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HEALTH MONITORING OF SHIP HULLS USING WAVELETS, WAVELET
PACKETS AND SYSTEM IDENTIFICATION TECHNIQUES

1 INTRODUCTION

1.1 Background

This thesis is concerned with mathematical methods for extracting and identifying
non-stationary signals in a noisy background. It is written at the Norwegian Defence
Research Establishment (FFI) as a part of the on-going Composite Hull Embedded Sen-
sor System (CHESS), which is a joint project between FFI and Naval Research Lab-
oratory (NRL), Washington. The project has as its objective to develop a real-time
signal processing system to monitor and analyse the load on the hull of a prototype
Surface Effect Ship (SES) which is currently being built for the Royal Norwegian Navy
at Kveerner Mandal, Norway.

These ships are meant to operate at high speeds, and will therefore be subjected to a
variety of different wave-loads. There are several reasons for wanting to monitor and
analyse the response of the hull to these loads. Verifying that the prototype behaves in
accordance with the design criteria is important before other ships are built. In critical
constructions it is also of great value to to measure the load on the system and to detect
impending structural flaws. A structural health monitoring system can prevent exten-
sive damage by issuing early warnings, thus avoiding a total breakdown of the structure.

The vibrations induced by the wave-loads have different characteristics. They range
from high-frequency local transient vibrations in the panels that constitute the hull,
to nearly periodic low-frequency oscillations arising from the approximately periodic
loads from the waves. In short, we need to investigate phenomena which are associated
with different durations and frequencies.

This behaviour calls for some sort of local analysis of the measured time series. As
has been noted many times during the last few years, wavelet-based techniques seem
especially well suited for such tasks. We also need to understand how the measured
data relate to the physical structure of the ship — this can be done using techniques
from system identification. These two areas are the main topics of this thesis.

1.2 Previous and related work

The wavelet transform is a tool which can be used to investigate signals and functions
at different levels of detail. The wavelet transform of a function is commonly said to
be a time-scale representation. Constructions similar to wavelets have surfaced sev-
eral times during the present century, often as a tool to characterise singularities and
local properties of functions. However, it was not until the late 1970s that time-scale
analysis made its final breakthrough, when the geophysicist Jean Morlet found it use-
ful to analyse seismic signals by means of translated and stretched-out versions of a
single oscillatory function — what we today call a wavelet. The connection to earlier
results was recognised, and the development of the multiresolution analysis at the end



2 STRUCTURAL MONITORING AND IDENTIFICATION

This chapter introduces structural monitoring and explains its role in structural en-
gineering. We give an overview of the different tasks a structural health monitoring
system could perform, and motivate its use in the CHESS-project. The proposed sen-
sor system for the CHESS-project is presented, and some of the tasks this system
will deal with are illustrated by performing a simple analysis of experimental data.
This analysis also illustrates the need for techniques different from traditional Fourier
methods, thus providing motivation for much of the rest of the thesis.

2.1 Dynamic behaviour of structures

Assessing the dynamical properties of a proposed structural system is an important
part of the design process. The response of the finished structure to the loads it will
be subjected to should ideally be modelled and fully known before the construction
starts. For example, if one is interested in avoiding resonance between exciting loads
and the structure, the structure must be designed in such a way that the structural
eigenfrequencies are located far away from the frequencies of the dominant loads.

However, the dynamic response of complex structures is in many cases only partially
predictable from models and computer simulations. One of the principal reasons for
this is that the modelling is frequently based on too strict assumptions. This is typ-
ically the case concerning internal and external damping, and possibly the nature of
the excitations as well.

Consequently, it is important to be able to measure and characterise the dynamical
properties of a system empirically. A sensor system which performs such a structural
health monitoring can serve a wide range of other tasks as well, as illustrated by the
following list.

e Load Monitoring
Monitoring the loads on a structure could reveal whether it is being sub jected
to unsustainable loads. If the monitoring is performed in real-time, it could be
coupled with an alarm system. Depending on the type of structure, an operator
may be alerted and take appropriate action.

e Verification
Investigating whether an actual system behaves in accordance with the design
criteria is important. It could reveal whether the structure possesses significant
unmodelled dynamics. That could help identify processes that need to be accom-
modated for in the model, and further basic understanding as to what the most
important dynamics are. Weaknesses in prototype design could be detected and
then corrected in later models.

e Damage detection
Closely related to verification is damage detection. If incipient structural flaws
are detected at an early stage, substantial damage arising from a total break-
down might be avoided. Knowledge of when and where structural damage arises
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Figure 2.1 A surface effect ship with its fibre-optic structure monitoring sensor
system partially exposed. The inset pictorially represents the flow of
signals from detection to presentation.

is also important when performing preventive maintenance. Several methods for
detecting damage exist. They are in general based on detecting changes in cer-
tain characteristic structural properties, e.g. in vibrational modes or electrical
conductivity, [5].

e Logging
Creating a database which stores the loads and structural behaviour is useful
for the purposes mentioned above. The database should be temporal, reflecting
possible time-development of the loads and structural characteristics.

All these areas are relevant to the CHESS-project.

2.2 The CHESS-project

The CHESS-project is a collaboration between Forsvarets Forskninginstitutt (FFI)
and Naval Research Laboratory (NRL) in Washington. The aim is to develop a real-
time sensor system which is going to be installed on the hull of a prototype of a new
breed of surface effect ships commissioned by The Royal Norwegian Navy, pictured
in Figure 2.1. The actual implementation of the proposed sensor system is not truly
relevant to this report as the methods we will discuss are of a general nature. However,
it will be easier to get an intuitive appreciation of the topics covered if they are related
directly to applications. This warrants a brief description of some key areas in the
CHESS-project and the physical processes behind the signals which are analysed.
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Figure 2.2 A beam of length L which is elongated to a length L+ AL is subjected
to a strain of e = AL/L.

2.2.1 Wave-hull interaction

The surface effect ships mentioned above are designed to operate at high speed in a
variety of sea-states. The ship will then regularly be subjected to forces and moments
induced by impacts of the waves. When a part of the hull is hit by an incoming wave,
a local vibration in the plates of the hull is excited, as well as global vibrations in
the whole ship. The modes of these vibrations are determined mainly by structural
parameters such as stiffness, density, geometry and internal damping of the structure.
In addition, the surrounding water participate in the vibration, acting as added mass
and contributing to external damping.

The parameters which depend on the amount of water present will clearly vary with
different impacts — this may result in variations in the vibrational modes. A reliable
damage detection system based on changes in vibrational modes must therefore be
able to distinguish between this natural variation of the modes and changes induced
by material flaws.

One of the reasons for the interest in load monitoring and damage detection in con-
junction with these SES is that the hull will mainly be constructed from composite
materials such as glass fibre reinforced polyester. These materials have until recently
not been much used in ship construction, and consequently, there is a great deal of
uncertainty with regard to their performance and durability.

A damage which can result from “wear and tear” is delamination, when the hard,
protective fibre-reinforced skins detach and separate from each other or the foam core.
This change in structure changes the structural parameters that determine the vi-
brational modes of the plate. There is thus reason to believe that a change in the
vibrational frequencies might indicate structural damage. This effect has also been
observed experimentally, where it is noted that the changes in frequency are most pro-
nounced for higher order modes. This is the background for our interest in detecting
transients and especially higher order harmonics.

2.2.2 Fibre optic strain sensors

The CHESS-project has developed sensors that locally measure relative elongation,
or strain, in the hull. In one dimension, the strain € of a beam of length L which is
stretched to a length L 4+ AL is defined as e = AL/L, as shown in Figure 2.2. The
sensors we will use for measuring the strain at various locations on the hull are all
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Figure 2.8  Schematic illustration of a fibre optic Bragg grating sensor. A cosine-
modulated refractive indez is written onto the light-transmitting core.

fibre optic Bragg grating sensors. The fibres used have a grating written onto the light
transmitting core, as indicated in Figure 2.3. By a grating we here mean a periodic
modulation of the index of refraction. When broadband light is incident on this grating,
narrow-band light will be reflected by the grating. The Bragg-condition states that [29]
the reflected light will have a wavelength Ap given by

Ag = 2nA, (2.1)

where A is the period of the grating and n is the refractive index of the material. When
the fibre is stretched or compressed, the period A will vary as a function of time. The
relative elongation of the fibre ¢(t) at an instant ¢ can then be calculated according to

228 = ae(t) (2.2)

where A)jp is the change in the reflected wavelength, and e is a constant of propor-
tionality. It is not not equal to unity as one might think; the reason for this is that
some additional optical effects not included in (2.1) must be accommodated for. We
will not go into further details concerning the physics of the sensor system.

2.2.3 The proposed signal processing system

With regard to the discussion in the previous sections, we may formulate the main
tasks of this signal processing system.

e Detection
The system should detect the different transient vibrations in the hull. For the
strongest transients, this is relatively easy. The hypothesised superharmonic
vibrations are expected to be very weak, so care must be taken when designing
the detection routines.

e Characterisation
The most important parameter to estimate is the initial amplitude (strain) of
the vibration. In order to characterise the transients more fully, their frequencies
and damping should also be estimated. We are also interested in characterising
the interrelationship between the signals from the different sensors, such as the
cross-correlation.
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e Maintaining the database
The resultant characteristics should be stored in a database, and statistics should
be updated.

e Analysis
The identified characteristics should be analysed, possibly both in real-time and
after each cruise. The real-time analysis identifies if certain areas of the ship is be-
ing subjected to unsustainable loads. It could also compare estimated vibrational
characteristics with those stored in the database to see if there is s significant
change. The results of these analyses are continually updated and communicated
to the operator of the ship.

There is no need for a real-time analysis when performing the post-mission anal-
ysis, and this could allow for a more careful analysis of the data.

The specifications of the signal processing system are not yet finalised, so aspects
different than those presented here may well come into consideration.

2.2.4 Experimental data

A prototype of the sensor system outlined above has already been tested on a full-scale
ship, and several hours of data are available for analysis. The dynamic response of the
glass-fibre material used in the hull has been tested at MARINTEK, Trondheim. In
this report, we concentrate on analysing the data obtained from the ship.

In Figure 2.4 we show the orientation of the strain sensors relative to the ship. The
sensor marked L measures longitudinal strain in the hull, whereas the sensors marked
T1, T2 and T3 measure transversal strain in the panel. In this report we will exclu-
sively consider data obtained from L and T2.

A complex structure such as a ship will in general have many different vibrational
modes, and these may be spread over a wide frequency range. Some eigenfrequencies
may be located close together, others are perhaps rarely excited. All are probably
masked by noise. The end result is that robust estimation of structural parameters
is generally considered a great challenge. However, some insight into the dynamical
behaviour of our ship can be obtained by relatively simple methods. In Figure 2.5 we
show estimated spectral density for 55 minutes data obtained from sensors L and T2.
The spikes in the plot may indicate structural eigenfrequencies.

Several different phenomena can be identified from these data. The most common
transient component is a damped vibration of about 2 Hz corresponding to a long-ship
vibrational mode. This is a global vibration where the whole hull takes part. An ex-
ample of these characteristic vibrations is shown in Figure 2.6 where several transients
of approximately 2 Hz can be seen. The data shown is atypical in that transients
normally do not come that frequently.

A somewhat rarer vibration is a vibration around 17 Hz which corresponds to a local
vibration of a panel in the hull, probably excited by a direct wave impact.
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Figure 2.4  The orientation of the strain sensors used in the ezperiments.
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Figure 2.6 A 50-second excerpt from the ezperimental strain measurements on a
ship showing several strong transients of about 2 Hz.

Another excerpt corresponding to much calmer sea is shown in Figure 2.7. The nearly
periodic strain loads resulting from impacts with waves can clearly be seen. From the
peaks in the estimated power spectral density plots we can conclude that there are
components in data with frequencies around 2 Hz and 17 Hz, as well as very strong
components in the range 0-1 Hz. However, it is not clear where the 2 Hz and 17 Hz
vibrations are located in time. Since these vibrations are characteristics of the hull,
it can be argued that vibrations around these frequencies are present whenever the
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Figure 2.7 A twelve-second ezcerpt from the ezperimental strain measurements
on a ship (top), and the estimated spectral density function (middle
and bottom).

hull is subjected to a dynamically varying load [23], but they need not stand clearly
out from the background as in Figure 2.6. We say that these vibrational modes are
poorly excited in Figure 2.7, whereas the 2 Hz vibration is strongly ezcited in Figure 2.6.

It has been hypothezied that the 17 Hz component is also associated with higher
harmonics. The small peak around 40 Hz might represent these hypothetical higher
harmonics, or it may represent another mode in the ship. The peak around 200 Hz has
been identified as belonging to vibrations caused by the hydraulic water pump in the
propulsion machinery.

The plot in Figure 2.8 shows a close-up of a strongly excited transient, along with
its estimated spectral density function, see [27] for details. We see a characteristic top
in the spectral density plot at 20 Hz, corresponding to a local panel vibration. The
small ripples in the time domain plot of Figure 2.8 are the 200 Hz vibration caused by
the water pump mentioned above.

The relative magnitude of the spectral density plot gives us an indication of the energy
content in the different frequency, or spectral, components of the signal. Knowing that
energy is proportional to amplitude squared [28], we can give a rough estimate of the
amplitude of these vibrations. In Table 2.1 we show the relative energy and amplitude
of different frequency components, as obtained from Figure 2.8. The estimated ampli-
tudes were calculated assuming that the 20 Hz transient has an “average” amplitude of
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Figure 2.8 A one-second excerpi from the ezperimental data showing a 20 Hz
transient (top) and its estimated spectral density function (below). The
spectral density function was estimated by using a Hanning window of
approzimately the same size as the transient itself.

Table 2.1  The table shows the energy and amplitude ratio (per cycle) between
peaks in Figure 2.8 and the energy and amplitude of the peak at 20 Hz.
The estimated amplitudes are calculated from the amplitude ratios as-
suming that the amplitude of the 20 Hz component is of the order of

magnitude 10 pstrain.

Peak at Energy per cycle  Amplitude relative Estimated
relative to the to the amplitude amplitude
energy per cycle at at 20 Hz (pstrain)
20 Hz (dB)
20 Hz 0 1 10
40 Hz -15 0.2 2
200 Hz -20 0.1 1

the order-of-magnitude 10 pstrain. This coarse estimate was found by visual inspection
of the plot.

We see that the estimated amplitude of the 200 Hz components is about 1 pstrain,
and this is consistent with the amplitude of the small ripples in Figure 2.8 and earlier
findings [30]. The amplitude of the hypothetical harmonic component at 40 Hz should
then be about 20% of the fundamental vibration, or about 1-2 pstrain.
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Several objections can be raised to these back-of-the-envelope calculations. Some can
be overcome by a more careful analysis, and some are of more fundamental nature.
Indeed, one may question the appropriateness of using these Fourier methods since our
transients are by nature time-localised. This was not a great problem for this signal
since we had analysed only a one-second excerpt dominated by a transient. In practice,
we will need to analyse long signals with a relative sparse density of transients, and
then we will be interested in the time-localisation of the transients as well. In the
following chapters, we will investigate alternative and complementary techniques.
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3 THEORY OF WAVELETS AND WAVEPACKETS

In this chapter we present the basic theory behind wavelet and wavelet packet trans-
forms. We show how wavelet analysis is a part of the same framework as many other
transform techniques by using the theory of (generalized) frames which is introduced
in Section 3.2; We demonstrate how signal processing techniques commonly performed
in the time or frequency (Fourier) plane can be equivalently performed in any general
transform domain. For our application we are especially interested in doing filtering
operations in the time-scale plane of the wavelet transform. This is particularly in-
teresting for us, because we may then restrict filtering operations for detection and
characterization of transients to those characteristic scales where they occur.

3.1 Wavelet transforms - a first look

This introductory section gives a short overview of the wavelet transform, before it is
reintroduced in Section 3.3.1 using the theory of multiresolution. In order to further
an intuitive interpretation of this transform, we first give an example of the short time
Fourier transform (STFT) and the Gabor transform, which are similar in spirit, but
perhaps easier to understand and interpret. The Gabor transform has also been an
important tool for investigating data in the CHESS-project.

