 2/3 phase matching using the smaller d; (XYX) is also possible. Figure 3.12 shows
tuning curves for an LNO OPO with type 1 phase matching and three different pump
wavelengths. The curve is based on the Sellmeier equations for 77 mol MgO:LNO in [5].
In this phase matching geometry, deg = d3; sinf. For A3 = 1.064 pm and A; = 3.8 pm,
pump walk-off is about 2°, and the acceptance intervals are L A = 1.2 cm mrad,
LA); = 5.6 cmnm, and L A)\; = 25 cmnm. L Ag is infinite because LNO is uniaxial.

3.8.8 Examples

LNO is particularly interesting because of the possibility of quasi phase matching by
periodic poling. Samples up to 53 mm long and 0.5 mm thick with period 6.5 pm
have been fabricated and used in an OPO [7]. Periodically poled LNO (PPLN) retains
the transmission and power handling capability of bulk LNO. It appears to be less
susceptible to photo refractive damage [22], but it is still necessary to operate at high
temperature to avoid it. Temperature tuning is possible. Tuning can also be imple-
mented by fabricating multiple gratings with different periods on the same substrate
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[4]. The poling is along the z-axis, which is the extraordinary axis. QPM makes it pos-
sible to use the dss-element, which is much greater than the other d-elements. Another
advantage is that the IR transmission is better for polarization in the z-direction than
in other directions. Increasing the crystal thickness by diffusion bonding PPLN plates
has recently been reported [26], but there are still problems with this technology.

Although electric poling is the most common method, QPM crystals have also been
made by modifying the growth process [27]. Quasi phase matching in MgO:LNO was
demonstrated by [28]. They fabricated a 1.2 mm long crystal by changing the tempera-
ture during growth. More recently, electric poling of MgO:LNO was demonstrated [29].
The QPM period was 5.2 pm, and the thickness of the crystal was 0.4 mm. Periodic
poling of MgO:LNO has also been reported by [30].
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3.9 LilO; (LIO)
LilO; is negative uniaxial with point group 6 (Cs). The axes are chosen so that xyz

= XYZ, with n, < n; = ny. LIO is highly hygroscopic, and it must be mounted in a
sealed housing.

3.9.1 Transmission range

Transmission and absorption spectra are reported in [1]. Figure 3.13 shows the trans-
mission spectrum.

O:4 \
0.2 \
\

2.5 3 3.5 4 4.5 5 5.5 6
Wavelength, um

Transmission

Figure 3.13  Transmission spectrum of LIO. 3 mm long crystal, ordinary polariza-
tion. Data from [1]

LIO has been used for DFG at 5.7 um [2], but absorption was significant at that
wavelength. There is a second transmission window a longer wavelengths, and DFG in
the range 6.8-7.2 um has been reported [3].

3.9.2 Refractive index

Kato [2] provides Sellmeier equations, which are also used by Casix:

B
2 __ 2
n -.An+‘xgt:?§ — DA
where
Polarization | A B C D
o (x,y) 3.415716 | 0.047031 | 0.035306 | 0.008801
e (z) 2.918692 | 0.035145 | 0.028224 | 0.003641

These equations are transformed version of those in [4]. The D-coefficient for ordinary
polarization was adjusted to give better agreement with observed tuning curves. These
equations agreed with experimental OPO tuning up to 5.8 pm.

Gettemy et.al. [5] gives relatively detailed information on the refractive index temper-
ature dependence and absorption. At 1064 nm and 35°C, the thermo-optic coefficients
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are —7.52 - 1073 for e-polarization and —8.93 - 10~° for o-polarization. Thermo-optic
for the wavelength 532 nm, 660 nm and 1320 nm are also reported. Webb [6] measured
the temperature dependence of the phase matching angles for SHG at 1.064 ym. The
results did not agree with these thermo-optic coefficients.

Ghosh [7] provides equations for the thermo-optic coefficients according to Equa-
tion (3.2) with the coefficients

Polarization | 10°G 10°H Aig, pm
o &) ~303.885 | -131.800 | 0.13
e (2) -323.460 | 53.575 | 0.19

3.9.3 Nonlinear coefficients

Point group 6 allows the following d-elements to be nonzero: ds; = dsa, dagz, dog = dis,
and d14 = —d25. If Kleinman symmetry is va.lid, d31 = d24 and d14 = (. Reference
[8] reports d3; = 7.11 pm/V and ds3 = 7.02 pm/V for SHG at 1064 nm. These are
based on parametric fluorescence measurements. In phase matched SHG experiments,
ds; = —4.1 pm/V [9).

3.94 Damage

Damage thresholds at 1064 nm are shown in Table 3.7.

Seource | Damage threshold | Pulse length
[10] 60250 MW /cm?® | 20-100 ns

[11] 1.4 J/cm? 120 ps
[12] 80 MW /cm? Q-switched
2 |120MW/em® | 12ns

Table 3.7 Damage thresholds for LilOs
Reference [11] presents a thorough study of damage thresholds for short pulses. They
found that the threshold was higher at 1064 nm than at 532 nm, and that bulk damage

at 1064 nm was related to generation of the second harmonic. Casix [13] comments
that the damage threshold is low and that LIO is not suitable for high power devices.

3.9.5 Price and availability

Casix Casix supplies sizes up to 10 x 10x 20 mm?. They quote $400 for 10x 10x 15 mm.

3.9.6 Tuning calculations

Phase matching requires the highest frequency wave to have the e-polarization, while
at least one of the lower frequency waves must have o-polarization, i.e. in the xy-
plane. The form of the d-tensor shows that the last wave must also be polarized
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Figure 3.1  Tuning curve for LIO

in the xy-plane for deg to be nonzero, so only type 1 phase matching can be used.
Figure 3.14 shows tuning curves for a LIO OPO. The pump wavelength is 1.0642 pm.
The curve is based on the Sellmeier equations in [2]. In this phase matching geometry,
deg = daysinf. For A\ = 3.8 um, pump walk-off is about 3°, and the acceptance
intervals are LAS = 1.0 cm mrad, LA = 25 cm nm, LA) = 85 cm nm. The
tuning curve shows that 8 = 20°, s0 deg 1S relatively small.

3.9.7 Examples

An OPO based on LIO is described in [12]. They used noncollinear waves to increase ¢
and thereby deg. The angles given in this paper are not consistent with our calculations.
The OPO was pumped at 1.064 um and generated about 2.12 pm. LIO has been used
for difference frequency generation in the range 4.4-5.7 um [2], but there was absorption
above 5 um. Pump intensity was 80 MW/cm?, and the crystal was 19 mm long.
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3.10 KNbO; (KNO)

KNbOj; is negative biaxial with point group mm2 (Cy,). For the axes, we follow the
convention used in [1], with zyz = ZXY and n; < ny < n,. This is common in the
literature, but differs from the standard [2]. KNO has larger nonlinear coefficients than
other inorganic materials for the same wavelength range, but is looses its crystal struc-
ture outside the temperature range -50-220°C. Ferroelectric domains can be formed
by shaking or stressing the crystal [3]. Domain formation has also been reported at a
temperature of only 40°C [4]!

3.10.1 Transmission range

We have not found an absorption spectrum for the relevant wavelength range, but KNO
is claimed to be transparent from 0.4-4.5 pm [5, 3]. There are OH absorption features
at 1.46, 2.2, and 2.85 um [6]. MgO doping reduces absorption of short wavelengths [7,
but its effect on long wavelengths has not been not reported.

3.10.2 Refractive index

Zysset et.al. [8] provide Sellmeier equations for the range 400-3400 nm, with coefficients
for 6 different temperatures in the range 22-180°C. The accuracy is 2.5 - 107*. The
equations have the form

SIAZAZ SpA2A2

= D)2
Y_x xw_x P

=1+

where wavelengths are in um and the coefficients at 22°C are

Polarization | Sy(um)~2 | E1(eV) | Sa(pm)~* | Ey(eV) D(um)~*

y=X 20.05519 | 4.802660 | 149.8408 | 9.604319 | 0.02517432
g="Y 19.37347 | 4.545782 | 135.4992 | 9.049686 | 0.02845018
=2 16.09170 | 4.857787 | 165.4431 | 10.356684 | 0.01943289

); is found from E; by A\; = a/E;, where a = ch/e = 1.23985 - 10°mV, c is the
speed of light, h is Plank’s constant, and e is the electron charge. Later, temperature
dependent Sellmeier equations were fitted to the same data [9]. These equations are
claimed to valid for the entire temperature range of the orthorhombic phase of KNO,
(—=50°C to 223°). The equations have the form

223
2 _ b .
n' =1+ (51 +bF +b2G)y5— (A1 + bsF + b,G)?
A2)2 2 . (3.5)
+ (82 +bsF) 35— ot BFf (D +b2F)A° + bg A

where G =T — Ty, F = T? — T¢, Tp = 295.15K, T is the temperature in Kelvin, A is
the wavelength in pum, and the coefficients are
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Parameter |y=X |z=Y |x=1Z
Sh 17.381 | 19.456 | 16.086
E; 4.7288 | 4.5492 | 4.8553
Sy 142.40 | 134.95 | 166.258
E, 9.1082 | 9.0392 | 10.3834
D 0.02513 | 0.02837 | 0.01939
1050, 2.018 |-5.263 |-3.267
10%b, -1.32 | -1.65 -2.8
10765 1.231 | 238 1.89
10%b, -1.82 -6.78 -2.48
10%bs 9.017 | 20.536 | 19.90
10%bg 7.96 1767 | 175
10%; 558 |-12.2 |-2.7
10%g 4.4 3.3 -5.7

Ghosh [10] fitted the data from [8] to a different Sellmeier equation which he claims
is physically more meaningful. He also reports thermo-optic coefficients according to
Equation (3.2) with the coefficients (note the precision!)