3.1.1 The short time Fourier transform

We would like to represent a signal by a set of basis functions which facilitates separa-
tion of its spectral content at different times. As discussed in [14], [8] and many others,
the Fourier transform is not suited for this because its sinusoidal basis functions are
not localized in time, stretching over the entire real line. A natural attempt is then to
find a set of basis functions which are simultaneously well localized in both time and
frequency. Intuitively, we might try as candidates sinusoidal waves multiplied with a
window function which serves to localize the sinusoids in time. This approach can lead
to the well-known short-time Fourier transform, which decomposes functions as linear
combinations of time-localized sinusoids;

Definition 1 (Short time Fourier transform) We define the short time Fourier
transform (STFT) of a function f(t) € L%(R) corresponding to the window function
w(t) € L*(R) as

(TSTFf) (v, 7) := fdt f)e 2 y(t — ) (3.1)

The STFT corresponding to a Gaussian window function is called a Gabor transform.
O

The Fourier transform is reviewed in Appendix A.2. An illustration of the Gabor
transform is shown in Figure 3.1, computed using the discrete Fourier transform. At the
top a function consisting of two sinusoids is plotted together with the Gaussian window
(dotted) used to obtain the Gabor transform of f, the magnitude of which is plotted
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Figure 3.1 A function consisting of two localized sinusoids of different frequency
(top), and a the squared magnitude of its Gabor transform bottom.
The Gaussian window used is shown dotted at the top.

at the bottom. We recognize correctly that f(t) has a 1.5 Hz harmonic component in
the interval [5 s,10 s, and a 0.75 Hz component in the interval [20 s,25 s]. For more
details on Short-time Fourier methods and its similarities to wavelet analysis, we refer
to [14]. There it is proved that the f can be recovered by

fi= ||wl|;§(m /f dvdr (TSTFf) (v, T)w(y, T)e" 2T, (3.2)

By examining this formula or Figure 3.1, it should be clear that representing a function
by its STFT is redundant. By that we mean that we do not in general need to know
(TSTFf) (v, 7) for all v and 7 in order to recover £. See [8] or [14] for a fuller discussion

of these considerations.

The STFT is useful in many applications, and it has been used in the CHESS-project
as a tool for preliminary analyzes. However, there are several objections to this tech-
nique. One of the principal objection is that the width of the window function w is
static. In many applications one would be interested in having a more flexible window
when analyzing signals that have components of different time duration.

The wavelet transform, in addition to its many other advantages, has such a built-
in zooming capability. In the following, we concentrate on wavelet transforms.
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3.1.2 The continuous wavelet transform

The localized sinusoids used by the STFT had its width fized by the width of the
window. Wavelet analysis is based on using certain oscillatory functions with varying
width. These are wavelets and an example is shown dotted at the top in Figure 3.2.

Definition 2 (Wavelet functions) The wavelet functions are translated and scaled
versions of a mother wavelet ¥(t) € L*(R);

O n\/lﬁw (%) s beER, (3.3)

where the mother wavelet satisfies the admissibility condition
(s ] dv P < oo (3.4)

If we let a := au_j, and b := agbgk with fized ag and by, we write

1

Yix(t) == md’ (

ag’t — kbo), j.k € Z. (3.5)

Except for this section, we will mostly consider discrete dyadic wavelet ezpansions
where ay = 2. By rescaling, we may without loss of generality assume that by = 1.
Also, we will in practice impose far more restrictive conditions on our wavelets than
those in Definition 2. We now define the continuous wavelet transform, and find that
it is invertible.

Definition 3 (Continuous wavelet transform) Lety(t) € L*(R) be a mother wavelet.
The continuous wavelet transform TS of a function f(t) € L*(R;dz) is defined by

(T°Y f) (a,b) := ] dt f(O)ap(t),  (a,b) € (Rt xR). (3.6)

O

We note for future reference that we may write the wavelet transform as

(T f) (@) = (£, ¥;0)(@b)  (ad) € (R* xR) (3.7)

In Figure 3.2 we show a plot of the magnitude of the continuous wavelet transform
(CWT) of the same function we analyzed with the Gabor transform above. The an-
alyzing wavelet used is shown dotted at the top. The CWT is really a correlation
between the function f(t) and the function ¢,4(t). This means that the interpretation
of the CWT is straightforward; for a given scale and translation (a,b), the magnitude
of (T°Y f) (a,d) is the degree of similarity between f(t) and 9q,(t) in the area around
t = b. For large a, the analyzing wavelet will be very stretched out and consequently
correlate mainly with the low-frequency parts of the analyzed function. At small scales,
the wavelet will be narrow and correlate mainly with high-frequency components in the
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Figure 8.2 A signal consisting of two localized sinusoids of different frequency and
a plot of the squared magnitude of its Continuous wavelet transform.

analyzed function. These interpretations are illustrated in Figure 3.2, where the trans-
lational parameter b gives the time localization of the different components of f(t). We
also see that the high frequency components are to be found at low scales and vice
versa, as expected.

For future reference, we note the following lemma;
Lemma 1 The Fourier transform of a wavelet 1, p(t) is given by

bap(t) = V]ale ™ (av). (3.8)

We now prove that this transform has an inverse, at least in a 'weak’ sense;

Theorem 2 (The continuous wavelet transform) Any two functions f,g € L*(R)
and their continuous wavelet transforms satisfy, for all g € L*(R)

f / da db (TSY £)(a, ) (T 9)(a,b) = Cy f dt f(t)g(t). (3-9)

a2

Furthermore, assume that any f € L*(R) satisfy
1= 05" [[ @ i bivestt (310

at all t € R where f is continuous and bounded. O
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Proof To prove the first statement, introduce the auxiliary functions

F(t;a) = f(¢)d(at) and G(t;a) = §(t)P(at). (3.11)
Using the definition (3.7) of the CWT in (3.9), we obtain

/f LD, a5 0at) = f f B F, ) @ ) (5.12)
=f/ [ f dv f{( u)alarw(ay)ewzm]

[fdug a|a|-% (a )_gm-bp] dizdb o9

f f ba G(b; a)} dlls»c?a o

f/ (t;a)G(t;a dlt";“ -

& [ F05® flw(! dadt e d

/f )(2) f' l( da dt i

=C¢ff§dt. o

We have used Parseval’s Theorem to get equations (3.12), (3.15) and (3.18). We
changed the order of integration in going to (3. 17), which is justified by Fubini’s The-
orem. The second statement follows formally by letting g be a Dirac impulse in 3.10,
for more details, see [8]. ]

The proof is typical for many of the Theorems in wavelet theory. In the following,
most proofs will be found in the Appendices.

While the continuous wavelet transform has many interesting applications in functional
analysis, it seems less suited to digital signal processing. This is primarily because there
exist very efficient algorithms for computing the inner product (3. 7) when the scale and
translation parameters are discretisized as described in Definition 2. Discussing these
wavelets, 1;x, will be the topic of the rest of this chapter.

3.1.3 The discrete wavelet transform

From the discussion in the previous chapter, it should be clear that the wavelets play
the role of a basis-like function. In particular, the continuous wavelet transform bears a
striking resemblance to the Fourier transform; both can be written as an inner product
between a function and an analyzing function - v,, in the wavelet case or 2Tk in
the Fourier setting, although in the latter case problems arise because ¢ ¢ L*(R).

For practical applications, we work with sampled data and use the discrete Fourier
transform instead of its continuous counterpart.
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In order to use wavelet theory for digital signal processing, we face several problems.
First of all, our data are discrete, so we do not in general have a function f(t) to
analyze, but rather a sequence of numbers. That means that we cannot numerically
compute the inner products in (3.7) correctly. Even if we theoretically could do this, it
would probably be quite impractical. To calculate the inner products for continuously
varying parameters a and b would be very computationally expensive.

It turns out that it is sufficient to calculate the inner products (3.7) at discrete values
of a and b only, in effect sampling the CWT. This approach will also offer a natural
solution to the first problem mentioned; that we only know the data at sampled values.

Clearly, with a and b restricted to discrete values, we cannot expect (3.9) to hold.
It seems reasonable that its discrete counterpart would be something similar to

HOEDIPWEATNITHON (3.19)

and indeed that is the case. First we need to look at the details of how a superposition
of wavelets span a space.

3.2 Frames

Frames generalize the familiar concept of a basis, and allow for a unifying formalism
which can cover many transform-operations. Frames provide theory for representing
a signal in a redundant way, and this can in many instances be useful. The window
modulated sinusoids used in the STFT are an example of a frame. A Gabor transform
of a function is a redundant representation. The advantage of this representation is
that one may get a clearer understanding of the constituent parts of the signal, as
illustrated by Figure 3.1. Another reason why frames are interesting in conjunction
with signal processing is that they in a sense are robust with respect to random errors,
for example caused by quantization. The standard example of this is CD-technology,
where the signal is band limited to about 20 kHz, thus requiring a minimum sampling
frequency of about 40 kHz. In practice, the signal is oversampled at a higher rate than
this minimum rate prescribed by the Shannon sampling Theorem.

It has been felt that the theory of frames is potentially useful for many applications at
FFI, and it is therefore treated in detail here.

3.2.1 General properties of frames

When we speak of frames, we refer to generalized frames as in [14], where a brief
introduction to the necessary measure theory is also given. A short note on this topic
can also be found in Appendix A. The precise definition of a frame is as follows.

Definition 4 (Frames) Let H be a Hilbert space and let M be a measure space with
measure p. A frame in H indezed by M is a family of vectors {hm € H : m € M}
such that
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1. For every f € H, the function f: M = C defined by
F(m) = (f, hm) (3.20)
is measurable.

9. There is a pair of constants 0 < A < B < oo such that for every f € H,

Al < 11320 < BIFIE (3:21)

We call (3.21) the frame condition, and the constants A and B the frame bounds. The
operator T : H — L*(u) defined by

f e (fy hm) (3.22)

is called the frame operator or the transform of f with respect to the frame. O

We can make a large class of transforms, both continuous and discrete, fit into the
theory of frames. We will now give some properties of frames, and investigate whether
we can find an inverse transform, in some sense, allowing us to recover the original
function from its transform (3.22).

Theorem 3 (Properties of frames) Assuming the notation from Definition 4 the
following is valid for any frame.

1. The operator T has a unique adjoint operator d

2. The action of T* can be written
Tg= fM dp(m) hemg (). (3.23)

9. There ezists bounded, hermitian operator G := T*T called the metric operator
satisfying the operator inequality
0 < Ald < G < BId < oo. (3.24)

where 1d is the identity operator on H.

4. The metric operator has a well-defined bounded inverse which satisfies the oper-
ator inequality

0<BMd<G'<ATd < . (3.25)
5. The action of G can be written

Fis [M du(m) fy b P (3.26)
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The proofs of these properties are instructive, and they can be found in Appendix B.1.
The question of inverting a transform with respect to some frame will be seen to involve
the dual frame;

Definition 5 (Dual frame) Let H be a Hilbert space, and let the family Hy = {hm €
H|m € M} be a frame. The dual frame of Hys 1s the set of vectors

HM = {h™|m € M}, (3.27)

where the dual vectors of h,, are defined as
™ =G . (3.28)
O

We are now in a position to state a second Theorem which summarizes relations between
functions and elements in the space of the transformed functions as defined in (3.22).
This Theorem also presents a general formula for the inverse of a transform.

Theorem 4 (Properties of frames 2) Let Ha be a frame in the Hilbert space H,
and let HM be the corresponding dual frame. Furthermore, let f € H, g € L% ()
and denote the transform of f with respect to the frame Hy by f(m) = (Tf)(m) =
(f,hm)u. Then,
1. The operator S : L?(u) — H defined by
S= G (3.29)
is a left inverse of T, and is called the synthesizing operator.

2. Its action is given by
(So)(t) = ]M dpu(m) g(m)Fm (). (3.30)

3. In the weak sense, f may be recovered from its transform F as follows
Fe={f B, (3.31)
where h™ € HM are the dual frame vectors of Hps.
4. The operator P : L?(u) — ran T C L%(u) defined by
P="T§ (3.32)
is the orthogonal projection from L?(u) to the range of T in L*(p)

5. Its action is given by
(Po)(m) = [ dutn') K (m, m)g(m) (3.39)

where the reproducing kernel K(m,m') of the range of T and the frame H is
defined as

K, o) == (1", k) (3.34)
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L?(p)

Rt

Figure 3.3  The frame operator T takes a function f € H onto its range Rr in
L?(u). The synthesizing operator S takes functions g = g1 + g n
L2(p) to H, where g € Ry, and g1 is in the orthogonal complement
of Rr in L*(p).

6. For any g € L?(n), there is a unique f € H for which the discrepancy [g —
Tfl72(, is minimized, and it is given by

f=Sg. (3.35)

7. For any f € H, the following inequality holds

T2 < lgllZeg (3.36)
for all g € L?(p) such that f = Sg. Furthermore, (3.36) is an equality if and
onlyifg="Tf.

O

The above results hold in the weak sense, but we expect that for reasonable and well-
behaved choices of measure space M, frame vectors hy,, and functions f(t), g(m) the
results will hold point-wise. A geometric interpretation of the transform and synthesis
operators is given in Figure 3.3. We will not need the so-called reproducing kernel
in this report, but we have included their relation with the projection operator for
completeness. We will later see that the family {1,5} corresponding to a mother
wavelet constitutes a frame indexed by m = (a,b) with measure space M = {(a,b) €
R+ x R} and a measure du = da db/a?.

As we mentioned in the previous section, we would like to discretisize the parameters
(a,b). This will involve discrete frames where the index m will be discrete. With p in
(3.21) as the counting measure (Appendix A), the frame condition still reads

Allfl < 151320 < BIFIE- (3.37)

However, L?(u) will be is now a space with a countable number of elements, and norms
and inner products will now typically be defined using sums instead of integrals. These
aspects are detailed in [8], [14].
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3.2.2 Tight Frames

Tight frames are essential for our purpose, because we then have a Parseval’s Theorem,
as we show below.

Definition 6 (Tight frame) A frame whose frame bounds are equal is called a tight
frame. O

The frame condition (3.21) for a tight frame reduces to

£ 113200 = AllfIIZ, (3.38)
where we use the notation from the previous sections.

Theorem 5 (Parseval’s Theorem) Let H be a Hilbert space, and let Hpr be a tight
frame with frame bound A indezed by m in the measure space M. Let T be the corre-
sponding frame operator. Then, for any f,g € H,

(fr9)r = AHTf, Tg)r2()- (3.39)
O

The proof is in Appendix B.3. The theorem states, in other words, that the operator
T is a partial isometry; it preserves both norms (or energy) and inner products (or
angles) between elements of H. By a partial isometry, we mean that its range is not
necessarily the whole of L?(u), but this is of less importance to us.

The significance of this Theorem lies in that any operations which may be written
as an inner product in a Hilbert space, can equivalently be performed in a transform
domain. This opens for alternative representations for a wide range of operators, in
signal processing, statistics, quantum mechanics and other fields:

Corollary 1 Let H be a Hilbert space, and let Hyr be a tight frame with frame bound
A indezed by m in the measure space M. Let T be the corresponding frame operator.
If F: H = C is an arbitrary bounded linear functional, there exist a unique f € H
such that

Fg=(9,f)n VgeH. (3.40)

This operation may equivalently be written
Fg=A"Y(Tg, Tf)12). (3.41)
O

Proof The statement (3.40) is simply the Riesz representation Theorem, and (3.41)
follows directly from Parseval’s Theorem above. E

There could be many reasons for wanting to perform an operation in a transform-
domain, and they could vary from transform to transform. Some operations become
simpler in the transform domain, such as convolution in time, which is a complicated
operation, but amounts to a simple multiplication in the Fourier plane, In other cases
one might be interested in performing operations on only certain parts or components
of the function which are singled out in the transform domain. For our application,
this latter reason will be important, as will be shown in Section 4.1.2.
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3.3 Multiresolution and filter theory

So far, we have formulated the theory of wavelets in an abstract mathematical setting,
and we have made use of Hilbert space formalism. We now exclusively concentrate on
wavelets whose scaling and translation parameters are discretisized, as in Definition 2.
This discretization leads naturally to multiresolution analysis, which also provides a
connection to filter theory. We will see that the concept of multiresolution leads to
a formulation of the basic theory which lends itself to an easy implementation on
a computer. The resulting algorithm will be very fast, allowing us to compute the
coefficients in the expansion in O(N) time.

3.3.1 Multiresolution

The concept of multiresolution is fundamental to the theory that follows,

Definition 7 (Multiresolution) A sequence of subspaces is called a Multiresolution
Analysis if there ezists a sequence {V;}jez of closed subspaces in L*[R) and a ¢ € Vg
satisfying

Vit1 CV; (3.42)

f()eVine f(2) eV, (3.43)

ﬂ V; = {0} (3.44)

jEZ

UVvi=L*®) (3.45)

jEZ

{¢(t — k)}rez is an orthonormal basis forVy (3.46)
We say that the multiresolution is generated by . O

We will not discuss to any depth the precise requirements a function ¢ has to satisfy
in order to generate a multiresolution; they involve ¢(v) being bounded for all » and
continuous near » = 0 and that ¢(0) # 0. This is discussed in [8], Chapter 5, where it
is also shown that (3.46) can be relaxed; the family {¢(t — k) }sez need only constitute
a Riesz basis. A schematic illustration of a multi-resolution is given in Figure 3.4.
The connection between wavelets and multiresolution analysis will now be made in the
following two Theorems.

Theorem 6 (The Scaling identity) Suppose that {V;};cz constitute a multiresolu-
tion analysis generated by ¢. Introducing the notation

ix(t) = V28(277t — k), (3.47)

we have

e The family
{4ik(t); k € Z} (3.48)

is an orthonormal basis for the space V.
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L*(R)

Vo

Vi

Figure 8.4  The spaces V; satisfy Vi1 C V;. The initial space Vo is an approci-
mation to L*(R)

o There ezists a sequence {ho[k] : k € Z} € £*(Z) such that ¢(t) satisfies

o(t) = V2 _ hlklp(2t - k). (3.49)

k€L
We refer to (3.49) as the scaling identity.
o When ¢ € L2(R) N L'(R) and [ dt §(t) # 0, the sequence {ho[k]} also satisfies

S holk] = V2, (3.50)
keZ
>~ ho[kJholk + 2n] = do,n. (3.51)
keZ
O

Proof The fact that {¢;x(t) : k € Z} is a orthonormal basis for V; is a consequence
of (3.43) and (3.46). Now {¢_14(t) : k € Z} is an orthonormal basis for V_;, and
#(t) € V, Since Vy C V_; it follows that ¢(t) can be expressed as (3.49), with holk] =
(¢, 6_14)- Also, since ¢ is orthonormal,

60,71 = <¢( - n)s é()) (352)
=35 holkfRolk2 / dt p(2t — 2n — k)2t — K) (3.53)

keZ K'eZ
=" holklRo[k + 2n], (3.54)

keZ
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proving (3.50) and that {ho[k] : k¥ € Z} is in 2(Z). The change of the order of
integration and summation is justified by Fubini’s Theorem, since ¢ € L'(R). For the
same reason, we get upon integrating the scaling identity

f dté(t) = V2 ¥ holk] f dt $(2t — k) (3.55)
keZ
= V3.2 f d6(®) S holkl, (3.56)
keZ
and (3.51) follows, since [ dt @(t) # 0. E

We shall see later that the sequence {hq[k] : k € Z} can be regarded as a digital linear
time invariant flter which is at the basis of a fast algorithm for computing the discrete
wavelet transform. We will also see that a sequence which satisfies certain conditions
actually uniquely determines a multiresolution and a scaling function ¢. The condition
that ¢ € L*(R) N L2(R) is not strictly necessary, as discussed in [8]. However, for our
purposes, it is indispensable, because it allowed us derive (3.50) and (3.51). These
conditions say that ho[k] can be considered a filter with very special properties. This
will be discussed in the next section. Assuming ¢ to be in L}(R)N L?*(R) is for practical
purposes not very restrictive; one usually wants a “nice” scaling function, for example
in L2(R), with compact support. Then ¢ will automatically be in L*(R) N L2(R).

The usefulness of the following definition will become apparent in the next theorem.

Definition 8 (Wavelet spaces) Assume that the sequence {V;};jez constitutes a mul-
tiresolution analysis. The wavelet space Wj is then defined as the orthogonal comple-
ment of V; in V;_1 so,

Vi =V, @ W;, (3.57)

where the sum is direct and orthogonal. O

Thus, we can say that the wavelet space at level j contains the extra detail required
for going from V; to the higher resolution space V;_. Defined in this way the different
spaces W; are orthogonal. If we have a high detail space at level jp, we may decompose
it in mutually orthogonal subspaces by iterating (3.57) as follows:

J

Vie=Vi® ( - Wk) . (3.58)
k=jo+1

We stop at some level J, where V; contains coarse information which we are not

interested in splitting further. The starting level jo is by convention taken to be 0.

Since the spaces V; are dense in L?(R), we can also write

J
L*R) =V, ® ( & Wk) ; (3.59)

k=—00

Tt turns out that whenever we have a multiresolution analysis, there exist an orthonor-
mal basis with very desirable properties for each of the wavelet spaces W;. This basis
is a set of wavelets 1, x(t), hence the name wavelet space. These bases can explicitly be
found from the scaling identity. This fact is often referred to as “the wavelet miracle”
and is made precise in the following Theorem.
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Figure 3.5 A three-level wavelet decomposition of the initial space Vj.

Theorem 7 Assume that the sequence {V;}jez constitutes a multiresolution analysis
generated by ¢. Define the function ¢ € W_y by

P(t) = Z ha[k]p-1(2), (3.60)
keZ
hi[k] := (—1)kho2N + 1 — k], N €Z. (3.61)

Then:

o {jx: k €Z} is an orthonormal wavelet basis for W;,
e {®;x : j,k € Z} is an orthonormal wavelet basis for L*(R),
o {dsrYik:i=1...,0;k€ Z} is an orthonormal basis for Vo,

o The function v is not unique since all functions Y’ satisfy the above, where

-~

P (v) = p(v) (), (3.62)

and p(v) has period 1 and modulus |p(v)| = 1 almost everywhere.

a

The proof of the Theorem is rather long, and can be found in Appendix B. The
discrete wavelet transform of a function f € Vj is the set of Fourier coefficients, or
inner products, between f and v;x(t).

Definition 9 (The discrete wavelet transform) Suppose that #(t) generates a mul-
tiresolution analysis {V;};, and that ¢ is the corresponding mother wavelet. The J-level

discrete wavelet transform of a function f € L*(R) is defined as the set of coefficients

{CJ,kadj,k T el ey ke Z}, where

Cik += (fa d’j,k}a (363)
dipe=Af5ahy  I5 i d (3.64)
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We occasionally write c;[k] and d;[k] instead of ¢; and dj to emphasize the distinction
between the translation parameter k and the scale parameter j. O

It now follows from (3.59) and Theorem 7 that a function f € L*(R) may be written

o

o] oo
O =Y clkldo®)+ Y D dilklvix(d)- (3.65)

=—00 j=—k=—00

For practical applications we usually first restrict the function to be analyzed to the
space Vp, for example by analyzing the orthogonal projection of f onto Vp instead,
Fvo := pezlfs Sok) ok (t). From (3.58), the appropriate reconstruction formula is

oo J o0

fa@®= > cs[Klgax(®) + D D dilkli(?). (3.66)

k=—oc0 j=0k=—o0

The convergence of the reconstruction formulae is, as usual, in L?(R)-sense. For suf-
ficiently nice functions, they will hold pointwise as well. These considerations are
discussed in much more detail in many of the references, e.g. [8] or [6].

3.3.2 Filter theory

The multiresolution approach is useful in order to understand and construct wavelets.
In this section we establish the relationship between wavelet analysis and filter theory.
The main result in this respect is contained in the following theorem, due to Stéphane
Mallat.

Theorem 8 (Fast Wavelet Transform) Assume that the finest scale coefficients {co[K] :
k € Z}, as defined by (3.63) are given. The coefficients in a J-level wavelet ezpansion

can then be recursively found for j=1,...,J by
¢kl =Y holn — 2K]c;-1[n), (3.67)
nek
djlk] =) ha[n — 2k]c;a[n]. (3.68)
neZ

The fine scale coefficients {co[k] : k € Z} can be recovered recursively from a J-level
wavelet expansion by

cialn] = > holk — 2nlej[n] + ) mulk — 2nld;[n], j=1...J. (3.69)

neZ neL

O

This is proved in Appendix B.4, as a special case of Theorem 12 which will be stated
later. This result allows the coefficients in the the wavelet expansion (3.65) to be cal-
culated using simple digital filtering operations, assuming we somehow have the fine
scale inner products co[k]. In practice one often approximates these by the samples of
the analyzed function, f(kT) = co[k], where T is the sample period.
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hy[—k]

ho(k]

Figure 8.6  One stage in the wavelet decomposition and reconstruction scheme.

hi[—k]

co E ha[~K] ——@—* d
4]

hy[—k]

= :
ho ['-'k‘] J, 2 Ca

ho[—k]

ho[—k] ds

C3

Figure 3.7 A three-stage wavelet decomposition using an iterated filter bank.

One stage in both the decomposition and reconstruction is illustrated by the block
diagram in Figure 3.6. The symbol | 2 performs downsampling by two, that is, it acts
on sequences such that ({ 2a) [k] = a[2k]. Similarly, T 2 inserts zeros between every
other element:

_Jalk/2], Fkis even,
(12a) |¥] = {0, ki g

Such filter structures have been in use for a long time, and the filters are generally re-
ferred to as quadrature mirror filters. The sequence {c;[k]} is split into two sequences
{c;1[k]} and {d;41[k]} from which the original {c;[K]} can be recovered. This is called
the perfect reconstruction property, and only very special filter sequences ho and hy
allow this. Figure 3.7 shows how the decomposition shown in Figure 3.5 would be
implemented in practice using iterated filtering and downsampling.

(3.70)

Although this exactly how how MATLAB’s Wavelet Toolbox [25] implements the
wavelet transform, it is not optimal. Taken literally, the figures would imply that
a convolution is performed at each level, whereupon half the samples are thrown away
in the downsampling. This is clearly wasteful, and the computing speed can be doubled
by combining the convolution and decimation processes into one operator.

Definition 10 (Convolution-decimation operator) The convolution-decimation op-
erator corresponding to a filter given by the sequence {h[k]}rez is given by the operator
H: 2 — 02 defined by

zlk] = Y hln—2kjz[n] k€L (3.71)

nel

O

We will need the following lemma.
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Lemma 9 The adjoint H* : £2 — {2 of a convolution-decimation operator H is given
by

(H'z)[n] =Y hln—2klzk] keZ (3.72)

keZ

Ed

Proof We use the definition of the adjoint, write out the inner product and rearrange
the sums;

(H*z,y)e = (z,Hy)e (3.73)
= Z x[k]z h[n — 2k]y[n] (3.74)
keZ nek
= <E h[n — 2k]z[k], y> ; (3.75)
kEL £2
and the theorem is proved. E

The similarity to the operations in (3.67), (3.68) and (3.69) is apparent.

Definition 11 (Quadrature Mirror Filters) A set {Fo, F1} of convolution-decimation
operators are said to be orthogonal quadrature mirror filters (QMFs) if they and their
adjoints satisfy the conditions below.

FoFy = FiFy =1, (3.76)
FoFr = F,F} =0, (3.77)
FiFo+FF =1 (3.78)

m

The scaling sequence {ho[k]} and the associated wavelet sequence {h;[k]} actually
satisfy the conditions above, so they define a pair of QMF. From Theorem 8, we see
that we can write

¢jlk] = (Hocj-1)[K], (3.79)

Using the language of convolution-decimation operators, we may write the reconstruc-
tion formula (3.69)

Cj-1 = H;Cj + H1dj (381)

= (HgHo + HiHi)ej-1,, (3.82)

which shows that Hy and H; satisfy (3.78). That (3.76) and (3.77) are satisfied follows

from (3.51) and the definition of h; (3.61). Using these operators, we may state the
algorithm for the fast wavelet transform.
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Algorithm 1 (Fast wavelet transform)

Denote c; := {cj[k] : k € Z} and d; := {d;[k] : k € Z}, and let J be the number of
scales to be used in the decomposition. Furthermore, let Hy, H; be two convolution-
decimation operators corresponding to a wavelet decomposition.

1. Input co:={colk]: £ €Z} and J >0
2. for =1,y {

¢; = Hocj-1; (3.83)
dj = H1Cj41; (384)
}
3. veturn cy, d;;, J=L.coqd;
O

3.4 Wavelet packets as generalization of wavelets

In this section, we will generalize the wavelet decomposition scheme we have developed
so far. Before proceeding more formally, we will present the basic idea behind the
wavelet packet analysis.

3.4.1 The idea

A simple extension of the scheme presented in Figure 3.5 would be to split the wavelet
spaces W; as well as the approximation spaces V;. This results in a decomposition of
the initial space V; as indicated in Figure 3.8. At a level j, we have 29-1 wavelet packet
spaces, indexed by the level j and a frequency indez f. In Figure 3.8, we have indicated
the spaces which correspond to the usual wavelet decomposition Vy = VW30 W,0W);
by a a thicker line. The wavelet packet scheme offer a much greater flexibility because
we can choose between several other decompositions of the initial space, and one such
choice is shown hatched.

We will in Section 3.4.2 show how we can split the initial space using wavelet packets on
a single scale, corresponding to the dotted spaces in Figure 3.8. The next Section 3.4.3
presents conditions for splitting the initial space into spaces at different scales, corre-
sponding to the spaces marked gray in Figure 3.8. Finally, criteria for choosing the
best basis for any particular application will be given in Section 3.4.4.

3.4.2 Single scale Wavelet packets

The definition of the (single scale) wavelet packets can now be stated.
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Vo,

Via

)

Vo3 V1,3

Figure 8.8  The structure obtained by splitting the initial space Vo0 into orthogonal
wavelet packet spaces Vi, f=1,2,...277" at level j.

Definition 12 (Single scale wavelet packets) The single scale wavelet packets are
recursively defined as

war = V2 holjlw; (2t — k) (3.85)
ke
Waf4+l = \/.2'2 hl [j]w;(?t — k) (386)
k€EZ
where [wodt =1. O

Clearly, wo and w, can be identified with the scaling function ¢ and the mother wavelet
¥, respectively. For a quadrature mirror filters that generate a multiresolution analysis,
these functions are well-defined. The wavelet packets are thus linear combinations of
the scaling function and wavelets, and the eight first wavelet packets derived from the
the Daubechies 6 system are shown in Figure 3.9. We note that the wavelet packets
number of oscillations tend to increase with increasing f. This observations is the
reason for referring to f as a frequency index.

Definition 13 (Wavelet packet spaces) Given a multiresolution analysis {V;}iez,
and the two-scale operators we define the single scale wavelet packet spaces Uy as the
closed linear span

U; =span{ws(t—k): k€Z} (3.87)

More generally, the wavelet packet spaces are defined by
Wi, = spang{2-9/2ws(2 —jt — k) : k€ Z}. (3.88)
O

In this section we will concentrate on the single scale spaces Uy and defer the treatment
of Wy, To the next section. The main result of this section is the following theorem.
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Figure 3.9  The first eight wavelet packets derived from the db6 scaling function.

Theorem 10 For any f > 0, the set {ws(t — k) : k € Z} is an orthonormal basis for
Us. Furthermore, the set {wy(t — k) : (k, f) € Z?, f > 0} is an orthonormal basis for
L*(R). O

The proof can be found in [7].

3.4.3 Multi scale wavelet packet

We will now translate and dilate the single-scale wavelet packets wy from the previous
section. This results in the most general wavelet packets.