Polarization | 10°G 10°H Aig, pm
y=X -52.63636 | 152.12376 | 0.2846
=Y -152.53160 | 26.67160 | 0.3486
x=2Z -5.04307 264.82864 | 0.2541

Hsu [11] measured thermo-optic coefficients interferometrically. The results were in
reasonable agreement with the data from [8].

3.10.3 Nonlinear coefficients

Nonlinear coefficients, in XYZ axes, are given in Table 3.8.

Source d]_ 5 d24 d31 d32 d33 Method Wavelength, pm
(12] 2165 | -17.1 | -15.8 | -18.3 | -27.4 | MF, WT | 1.064
[12] (Scaled) | -12.4 | -12.8 | -11.9 | -13.7 | -20.6 | MF, WT | 1.064
[13, 14] 105 |-12 |-183 | MF 1.064
[15] 10.2 PM SHG | 1.064

Table 3.8  Nonlinear coefficients for KNO, in pm/V

The data in [12] are based on dy1(SiO2) = 0.4 pm/V as reference. A more recent
recommended reference value is 0.3 pm/V [2], so the rescaled results are also shown
in the table. The data in [14] are also given relative to dy (SiO;), and they have been
converted to pm/V using the reference value 0.3 pm/V. Work on type 2 phase matching
in KNO indicates that all the d-elements have the same sign [16]. Pliska et.al. [15]
studied the uniformity of KNO crystals using SHG. Most of the samples had good
uniformity.
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Figure 8.15  Tuning curve for KNO

3.10.4 Damage

Damage thresholds:

Source | Damage threshold | Conditions

[17] 150-180 MW /cm? | 1064 nm, 10 ns
[16] > 240 MW/cm? | 1064 nm, 7 ns
[1] 10 J/cm?® 1064 nm, 100 ps
(18] 6 J/cm® 1054 nm, 700 ps

Table 3.9  Damage thresholds for KNO

3.10.5 Price and availability

Casix quotes $950 for 3 x 3 X 5 mm.

3.10.6 Tuning calculations

Figure 3.15 shows a tuning curve for Type 1 phase matching in the YZ = zx plane,
based on the Sellmeier equations in [8]. The pump wavelength is 1.064 ym. In this
phase matching geometry, deg = da;sinf. For A\, = 3.8 um, walk-off of the pump is
about 3.5° and the acceptance intervals are LAT = 30 Kcm, LAf = 0.7 mrad cm,
LA¢ = 1300 mradem, LA); = 9.8 nmem, and LAX; = 33 nmcm. The latter
corresponds to a gain bandwidth of 680 GHz cm.

Phase matching is also possible in the XZ = yx plane, but the 8 is about 17°, leading to
small deg. On the other hand, walk-off is reduced to 1.6°. Many more tuning examples
can be found in [1].

3.10.7 Examples

A KNO based OPO pumped by a Q-switched Nd:YAG laser is described in [19]. The
two output wavelengths were tunable in the ranges 1.45-2.01 pm and 2.27-4.0 pm
respectively. Type 1 phase matching was used, and the crystal was 7.8 mm long. The
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pump pulse was 9 ns long, and the pump fluence was 1.3 J/cm?. Output energy at
1.9 pm was 6 mJ for 80 mJ pump. Pump beam divergence was 0.5 mrad, close to the
calculated acceptance angle of 0.45 mrad.

KNO has also been used in a Ti:sapphire pumped femtosecond OPO (20, 21]. Wave-
lengths up to 5.2 um were generated. A type 2 phase matched OPO was demonstrated
by [16]. It had smaller line width than a comparable type 1 OPO.
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3.11 LiTaO; (LTA) and other related materials

LTA has been much used in quasi phase matched waveguide devices, but there are also
reports on QPM in bulk LTA. Gupta et.al. [1] report a 0.5 mm thick sample with
a 2 mm long QPM region with period of only 3.6 pm. They found ds3 = 20 pm/V.
Mizuuchi [2] had a 0.2 mm thick sample with a 10 mm long QPM region. Temperature
dependent Sellmeier equations for LTA are reported in [3].

There are also other materials related to LNO, KNO, and LTA. K3Li;NbsO15 (KLN)
has higher damage resistance, lower loss and better mechanical robustness than KNO
[4, 5]. Introducing Tantalum (K3Liz(Ta;Nb;_)sO1s, KLTNO) has improved UV trans-
mission even more [5]. The IR transmission was not reported.
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3.12 AgGaS,

Silver Thiogallate (AGS) has a wide transparency and phase matching range
and a moderately high nonlinearity. It is commonly used for 8-12 ym
generation, and can be used for direct conversion from 1 pm to 8 pm. It can
also be used for direct conversion from 1_um to 3-5 pm. It is a negative
uniaxial crystal (n, >n, ) with point group 42m. The material has a bandgap
at 0.5 um and there is no absorption in the material at 1 ym.

3.12.1 Transmission range

AGS has high transmission in the entire range from 1 pym to 12 pm. In Figure
3.16 a measured absorption spectrum of AGS is shown.
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Figure 8.16 Measured absorption coefficient in AGS [1]

3.12.2 Refractive index

The refractive indices of AGS are in the range 2.3-2.4 for wavelengths in the
range 1-10 um. Roberts [2] recently published an improved set of Sellmeier
equations for AGS which use the formula

B F _J ., D
X-C N¥-G X-K 1-E/*

n=A+

For wavelengths in the range 0.5-12 pm, he found the coefficients to be

A B c D F G

n, 5.824100 0.0867547  0.0356502 176380 112586795 -0.315646
T, 5.530050 0.0510941  0.141109 4253.78  4304927.0 -0.0910735

J K e b c d

n, 0.506566  -6.582197  3.156983  4.430430  6.604280 2.225043
n, 0 0 2.359877  2.566664 0 2.383834
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Other published measurements of the dispersion in AGS can be found in [3-8].

3.12.3 Temperature dependence

The temperature dependence of the refractive indices of AGS has been found to
be [9, 10):

Wavelength dn,/dT dn./dT Source
(10° /K) (10° /K)
1.06 pm 167 176 o
173 175 [10]
10.6 pm 149 156 9]
154 156 [10]

3.12.4 Nonlinear second order coefficients

There are only three elements of the d-matrix that are nonzero, and when
Kleinman symmetry is valid these are equal:

du = dzs —_ dﬁ
The magnitude of this element has been measured to be:

Source  dg (pm/V)  Method Wavelength

11, 19] 175 SHG 1.064 um

[12, 13] 111 DFG (1.06, 1.3, 6) pm

[11, 12] 11.2 SHG 10.6 pm

[14, 15] 134 £ 25 MF 10.6 pm
[16] 9+2 DFG (0.8, 1.06, 5.1) um
17) 31+5 SPE (0., 0.85, 7.8) um
18] 32.0 +4 SHG 10.6 pm

A summary and brief comparison of the measured values is given in [17, 18].
Although a value for dyg; in the range of 18 pm/V is most frequently used in the
literature, the two most recent (and independent) measurements found the
value to be in the range 27-36 pm/V [17, 18].

3.12.5 Effective nonlinearity

The expression for the effective nonlinearity for second order processes is given
by the crystal’s point group.

Type 1 phase matching: d ;= dygsin(6)sin(2¢)

Type 2/3 phase matching: d,; = dy;sin(26)cos(29)
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where 6 is the angle between the direction of propagation and the crystal z-axis,
and ¢ is the angle between the projection of the direction of propagation on the
zy-plane and the crystal z-axis.

3.12.6 Optical damage

The threshold for optical damage on the surfaces has been reported to be
25 MW /cm? in 10-35 ns pulses (i.e. 0.25-0.9 J/cm?) [4, 9] and 3 GW/cm? in a 20 ps
pulse (60 mJ/cm?) [19] for wavelengths between 1 pm and 10 pm. In a recent
measurement, the damage threshold was found to be 0.25 J/cm? for 180 ns
pulses at 2 pm and 2.2 J/cm? for 50 ns pulses at 10 ym [18].

3.12.7 Phase matching

Calculated phase matching curves for 1 um and 2 pm pump wavelengths are
shown in Figure 3.17.
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Figure 8.17 Calculated tuning curves for AgGaS,

We note the extremely wide phase matching region where 1 pm pump can be
directly converted to 8-12 pum radiation both with type 1 and type 2 phase
matching.

3.12.8 Noncritical phase matching

Noncritical phase matching (6 = 90°) is not possible in AGS (d.; = 0 for type
2/3 phase matching).

3.12.9 Example: Calculations

Results from calculations with various OPO configurations with AGS are listed
in Table 3.10. In calculations of d/n’ we have assumed that ds; = 18 pm/V
and n = 24.

3.12.10 Example: Experiment

Cheung et al. [20] recently reported on a singly resonant AGS OPO. The pump
source was a cw mode-locked Nd:YAG laser at 1.064 pm. With 625 mW of
pump power, they obtained 100 mW on 1.319 um and 6 mW on 5.505 ym. To
avoid thermal lensing in AGS, the pump was chopped at a 32 to 1 duty cycle.
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Pump

Signals PM 0 ¢ da/dy dy/n’  Walkoff
(pm)

10pm 13 40 1 487" 45° 075 13 (pm/V)?2 13"
10pm 13 40 2 600° 0° 087 18 (pm/V)2 1LI°
20pum 40 40 1 31.0° 45° 052 6 (pm/V)2  12°
20pum 40 40 2 466° 0° 100 23 (pm/V)?  13°
10pum 11 80 1 383" 45° 062 9 (pm/V)2 13°
10pm 11 80 2 415° 0° 099 22 (pm/V)?2 13"
20pm 27 80 1 320° 45° 053 7 (pm/V)2  12°
20pm 27 80 2 37.7° 0° 097 22 (pm/V)? 13"

Table 8.10 Calculations of tuning angles and effective nonlinearity for vaious

AGS OPOs

3.12.11 Price and availability

AGS crystals can be acquired from Cleveland Crystals (Cleveland, OH). In their
March 1996 price list, they charge USD 4368 for a 5 x 5 x 15 mm?3 sample and
USD 12574 for a 10 x 10 x 20 mm? sample.
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3.13 AgGaSe,

Silver Gallium Selenide (AGSe) has a wide transparency range and a high
nonlinearity. It is a popular material for both 3-5 ym and 8-12 um generation.
It is a negative uniaxial crystal (m, > n, ) with point group 42m. The material
has a bandgap at 0.73 pum and there is some absorption in the material at 1 pm.
Therefore the material is usually pumped at wavelengths above 1.3 pm, for
instance in a 2-step OPO configuration or with a 2 ym pump laser.

3.13.1 Transmission range

AGSe has high transmission in the entire range from 2 pym to 15 pm. In Figure
3.18 a measured absorption spectrum of AGSe is shown. Recent materials
research has increased the transparency in both ends of the transmission range.
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Figure 8.18 Measured absorption coefficient in AGSe [1]

3.13.2 Refractive index

The refractive indices of AGSe are in the range 2.55-2.65 for wavelengths
between 2 ym and 10 um. Roberts [2] recently published an improved set of
Sellmeier equations for AGSe which use the formula

B D F-X
a * b e c *
A-C NV-E X-G
For wavelengths in the range 0.73-13.5 pm, he found the coefficients to be

n*=A+

A B C D F

n, 6.849065  0.417863 0.198080  0.000442 0.889242
Ne 6.675232  0.436579 0.229775  0.012063 0.213957

G H a b c

Ny 1.209374 915.345 1.970203  0.340096 1.921292
Ne 3.252722 3129.32 1.893694  4.369152 2.04724
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Other published measurements of the dispersion relation for AGSe can be found
in [3, 4].

3.13.3 Temperature dependence

The temperature dependence of the refractive indices of AGSe have been found
to be:

Wavelength dn,/dT dn./dT Reference
(10° /K) (10 /K)
1.06 pm 8 66 5]
3.39 um T4£10 43+10 6]
10.6 pm 5 46 5

This indicates that an AGSe OPO can be temperature tuned.

3.13.4 Nonlinear second order coefficients

There are only three elements of the d-matrix that are nonzero, and when
Kleinman symmetry is valid these are equal:

du=dﬁ=dx

To the best of our knowledge, all published measurements of the nonlinearity
are over 20 years old.

Source  dg (pm/V) Method Wavelength
7,8 343 SHG 10.6 pm
¢ 215 SHG 10.6 pm
[10] 67.7£13 Wedge 2.12 pm
[10] 57.7 MD* 10.6 pm

*) This value was calculated by use of Millers A from the value at 2.12 pm.
In the literature the latter measurement often is neglected and it is commonly
assumed that dg; = 33 pm/V [11]. However, Choy and Byer [10] state that the

discrepancy between the published values may be explained with better material
quality in their experiments.

3.13.5 Effective nonlinearity

The expression for the effective nonlinearity for second order processes is given
by the point group of the crystal.

Type 1 phase matching: d,; = dygsin(0)sin(2¢)
Type 2/3 phase matching: d s = dygsin(26)cos(2¢)



7

where 0 is the angle between the direction of propagation and the crystal z-axis,
and ¢ is the angle between the projection of the direction of propagation in the
zy-plane and the crystal z-axis.

3.13.6 Optical damage

Recent reports indicate a threshold for optical damage on the crystal surface in
the range 2-3 J/cm? (180 ns pusles) [12]. At kilohertz pulse rates and pulse
lengths of 15 ns, the threshold level is reduced to 0.35 J/cm? [13]. For longer
pulses (20 pus) a damage threshold of 37 MW/cm? (i.e. 720 J/cm?) on an AR-
coated AGSe surface has been reported [14].

3.13.7 Phase matching

Calculated phase matching curves for 2 pym pump wavelength are shown in
Figure 3.19.
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Figure 8.19 Calculated tuning curves for 2 pm pumped AgGaSe,

We observe that Type 2 phase matching cannot be achieved in the 3-5 um
region with 2 ym pumping.

3.13.8 Noncritical phase matching

In Figure 3.20 calculated tuning curves for noncritical phase matching (6 =
90 °) are shown. From section 3.13.5 it is clear that type 2/3 NCPM cannot be
obtained for AGSe since the effective nonlinearlty is zero in this case.

From the figure it is clear that when the pump is tuned slightly around 1.5 um,
the output from the OPO is tuned from 3 pm to 5 ym.
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Figure 8.20 Calculated tuning curve for type 1 noncritical phase maiching

3.13.9 Example: Calculations

Results from calculations with various OPO configurations with AGSe are
listed below. In calculations of d/n’ we have assumed that ds; = 33 pm/V.

Pump Signals PM 6 ¢ dg/dy dy[n’®  Walkoff
(pm)

20 pm 40 4.0 1 516° 45° 078 38 (pm/V)? 0.7°
20 ym 40 4.0
20 pm 2.7 80
20 pm 2.7 80

463° 45° 072 32 (pm/V)? 07
579° 0° 090 50 (pm/V)?  06°

B = b

3.13.10 Example: Experiments

Budni and coworkers at Lockheed Sanders have demonstrated a 2.05 ym pumped
AGSe OPO that produced an average output of 600 mW when pumped with 3 W
at 2.5 kHz pulse rate [13].

Komine and coworkers at Northrop Grumman demonstrated a NCPM AGSe
OPO. They obtained 250 mW average power at 3.41 ym when pumped with 2 W
1.54 um radiation from a NCPM KTP OPO with a pulse rate of 2.5 kHz [4].

3.13.11 Price and availability

AGSe crystals can be acquired from Cleveland Crystals (Cleveland, OH) and
CASIX (Fujian, China). In Cleveland Crystals March 1996 price list, they
charge USD 4368 for a 5 x 5 x 15 mm3 sample and USD 12574 for a 10 x 10 x
20 mm3 sample.
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3.14 ZnGeP,

Zinc Germanium Phosphide (ZGP) is one of the most promising materials for
both 3-5 pm and 8-10 um generation, because of its high nonlinearity, its
transparency range, and its thermal conductivity. It is a positive uniaxial
crystal (n, > n,) with point group 42m. The material has an absorption band
at 0.53 um, and has substantial absorption at 1 pm. Therefore, ZnGeP, is
usually used with 2 um laser pumping or in two-step conversion. Progress has
been done in reducing the absorption at short wavelengths, and the material is
practically loss-less at 2 um today. Absorption above 10 pm (see Figure 3.21)
limits the tunability in the 812 pm band.

3.14.1 Transmission range

In Figure 3.21 the measured transmission spectrum of ZGP is shown. Recent
material development has further increased the transparency below 3 pm. ZGP
has a bandgap at 0.53 pm [1].

0o "2 % 6 8 10 12

Wavelength (um)

Figure 3.21 Measured transmission spectrum through an uncoated 10 mm thick
ZnGeP, crystal (2]

3.14.2 Refractive index

The refractive indices are in the range 3.1-3.2 for wavelengths between 2 ym and
10 pm. The most recent publication of the dispersion relation in ZGP (3] use
the formula:

B
r-C

n=A+ —DA?

with the coefficients (valid for wavelengths in the range 1-12 pm)

A B c D

7, 9.7465 0.7096 0.1169 0.00276
n,  10.0039 0.7205 0.1531 0.00277
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These will probably need modifications as the absorption between 1 pm and 2
pm is reduced. Other dispersion relations can be found in [4, 5]

3.14.3 Temperature coefficients

The temperature dependence of the refractive indicies of ZGP have been found

to be [6]:

Wavelength dn,/dT dn./dT
(10° /K) (109 /K)
2.0 pm 141.9 152.9
5.0 pm 150.5 164.3
8.0 pm 161.0 174.3

3.14.4 Nonlinear second order coefficients

There are only three elements of the d-matrix that are nonzero, and when
Kleinman symmetry is valid these are equal,

du — d% = dss
The value for these elements has been measured to be
Source dgs (pm/V) Method Wavelength
6 111433 SHG 10.6 pm
(0.83 dy GaAs)
6, 7] 75.4+13 (New value for GaAs)
i “50 SHG 96 ym
i 548 SHG 96 pm
3 017 SHG 26 pm

The value of dg; have traditionally been taken to be 75 pm/V. The most recent
measurements supports this.

3.14.5 Effective nonlinearity

The expression for the effective nonlinearity for second order processes is given
by the crystals point group.

Type 1 phase matching: d,; = dysin(8)sin(2¢)
4y = digsin(20)c05(26)

where 0 is the angle between the direction of propagation and the crystal zaxis,
and ¢ is the angle between the projection of the direction of propagation on the
zy-plane and the crystal z-axis.

Type 2/3 phase matching:
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3.14.6 Optical damage

ZGP has had a reputation as a "cracky” material since the early 1970s.
However, development of improved crystal growth techniques has substantially
improved the material quality. Recent works report optical damage to the
crystal surface when the fluence exceeds 10 J/cm? in 70-200 ns pulses [10]. For
150 ps pulses, a damage threshold of 30 GW/cm? (i.e. 4.5 J/cm?) has been
reported [11].