Definition 14 (Wavelet packets) The wavelet packets are functions ¥;5,;x(t) € L*(R)
indezed by @ scaling parameter j, a frequency parameter f and a translation parameter
k defined by

Vyik(t) = 279w, (279t — k), (3.89)

where the functions wy(t) are single-scale wavelet packets as defined in Definition 12.
O

Translations of these functions constitute an orthonormal basis for L*(R) for certain
choices of (f,j). To characterize these sets, we introduce the following definition.
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Definition 15 (Dyadic intervals) A dyadic interval Iy; is defined as the interval

I = [é ! ; 1) . (3.90)

A disjoint dyadic cover of some interval A is a collection T = {I1}s.0)es of disjoint
dyadic intervals, indezed by S C Nx Z, whose union covers A ezcept for a denumerable
set. [

We may now characterize a large set of bases for both L?(R) and the approximate
space Vj, and the wavelet basis will emerge as a special case.

Theorem 11 (Bases from wavelet packets) Assume that I is a disjoint dyadic
cover of R* indezed by the subset S C N x Z. The family of wavelet packets

{Wrx(®) : (f.4,k) € S x Z} (3.91)

is then an orthonormal basis of L*(R). In particular, if Ig is a disjoint dyadic cover
0f [0,1) indezed by R C N x Z, the family

{75k(t) : (fi4,k) € Rx L} (3.92)
is an orthonormal basis for Vj . O
Proof See [7] -

This Theorem makes it possible to create orthonormal bases form linear combina-
tions of wavelets. However, it does not fully characterize all orthonormal bases that
may be created from a given family of wavelets and quadrature mirror filters. There
are for example orthonormal bases derived from the Haar system of wavelets that do
not correspond to a disjoint dyadic cover of [0,1). This is discussed in more depth in [42]

We now have a wavelet packet transform, which consists of coefficients cy;[k] :=
(f,%s;x)- The coefficients can be computed recursively similar to the wavelet coef-
ficients.

Theorem 12 Assume that the finest scale wavelet packet coefficients are given. The
other coefficients in an wavelet packet decomposition can be found by

Copreglk] = D heln — 2K](f, Yrrej-10) = (HeCpre-1) (] (3.93)
nek

i

The proof is in the Appendix. The question of finding from a collection of bases the
best basis for a particular signal is addressed next.
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3.4.4 Selection of a best basis

We have seen how one may get many different bases out of a wavelet packet scheme. In
this section, we show how one can find an best basis with respect to some criterion which
is to be specified. To give that criterion, we first introduce the concept of information
cost.

Definition 16 (Information cost functional) An information cost functional is any
functional M : RN — R which can be written

Mu) =) p(lulk]) (3.94)
keZ
where the function p satisfy
piRY SR p0)=0; and Y p(lulk]) <oo Vulk] € RY. (3.95)
kEZ
O

For practical purposes, a information cost functional should measure the degree of
concentration of the information in a sequence. To capture the intuitive notion of
information cost, M(u) should be large when the elements of the vector u are are of
similar magnitude, and small when the energy of the vector is concentrated in a few
elements. Some common choices are listed below.

e Shannon entropy
The entropy of a vector u € RY is commonly defined as

IO Y Lo 7
Hw) == oy 8 Tl (3.96)

This entropy is minimized when the cost functional

N
My(u) == |ulk]* log (|ulk]]*) - (3.97)

is minimized.

e Threshold
We pick a threshold € and define the function

u(a) = {m | > €, —

0, |z|]<e

The cost functional M(u) then gives the sum of the magnitude of the elements
whose magnitude exceeds the threshold e.
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e Concentration in [P-norm
The cost functional is here defined as

N
Mip(w) = 3" k] = Ilull, p € [1,2). (399)

k=1

This cost measures concentration of energy. If the two vectors u,v € RV have
the same energy (||ulle2 = ||v]le2) but M(u) < M(v), then u has a greater part of
its energy concentrated into fewer coefficients.

For other information measures and a discussion of the relative merits of these infor-
mation costs we refer to [42]. We can now give precise meaning to the concept best
basis.

Definition 17 (Best basis) Let B be a collection of countable bases for a separable
Hilbert space H, and let B = {bx}r € B be one of these bases. Furthermore, let M
be a information cost functional, and define the coefficients of the representation of
the vector v € H in the basis B by ¢ := (v,b). Letting ¢ := {ck}rez, we define the
M-information cost of v in the basis B by

M, Bo>R B M(ck). (3.100)

The best basis for v with respect to the information cost M and the collection B is a
basis set B which minimizes the M-information cost M over B. O

A recursive algorithm for finding an optimal basis for a vector v from a library B with
the structure of a wavelet packet decomposition may now be derived. This algorithm,
originally by Wickerhauser and Coifman, thus concentrates the information contained
in the vector v. For the purpose of detection and characterization of signals, this means
that we can find a basis which optimally concentrates the class of signals we are looking
for into a few characteristic wavelet or wavelet packet spaces. This means that when
analyzing data, we can restrict the analysis to those spaces where there is a significant
contribution by signals similar to the the signals we are looking for.

Algorithm 2 (Best basis)
Let {W;;:j =0...J,f =0...277} be the spaces corresponding to a full J-level
wavelet packet decomposition. Denote the wavelet packet basis for the space Wjs, by

Bjs = {¢;sx(t) : k€ Z}. (3.101)

Let v € Wy and let M, be an M-information cost (Definition 17). The best basis
algorithm can be summarized as follows.

1. let 1=J>0;
for f=0...2j—1, {let AJ‘f=BJ’,f;}
2. for f=0...271-1, {let

Ajos ® Ajopy1, 1f My(A; Aj o(Bi-1.2);
Aj-l,f={ 32f 2f+1 1 (Aj2r © Ajagr1) < My(Bj-1,5) (3.102)

Bi i otherwise.

}
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3. while j >0, {let j=j—1; goto 2;}

4. return Agg;
O

In step 1, the algorithm is initialized. In step 2 we find the find the least expensive
representation of v projected onto the span of B;_ ¢, which is the wavelet packet space
W;_1,;- The returned basis Agp is the best basis, and we prove this in the following
Theorem.

Theorem 13 The Best Basis algorithm finds the best basis with respect to the infor-
mation cost M and the library tree B for any fized v € Wy O

Proof The proof is by induction on the depth J of the decomposition. Let Aj; be any
basis for W; ;.

1. For a tree of depth J = 0, the only basis in the library is the basis for Wyp. This
is clearly the best basis.

9. For the induction step, suppose that that the algorithm gives the best algorithm
for any tree of depth J.

3. We prove that the Ag returned by the algorithm applied to tree of depth J + 1
satisfies M, (Aop) < My(Apg), s0 Aoy is a best basis.

By the construction of the library B, Ap, either equals By or Ao ® Aj,. The
induction hypothesis states that the algorithm applied to each of the two subtrees
of depth J starting from V; o and V;; returns the best bases for these two spaces.
These bases, A1 and Ay, then satisfy, for any Alo AL

Mo(Arg) < My(ALy), Mo(Ary) € My(474). (3.103)

The basis Ago returned by the algorithm applied to the whole tree satisfies,
by (3.101) and the above result,

M”(Aﬂ’o) = min{MU(BU,O)v Mv(Al,O) + Mv(Al,l)} (3-104)

< min{M,(By,0), Mo(41,) + Mo(A7,)} (3.105)

< M, (Agp)- (3.106)

Consequently, Ag, is a best basis. [ |

3.5 Shift properties

Tt is well known that the wavelet and wavelet transforms are shift variant.
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Theorem 14 (Shift invariance) Let S be a shift operator, such that Sz(t) = z(¢+1).
Then, for a fized scale and ¢ = qo + %q, ¢ = 0,1,...,27 — 1, the wavelet packet

transform of Sz is

(quwzqux) (f,7, k) = (T8%z) (f, 5,k + ¢1)

Proof

(Ts™*#90) (£,3,k) = / dtz(t + g0 + 7 01)¥ ik (2)

= fdt.’L‘(f.‘ +qo + 23q1)2“i/2wf(2‘it — k)

. / dt 2(E + 0)2Pw; (273 (F — Y1 () — k)

- / dEa(f + 90)2 7 Pwg (277 — (1)) + k)
= (quux) (fa ja k+ QI(J))

(3.107)

a

(3.108)
(3.109)
(3.110)

(3.111)
(3.112)
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4 THEORY OF ESTIMATION

This chapter reviews theory for detecting and characterizing signals in a noisy back-
ground. We discuss the possibilities for using wavelet-based techniques for detection
and characterization purposes.

4.1 The signal model

The problem of detecting whether a signal is present in a data set will be referred to
as the detection problem, and can be formalized as follows;

Definition 18 (The Detection Problem) Let z(t) be data observed for a period T
over an interval I = [t,t + T]. The problem of determining at time t + T whether
a partially known waveform s(t;6) which is parameterized by a vector 6 of unknown
parameters is present in the data for t € I can be written as a hypothestis test;

Hy : z(t) = n(t) (4.1)
H, : z(t) = s(t; 0) + n(t) (4.2)

Here, n(t) is a stochastic process, modelling everything in the data which is not a
part of the signal s(t). We assume that n(t) is Gaussian white noise with covariance
E [n(r)n(r')] = No/26(r —7'). We refer to this hypothesis test as the detection problem.
0O

Such hypothesis tests are frequently used in communication theory, where one typi-
cally is interested in determining whether a certain signal is or is not present. In our
application we are interested in detecting characteristic transient vibrations in a ship
hull. Because these vibrations are characteristic of the hull, there are reason to believe
that they are continuously excited. However, a heavy wave impact will excite a single,
relatively well-defined transient. and it is these transients we are most interested in
detecting.

We now turn towards quantitative methods for distinguishing between the two com-
peting hypotheses.

4.1.1 Matched filter

Our concern is to be able to detect signals with unknown arrival times. To do this, we
will need to solve the detection problem above for all possible arrival times {. Detection
problems of this type is commonly handled by matched filter techniques, and two classic
reference are [36] and [37]. Briefly, the matched filter technique is based on running
the data z(t) through a linear time-invariant filter hpme which is designed to give a large
output value for those parts of the data which belongs to the signal we wish to detect.
With reference to Figure 4.1, we define the output signal-to-noise ratio as

B |s0(T)[?
SNRO = m, (43)

E being the expectation operator.
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z(t) = s(t) + n(?) y(t+T) = so(t+T) +no(t + T)

—_— hm_f b

Figure 4.1  Schematic representation of a matched filter

Definition 19 (Matched filter) A matched filter is a linear time invariant filter
which mazimizes SNR, at a time T corresponding to an arrival at t = 0. O

The impulse response of the matched filter is easily found if the noise process is white
Gaussian noise;

Theorem 15 When the noise process n(t) is white, the impulse response given by

[ k-s(T-1%) te[0,T)
har(t) = { 0 otherwise, (&4
defines a matched filter for arbitrary non-zero constants k. O

Proof If h(t) is the impulse response of any causal linear time-invariant filter, then,
for any input signal s, the output is so(t) = (s * h)(t). We find, regarding ¢ as a fixed
parameter,

(xR = | [ stomi-n)
o |(§tﬂﬁ>|21

where we have introduced 3(-) = —s(t — -). We also find for n,(t) = (n * h)(t)

E[n.()]}] = E[[ dr n(7)h t—-T)f dr' n( )h(t—'r’)}
- / f drd’ Blntr)n(r )|t - )G =7)

NOJ(T—T’}}'Q

_ Noypie

where we have used standard properties of the covariance of Gaussian white noise. Now,
using the Cauchy-Schwartz inequality, we can find an upper bound for the signal-to-
noise ratio;

(5, B _ I3zl ]1Al®

SNR, = < .
2lnlz = Zl6lP

(4.5)

Thus, SNR, < 2||5¢,+7,]|2/No, with equality if and only if & is proportional to 3r Since
s is assumed real-valued, the SNR attains its upper bound when

h(-) = const - s(T' - -),
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and the theorem is proved. 1

To calculate the detector output, we find

y(t+7T) = f_m dr (T)hms(t +T — 7) (4.6)
= foo drz(17)s(T —t —T + 1) (4.7)
= fT dr z(1 + t)s(7), (4.8)

where we used the fact that s is supported on [0, T]. Now, if y(t + T) is larger than
some predetermined threshold, we say that we have a detection at time £.

4.1.2 A wavelet based matched filter

As we mentioned in Section 3.2.2, one of the advantages with tight frames is that any
operation which can be represented as a inner product, may equivalently be performed
in the transform-domain. This leads us to a wavelet domain representation of a matched
filter.

Theorem 16 (Wavelet-domain matched filter) Assume that Lg is a disjoint dyadic
cover of [0,1) indezed by G, so that the collection

{¥r4x(t) : (f,5,k) € S x Z} (4.9)

is an orthonormal basis for V. If the functions z(t), s(t) € Vo, we may write (4.6)
as

yt+T)= Y Z (Tz) (£, k + 01 (5)) (TS*W)s) (£, 5, k). (4.10)

(f:3)€G k=—o0

O

Proof Introducing the shift operator S, we shift the reference transient S~'s = s(-—t).
Let T be a wavelet packet transform corresponding to the dyadic cover Zg. The
matched filter output is, using Corollary 1,

y(t+T) = (2(-),S7's()) 2wy (4.11)
= (Tz, TS™*s)n(z9) (4.12)
= Y > (T2)(5,k)(TS ) (5, k). (4.13)

(4)€G k=—00
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Now, we get by using Theorem 14 and taking ¢ = go(j)+2’q1(j) where go € {0, ... 20—

1}1

yt+T)= > > (T2)(j,k)(TSs) (. k) (4.14)
(fJ)EG k=-00

= Y ) (T2)(5,k)(TS*Ds) (j, k — 1(7)) (4.15)
(f,4)€G k=—00

= 3 3 (T2)(,k + @) (TS®Ds) (5, k) (4.16)
(f,)€G k=—00

(4.17)

[ |

As (4.10) stands, it is equivalent to (4.6). However, if we restrict the index set G
to be those frequencies f and those scales j where most of the energy in s are located,
we effectively perform a selective matched filtering. In our experience, this can give im-
proved results over the conventional time-domain matched filter. However, the results
are sensitive as to which scales or to which analyzing wavelet packet is used.

4.2 Parameter estimation

There is a large literature on estimating parameters and characterizing signals. The
by far most popular method uses as mazimum likelihood approach to the estimation.
It is not necessarily optimal in the sense that it that it is unbiased and has a minimum
expected square error. However, it is simple to find the mazimum likelihood estimator
(MLE) of an unknown parameter, and for large data records its performance is near
optimal. Consequently, it is the favoured estimator for practical applications [15]. We
define the likelihood function and the likelihood ratio.

Definition 20 (Maximum likelihood terminology) Let X(t) be a random vari-
able with probability density p(z;9), and let z(t) be a realization of X (t). The maximum
likelihood function corresponding to the realization is

L(z;6) = p(z; 0) (4.18)

The maximum likelihood estimate of 8 corresponding to the realization z(t)

6" = arg max L(z;0) (4.19)
a
With our detection problem,
Hy : z(t) = n(t) (4.20)
H, : z(t) = s(t; 0) + n(t), (4.21)
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we wish to find 8, by maximizing the likelihood function L(z;6) = p(z|Hy;6). Since
p(z|Ho) is independent of § we may instead maximize the likelihood ratio

p(z|Hy) (4.22)

A= —-—-—p(leu).

This following theorem establishes an important link between the matched filter output
and this likelihood ratio.

Theorem 17 The likelihood ratio and the matched filter output are related by
Ng WA= 2y(ta + To) - FE, (423)

where E = ||s||*. O

This is proved in [36]. As a particular case of (4.19), we have maximum likelihood
estimates as follows.