3.14.7 Phase matching

Calculated phase matching curves for 2 um pump wavelength are shown in
Figure 3.22.

16 v 16
Phasematching in ZnGeP,

e ¥4 2 um pump {14

E-.. 12 {12
=

B0 10
2

g 8 8

= 6 ~Type 1 g

Type 2
4 ype\ 4
2 - 2
50 60 70 80 90
Tuning angle (degree)

Figure 8.22 Calculated tuning curves for 2 pum pumped ZnGeP,

We see that Type 2 phase matching cannot be achieved in the 3-5 pm region
with 2 ym pumping.

3.14.8 Noncritical phase matching

Noncritical phase matching (6 = 90°) of type 1 is not possible in ZGP for
pump wavelengths between 2 ym and 5 pym. For type 2 phase matching, d. = 0.

3.14.9 Example: Calculations

Results from calculations with various OPO configurations with ZGP are listed
below. In calculations of dz;/n’ we have assumed that dgs = 75.4 pm/V.

Pump  Signals PM @ ¢ dy/dg d% [n® Walkoff
(um)

20 um 40 4.0 1 564° 45° 083 126 (pm/V)? 0.7°
20 pum 4.0 40 2 - - - = =

20 pm 2.7 8.0 1 512° 45° 078 110 (pm/V)? 0.7°
20 pm 2.7 8.0 2 640" 0O 0.79 113 (pm/V)? 06°
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3.14.10 Example: Experiments

The primary use of ZGP has been in frequency doubling of the output from CO,
lasers. More recently, 2 micron pumped OPO operation has also been reported.

Ketteridge and coworkers at Lockheed Sanders recently reported on a ZGP OPO
that produced an average power of 21 mW at 8.2 pm when pumped with an
average power of 1 W from a 2.05 um Ho:YLF laser [12]. The crystal was 6 x 6 x
12.5 mm and cut at 50.5° for type 1 phase matching.

For 3-5 um generation, a ZGP OPO with an output of over 2.5 W at a frequency
of 4 kHz has been demonstrated. The OPO was pumped with 2.05 ym and had
an overall efficiency close to 50% [13].

3.14.11 Price and availability

ZGP is a much studied material both in the USA and in the former Soviet
Union. However, to the best of our knowledge only INRAD (Northvale, NJ) and
Eksma, Inc. (Lithuania) grow the material on a commercial basis. Peter
Schunemann at Lockheed Sanders (Nashua, NH) has developed significant
improvements to the growth of ZGP over the past years, resulting in a
significantly reduced absorption at 2 um. Unfortunately, Sanders does not sell
ZGP as most of their ZGP work is on contract with the US Air Force.
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3.15 CdSe

Cadmium Selenide (CdSe) has a wide transparency range and several high
nonlinearities. Its birefringence is relatively small so the of phase matchable
wavelength ranges are small compared to the materials described in the
previous sections. It is primarily used for long wavelength generation (8-20 pm)
by the use of 2-3 um pump wavelengths. It is a positive uniaxial crystal (n, >
n,) with point group 6mm and has a bandgap at 0.5 um.

3.15.1 Transmission range

There is a dicrepancy regarding the transmission properties of CdSe. Davydov
et al. [1] reported the absorption coefficient in CdSe to be less than 0.01 cm™ for
wavelengths between 0.75 um and 20 um. Other reports indicate that there may
be some absorption in both the high and low ends of this wavelength range.
Isyanova et al. [2] states that absorption in the 1 pm band precludes direct
pumping at this wavelength. In Figure 3.23 a measured transmission spectrum
for CdSe is shown for wavelengths above 2 pm. This spectrum indicates that
there is some absorption above 10 um. However, this is an old measurement
(from 1965) from a time when CdSe was a new material. Later material
development may have improved the transparency features. Cleveland Crystals
which grows CdSe states a better than 50% transmission through a 2 mm
crystal in the range 0.8-18 ym [3].

Transmission (%)

4 8 12 16 20 24
Wavelength (um)

Figure 8.28 Measured transmission spectrum trough 1.7 mm uncoated CdSe [4]
3.15.2 Refractive index

The refractive indices for CdSe are in the range 2.4-2.5 for wavelengths 2-10 pm.
The dispersion relation of CdSe has been found to follow the formula

BA? DA?
2 +=3 _r’
L=C P=E

n=A+
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where the coefficients for wavelengths in the range 0.8-18 pm, have been
calculated to be [5]:

A B C D E
n, 4.2243 1.768 0.227 3.12 3380
T, 4.2009 1.8875 0.2171 3.6461 3629

3.15.3 Temperature dependence

The temperature dependence for both the refractive indices of CdSe is reported
to be 120 -10°K+ at 1 pm [3].

3.15.4 Nonlinear second order coefficients

Five elements of the d-matrix are nonzero. When Kleinman symmetry is valid,
four of these are equal: -

d.?:‘ = dg =d94=d15-

The fifth element is dg;. The magnitude of these elements (in pm/V) have been
measured to be:

Source dss dey dg Method  Wavelength
[6l 18+1.8 SHG 10.6 pm
M 65.4 Wegde 212 pm
4 55.3 MD* 10.6 pm
[ 31+8 29+6 4413 - 10.6 pm

*) MD: Used Miller’s A to calculate d at other wavelength.

3.15.5 Effective nonlinearity

The only parametric interaction process possible in CdSe is type 2 phase
matching [8]:

Type 2 phase matching: d,; =d,;sin(f)

where 0 is the angle between the direction of propagation and the crystal z-axis.
We note that the dj; element which has the largest value in CdSe cannot be
used since it describes the interaction of three waves with polarization along the
extraordinary axis (e = e+e) which cannot be phase matched.

3.15.6 Optical damage

The threshold for optical damage on the surfaces has been reported to be 30-
60 MW /cm? in 10-300 ns pulses (i.e. 0.15-0.9 J/cm?) [1, 3, 9, 10] for wavelengths
between 1 ym and 10 ym.
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3.15.7 Phase matching

Calculated type 2 phase matching curves for 2 ym and 3 um pump wavelengths
are shown in Figure 3.24.
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Figure 8.24 Calculated tuning curves for 2 pm and 8 pm pumped CdSe
We note that CdSe has a narrow phase matching range. In view of this it is not

surprising that the most recent applications of CdSe have been with noncritical
phase matching.

3.15.8 Noncritical phase matching

In Figure 3.25 calculated tuning curves for noncritical phase matching (8 =
90 °) are shown.

12} NCPM in CdSe
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= gt
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Figure 8.25 Calculated tuning curves for type 2 noncritical phase matching as
function of pump wavelength. The dashed lines indicate the pumping
wavelength and the double of the pumping wavelength

It should be noted that the OPO is tuned both in the 3-5 ym band and the 8-12
pm band when the pump is tuned from 2 ym to 3 pm.
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3.15.9 Example

In a recent work, Isyanova and coworkers at Schwartz Electro-Optics have
developed a Tandem OPO source generating 1.5-10 um wavelengths [2]. In this
work, a noncritically phase matched CdSe crystal with dimensions 10 x 10 x
35 mm?® was pumped by the output of a tunable KTA OPO which in turn was
pumped by a Nd:YLF laser. They obtained a total output energy (both signals)
of approximately 4.5 mJ when pumped with 3.45 pm in 22 mJ 30 ns pulses.
This was obtained with 210 mJ 1 pm pump pulses from the Nd:YLF-laser.

3.15.10 Price and availability

Cleveland Crystals (Cleveland, OH) manufactures CdSe crystals. In their March
1996 price list, they charge USD 1600 for a 5 x 15 x 15 mm? polished sample and
USD 7400 for a 5 x 30 x 30 mm3 polished sample.
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3.16 CdGeAs,

In spite of poor transmission in the near- to mid-infrared, Cadmium
Germanium Arsenide (CGA) is regarded as a very interesting material. This is
because of its extremely high nonlinearity, 235 pm/V, the highest of any known
birefringent compound and almost an order of magnitude larger than e.g. those
of AGS and AGSe. The material also has a high thermal conductivity which is
desirable in high power applications. It has a bandgap in the range of 2.0 pm
[1], and there is substantial absorption below 3 pm. Therefore its primary use is
conversion of a long (3-4 pm) wavelength pump to the 8-12 ym region. It is a
positive uniaxial crystal (n,> n,) and has point group 42m.

3.16.1 Transmission range

CGA has high absorption losses below 3 ym. Some of this stems from defects in
the crystal, and it is expected that some of these absorption losses will be
reduced with improved crystal growth. In Figure 3.26 a recent measurement of
the absorption in CGA is shown.

o 4 6 8 10 12 14 16 18
Wavelength (um)

Figure 8.26 Measured absorption coefficient in CGA [2]
3.16.2 Refractive index
The refractive indices of CGA are in the range 3.5-3.65 for wavelengths in the

range 4-10 um. The dispersion relations for wavelengths in the range 2.4-11.5
pm have been found to follow the equation [3]

B)? DA?
2 ¥ 2
P=C J=E

n=A+

where the coefficients are
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A B C D E
n, 10.1064 2.2988 1.0872 1.6247 1370
T, 11.8018 1.2152 2.6971 1.6922 1370

Other published measurements of the dispersion relations in CGA can be found
in [4, 5.

3.16.3 Temperature dependence

The temperature dependence of the birefringence, d(An)/dT, in CGA was
recently found to be 2.6 at 100K, 4.3 at 300K, and 5.1 at 400K, all in units of
10% K+ [6].

3.16.4 Nonlinear second order coefficients

There are only three elements of the d-matrix that are nonzero, and when
Kleinman symmetry is valid these are equal:

dy = dys = dy

The magnitude of these elements has been measured to be:
dgs = 235438 pm/V [1]

with SHG at 10.6 pm.

3.16.5 Effective nonlinearity

The effective nonlinearity for second order processes in CGA is:
Type 1 phase matching: d 5 = dyssin(0)sin(2¢)
Type 2/3 phase matching: d,; = dysin(26)cos(29)

where 6 is the angle between the direction of propagation and the crystal z-axis,
and ¢ is the angle between the projection of the direction of propagation on the
zy-plane and the crystal z-axis.

3.16.6 Optical damage

The threshold for optical damage on the surfaces at 10.6 ym has been reported
to be 40 MW/cm? in 160 ns pulses (i.e. 0.64 J/cm?) [4] and 1 kW/cm? for
continuous radiation [5]. It seems reasonable to expect the threshold for
damage to increase with the current improvements in the crystal growth
technique [2].

3.16.7 Phase matching

Calculated phase matching curves for 4 um pump wavelength are shown in
Figure 3.27.
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Figure 8.27 Calculated tuning curves for a 4 pm pumped CdGeAs, OPO

We observe that phase matching of type 1 is extremely sensitive to rotation
angle. This indicates that the output from such an OPO will have a broad
bandwidth.

3.16.8 Noncritical phase matching

Noncritical phase matching is not possible in CGA for pump wavelengths below
11pm.

3.16.9 Example: Calculations

Results from calculations with a CGA OPO are listed below. In calculations of
d2, [n* we have assumed that dgs = 235 pm/V.

Pump Signals PM 6 ¢ dg/ds  dy/n’  Walkoff
(pm)

40pm 80 80 1 336° 45° 092 362 (pm/V)2 13"
40pm 80 80 2 5L0° 0° 098 1132 (pm/V)? 14~

3.16.10 Price and availability

We are not aware of any commercial growth of CGA. Peter Shunemann and
coworkers at Lockheed Sanders (Nashua, NH) have recently published work on
growth of CGA [2].
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3.17 GaSe

Gallium Selenide (GaSe) has a wide transparency range, a very strong
birefringence and a high nonlinearity. It is a well researched material primarily
in the former Soviet Union. However, the growth of high-quality crystals will
be difficult because GaSe crystals are bonded very weakly in the c-direction, and
it is at present not possible to polish GaSe at arbitrary angles - only z-cut
crystals (i.e. @ = 0°) are possible. Due to its strong birefringence, the phase
matching angles of the material are close to 0°. Therefore GaSe can still be
used in OPOs. It is a negative uniaxial crystal (n,> n,) with point group 6ém2
and has a bandgap at 0.62 um. A comprehensive review of most of the work
done on GaSe can be found in [1].

3.17.1 Transmission range

A measurement of the transmission spectrum of GaSe is shown in Figure 3.28.
There is some absorption on wavelengths below 3 ym and above 13 pm.
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Figure 3.28 Measured transmission spectrum through 10 mm uncoated GaSe [2]

3.17.2 Refractive index

For wavelengths in the range 2-15 um the refractive indices for GaSe are in the
ranges 2.75-2.85 and 2.35-2.45 for the ordinary and extraordinary axes,
respectively. Recently an improved dispersion relation for GaSe has been found.
It uses the Sellmeier equations [3]

B C D EX
n2 =A+?+F+I€+m .

where the coefficients are:

A B C D E F

n, 7.443 0.4050 0.0186 0.0061 3.1485 2194
T, 5.760 0.3879 -0.2288 0.1223 1.855 1780
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These equations are valid for the wavelength range 0.65-18 um. Other dispersion
relations can be found in [4-7].

3.17.3 Nonlinear second order coefficients

Only three elements of the d-matrix are nonzero and when Kleinman symmetry
is valid these have the same magnitude:

dy = -dy = -dys.

The magnitude of dy, has been measured to be:

Source dgs (pm/V) Method Wavelength

(6] 54.4+1 SHG 10.6 pm
6] 75.4 SHG 10.6 pm

3.17.4 Effective nonlinearity

The expressions for the effective nonlinearities for second order processes are
given by the crystals point group.

Type 1 phase matching: d,; = dy, cos(6)sin(3¢)
Type 2/3 phase matching: d ;= dy, cos’(8)cos(3¢)

where 6 is the angle between the direction of propagation and the crystal z-axis,
and ¢ is the angle between the projection of the propagation vector on the zy-
plane and the crystal z-axis.

3.17.5 Optical damage

The threshold for optical damage on the surfaces has been reported to be 20-
35 MW/cm? in 10-25 ns pulses (i.e. 0.35-0.5 J/cm?) [8, 9] for wavelengths around

1pum
3.17.6 Phase matching

Calculated phase matching curves for 2 ym and 3 pym pump wavelengths are
shown in Figure 3.29. We note that GaSe has a wide phase matching range.
The low value of the crystal rotation angle (8) stems from the large
birefringence in GaSe. It can further be noted that owing to the high
sensitivity on rotation angle, PM of type 1 will lead to a high bandwidth. A
650 cm! bandwidth has been reported for near-degenerate type 1 PM compared
to 20 em?! for type 2 PM [10].
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Figure 8.29 Calculated tuning curves for 2 um (solid) and 3 pm (dashed) pumped
GaSe OPO

)

3.17.7 Noncritical phase matching

Noncritical phase matching (@ = 90°) is not possible in GaSe since d.; = 0 for
both type 1 and type 2/3 phase matching.

3.17.8 Example: Calculations

Results from calculations with various OPO configurations with GaSe are listed
below. In calculations of dZ /n® we have assumed that ds; = 54.4 pm/V and n=
2.6.

Pump Signals PM 8 ¢ dg/ds dy/n’ Walkoff
(pm)

20pm 40 40 1 119° 30° 0988 162 (pm/V)?  33°
20pm 40 40 2 162° 0" 092 143 (pm/V)2  44°
20pm 27 80 1 112° 30° 098 162 (pm/V)2  31°
20pm 27 80 2 126° 0° 095 153 (pm/V)2  35°
30pgm 43 100 1 111° 30° 098 162 (pm/V)Z  3.1°

30pm 43 100 2 129° 0" 095 152 (pm/V)2  36°

3.17.9 Example: Experiments

Recently Vodopyanov and Chazapis (Imperial College, UK) demonstrated a
2.8 pm pumped GaSe optical parametric generator that produced tunable output
in the entire wavelength range 3.3-19 pym. The ”threshold” for OPG in their
1.4 cm GaSe crystal was found to be 1.1 GW/cm?, and the ”quantum efficiency”
was reported to be 3-5% at 5 GW/cm? pump intensity [11].

3.17.10 Price and availability

We are not aware of any commercial growth of GaSe, but crystals may possibly
be bought from companies in the former Soviet Union. In a recent paper, V.G.
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Voevodin of the Siberian Physical-Technical Institute (Tomsk, Russia) was
acknowlegded for manufacturing the GaSe crystal [11].
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3.18 GaAs with domain inversion

Gallium arsenide (GaAs) has a high nonlinearity and a high thermal
conductivity. It has a bandgap at ~860 nm and has good transmission in the
infrared at wavelengths between 1 ym and 12 pm. Unfortunately, nonlinear
processes cannot be phase matched in bulk GaAs since it is an isotropic
material. However, quasi-phase-matched devices have been demonstrated where
thin slices of GaAs cut in the {110} direction are rotated 180 degrees with
respect to each other and stacked. A critical parameter for efficient operation of
such a device is the loss per surface in the stack. One way to minimize this loss
is to use Brewster angle stacks with small airgaps between each GaAs slice [1, 2].

Another and more robust way to make a QPM device is to diffusion bond the
plates in the stack together. Such a stack will retain most of the material
parameters of bulk GaAs, like a high optical damage threshold, but there have
been problems related to reducing the loss per surface in the stack. Recent
reports show that this problem is now about to be overcome [3-5]. There is also
a considerable effort in developing QPM GaAs waveguide structures for low
power applications. The current advances in the field of QPM GaAs give
potential for the use of this material in future applications in nonlinear
wavelength conversion.

3.18.1 Refractive index

GaAs has no natural birefringence. The refractive index is in the range 3.2-3.4
for wavelengths between 1.3 pum and 15 pm. For wavelengths in the range 1-10
pm the dispersion relation has been found to follow (X in xm) [6]

3.7812 1.9712

n*=710+— +—
1*- 02767 17 - 1391

Other dispersion relations can be found in [7-10].

3.18.2 Nonlinear coefficient
GaAs has the cubic zincblende structure with space group 43m. There are three

nonzero elements in the d-matrix and these are equal when Kleinman symmetry
is valid:

dy = dy = dg

Measured values of these elements are listed below.
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Source dg (pm/V) Method Wavelength
[11] 188+94 Wedge 10.6 um
[12] 134142 SHG 10.6 pm
[13] 905* MF (GaP) 106 pm
[14] 17328 Wedge 2.12 pm
[14] 15124 SHG 106 pm

*) Levine and Bethea [13] measured the absolute value for GaP by the Maker fringes method and
used this value and the relative value for GaAs published by Wynne and Bloembergen [1 1] to
calculate a new absolute value for GaAs.

A value of ~150 pm/V at 10.6 um seems to cover most of the published values.
The corresponding nonlinear figure of merit for the QPM structure (d.s =
2dy, /) is d?/m3 * 250 (pm/V)?, which is approximately twice that of ZnGeP,.