Theorem 18 ( Maximum likelihood) We find the following MLE estimates.

o The MLE of the amplitude as given by s(t; A) = As(t) is given by

y(t+T)

A= = (4.24)

The estimator is unbiased when we have white noise.

o The MLE of the arrival time to is given by the time when the matched filter output
is at mazimum;

fy = tm where max y(t) = y(tm)- (4.25)
O

The proof of this was given in the earlier CHESS-report [38], and will not be repeated
here.
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5 SYSTEM THEORY

System theory is a vast subject which has applications in many different areas. The
purpose of this chapter is to give a very brief introduction to this field, and to estab-
lish a formal framework which can, in principle, describe the dynamical behaviour of
a vibrating structure. This will result in a state-space formulation of the governing
equations. We show how physical parameters such as damping and vibrational fre-
quency can be extracted from these equations in a natural way. The main reason for
our interest in the state-space formalism is that these equations may be estimated from
measurements, as will be described in Chapter 6.

5.1 Introductory remarks

In the previous chapters we have described general signal processing techniques for
detecting and characterizing the signals from strain sensors. However, our interest is
not so much the signals themselves, but rather what can be inferred about the hull on
the basis of the signals. Determining the properties of a system from measurements is
generally referred to as system identification, which is an established discipline within
system theory. During the present work it became clear that system theory might be
the correct framework solving some of the unresolved problems in the CHESS-project.

e The signals we are trying to detect are not arbitrary, but represent the response
of the hull to an applied load, and this response is governed by physical laws.
Incorporating this fact into the methods we use to characterize the signals seems
sensible.

As a contrast, the output from the matched filter is merely the degree of simi-
larity between the data and a reference transient. Apart from how the reference
transient was constructed, it does not reflect the underlying physics in any obvi-
ous way. It turned out that in practice, the matched filter technique gave good
results when trying to detect the strong and well known transients at about 2 Hz
and 20 Hz. However, it was difficult to get unambiguous results when trying to
find other characteristic vibrational frequencies. It was especially difficult to re-
liably distinguish between vibrations with almost the same frequencies. In fact,
it is not at all clear what we really mean by assigning a frequency to a short
transient signal. This motivated the search for complementary techniques.

e When using matched filters to characterize a signal, we run the data through
a bank of matched filters, each filter being matched to transients with slightly
different characteristics. In order to obtain good accuracy in the parameter esti-
mates, we need to have many similar matched filters. This is a computationally
intensive brute-force method, and one may well ask if it is possible to estimate
parameters in a more elegant and efficient way.

o We have several sensors, so we will eventually end up with multivariable signals.
The techniques we employ for detection and characterization should reflect and
take advantage of this. While it is not obvious how this should be done in the
matched filter formalism, multivariable systems is a well documented area in
systems theory.
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o At some later stage, we will need to find the optimal placement of the sensors
on the hull. This calls for a systematic investigation of signals obtained from
different sensors. This problem naturally fits within a system framework [11].

We have already used the term system, and many different definitions can be given.
The essential aspect of a system is that it has a state. Given knowledge of this state at
a time #, and subsequent input up to time ¢ > ¢, should be enough to determine the
state at time . A general and axiomatic presentation is given in [34], and stochastic
aspects are detailed in [4]. We restrict ourselves to shorter and less general approach
which is more tailored to our particular application.

5.2 Linear systems

We will exclusively consider linear systems, and a classic reference on this topic is the
book by Kailath, [13]. There are several reasons for concentrating on linear systems,
and we mention some of them below.

e A linear system can be regarded as a linearization of an underlying non-linear
system around a working point. Experience has shown that this approximation
gives accurate results in many situations. In particular, we have reasons to believe
that the most prominent vibrations in the hull and the panels are described by
linear equations.

o Non-linearities and complex behaviour can generally be modelled by linear models
of sufficiently high order.

e We are eventually interested in estimating the equations that govern our system.
Since a variety of reliable algorithms for estimating, or identifying, linear systems
exist, it is reasonable to consider a linear approximation, at least at an early stage.
Other non-linear identification methods, making use of neural nets, fuzzy logic
or adaptive algorithms are perhaps unnecessary complicated for our purpose.

Although non-linear and adaptive methods may be attractive in conjunction with au-
tomated damage control, it was decided that linear systems should first be examined.

5.2.1 Continuous time

We are only interested in systems can be represented in a state space form to be defined
below. Therefore we take that as a definition of a system. Other, more abstract
definitions exist, but they will not be considered here [34].

Definition 21 (Continuous-time linear time-invariant system) A continuous-time
linear time-invariant system with outputs can be represented by the following set of

equations
J &)
= { y(t)

Azx(t) + Bu(t)
Cx(t) + Dult) (5.1)

I
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Here, (A, B,C, D) € R™™ x R™*™ x RP>*" x RP*™. We call z(t) € R" the state of
the system at time t, u(t) € R™ the input to the system at time t and y(t) € RP the
output or measurements on the system at time t. The order of the system is given by
n, and (5.1) is a state space representation of the system. |

We see that the future state of the system, or rather, the rate of change of the state at
time t, is determined by the current state z(t) and the input. Thus future states are
determined by input and the current state. The effect of z(¢) propagates through the
system matrix A. Consequently, we say that the matrix A determines the dynamics of
the system.

The state z often has some physical meaning, but it does not need to. Frequently,
we are able to observe z only indirectly through the measurements y, which are mod-
elled as a linear transformation of the state and the input u. The input v is an external
influence acting on the system.

It is well known that the state space representation is not unique. That is, the measure-
ments y(t), may be generated by several configurations of state vectors. IfT e R
is an non-singular matrix, we may always define a new state vector by z = Tz. The
system defined by

o { 3(t) = TAT 'z(t) + TBu(t) (5.2)

y(t) = CT 'z(t) + Du(t)

is indistinguishable from o with respect to its input-output behaviour, given by the
observable quantities u and y. This can be verified by direct substitution of Tz for 2.
The main observation we make is that the matrix TAT ™! is a similarity transform of
A. Consequently, A and TAT~! have common eigenvalues (Appendix A.3). We say
that the systems o and o7 are equivalent to within a similarity transform.

5.2.2 Discrete time

The definition of a discrete-time system is similar to the continuous-time case.

Definition 22 (Discrete-time linear time-invariant system) A discrete-time lin-
ear time-invariant system with outputs can be represented by the following set of equa-
tions

5 {xk“ = Oz + Auy (5.3)

Yp = Hzp + Guy

Here, (®,A, H,G) € R¥™ x R™*™ x RP*" x RP*™. We call z; € R* the state of the
system at time k, ur € R™ the input to the system at time k and y € R? the output or
measurements on the system at time k. The order if the system is given by n, and (5.3)
is a state space representation of the system. O

The same remarks concerning the non-uniqueness of the system and the effect of the
system matrix ® can be made as for the continuous time system. An illustration of a
discrete-time system is given in Figure 5.1.
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u, € R™ Tk Tkl yx € RP

—_— ——

Figure 5.1 A schematical representation of a linear discrete-time system. The
nezt state Ty, of the system is determined by the current input uj
and the current state ), through the the state transition matriz ®.The
state z; of the system cannot in itself be observed; the measurements,
or outputs, of the system are found in the vector yx.

5.2.3 Relations between continuous and discrete time systems

When modelling a physical process from physical laws, one usually works with differ-
ential equations in continuous time. The resulting equations may often be written as a
continuous-time system. However, when using digital control systems, the continuous-
time system must be approximated by a discrete-time system. There are many ways
of obtaining this discrete version, and this is a standard topic in any modern book on
control engineering. We start by solving (5.1) for z. The solution is unique, and given
by [34], [44]

t
2(t) = A0z (tg) + / eAt=7) Bu(r)dr, (5.4)

to

where z(t,) is an initial condition. For comments on the matrix exponential e, see
Appendix A.3. We consider a sampling interval § and let to = 6h and ¢t = (k+1)4, and
assume that the input u(¢) is constant on the sampling intervals, so u(t) = u(dk) =: ux
for t € [kd, (k +1)8). Letting z(kd) =: zx, we get

T4 = z((k +1)9) (5.5)
5(k+1)
— Mo (5k) + f A=) By (r)dr (5.6)
6k
é
= ey + f e20=7)dr Bu, (5.7)
0

Thus, we see that the continuous-time system w1th piecewise constant inputs has a
discrete-time equivalent, with ® = e#® and A = f eA®=7)drB. Provided the sampling
rate is sufficiently small, the assumption of u being piecewise constant is not very lim-
iting.

It is well known that the eigenvalues of A determine the characteristic behaviour of
the solutions z(t). We are therefore interested in getting information about the eigen-
values of A, where A describes the response of the hull of our ship. We will do this
by estimating a matrix @ as if our system were discrete, and then use this matrix to
extract information about the underlying continuous physical system.
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Theorem 19 Let A € RV*™, and let = be an eigenvector for A with the corresponding
eigenvalue ). Furthermore, define the matriz ® € R™™ by @ := e, 6 > 0. Then
@z = A5z (5.8)
where s := e*. O

Proof The proof follows from the definition of the matrix exponential (Appendix A.3)
and the fact that for n =0,1,..., we have A"z = A\"z.

Oz = (Z 6:;1“) T (5.9)

n=>0
- (2)- (510
= ePz (5.11)
O

A slight problem is caused by the fact that we will go in a direction opposite from
this theorem. We will first find an eigenvalue of ®, and then find the corresponding
eigenvalue A for the continuous system. The problem is caused by the fact that if

2mwin

); = €M, then we also have, for all n € Z, \s = e+ 75 )%. Thus, A is not unique.

The non-uniqueness is resolved by introducing the principal value of the logarithm of
complex numbers (Appendix A.1). Then we have A = Ln (}5)/d, or

_In|As .arg(As)
= 5 <+ 2 5 :

where —m < arg A < 7. Restricting the argument to be between —7 and 7 may seem a
bit contrived. However, this has a nice interpretation in terms of the Nyquist frequency,
as will be noted in Section 5.4.2.

A (5.12)

5.3 The Kalman filter

In practice, any system will be subjected to inputs that we cannot measure. The
measurements of the output will also be subjected to noise. The Kalman filter is an
efficient algorithm for estimating the state of a dynamical system, even in the presence
of noise. It is fundamental in a wide variety of estimation problems, and it has proven
its worth in practice.

For our purposes, it will suffice to consider only the discrete-time Kalman filter. De-
tails can be found in [2], or more mathematical in [32]. We will consider the following
extension of model (5.3), where we assume that the state and the measurements are
disturbed by unmeasurable additive noise v and wg, respectively.

(5.13)

g 4Tk = Pz + Aup + vi
' ye = Hzp+ Gup+wi
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We assume that the covariance matrix between v and wy is independent of time and

given by
e[(%) of D] = (& 3)am 614

Furthermore, it is assumed that the initial state is Gaussian distributed with mean
Ezo = m = const and covariance matrix Ry.

Definition 23 (Discrete-time Kalman filter) Consider the state-space model (5.13).
The Kalman filter estimate Exy1x of the state Tpy1 ot a time k+1 € Z using the mea-
surements and inputs {y;,u;;j < k} up to time k is defined recursively by

Traae = PEip—1 + Aug + Ki(yx — HEgp—1 — Dug-1) (5.15)
Pepijk = ®Pe1®T + Q — Ki(®Py1 @™ + 5)T (5.16)
Ki = (®Pupr HT + S)(HPyy—1HT + R)™ (5.17)
(5.18)

where Py_y = Ry is an initial condition. The matriz Py is the covariance of the
estimation error Ty := Tx — Trk-1,

Pyjp—r = B [(& — B2y) (& - Ez)7]. (5.19)

The matriz (5.17) is the Kalman gain. O

We mentioned that the Kalman filter is an efficient method for estimating the state.
We now give precise meaning to this statement.

Theorem 20 (Properties of the Kalman filter) The Kalman filter is optimal in
the sense that the Kalman filter state estimate 2y is the best linear unbiased estimator,
since it minimizes the Bayesian mean square error

E [(zk+1 — Zrrie) @rr1 — Berre) o uisd < k—1}] (5.20)

among all linear estimators. Furthermore, when wy and v are Gaussian noise pro-
cesses, this is the minimum mean square error estimator among all possible estimators,
and Zx—1 s the minimum variance unbiased estimator. a

The proof of this theorem is in [15]. The important point is that the Kalman filter is
optimal for estimating the state when the noise is Gaussian, both in terms of minimum
variance (MVUE) and mean-square. It is also robust, in the sense that it is the best
linear estimate, regardless of the nature of the noise process.

We have discussed how to estimate the state, provided we know the system matri-
ces ®, A, H,G. We now turn to interpreting the state, before we in Chapter 6 show
how both the state and the system matrices can be estimated from the input and the
output.
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4>
TN
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Figure 5.2 A finite element discretization of a structure with complicated geometry
using triangular elements.

5.4 A state-space formulation of vibrational problems
5.4.1 Finite element method

The governing field equations for the response of structure to applied loads are in
general well known. Unfortunately, analytic solutions to these equations can only be
found for very simple loading mechanisms and geometric boundary conditions. Nu-
merical methods are then called for, and the by far most popular method is the finite
element method (FEM). In structural analysis, one usually discretisize the geometry
of the structure using finite elements as in Figure 5.2. An approximate description of
the original problem can be found by applying the governing equation to interpolating
functions between each node, as indicated by a black dot in Figure 5.2. The details of
this procedure need not concern us [23]. If we designate the displacements of node 7 in
Figure 5.2 by (v; z, iy, vi,z), we may form a displacement vector

T
q= (Ul,x: U1,y Y1,z - - - Uk,zy Vk,y» Uk,z) . (5-21)

The finite element method is based on interpolating the displacements between these
nodes in a special way. We may think of the method as approximating the behaviour of
a continuous material region by discrete point-masses located at the nodes, connected
with springs of different stiffness and subjected to damping. Essentially by Newton’s
second law, a set of coupled equations describing the motion of each node is then
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obtained,
M(t) + Cq(t) + Ka(t) = f(?), (5.22)

where the matrix M is called the mass matrix, C expresses damping and K models the
stiffness. This is standard, and it is treated in much more detail in almost any book
on the finite element method, e.g [23]. The end result is that the problem of solving
the partial differential equations that govern the vibration is approximated by a set
of coupled ordinary second order equations. In this way only the time-dependence, Or
dynamics, of the original problem is present, and the spatial derivatives are gone as a
result of the discretization.

If the load is constant and the structure is in static equilibrium, there are no dynamics.
The equation reduces to Kq = f, and this can be solved by standard techniques, e.g.
Gauss-Jordan elimination.

We are interested in the dynamic response of the structure, and recast (5.22) into
a state-space form as follows.

i(f) = Az(t) + Bu(?) (5.23)
where
A= (_ N = njilc) € RV, (5.24)
2(t) = (3%3) c R (5.25)
B= (g 21) (5.26)
w(l] = ( f‘(]t)) (5.27)

We have assumed that the mass matrix M is invertible, and that condition can always
be fulfilled by a proper discretization of the structure. Many other aspects concerning
this state-space formulation and the validity of such a model under varying conditions
can be found in the recent books [21] and [23]. For our purpose, it will suffice to
know that it is in principle possible to consistently model our system by means of a
state-space description. We will in this report not set up such a model from physical
principles; instead we will estimate the model from measured data. We now describe
how physical parameters may be recovered form the system matrix A.

5.4.2 Extraction of physical parameters

We now discuss the system (5.1). For concreteness, we may consider the state variables
to be displacements an velocities of different points of structure, such as the nodes in
Figure 5.2. This assumption is not necessarily correct, but it is introduced to ease the
interpretation. Because the state vector z consists of both the displacements ¢ and
velocities g, a model with n degrees of freedom corresponds to a state-space represen-
tation of order 2n.
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The system (5.1) is continually excited by the input u(¢f). We investigate the be-
haviour of the system for t > £, if the input goes to zero for time ¢ > t;,. We call this
response the unforced response of the system.

Theorem 21 Assume that the matriz A in (5.1) is real and has a set of 2n distinct
eigenvalues £ = {/\j}f‘zl, and let 2c of these be compler conjugates of each other.
Without loss of generality, group complez conjugate eigenvalues in such a way that
Aj = Acyj SO we can write

&= ‘[’\js j‘j}_?:l U {’\j}?izcﬂ- (5.28)

Denote the jth component of the state vector z(t) by z;(t), j =1...2n. The unforced
response of the system for t > to corresponding to the initial condition z(ty) can be
written

c
z; ()= Z 2|zj,kaj (fo)lea"(t—m) cos(Bxt + (ﬁj(tg) + Bj!k)
k=1
2n

+ D zjka;(to)e ), (5.29)
k=2c+1

Here,
e 2. is the eigenvector corresponding to A, and z;j s the jth component of z.
Furthermore, ¢; := Arg z;x, S0 we may write zj = |z;|e®i*.

e a;(to) := w;{ac(tg), where w; is the jth left eigenvector of A satisfying Aij =
Ajw;. Furthermore, 0; := Arg (wTz(to)), so we may write a;x = |a;|e®.

e oy and Pyare real and imaginary parts of Ax, respectively, i.e. A\ = ap + i5k.

Proof We are asked to solve & = Az for ¢t > ¢, given z(ty).

1. Since the 2n eigenvalues are distinct, we have 2n linearly independent eigenvectors
of A. Denote these eigenvectors by z;, and introduce a matrix of eigenvectors

T = (z; 2y - Zzn). Similarly, introduce the matrix of left eigenvectors
W= (w ws -+ ws,). We may then write
WTAZ = A, or Z7'AZ = A, (5.30)

where ZW =W_Z=JTor Z7 ' =W.

2. Since ); are distinct, we can diagonalize the matrix A, as A = ZAW7T. The
matrix exponential is then eA(t~%) = ZeAt-%)WT, From (5.4) we can write the
solution as
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z(t) = Zehlt)c (5.31)
2n

= (Z zke‘\"(t_t")) e; (5.32)
k=1

where ¢ = WTz(tp).

3. We now look at each individual component z;(t) of z(t). We write Ay =: ax+i0k,
k=1,...,2n, so that A\gpe =: ax — 0, k = 1,...,c. Also, the corresponding
eigenvectors come as conjugated pairs, zx = Z.4x and wg = Wesr, £ = 1,... ,¢,
since A is real.

Furthermore, We let z;; be component j of the kth eigenvector of A, and in

polar form we write this number |2;x|e'®*. For the product between the jth left
eigenvector w; and z(to) we introduce the polar form |a;(to)|e? () := wlz(ty).

2n
zj =) zxe " uls(t) (5.33)
k=1
2n ‘ ‘
=) |zjule’r e =) g (k) | o) (5.34)
k=1

c
T Z |2 kaj(to)leak(f—fo) (ei[ﬁk(t"tﬂ}+¢j,k+8j(t0)l S e—i[ﬂk(f—to)+¢j,k+9j(to]1)

k=1

2n
+ ) zjuaj(to)e ) (5.35)
k=2c+1

— Z |zj,kaj (tg)lea*(t_t°)2 cos (,Bk(t —_ to) e o ﬁbj,k + 93' (i‘g))

k=1
2n

+ Y zjaa(te)e™ (). (5.36)
k=2c+1

The significance of this theorem is that we have have obtained expressions which de-
scribe the subsequent unforced real response of a system which is excited to a state
z(tp). Furthermore, the motion consists of uncoupled damped sinusoids and exponen-
tials, and these components can be analyzed separately. These considerations were
inspired by Hoen [11], [12].

If the matrix A is symmetric, the eigenvalues and eigenvectors are real. We then
have a straightforward interpretation of the eigenvectors, and this is treated in many
books in physics or structural mechanics. However, it is rarely mentioned how the
complex eigenvectors should be interpreted. Strang [10] has noted that
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I am not sure about economics, but physics and engineering and statistics
are usually kind enough to produce symmetric matrices in their eigenvalue
problems.

In many cases the matrix A will be non-symmetric, for example when A is estimated
from data, and eigenvalues and eigenvectors will in general be complex. The present
approach seems to provide some insight into the real dynamics of the system directly
from the eigenvalues and the eigenvectors.

Remarks

o All the eigenvalues of A should satisfy R(A) < 0, i.e. the response should be stable.
If we think of the components of the state vector z(t) to be the displacements of
different parts of the structure, we expect an initial excitation to eventually die
out.

When estimating A and interpreting its eigenvalues, we will simply ignore any
eigenvalues whose real part is non-negative on physical grounds.

e With the above condition, we have written the response as a series of damped si-
nusoids and damped exponentials. The imaginary part of the complex eigenvalues
play the role of frequency, and the real part is the damping. Conventionally, we
define the undamped frequency w and the damping ratio £ corresponding to the
eigenvalue ) by the two equations R(A\) = @ = £w and and S()) = 8 = /1 — 2w,
where 2 and & denote real and imaginary parts, respectivly. We will not say
anything about the interpretation and physical meaning of these parameters, but
refer to [23].

This interpretation does away with the somewhat artificial engineering concept
of “instantaneous frequency”. Instead, the frequencies are given by the imaginary
part of the eigenvalues of the system matrix.

e Most importantly for our purpose, the response of the system is described by a
series of decoupled equations in the phase space. If we are able to estimate the
state at time ty, we may recover the amplitude of the subsequent free response.
Furthermore, we have isolated the contributions from each of the individual vi-
brational frequencies to the overall motion.

e When recovering the eigenvalues of the underlying continuous system from a
discrete approximation, we restricted the continuous eigenvalues A to have $()) €
(—m/é, /5], where ¢ is the sampling period. This means that when finding G
from a discrete system, 8y € [0,7/d], which is less than or equal to the highest
frequency we could estimate with a sampling frequency of 1/4, by the Nyquist
criterion.
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6 SUBSPACE IDENTIFICATION

System identification has been defined as the field of mathematical modelling of systems
from experimental data. [33]. We will restrict ourselves to dealing with linear models,
even when we have reason to believe that the system is non-linear. The rationale for
this was already mentioned in Section 5.2. The main purpose of this chapter is therefore
to present methods for estimating the system matrices (4, B,C, D) from input-output
measurements. In practice, the available measurements will be discrete, so we will
actually estimate the discrete system matrices. Their continuous counterparts can be
found using the results from Section 5.2.3.

We restrict ourselves to present the main results behind the identification schemes
commonly called subspace identification methods, and do not discuss other identifica-
tion methods. Proofs are generally not given, but can be found in the references.

6.1 Preliminaries

In this section we first state the problem we wish to solve. Then we present the geomet-
rical and statistical tools we will be needing in developing a solution to this problem.

Tt will be seen that the subspace methods can be given a geometrical interpretation,
and this will be helpful in developing an intuitive understanding of the methods.

However, due to the large number of variables involved in the derivation and formu-
lation of the theory, the subject may seem unnecessarily complicated. For this reason
we have collected a number of preliminary results and notational definitions in this
section.

6.1.1 Problem definition

We formally state the problem we will solve, and introduce some notation which will
be used throughout this chapter.

Definition 24 (Subspace identification problem) Let S C Z be a time set, and
assume that we have a set of measurements Mg = {(ux,yx) € R™ xRP|k € S} of the
input u and the associated output Yr generated by the unknown system o given by

| k1 = Az + Bug + Wy w; r ol _(Q S\«
a.{ ye = Czx+Dyp+vp E[(vj) (wi v)| = ST R Six - (6.1)

Here, E is the ezpectation operator, and vi and wy, are noise processes. We conceptually
split the state T, and the output Yy in @ stochastic and a deterministic part indicated
by superscript s and d, respectively, as follows:

sp=1i+3),  Y=vEt+ub (6.2)
where the different parts of the state and output satisfy the deterministic and stochastic
subsystems o and o° given by

- { xd,, = Azf+ Bu S:{ x5, = Azi+ws

yd = Czf+ Dyf yi =Czj+uv (6:)
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On the basis of the measurements Mg, we wish to determine

e The order n of the system,

e The system matrices (A, B,C,D) € R™" x R™™ x RP*" x RP*™ to within a
similarity transform,
e The spectral density matrices (Q, R, S) € (R**" x RP*P x R**?) associated with

the noise processes wi, v such that the output that would result from applying a
constant zero input ux = 0 to the system o has the same second order statistics

as yi.

O

We restrict ourselves to finding only those matrices which are relevant to the stochastic
system o°. The deterministic problem can be solved in a similar way, but refer the
reader to [40] for more thorough treatment than can be given here.

6.1.2 Block Hankel matrices

Matrices with Hankel structure occur frequently in system theory. This section will
establish some notation concerning these matrices.

Definition 25 (Input and output block Hankel matrices) The input block Han-
kel matrix of order j corresponding to an output sequence {yi}r, yr € R™ is defined
as

(Yo y1 Y2 ot Y \
n Y2 Ys - Y5
Yi-1 Y Y1t Yiwj-2 Yoii-1
Yo2i-1 == = (6.4)
¥ Vbl Yz U P Yioi 1
Yiv1 Yive Y43 0 Vit
\yﬁ—l Y2i  Yoiy1 - y2£+j—2)
The line drawn between block rows i—1 and i in the first matriz indicate the partitioning
of Yo.0i—1 tnto Yo and Yi.9;_1 as shown. O

For heuristic reasons, we refer to this partitioning as splitting the matrix into future
outputs Y; and past outputs Y.

Y, =Y Yer= Yipmig (6.5)

The dependence on the parameters 7 and j are in all cases implicitly understood. For
notational convenience, we also defined Yp"‘ and Y}, two matrices obtained by shifting
the delimiter in the partitioning one block row down;

Yp+ := Yo Y; = Yigi (6-6)
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Thus, the matrix Yp.0;_1 may be partitioned in a number of ways;

Yoia Y, Yp+ Youi
Yooici=| — | =|=]|=|—| = (6.7)
Yioi-1 Ye e Yiiaia

6.1.3 Oblique projections

In statistical signal processing, it often proves fruitful to regard signals as vectors in a
signal space. Removing certain parts (e.g. noise) from a data set can sometimes be seen
as projecting the data onto a signal space which is orthogonal to the space containing
the unwanted elements. We have already seen examples of this in Chapter 4. Now we
introduce projections as a linear algebraic concept for use in a system identification
setting.

Definition 26 (Orthogonal projections) The matriz that orthogonally projects the
row space of a matriz onto the row space of another matriz B € R is given by

Iz := BT(BBT)*B, (6.8)

where # denotes the Moore-Penrose pseudoinverse. We introduce the notation
A/B := Allg (6.9)
for the projection of the row space of A € RP*I onto the row space of B. a

The pseudoinverse is reviewed in Appendix A.3. If we let B+ denote a matrix whose
rows span the orthogonal complement of the row space of B, we can then express the
matrix A as a linear combination

A= Allg + Allp.. (6.10)

At the heart of subspace identification as presented here lies a more general projec-
tion, the obligue projection, which will be defined below. It will not be needed in the
following, but it is needed when estimating the deterministic system o®. Briefly, it is
that part of the orthogonal projection of the row space of A onto the joint row space
of B and C which lies in the row space of C. An illustration of these two projections
is given in Figure 6.1. The orthogonal projection on the joint row space of B and C is

given from (6.8);
y(8)-4(5) (6% 5)| ()

Of this, we need to take the part in the row space of C, as follows.

Definition 27 (Oblique projections) The oblique projection of the row space of
A € RP%I qlong the row space of B € RI*" onto the row space of C € R™J is defined

as
AN | reer BT
A/BC“A(B) [(BC’T BBT)

Thus A/gC € R™ lies in the row space of C. O

C. (6.11)

first r columns
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(a) Schematical illustration of the or- (b) Schematical illustration of the
thogonal projection A/B of the row oblique projection A/gC of the row
space of the matrix A on the row space space of the matrix A along on the row

of B. The orthogonal projection of A space of B onto the row space of C.
on the orthogonal complement of the
row space of B is denoted 4/B*.

Figure 6.1  Oblique and orthogonal projections.

6.1.4 Statistical analysis by means of projections

The projections we just defined are very useful in a statistical setting, if our data series
are ergodic.

Definition 28 (Ergodicity) The random variables { X }rez are said to be ergodic if

J
E[X] = E; [EXk] : (6.12)
k=0
where we have introduced the ezpectation operator E and the averaging operator
1
Ei|:] := lim -=[-]. 6.13
= Jim =] (6.13)
O

The mean of X, for a fixed k may be regarded as an average over all possible outcomes
of the process at time k. The assumption of ergodicity implies that we equivalently
may consider a single outcome, averaged over all times k.

The averaging operator allows us to treat stochastic and deterministic systems with
much of the same formalism [33]. In practice, we will always have only a finite number
of samples j available, so we have to approximate the averaging operator by the sam-
ple mean. We now define the covariance between matrices whose columns are ergodic
processes. We will use the expectation operator on the columns, so the number of
columns can be regarded as going towards infinity. However, this does not pose any
significant problems, since the expectation operator will only be applied to products
of semi-infinite matrices. These products will always have finite dimensions, and the
convergence is guaranteed because of the assumption of ergodicity.
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Definition 29 (The covariance between two matrices) The covariance matriz be-
tween the two stochastic matrices A € RP*J and B € R is defined as

R[A‘B} = Ej [ABT] 3 (614)

If the matrices are finite dimensional, we will use the estimator
R[A,B] e }ABT. (6.15)

O

The connection between covariance and projections will now be made in the following
(re-) definition of the the projections.

Definition 30 ( Stochastic oblique projections) Let A € RP*J, B and C € R™*J
be matrices whose elements are a samples from a realization of a stochastic processes.
The oblique projection of the row space of A along the row space of B onto the row
space of C is defined as

T "

R R R

A/BC = [*“’Cl) ( I0) lC-Bl) C. 6.16
/5 (R[A,Bl Ric) Ripp (6:16)

first  columns
The orthogonal projection of A onto the row space of B is defined as
A/B = R[A,B]Rﬁ;'g]B- (6.17)
El
For finite dimensional matrices, we use the estimator (6.15) for R. We write R for both
R and R, because we will always have only a finite number of data, so no confusion

should arise. Both projections then reduce to the ordinary, non-stochastic version
(6.11) as follows,

A/B =Ry g R B (6.18)
1,57) (1ggr)”
= (;4B") (;BB") B (6.19)
1 T . T\ #
=3AB j(BBT)" B (6.20)
= ABT (BBT)* B, (6.21)

which is equivalent to (6.8).

6.1.5 Notation

We the define the notation we will use in the main results in the next section.

Definition 31 (Notation and assumptions) We use the following notation and as-
sumptions.
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A subscript i on a matriz usually indicates the number of block columns or rows,
and quantities relating to the stochasiic subsystem c° or the deterministic sub-
system o are marked with a superscript s or superscript d, respectively.

e We define the following covariance matrices
= = Elgenzinl, AUl =Elgesswi]l, G = Elzgu] (6.22)

We call ¢ the stochastic state covariance matriz and A[k] the output covariance
matriz.

o We assume that x° is stationary, so
Ej#ll =0, El(z]=2, (6.23)
where X° is independent of the time k.
e The state is uncorrelated with the noise processes;

Elzjwi] =0,  Elzivf] =0, (6.24)

e A", the reversed stochastic controllability matriz is defined by

Al = (A-1G 4G ---AG G) (6.25)

e I';, the observability matriz is defined as

B
BA

I,=| BA? | e prixm, (6.26)
BA:T—I

e We define two block Toepliz matrices which are constructed from the output co-
variance matrices A;.

(Ao A A oo Ay
A1 Au A-—l e A2-—~i
Li=| A2 A Ao - Asy], (6.27)

\Ai—1 Aicg Aig -+ Ag

(A Ay Mg o Ay
Aijn Ay Ay -0 A
Ci=| Aira Aii A o+ A (6.28)

\A%—l Agiz Agig -0 M
O

The quantities defined above satisfy the following standard relationships, which are
starting points for the development of identification algorithms.
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Theorem 22 (Properties) We have the following

o The covariance matrices of the different processes satisfy
e = AT AT 4+ Q G=ATCT+ S (6.29)

A C."lj-lG, j — 1:2,...