3.18.3 QPM period

So far, only frequency doubling of 10.6 pm radiation has been demonstrated
with QPM GaAs. In this process, a 106 pm QPM period is required [15]. The
QPM period for a given set of wavelengths can be found from the dispersion
relation. If the QPM period is too short for reliable processing, odd multiples
of this period can also be used. Examples of first order QPM periods are listed
below. As can be seen, a 3. order QPM device for conversion of 2 pm pump will
require a poling period of approximately 90 pm. This is in the same range as
the 106 pm devices used for SHG of 10.6 pm, and should be feasible.

k I b QPM

1pm 1.5 pm 3 pm 3 pm
2 um 4 pm 4 pm 29 pm

3 pm 4 pm 12 pym 76 pm

3.18.4 Current work

The critical parameter for QPM GaAs is the loss per surface in the stack. This
loss determines the optimal number of plates in the stack; a lower loss gives
more plates and then a higher wavelength conversion efficiency. Practical
devices will require bonded stacks of 50 or more GaAs plates to achieve a 10%
conversion efficiency with 10 MW /cm? input intensity [3]. The loss per surface
should then be less than 0.1% for efficient energy conversion. At present, losses
in this range has reportedly been achieved both at Thomson CSF (Paris,
France) [4] and at Stanford University (Palo Alto, CA) [3, 16]. Research on
QPM GaAs waveguides is currently being done at Bell Communications
Research (Red Bank, NJ) and at Oki Electric Industry (Tokyo, Japan).
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3.19 Materials for 1-5 ym generation — Summary

Of the 8 materials reviewed in the preceeding sections, KTP and LiNbO3 are the most
easily available and well tried. LiNbO; is particularly attractive because the periodic
poling process for this material is relatively well developed. The crystal thickness is
limited to maximum 1 mm, but work is going on to improve this by diffusion bonding.
Periodic poling has also been demonstrated in KTP, RTP, RTA, and CTA. In spite of
the less developed poling process, these materials can be poled with crystal thicknesses
and grating periods comparable to those of LINDO3. These results indicate that mate-
rials in the KTP family may be even more suitable for periodic poling than LiNbOs.
In both LiNbO; and the KTP family, the dss element is much greater than any other
element in the d-tensor. The 33-element can only be used with quasi phase matching.

KNbO3 has high values of all the nonzero elements in the d-tensor. However, its large
birefringence leads to large walk-off and small acceptance angles. KNbOj3 crystals are
brittle and have a limited temperature range. We are not aware of any systems using
KNbO; outside laboratories.

If operation in the entire 3-5 um range is required, the choice of materials is restricted.
KTP is not suitable for operation above 4 pm. The arsenates, KTA, RTA, and CTA,
have better transmission at long wavelengths. DFG has generated 5.2 pm in KTA
1] and 4.16 pm in RTA [2]. CTA has been used in an OPO for 4.12 pm [3]. The
absorption spectra for RTA and CTA are similar to that of KTA, so they can probably
be used at equally long wavelengths. LiNbOs has generated 4.83 ym in an OPO [4].
KNbOj3 has been used in an OPO generating 5.2 pm with femto-second pulses [5]. The
very high intensity in the short pulses allowed the use of a crystal only 1 mm long. For
nano-second pulses the crystal would have to be longer and absorption at the longest
wavelengths would be a much greater problem.

KTA, RTA, CTA, LiNbO3, and KNbOs all have absorption above 4 pm, and the the
generated power in the experiments cited above dropped as the wavelength approached
5 um. The absorption would probably lead to thermal problems for high average power
operation. The thermal conductivities are important parameters in this context, but
we have not found data on this for all the materials. LilOj; is the only material in
the group that has relatively high transmission at 5 pum. It has an absorption line at
about 4.3 pm, but that may not be a problem in military applications because the
atmosphere also absorbs at that wavelength. The main problems with LilO3 are that
it is hygroscopic and has a low damage threshold.

Altogether, periodically poled LiNbOj is currently the most attractive material for 3—
5 um generation if the available crystal thickness is sufficient. The arsenates of the
KTP family are also promising candidates for poling. RTA is commercially available
and it has been poled. For use with birefringent phase matching, KTA is probably 2
good choice. It is easily available and it has high damage threshold and relatively good
transmission in the long end of the wavelength range.

With any of these materials, absorption will reduce power in the wavelength range
near 5 pum. If high power at 5 pm is required, it may be better to use one of the long
wavelength materials discussed in the following sections.
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Note that the choice of material may depend strongly on the details of the device to
be built. For example, small walk-off may be essential if the pump beam is narrow,
while it is much less important if the pump beam is wide.
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3.20 Materials for 8-12 um generation — Summary

Which material should be chosen for a tunable source in the 8-12 ym atmospheric
window? This depends on application and the available pump source. Continued re-
search and material development is expected to improve the performance of some of the
materials listed in the previous sections. At present, the situation can be summarized:

The low thermal conductivity of AgGaS, and AgGaSe, limits the average conversion
powers to a few watts. Although new OPO designs may improve the maximum output,
this severely limits the use of these materials in high power operation. AGS can be
used in direct conversion of 1 pm pump.

7nGeP; has a significantly higher thermal conductivity (~ 35 times higher), but has
some optical absorption from 2- and 3-phonon absorption. This absorption may be
reduced by improved crystal growth (or cooling of the crystal), but today the average
conversion power is limited to a few watts. It is expected that the available output
powers from ZGP devices will increase significantly in the future.

CdSe has a low thermal conductivity, which will probably limit the use of the material
in high power applications. It can be used in noncritical phase matching for conversion
of a 1.5-2.5 ym pump to &-12 pym.

Until recently, little work had been done on CdGeAs;. Currently it is investigated as
perhaps the most promising material owing to its extremely high nonlinearity and its
wide transparency and phase matching ranges. Future crystal growth development is
expected to reduce the absorption shoulder at shorter wavelengths (2-4 pm). The need
for long wavelength pumping (above 2.5-3 pm) may limit the use of the material in
some applications.

GaSe is a material well researched in the former Soviet Union. Its high nonlinearity
and wide transparency and phase matching ranges are desirable material qualities.
However, the crystal is bonded very weakly in the z-direction which makes growth of
high quality crystals difficult. When used in OPO operation the material also suffers
from a very large walk-off. Its rather low thermal conductivity may also limit the
interest for this material in higher power operations.

Development of QPM GaAs devices is at its very early stages. However, recent im-
provements in the bonding techniques indicates that low loss stacks may be available
in a not too distant future. If this is the case, then GaAs may become one of the more
important materials in 8-12 pm generation. The large apertures attainable combined
with the high thermal conductivity of GaAs (20% higher than ZGP) indicates that
devices of this material can be well suited for high power operation.

At present, ZGP is the most promising material for high power tunable 8-12 pm
generation. It is expected that future development will improve the transmission and
the material quality of this material as well as of CGA and GaSe. GaSe and the other

materials listed here (AGS, AGSe and CdSe) will probably primarily be used in lower
power devices.

It should also be mentioned that most of the materials listed in this summary can also
be used in generation of 3-5 um radiation, and are often used in such applications.
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This is especially the case when wavelengths in the 4.5-5 um range is required, as the
materials listed in the previous section tend to have significant absorption losses at
wavelengths in this range.
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4 OPO DESIGN

In this chapter, we discuss some aspects of OPO design that are not usually covered in
detail in books. We also compare OPOs to other frequency conversion techniques and
discuss the conditions where each technique is appropriate. Because optical damage
is often the limiting mechanism in nonlinear conversion devices, the different configu-
rations can be compared by keeping the fluence (or intensity in the CW case) in the
cavity fixed and comparing the conversion efficiency of the configurations.

4.1 OPOs versus parametric generators

In bulk media with limited interaction lengths, nonlinear optical frequency conversion
processes need very high intensities to operate efficiently. Practical devices operate
close to the threshold for optical damage. There are several possible techniques for
parametric frequency conversion, including different OPO configurations as well as
other schemes. Difference frequency generators need two pump sources. In this section
we only consider OPOs and parametric generators, which operate with a single pump
source. The optimal scheme depends on the temporal character of the pump signal.
The sources can be divided in three classes: CW (or quasi CW), nanosecond pulses
(typical of Q-switched lasers), and picosecond or shorter pulses (typical of mode locked
lasers). It is interesting to note how different techniques complement each other, each
being suitable for one range of pulse lengths and unsuitable for other.

The conceptually simplest parametric conversion process is optical parametric gener-
ation (OPG) in a nonlinear crystal. This mechanism corresponds to amplified spon-
taneous emission (ASE) in a laser medium without a cavity. The signal starts from
spontaneous parametric down conversion, and grows because of optical parametric am-
plification (OPA). To obtain good conversion efficiency in a crystal of practical length,
the intensity has to be very high. To avoid damage, the pulses must be correspondingly
short. This consideration limits the OPG/OPA technique to pulses shorter than a few
picoseconds. With pump intensity of the order of 10 GW/cm?, reasonable efficiency
can be achieved in a crystal of a few cm [1].

For longer pulses, the intensity must be reduced to avoid damage. The required inter-
action length increases, and the only practical solution is to put the nonlinear crystal
in a cavity, i.e. to build an OPO. In the OPG/OPA, the pump and signals copropagate
for the whole duration of the conversion process. In the OPO however, the signals
typically make hundreds of round trips in the resonator while the pump makes one or
two passes through it. The pump energy is not converted efficiently until the signal
has reached a sufficiently high level, therefore the buildup time of the signal becomes
important. If it is too long compared to the pump pulse, most of the pump energy
may pass before efficient conversion starts. This explains why OPOs are not suitable
for very short pump pulses.