Ao =OSCT 4Ry A= ,
° ’ ? {(CAJ*G)T, j=-1,-2,...

(6.30)

o We can find A; by

3=1
.f\.i = Ej l:z yk_:gyg} = R[Yim‘fo;o]* (6.31)
k=0
where Y;j; and Yoo are output block Hankel matrices. The block Toepliz matrices

L; and C; can be estimated as

L; = R[}'},Y;] = RIy Yo and C; = va'f‘yp]. (6.32)

i

O

The simple proofs of this can be found in [40].

6.2 Stochastic identification

Our goal is to find a way to recover the system matrices from the input/output data
M. This section will show how that can be done.

6.2.1 Kalman filter state sequences

We will use a special form of the Kalman filter to estimate the state sequence, and it
is elaborated in Appendix B.5. Briefly, it will split the error covariance matriz Py into
the the state estimate covariance matrix £° and another matrix Pj;

P.=%*-P (6.33)

We state a theorem which gives us a relation between input-output data and the
Kalman filter state estimates.

Theorem 23 (Kalman filter states) Consider the system (6.1), and let
P, =X - P,
where £° = E[zxz]| and the state error Py = E[(zx — &x)(zk — #x)T). The equations
re1 = Ay + Kio1(yk — Cx) (6.34)
Per1 = APAT + K. (G — APCT) (6.35

)
Ki = (G — AP.CT)(Ag — CRCT)™ (6.36)
(6.37)
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define a Kalman filter for estimating the states by Zx. Given the initial estimates
%o =0, Py, = 0 and the data yi, k = 0,1,... ,k — 1 the Kalman filter state estimate
Th, k>0 28

Yo
g, = hgpt| ¥ (6.38)
?,’k'—l
The covariance matriz Pr can be found from
P = AP LN AR (6.39)
O

This Kalman filter looks slightly different from the conventional one, but this is only
due to the notation. We show in Appendix B.5 that the the present Kalman filter is
equivalent to the more conventional one.

By forming a vector of j consecutive state estimates we obtain an estimated state
sequence X; from (6.38) as follows:

Xoo= & B > Byga) (6.40)
= BPL ¥ (6.41)

As before, the dependence on the number of block columns j is implicit throughout.

Thus, we may estimate the states from input-output data, if we already know the
system matrices A, B,C, D, @, R, S. We will now see that the the Kalman filter states
estimates can in be estimated directly from the input-output data set Mg, without
knowing the system matrices. We will then use the estimated states to find the system
matrices, which is our final goal.

6.2.2 The stochastic identification theorem

We are now ready to state a theorem which will provide a recipe for computing state
estimates, the system order and the observability and controllability matrices. From
these, the system matrices themselves can be extracted.

Theorem 24 We make the following assumptions:

1. The process noise wy and measurement noise vy are identically zero;
2. The number of measurements goes to infinity, j — 0o;

3. The arbitrary weighting matrices Wi and W, are such that Wy is if full rank
and rankW, = rank(Y,W>), where W, is the combined input-output block Hankel
matriz.

4. The matriz T € R is any non-singular similarity transformation of the system;
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Defining the orthogonal projection
O; =YY, (6.42)
and the SVD of W,0;W), as

. , 1%
WL0; W, = (Q1 Qg) (501 g) (V;T) : (6.43)

we then have have:

1. The projection O; in (6.42) equals the the observability matriz multiplied with X;:

0; = I X;. (6.44)

9. The order of the system is equal to the number of singular values in (6.43).
3. The extended observability matriz T';
T, = W'Q.S8,’T (6.45)
AL =T*Rpy,.v,)- (6.46)
4. The projection of the state sequence X: onto the column space of Wy can be

recovered from

X,W, = T18)*vT (6.47)

5. The state sequence X; can be found from

X; =T?0.. (6.48)
O

why these results are true. Proofs and further discussion concerning these results can
be found in [39] or [40]

6.2.3 Extraction of the system matrices

Our main goal is not to find the Kalman state sequence (6.48), but rather the system
matrices describing the dynamical properties of the system. We present one simple
algorithm based on Theorem 24, and comment upon some of the steps below. Otbher,
more sophisticated algorithms are possible, see [40].

Algorithm 3 (Extraction of system matrices)
1. Calculate the orthogonal projections

0;‘ = Yf/Y;, and Og_1= Y}_/Y;+ (649)
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2. Calculate the singular value decomposition of the oblique projection

g
W\OW, = (g;) (“f; 5?2) ({’;) . (6.50)

3. Determine the order n of the system by deciding on the number of “significant”
singular values. Collect the n significant SVD in the diagonal of the matrix S,
and partition the SVD into signal and noise submatrices as indicated in (6.50).

4. Determine the observability matrices by
[ = Wi@iSi2, Ty, =T, (6.51)
where T; has the last p (number of outputs) rows removed.

5. Determine the sequences of Kalman state estimates

X; =T#0; (6.52)
Kisr =T O (6.53)

6. In the least squares sense, solve

X1\ _ (AN . 54
( Yip ) B (C) - (654

A o };’i+1 v
(&) x

to get

The SVD in (6.50) mirrors the one in (6.43). However, with a finite number of data,
there will be non-zero singular values in Sy. Thus, we must decide on some arbitrary
threshold which determines whether a singular value is “significant” or not. In step
4, the observability matrix T; is then found as in (6.45), and we find the Kalman
state estimates in step 5. In the last step, the system matrices are found. We do not
elaborate further on these aspects, but refer to [40] instead. In the next chapter, we
give examples of how the estimated matrix A can be used to extract information about
the underlying continuous-time system.
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7 ANALYSIS OF CHESS DATA

The theory described in the previous chapters has been implemented and tested both
in C—=+ and MATLAB. The main part of the present work has been to develop wavelet
based techniques capable of analyzing large amounts of data. Despite this fact, the
larger part of this chapter is dedicated to presenting results from system identification.
The reason for this is that we by now have some experience with wavelet analysis, but
the system identification approach is new in the CHESS-project.

The intention with this chapter is not to present a detailed analysis of the data, but
rather to demonstrate how the methods perform on actual experimental data. A de-
tailed analysis of the data is outside the scope of this report.

7.1 Short description

The CHESS-project and the signal processing system was described in Chapter 2.
In Section 7.2 we show how subspace identification methods can be used to obtain
estimates of vibrational frequencies, damping and the number of freedoms needed to
characterize a structure. In Section 7.3 we mention some typical results that can be
obtained with the programs developed (Appendix D).

7.2 Analysis by subspace identification

In the following, we illustrate how it is possible to extract information about the
structural behaviour of the hull using subspace methods. The purpose is not to do
a very thorough analysis of the data, but rather to illustrate how the methods can be
used in practice. The topics we wish to illustrate are summarized below.

e Identification
We identify vibrational frequencies and damping ratios for different modes.

e Stability
We investigate how the modal parameters vary with respect to both time and
order of the model we are using.

o Statistics
The need to have statistics describing the natural variation of the estimated
parameters interpreting the data is discussed. We show how the accuracy of the
estimates can be characterized by suitable statistical measures.

7.2.1 A single short time series

We first analyze the data shown in Figure 7.1. This data set is is convenient to work
with because it contains several strong transients. From the spectral density plot, we
identify strong components around 2.2 Hz, corresponding to a long-ship vibration.
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Figure 7.1  Data containing several strong 2 Hz transients (top) and its estimated
spectral density (bottom).

To use subspace identification, we need to find the order n of the discrete system
matrix ®. As described in Chapter 6, n can be estimated by the number of singular
values different from zero. With finite data sets corrupted by noise, we do not expect
the singular values to be exactly zero, so we take n to be the number of singular val-
ues greater than some lower limit. Applying the subspace identification methods to
the data in Figure 7.1, we calculate the singular value decomposition (6.50). We have
plotted 150 sorted singular values in Figure 7.2 which illustrates that the choice of
model order in this case is not a trivial matter. By examining the ratios of consecutive
singular values, we notice that there is a relatively large reduction in the magnitudes
of the singular values between the third and fourth singular value. The same is true for
the sixth and seventh. We expect that the model order has to be least 10 to capture
most of the dynamical behaviour. As discussed in Section 5.4.1, this correspond to five
degrees of freedom.

We conclude that for complex structures, one cannot expect the model order to be
clearly apparent from the singular values alone. Fortunately, it turns out that the
exact choice of model order is not very critical.

In Figure 7.3 we have plotted the estimated structural eigenfrequencies for orders in
the range [1,20]. In this and in the following plots, eigenfrequencies are estimated by
first estimating a discrete-time system matrix, and then taking the imaginary part of
the eigenvalues of the underlying continuous-time matrix, as discussed in Chapter 5.
The units are Hertz, that is, they have been divided by 27 rad. Several comments
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Figure 7.2  Singular values o; for the data in Figure 7.1, sorted after magnitude.
The lower plot shows the relative magnitude of consecutive eigenvalues
a;.

can be made in conjunction with this plot. We note first of all that it is consistent
with the power spectral density in Figure 7.1. By this we mean that peaks appearing
in the spectral density plot also show up as eigenfrequencies in Figure 7.3. At higher
orders more and more detail are included. For example, the two highest frequency
peaks below 1 Hz in Figure 7.1 does not show up in Figure 7.3 at orders less than
n = 9. The frequency which is identified at the lowest order (n = 3) is at around
9 Hz. There are also two “vibrational modes” at less than 1 Hz which appear to be
stable at increasing model order. These show up as small peaks in the spectral den-
sity plot, and can probably be identified with the load process. Therefore, they do
not really represent structural modes, but rather characteristics of the load process. It
is clearly helpful to have physical knowledge of the process when interpreting such data.

The stability with respect to model order is illustrated in Figure 7.4. The estimate
is quite close at model order 3 and remains stable for very large model orders. This
is reassuring because it indicates that the identified frequency is not a result of just
the choice of model order. Increasing the model order results in new state variables
wich are fitted to the noise and load processes. One might regard this as increasing the
dimension of the state-space, and moving the noisy parts of the data away from the
subspaces which correspond to structural modes. The state variables which describe
physical modes should therefore remain stable. These considerations are also discussed
in [11] and [19].
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Figure 7.8  Estimated damped vibrational frequencies at varying model orders. The
asterices indicate the mode corresponding to vibrations at 2.2 Hz.

We also note that there are in Figure 7.3 some higher-frequency estimates which are
drifting as the order increases. Increasing the model order up to 60, we see that most
of these estimates reaches a more or less steady state, as in Figure 7.5. However, it is
now even less clear which of these modes correspond to structural modes, and which
appear only as a result of this special data set. To answer this, one would have to
analyse other data sets and see which modes frequently show up as stable modes.

The subspace methods can be used even when strong transients, as in Figure 7.1
are not present. We will illustrate this by considering the measurements shown in Fig-
ure 7.6. This data set signal is from the L sensor (Section 2.2.4), and it is filtered to
avoid aliasing and downsampled from 600 to 200 Hz. It turns out that even with such
a short data set, we will be able to identify several vibrational modes.

The modal eigenfrequencies are plotted in Figures 7.7 and 7.8. Several possible struc-
tural modes are indicated, and they remain stable with increasing model orders, as
indicated in Figure 7.8. Other candidates for structural eigenfrequncies also exist.
We summarise our findings in Table 7.1, where we have estimated some vibrational
modes and their variation. These parameters were obtained by analysing a short eight-
second excerpt of the data. As yet, we cannot say much about the accuracy if these
results. If we had access to a database with previously estimated parameters, we could
compare our measurements to standard values. Any discrepancies could be checked to
see if they are within the previously established limits of natural variation.
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Figure 7.4  Estimated long-ship vibrational frequency at different orders.
Table 7.1  Estimated modal frequencies for the data shown in Figure 7.6. The or-

der ranged indicate the orders used when calculating the the empirical
means and standard deviations.

Type of vibration i (Hz) - & (Hz) order range
Long-ship 2.39 0.01 3, 60]
Plate vibration 19.3 0.2 [12,60]
Superharmonic 41.6 0.3 [13,60]

There is, for example, a possibility for some of the identified modes in the present
data to actually be the result of a periodicity, or “mode”, in the excitation process.
Since we do not have the possibility to independently measure the load process sepa-
ratly, this can be difficult to determine. One way would be to investigate the identified
modes in different time series. The vibrations of the hull are expected to remain con-
stant in time. The load processes on the other hand should vary more, since they
depend on sea-state, speed of the vessel and other parameters.

7.2.2 Analysis of a long series

We have investigated a 50 min data sequence by first partitioning it into ten 5 minute
sequences. We then identified structural eigenfrequencies in each of these sequences for
model orders in the range [1,. .. ,60]. By looking for structural parameters that remain
stable with both time and increasing order, we are better able to judge if the identified
parameter really is a characteristic of the ship. The data series used were from the



75

S0y a4 E Xkx ¥ X ToEw W T %X % x
X XXX W X x X XXx X X X X XX X XX X X
X XXM X X X X XX Tx X X X XX X XX X X
XXX K X6 X X XX XX X X XX ¥R W X
X XXX X X@ X X XX 3N X XX . % X X
XXX X X0 X ® XX X X% X XX M X X X
X XXX %X X§ % XX XXX X X X XX X W X
X XXX X X X XX XX XX X X X XX X X X X
X XXX X X@& X XX XX X X X X X X X X X
BOFX XXX %X X x X XXX ®xX X X X X * ®x X ® o
50 X X XXX X % X X X X X X
X XAX X X@X X X XXX X % > X X X X
X XXX XX@x X X XXX X X X X X X X X
pra s A T S X XXX X x X X X X X X
X X X X& X X XX X XX % X XX
X XX X XX X XX HX X 3N X =
X XX X XX X X XX X X X X X%
X XX X XXQ X X ®X X X X X X X
X XX X XX& X X o X X X X X X
40X XX XX XQ x X XX X XX X X X -
X XX XX X X X XX X X X X 3% X
X XX X X XQ@ X X XX X X w X X
X XX X X S XX X P X X
X XX X X & X x X% X X X X b
® XX XX X X XX X X % X
o X X XX R X X XX X X X
° X X XX @ X X XX X X
= X XX X X X XX X X X
(<] X XX XX @ X X XX X X X
—= 30FX XX > B X x XX X X x —
] X XX x ® % x XX X X
B X xXX ® 0 X X MK X X
X X ® 8 % X X X X X
E X Xx 8 X X X X X X
X X x & x X X X X X
X XX X%® X X X X X
XX X X @ X X X X X
20Fx x x E) X x x X B
X XX 0 X X X X
X X% %@ X x X
X X X X X X
X X X 0 X X X
g X X
X X X X
X X X X
§ s X *x
10p¢ X% X -
X
X
X
X
0 1 1 ] 1 1
0 2 4 6 8 10 12 14
frequency (Hz)

Figure 7.5  Estimated damped vibrational frequencies at varying model orders. The
asterices indicate the mode corresponding to vibrations at 2.2 Hz.

L sensor in Figure 2.4 and it was filtered and downsampled to 100 Hz. A Nyquist
frequency of 100 Hz allows for identification of frequencies up to 50 Hz. Although the
majority of dynamic modes are expected to be found at lower frequencies than this,
there are indications that modes associated with higher frequencies exist. The spikes
between 50 — 60 Hz in Figure 2.4 could be a result of this.