To achieve rapid growth of the signal in a pulsed OPO, the amplifying interaction
should fill a large part of the signal’s path in the resonator. This implies that a linear
resonator should be only slightly longer than the nonlinear crystal, and bidirectional
pumping should be used so that the signal is amplified in both directions. In a ring
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resonator, nonlinear crystals can be inserted in more than one leg.

In CW OPOs, the startup time is not critical, so the cavity length is not so important.
Synchronously pumped OPOs deserve special mention. They are used with mode
locked pump lasers, and the cavity length of the OPO is matched to the cavity length
of the laser. Although the pump pulses are short, the OPO scheme can be used because
it does not operate on single independent pulses.

4.2 Resonant signals in OPOs

An OPO with a cavity in which a single signal is resonant is called a singly resonant
OPO (SRO). SROs tend to have relatively high thresholds. When a Q-switched pump
source is used, the intensity is usually high enough to allow efficient operation of an
SRO, but it has been difficult to pump SROs with CW sources. With the recent
progress in materials for quasi phase matching, SROs have become feasible even for
CW systems [2].

In the simplest OPOs, the pump beam makes a single pass through the nonlinear
crystal. By reflecting the pump back through the crystal, efficiency can be improved
for three reasons:

e In the initial part of the pump pulse, the signal grows more rapidly because it is
amplified in both passes through the crystal. The signal pulse starts earlier and
a greater part of the pump pulse can be converted.

e If the intensities are not large enough to deplete the pump in a single pass, more
energy may be converted in the return pass.

e The two-pass pump can reduce the problem of back-conversion (see Section 2.3.4).
Both mirrors can be fully transparent for the nonresonant signal, so each pass
starts with only one signal of nonzero amplitude. Because sum frequency gener-
ation requires photons in both signals, this reduces the possible back conversion.
Even if there is back conversion in the first pass, the generated pump light may
be converted to signal light in the second pass.

The main drawback with the linear, two-pass OPO is that the reflected pump may
disturb or damage the pump laser, so an optical isolator is required.

To reduce threshold and increase conversion efficiency for weak pump sources, one can
make a double resonant OPO (DRO) in which both signals are resonant. The cavity
length must be controlled to maintain this condition. There has been problems with
bad stability because the output power is sensitive to sub-wavelength variation of the
cavity length. Tuning has also been difficult. Stable DRO operation and tuning has
been demonstrated in a monolithic cavity made from a LiNbOs crystal [3]. Note that
type 1 phase matched OPOs near degeneracy are necessarily double resonant.

An alternative for low power operation is a pump resonant OPO (PRO) in which the
pump and one of the signals are resonant. This avoids the stability problems of the
DRO, but the cavity length has to be locked to the frequency of the pump source.
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An interesting variation of the PRO is obtained by making the OPO cavity a part of
the pump laser cavity. This is called intracavity OPO (ICOPO). It avoids the difficulty
of locking the OPO cavity to the pump frequency. In external OPOs pumped by pulsed
lasers, the energy in the first part of the pump pulse is not converted because the OPO
sigr..l needs time to build up to a level that can deplete the pump. In an ICOPO,
this waste of pump energy can be avoided because the cavity has a high finesse at
the pump wavelength. In principle, energy can only escape by being converted to a
signal wavelength that has output coupling, and all pump energy is stored until it is
converted. In practice, this ideal situation is precluded by losses, but nevertheless the
ICOPO may be an efficient solution. Cavity length, signal output coupling and pump
intensity must be adjusted for optimal operation. If the OPO pulse starts too early, it
may quench laser operation before the energy in the laser medium has been efficiently
extracted.

Even triple resonant OPOs have been reported [4]. Another interesting possibility
is the nonresonant OPO (NRO) [5]. It utilizes a two-pass pump beam so there is
amplification in both directions. One mirror is fully transparent for one signal and
highly reflective for the other. The other mirror is opposite. No signal is resonant,
but the feedback necessary for oscillation is provided by the nonlinear process itself. It
has been claimed that this configuration is particularly suitable for injection seeding,
because it avoids the requirement of locking the resonator length to the seed wavelength
[6]. We think this claim is incorrect. If the OPO contains a modulated signal, it is
easy to see that this signal will repeat periodically, implying that the OPO has a
longitudinal mode structure. At the seeded end of the OPO, both signals incident on
the crystal are nonzero. For efficient conversion, they must satisfy a phase relation,
and this is equivalent to the resonance condition in a normal cavity. Closer inspection
of the equations for the growth of the signals in presence of a seed source reveal that
seed frequency mismatch has exactly the same effect as in an SRO with the same net
round trip gain.

Tn an SRO, one has the choice of which signal to make resonant. The parametric process
creates the same number of photons at each signal wavelength, so the total fluence in
the cavity is minimized by making the lowest frequency signal resonant. In practice,
the damage threshold of the optical components may depend on the wavelength, so the
optimal design with respect to damage risk depends on the wavelengths and coatings in
question. If the output coupling is small, cavity losses can be important for the resonant
signal. If only one signal is going to be used, efficiency is maximized by making the
unused signal resonant and making the output mirror fully transparent for the desired
wavelength. In this way, the unused signal suffers most of the losses. In some situations,
the signals may have significantly different losses. This will be the case if the nonlinear
crystal has absorption at one of the signal wavelengths. If the average power is high,
the signal with least absorption should be made resonant to minimize power dissipation
in the crystal. In the two-pass pump OPO, the nonresonant signal is emitted in both
ends of the resonator. Therefore only the resonant signal can be coupled efficiently to
a single beam. Table 4.1 gives a summary of the mirror reflectivities in linear single
resonant and nonresonant OPOs.
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My, A | My, Ao | My, As | Mg, Ay [ My, Ag | My, As
1-pass, A; resonant | HR - HT oC HT HT
1-pass, Ag resonant | - HR HT HT oC HT
2-pass, Ajresonant | HR HT HT 0oC HT HR
Nonresonant HR HT HT HT HR HR

Table 4.1  Mirror reflectivities for linear OPOs. HT - high transmission, HR -
high reflection, OC - output coupling.

4.3 Resonators and mode matching

It is common to make OPQs with plane-plane resonators. The signal mode is then
determined by the gain guiding due to the transverse pump distribution. This works
fine provided the beams are wide enough that diffraction losses are small. The pump
power must be high enough to give sufficient intensity with this width. If the pump
power is smaller, the beam must be made narrower and diffraction losses become im-
portant. Since the signal makes tens or hundreds of round trips, while the pump makes
only one or two passes through the crystal, diffraction losses become a problem for the
signal first. Diffraction loss for the signal can be reduced by using a stable resonator.
Apart from damage considerations, there is another limit to how much the beams can
be focused: If the spot size is too small the short Rayleigh length zo will limit the
effective interaction distance. A crude estimate of the minimum pump power required
for an OPO of length L can be made as follows: Suppose that the OPO needs gL > K,
and that g for Ak = 0 is g = 7v/Ns = 7y/T3/hws as defined in Equation (2.53). Thus
we need I > FwsK?/(L%n?). For the effective interaction length to equal L, we need
20 > L/2, or w? > L)/(2mn), where wy is the beam spot radius. The minimum pump
power is then

heK?

r (4.1)

P = Lyrw] =

See [7] for modelling and experimental work on a low-threshold SRO. The minimum
power is lower for DROs than for SROs, because the DRO can operate with lower
pump intensity. For very small pump powers, wave guide OPOQOs can be used. They
combine small beam area with long interaction length and small diffraction losses. Some
common nonlinear materials, like LiNbO3 and KTP, can be used for wave guides.

Unstable resonators with magnification greater than 1 were found to give the best
results in a comparison of stable, plane-plane, and unstable resonators [8]. Simulation
results indicate that variable reflectivity mirrors (VRM) may lead to good beam quality
[9], but we are not aware of any experimental demonstrations of this. Making a VRM
with specified reflectivities at 3 different wavelengths is probably very difficult.

In an SRO, the resonator determines the phase profile only of the resonant signal. The
nonresonant signal is free to take the phase profile that leads to maximum gain. This
makes the SRO relatively tolerant to the phase profile of the pump. In the DRO, on
the other hand, the phase profiles of both signals are determined by the resonator. For
efficient conversion, the correct phase relation must be satisfied all over the transverse
beam profile. This implies that the pump wave front must be mode matched to the
resonant signal modes.
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A disadvantage with all linear OPOs is that the gain is determined by the intensity in a
single direction, while the beams in both directions add towards the damage threshold.
Ring resonators avoid this problem, and they have the additional advantages of being
less sensitive to feedback and easier to seed. Note that ring OPOs are automatically
unidirectional because only the signals travelling in the same direction as the pump
are amplified. A ring with a single crystal corresponds to a single pass linear OPO.
As with the linear cavity, one can make either signal resonant. The round trip time is
longer in a ring cavity than in a linear cavity. This tends to reduce the initial growth
rate of the signal, but it is usually compensated by the increased intensity that can
be used. A ring OPO equivalent to the two-pass pump configuration can be made by
inserting nonlinear crystals in two legs of the ring. This has the same advantages as
the two-pass linear OPO, and in addition it avoids the problem with pump reflection
to the laser. Like the two-pass linear OPO, the ring OPO with two crystals can be
made nonresonant.

4.4 Coatings and mirrors

Fabricating dielectric coatings with high damage resistance is a major problem in mid-
IR generation. In lasers, anti-reflection coatings can often be replaced by Brewster cut
faces. In OPOs, this is usually not possible because the interacting waves have different
polarizations. However, when quasi phase matching is used, the waves can have the
same polarization, so Brewster faces could be used.

4.5 Walk-off compensation

We mentioned in Section 2.4.3 that walk-off can be reduced by using two nonlinear
crystals. By rotating one crystal with respect to the other, it is possible to reverse the
direction of walk-off. Such rotation can also change the sign of the effective nonlinearity
Xeff, but in most cases it is possible to find a rotation that reverses walk-off and preserves
Xeft [10]. The two-crystal configuration has the additional advantage of increasing pump
acceptance angle [11]. The reason is that the phase mismatch induced by the divergence
has opposite signs in the two crystals.

4.6 Pump beam quality

Critically phase matched OPOs can be sensitive to phase-front variations of the pump
beam [12]. The effects of different types of phase aberrations were studied numerically
in [13]. Noncritically phase matched OPOs, however, may operate efficiently in spite
of multimode pump beams [14].

4.7 OPO threshold

For a CW OPO, the threshold pump power is well defined: It is the power that makes
the signal gain per round trip equal the resonator loss. The threshold power depends on
the spatial profile of the pump beam. In pulsed OPOs, there must be many round trips
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with net gain before the signal reaches an appreciable level. The pump power must
exceed the CW threshold power before efficient conversion takes place. The threshold
energy for a pulsed OPO is somewhat loosely defined as the pump energy that leads
to a certain minimum signal energy [12]. The threshold energy and power depend on
the length and the temporal shape of the pump pulse.

4.8 Composite OPO systems

Many systems combining OPOs and other frequency conversion devices have been
reported. One reason to use a composite conversion system is that very few nonlinear
materials are transparent at both 1.06 um and in the 8-12pm range. A Nd:YAG
pumped KTP OPO pumping an AgGaSe, OPO generated radiation tunable from 6.9-
13 um [15]. A similar system with intra-cavity KTP or KTA OPO was tunable in the
2.5-5 um range [16]. Radiation in the same wavelength bands have been generated by
OPOs followed by difference frequency generation of the two signal waves (17, 18]. An
advantage of the latter scheme is that the mid-IR wave is generated in a single pass
through an uncouted crystal, requiring no mirrors.

OPOs with intra-cavity SFG and SHG have also been reported. An OPO pumping
another OPO in the same resonator has been studied theoretically [19], but fabricating
mirrors with specified reflectivities at 5 different wavelengths is probably beyond the
present state of the art.
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APPENDIX
A NONLINEAR INTERACTION IN A BIREFRINGENT MEDIUM

From Maxwell’s equations we have
V2E — V(V - B) = poD + poP (A1)

where D = ggeﬁ} is the linear part of the displacement, ¢ = 1 + x is the dielectric
tensor, and P is the nonlinear polarization.

We first consider only the linear part of the equation and find the corresponding plane
wave eigenmodes. Suppose that an eigenmode has wave vector k = ku, elecric field
E = eexp(—i(wt — k-1)), and displacement D = eeE = ead exp(—i(wt — k1))
where u, e, and d are unit vectors and « is defined by ee = ad. The Maxwell equation
V -D = 0 requires that d is normal to u. Since the medium is birefringent, e need not
be parallel to d. Inserting this trial solution in the equation, we find

V2E = —k%eexp(—i(wt — k- 1)) (A.2)
V-E =i(k- e) exp(—i(wt — k - 1)) = iksin pexp(—i(wt — k - 1)) (A.3)
V(V - E) = —k?usin pexp(—i(wt — k - 1)) (A.4)
1oD = —w?c2ad exp(—i(wt — k - 1)) (A.5)

where 7/2 — p is the angle between u and e (or equivalently, p is the angle between e
and d). These equations imply that e lies in the plane of d and u. Since the Poynting
vector is S = (E x H), and H is normal to D and k, p is also the angle between S and
k, i.e. the walk-off angle. Equating the components along d and u we find

—K?* (e d) = —w?c%a (A.6)
—k?*(e-u) + k*sinp =0 (A7)

The second equation is satisfied by the definition of p, while the first equation becomes
k2 cos p = w?c~2a.. The refractive index is defined by k* = w*n’c™?, so n* = o/ cosp.
Given d, we can find e and « by

9 o « 1 1

T osp d-e d-(ale) d-(eld) (A8

Note that n cannot be found directly from e - (ee) because this equals e - (ad) =
acos p = n?cos? p.

It is clear that the index of refraction depends on the propagation direction. Rotate
k a small angle 6 in the plane of k and d. To first order, the new unit vector in the
propagation direction is u’ = u + 6d and the new unit vector in the direction of the
displacement is d’ = d — fu. We know that e"'d = a~'e = a~!(dcosp + usinp).
Because € is symmetric, it follows that e *u = a~'(d sin p +uz) where z is a constant.



114

We find the refractive index of the wave in direction u’ by

. 1 _ 1 -
(n+ An) “d - (eld) (d—6u)-el(d—6u)
(d_gu).(d(;osp+usinp—9(dsmp+ ur)) N (A.9)

= (T t in @
cosp — Osin p — Osin p + 62z (To first order in 6)
o o

cosp —20sinp - cos p(1 — 26 tan p)

~ n?(1+ 26 tan p)

This implies 2n An = 2n%0 tan p and hence

% =ntanp (A.10)

Now that we have found the eigenmodes, we consider the evolution of a beam propa-
gating in the presence of a driving nonlinear polarization. For simplicity we choose the
z-axis along the direction of propagation and the x-axis along the displacement. Let
the polarization be

P = xp(z,y, 2) exp(—i(wt — k;2)) (A-11)

where x is a unit vector in the x-direction. We assume that the electric field can be ex-
pressed in terms of a linear combination of eigenmodes with slowly varying amplitudes
e:

E(z,y,2) = / dkydkye(ks, ky)e(kz, ky, 2) exp(—i(wt — kzx — kyy — k;2))
(A.12)

(A.13)

k, Kk:2+Ek2
where k., (k;, ky) = ko (1 + tan p— — = y)

T

Here ko = wng/c, and ny is the refractive index of the mode with k, = k, = 0. This
expansion is an exact representation, it includes the small longitudinal field components
that must be present in a field with transverse variation. Consider first the evolution of
the amplitude & = &(k., ky, 2) of one of the modes. We use the same notation as before
with the unit vectors u, d, and e. In addition we use x and z for the unit vectors
in these directions. We insert the field corresponding to this mode in Equation (A.1)
and ignore second derivatives of the slowly varying amplitude &. For compactness, we
suppress the arguments of e and é.

V2E = e(—k% + 2ik,&) exp(—i(wt — k - 1)) (A.14)
V-E =e- (iké + &'z) exp(—i(wt — k- 1)) =
(ik sin pe + (e - z)€') exp(—i(wt —k - T)) (13
V(V - E) = (—k?sin pgu + ik(e - z)&"u + ik sin pg'z) exp(—i(wt — k - 1))
(A.16)
,u.gf) = —w?c 2ad exp(—i(wt — k- 1)) (A.17)

oP = —powPpx exp(—i(wt — kyz)) (A.18)
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where & = de/dz. We multiply both sides with d and u. All the terms corresponding
to the linear equation cancel, so we are left with

(2ik,(e - d) — ik(z - d))& exp(ik - 1) = —pow’p(x - d) exp(iky2) (A.19)
(2ik, sin p — ik(e - z) — ik sin p(z - u)& exp(ik - 1) = —pow?p(x - u) exp(ikyz2)
(A.20)

The small changes in polarization directions are essential to derive walk-off and the
direction dependent refractive index. But now, when we are interested in the per-
turbations caused by the nonlinear polarization, we can make approximations. If we
assume e -z ~ sinp, z-u~1,x-u=0, and k = k,, Equation (A.20) is satisfied. And
if we assume e-d ~ 1, z-d ~ 0, and x - d = 1, Equation (A.20) becomes

2ik,& exp(ik - ) = —pow’p exp(iky2) (A.21)

Multiplying with exp(—i(k.z + kyy)) and integrating over z and y

& = L ks, ky) expliz(hy — i) (A.22)
where
Bker ) = @% / ] ddyp(z, y) exp(—i(ks + kyy)) (A.23)

Using this result, we can find the evolution of the complete field:

R . kg + k2 ' ;
& / dkodky (ko + ks tan p — =25—E)e + ¢ e(ks, ky) exp(~i(wt — k{ﬂ%:;)

We simplify by approximating E =~ Eey and e(kz, k,) = g for all the modes. When
we insert (A.22) for & and carry out the integration, the second term becomes

2
pow’ _ powc (A.25)

$Bp(a, y) exp(—i(wt — ky2) where f = B ~ B2

When the first term is integrated, it becomes
& G

- OE i _, - g

ikoE +tanp 5 2},%VTE where Vi = 322 + By (A.26)
so the result is

BE . = BE 7. 9 T+ . .

5 ikoE + tan p—— — %VTE + ifp(x, y) exp(—i(wt — kpz)) (A.27)

Now let E(z,y, 2) = e(,y, 2) exp(—i(wt —koz)), where e is a slowly varying amplitude.
The equation for € is
oz '069: 2ko

The first term on the right hand side describes walk-off, the second describes diffraction,
and the last term is the nonlinear driving polarizaton. If we assume that the nonlinear

Ve + ifp(z, y) exp(iz(kp — ko)) (A.28)
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polarization P is created by two other waves, P = 2€o)ege3€s exp(i(ks — k2)z — twt),
the driving term becomes

How1C

9
’ 2711

eoxeses exp(i(ks — ko)z) = iwy c—-—i—egeg exp(i(ks — k2 — k1)2) (A.29)
1

which is equal to the corresponding term in the plane wave equations. In a nonlinear
device, the waves usually have different polarizations and hence walk-off in different
directions. Thus 8/8z in the walk-off term may be replaced with /8y for other waves.