Frequency

The estimated vibrational frequencies resulting from this analysis are shown in Fig-
ures 7.9 and 7.10. Each plot shows estimated vibrational frequencies at varying model
orders, as obtained by separate consecutive 5 minute excerpts of data. Visual inspec-
tions reveal several interesting characteristics of these two Figures.

e There is a clearly identified mode at 2.2 Hz. It is very stable with respect to order,
and it shows up in all the plots. It corresponds to the long-ship vibrational mode.

e Another possible mode close to the previous one show up at a slightly lower
frequency. It is much more unstable with respect to order, and in some of the
plots it is hardly discernible, but it can be seen in all the plots in Figure 7.10.

e Two possible modes at around 5 Hz show up in all the plots. These are quite
well-defined, so we assume as a working hypthesis that they represent intrinisic
structural properties. It is not known for certain what kind of vibration they



76

-2 T T T T T T L
—6 : | , -
] i 1L
= i 0
8§
g | _
‘% Ik
-10p I -
3 s ; : : . ]
time (s)
Figure 7.6 A short data set showing typical strain loads typical for calm sea states.
20 @ © O (=2 c Q’ o o
c}) élw o o : o o: o o
18 @ @ O el & Oy O (o]
L:a <:3 o o : o o : (=}
16 ¢ @ © P =l 24
¢ oo °! o! °
14F 9 9 O o o o,
d b o =] ol ol
120 ¢ ¢ O S -
B g (o 1seBib i ota :
SO 9 °© , © !
E @ D o 1o I
sfdd o : |
@ a o 1 I
of & b : :
P Q 1 |
AL Qu ; :
@ | 1 |
1 I ] ]
2r | |
1 I I 1
R 70 20 ) 20 0 0 o

fraquency (Hz)

Figure 7.7  Possible modal frequencies for the

in the range [1,20].

data shown in Figure 7.6 for orders



77

60

X Mo Mk x  x X xT % x T K e % x o x x 2] * o
§ RN AER, 4 B X R Ne %EH % ¥ % KX E%E XX %
FOXX B % ¥ X W% XE X 3 36¢ % % 5 x_ % = X X
bl Fas) x 204 > = > XK k.3 > 20K = o K X > >
i ng < > ? »e o kg ;;‘I. > > > F o > X > > b
> e > 2 bRl > o3 > X x x b3 x X 2 bl xx
¥ §)< e > ? ol KX > ix = > > farard > > o
x 2K > Eacad bt > x X OXX > > > > =
50-% Ex xx ><;;3 2% b > ix ® = bl ¥ ¥ S * P —
o E "% & % %% £ 5Ex R A
i !2)(. ¥l ﬁ > > > > %‘ > x > o o S o >
i ﬁ')( b4 )i( - > x > )r( b3 > > > > x > x
£ E 2 xX S ¥ 8 " e 2 B
B Y L FgiE ¥ O, 0B i £ %2 g Xy g
sl% 58 & E gy & 2z % % 2% 2 .
£ Es & BEE % 2 5 2 =
>
; ﬁx > ; > > > )ﬁ o > > bl bl
i ﬁ)( > i > > = ﬁ > > » x > x
¥ oE%Ex % % % o~ % % o Z %
.E x ¥§>< = 32 = * ﬁ b = = > >
= o> > = ol > 200 > > b3 > >
=] X Hx X A x =% ok * > * = =
T3 EX % [ % fezd % E % e 3
¥ XX x * e Fd = > >
¥ Kx X § x 0ok = = o] >
= K > bl > 20 > > >
K Kx X b k3 =k x = -4
E >
: F5 o % g g %
201§ £ Zix ™ o - B .
I 3% ¢ | x|
P, 4 5 > = x
1o0b % ¥ % o= ! =
¥ ¥ = 1> I
=
Lk = ! !
% I I
% 0 | 1
o | 1 | 1 il 1 1 L 1 1
o] 10 20 30 40 60 70 80 20 100

50
frequency (Hz)

Figure 7.8  Possible modal frequencies for the data shown in Figure 7.6 for orders
in the range [1,60].

represent. They might for example be higher-order vibrations connected to long-
ship mode mentioned above.

e A stable mode at about 17 Hz is present, and it is identified with a local plate
vibration. In some plots, a vibration around 19 Hz is present as well. This
vibration is quite poorly excited.

e A mode at about 34 Hz show up in most of the plots. It is poorly excited in the
middle plots of Figure 7.10. Inspection of the corresponding data showed that
the boat was subjected to relatively light loads during this period, which may
explain why the modes was poorly excited.

e Many other possible modal frequencies are present.

In Figure 7.11 we show a set of box-and-whisker plots. This plot indicates the spread
in time of the frequency estimates of the long-ship mode at different model orders.
The middle 50% of the data remain inside each “box”, and the upper and lower quan-
tiles are covered by the “whiskers”. We observe that the frequency estimates at orders
greater than 2 remain relatively stable. A closer look, as in Figure 7.11 (top), reveals
the danger of overparametrisation: As the order increase, the spread of the estimates
increase as well. Further analysis led to the conclusion that this spread was caused
by outliers. The most reasonable explanation is that for high orders estimates tend
to lie quite close together. This can result in our programs picking the wrong estimates.

From Figure 7.11 we observe that the distribution of the identified long ship frequency
is rather narrowly centered around 2.2 Hz. A preliminary analyis show that much of
the spread is caused by a systematic error in the selection of estimates. The develop-
ment of more robust extraction routines has been considered outside the scope of this

thesis.
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Figure 7.10  Estimated vibrational frequencies at varying model orders. From top

to bottom, the plots show frequency estimates based on consecutive 5-
minutes intervals of data. The data used are the 25 minutes following
the data used in Figure 7.9.
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Table 7.2  Estimated modal damped modal frequencies and modal damping for
the long-ship bending mode, plate vibration and a hypothetical super-
harmonic mode. The estimates are based on the mean of the relevant
data after removing the highest and lowest 25% values. The errors is
estimated as the interquartile range.

Type of vibration frequency (Hz) damping ratio order range
Long-ship 2.25+0.05 0.08 £ 0.03 (3,60]
Long-ship2 8524+02 0.05+0.03 [15,60]

Plate vibration 173 +03 0.002 £ 0.0015 (18, 60]

“Superharmonic” 34.3+£0.2 0.001—0.01 [22,60]

A similar analysis can be done for other vibrational modes. In Figures 7.9 and 7.10
we notice that a there is a fairly stable node around 17 Hz. It is known that there is a
local plate vibration at approximatly this frequency, so we identify this this mode as a
local plate vibration. Another line close to 20 Hz also appears at times, and this may
also represent some kind of plate vibration. These two modes are actually discernible
from the spectral density plot in Figure 2.5. We show in Figure 7.12 a box-and-whisker
plot for the 17 Hz component. It is seen to be relativly stable, both with respenct to
time and order, expecially in the order range [19, 27]. The problem with outliers is also
visible. Other analyses are also performed, and and Appendix C contains some of the
relevant plots.

Modal damping ratio

We now turn to estimation of the modal damping ratio. In general, this is known to be
a difficult problem. One of the main reasons for this is that in practical situations, a
significant amount of non-proportional damping is present. We expect that the damp-
ing of the boat is non-constant and non-proportional because the amount of water
present varies with different wave impacts. Much research is currently being put into
obtaining good estimates of the structural damping when non-proportional damping is
present, see e.g. [1].

The estimates show much greater variability, Figures 7.12-7.18, but we are still able
to obtain resonably stable results. The results obtained for natural frequencies and
damping ratios are summarised in Table 7.2.
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Boz-and-whisker plot showing the spread of the estimated frequency of
the 34 Hz plate vibration in 10 separate time series at model orders
in the range [1,60] (top and second). For each of these 10 time se-
ries, the spread of the estimates for model orders in the range [22, 60]
at different times is shown in the third plot. The distribution of the
middle 50% of the data is shown at the bottom.
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tio in the long-ship vibrational mode in 10 separate time series at model
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series, the spread of the estimates for model orders in the range [3,60]
at different times is shown in the third plot. The distribution of the
90% lowest estimates is shown at the bottom.
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7.3 Analysis by wavelet-based matched filtering

One of the most important tasks of a structural health monitoring system is to mea-
sure the individual amplitudes of the transient vibrations induced in the structure. The
development of efficient C++-programs for detection of transients (Appendix D), has
made it possible to investigate realistically long time series in a fraction of the time a
MATLAB-based system could do.

The detection capabilities are illustrated in Figures 7.19 and 7.20 show amplitude
distributions resulting from an analysis of 50 min data from the L-sensor. This data
can in turn be further analysed, for example by investigating the statistical distribution
of the time between subsequent detections. However, this has been considered outside
the scope of this thesis.

To use wavelet-based methods to characterize signals has in practice proved more
unreliable than the system identification techniques. There are several reasons for
this.

e The output is sensitive to what kind of reference transient is used

e Using only a few sub-bands in the matched filtering, the wavelets introduce a
phase shift.

e The output of the matched filter is in general difficult to interpret.

Currently, we are investigating the possibilities for detecting transients with wavelet-
based techniques, and then using system identification only on the strongest transients.
Preliminary analysis indicate that this is a promising option. The reason for this
lies in that strong transients lead to better excitation of the vibrational modes, and
consequently to better identification.
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8 CONCLUDING REMARKS

8.1 Summary and conclusions

In this report we have reviewed the basic theory of wavelets, wavelet packets and system
identification. The choice of topics was largely dictated by the practical needs of the
CHESS-project.

Detection

The theory of wavelets and wavelet packets has been reviewed in Chapter 3. The
reason why we were interested in the wavelet transform is that it is an efficient tool
for characterising functions locally. We have used this property to detect transient
vibrations in strain measurements in the glass fibre panels of the hull of a surface effect
ship. We have seen how wavelets are a special case out of several possible bases arising
from wavelet packets.

Both the wavelets and wavelet packet bases are presented as special cases frames.
We also showed how any linear operator on a Hilbert space may be performed in any
reasonable transform-domain. As a special case of this result, matched filtering can
be performed in the wavelet packet transform domain. It was also shown that it was
possible to perform an approximate matched filtering on a subset of the transform
domain. By choosing this subset to be those parts of the ambient signal space where
the greater part of the energy of our transients are located, we effectively separate the
transient we are looking for from other parts of the signal.

Characterisation

Methods for characterising transient vibrations were presented in Chapter 4. Using
the relation between the matched filter output and the maximum likelihood ratio, we
were able to find maximum likelihood estimates of amplitude and detection of arrival.
To estimate vibrational frequencies and damping, we could pass the signal through a
bank of parallel matched filters, each being matched to a particular damping ratio or
frequency. A disadvantage with the matched filter technique is that we need a a priori
model of the transient we are looking for.

System identification

The problem of estimating physical parameters from measured data can be regarded
as a system identification problem. In Chapter 5 we showed how a vibrating structure
could be considered as a system with inputs and outputs. We reviewed basic system
theory, and showed how a non-linear system may be approximated by a linear, time
invariant system. We established the connection between the physical continuous-time
system and a discrete-time approximation. In Chapter 6 we reviewed methods for
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estimating the intrinsic dynamics properties of a linear time-invariant system from
measured data and showed how these results could be interpreted physically.

Implementation

The methods described above have been implemented. The fast wavelet transform,
detection algorithms and matched filtering have been implemented in a C++ program,
and this has made it possible to analyse longer data series. This is also an important
step towards making a working prototype of the signal processing system.

We demonstrated how system identification could be used for estimating vibrational
frequencies and damping. The algorithms are implemented in MATLAB, and they are
mainly based on the implementations in [40].

8.2 Suggestions for further work

The methods developed in this report are general. For this reason, many aspects which
are relevant to the CHESS-project have only been touched lightly upon, if at all. In
this section we list some of these areas and point out specific possibilities for further
work. The topics are organised in several broad and partially overlapping categories.

Wavelet analysis

e In analysing the signals by wavelets, we have hitherto considered them as in-
dependent one-dimensional signals. An wavelet-based approach which is able
to take the strong correlation between the different channels into consideration
would be useful.

o We have not considered bi-orthogonal wavelets in this report. However, if we use
wavelets mainly as a prefilter to separate different scales, this is an interesting
option. The reason for this is that we may then then use wavelets with better
filtering performance, such as symmetric wavelets with linear phase.

o There are many generalisations of our wavelet scheme. Instead of dilating by 2,
one may use an M-band scheme. Dilating by matrices is also possible. Investi-
gating the possibilities offered by these methods in more detail should be done.

Damage detection

e Damage detection has not been a topic per se in this report, but many of the
methods seem to be applicable for this purpose. Finding relevant methods from
the field of structural reliability and incorporating them into ours will be then be
necessary. Reliability parameters for the material in the hull must be obtained.

e One idea is to use a wavelet-based detector for detecting strong transients, and
then basing the system identification algorithms on only the strongest transients.
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In Chapter 5, we saw how the individual amplitudes of the vibrations could be
found from the state vector and the eigenvectors of the system matrix. Imple-
menting this, and comparing the resulting amplitude estimates with matched
filter estimates would be interesting.

analysis

A systematic and thorough analysis of the available data should be performed.
On the basis of this analysis, one could identify which wavelets and wavepackets
are more useful for separating the different transients. We have concentrated on
the Daubechies wavelets, but many interesting alternatives exists.

It is not known in detail how the signals corresponding to the transient vibrations
vary. Non-linear responses will most likely exhibit considerable variation in the
characteristic mode shapes. The measurements will most likely depend on the
sensor location. It is known that the mode shapes of the local panel vibrations
are strongly influenced by the panel geometry.

These aspects should be resolved before a particular wavelet basis is chosen.
The data analysis could also be performed with the objective of establishing

reference values for different structural parameters. Their variations should also
be quantified, possibly with confidence intervals.

The amount of data available for analysis is huge. One should take advantage of
this and estimate relevant statistical properties of the load and response processes.

Programming aspects

A recursive real-time implementation of the System identification routines may
be considered. The routines we have used are all Matlab programs, and they
make extensive use of Matlab’s linear algebra capabilities. If these are to be
implemented in C++, one should base the programs on existing linear algebra
libraries such as LINPACK. Alternatively, one could as a use a Matlab-to-C++
compiler [22].

The programs implemented are still undergoing development. As they become
increasingly complex and more people take part in the programming, care must
be taken to make the programs robust, efficient and maintainable. One should
seek to formalise program specification and development according to industry
standards [35]. In particular, emphasis should be placed on documenting the
development process.
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7.20 Distribution of detected long-ship vibrational amplitudes greater than

Cl1

C.2

C.3

C.4

20 pstrain in 50 minutes of data from the L-sensor. The detection rou-
tines were based on wavelet domain matched filtering in detail levels 7
and eight, using a Daubechies 6 system.

Box-and-whisker plot showing the spread of the estimated frequency of
the 5.2 Hz vibration in 10 separate time series at model orders in the
range [1,60] (top and second). For each of these 10 time series, the
spread of the estimates for model orders in the range [18, 60] at different
times is shown in the third plot. The distribution of the middle 90% of
the data is shown at the bottom.

Estimated damping ratios for the mode at 3.2 Hz varying model or-
ders. From top to bottom, the plots show damping estimates based on
consecutive 5-minutes intervals of data.

Estimated damping ratios for the mode at 5.2 Hz varying model orders.
From top to bottom, the plots show damping estimates based on con-
secutive 5-minutes intervals of data. The data used are the 25 minutes
following the data used in Figure C.2.

Box-and-whisker plot showing the spread of the estimated damping ratio
of the 5.2 Hz vibration in 10 separate time series at model orders in the
range [1,60] (top and second). For each of these 10 time series, the
spread of the estimates for model orders in the range [15, 60] at different
times is shown in the third plot. The distribution of the middle 90% of
the data is shown at the bottom.
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List of symbols and acronyms

Symbol Meaning

* Convolution; Adjoint.

12 Downsampling by two, removes every second component of a sequence.
# Moore-Penrose pseudo-inverse.

= Is defined as

= Is identical to

! Factorial

f Fourier transform of f, f(w) = [ dt f exp(2miwt).

(- ) Inner product.

R, S Real and imaginary parts.

§ STFT of f; general transform of f.

@ Orthogonal direct sum.

U(t) Mother wavelet.

Yk (t) Scaled and translated wavelet, ¥ ;(t) = 279/29(277t — k).
Yy k() Scaled and translated wavepacket of frequency f.

Vi () Yok (t)-

o(t) Scaling function.

®ix(t) Scaled and translated scaling function, ¢ix(t) = (277t — k).
P (1) dk(t)-

z Complex conjugate of z.

a Continious scaling parameter.

b Continious shift parameter.

Crkr CalK] Level J approximation coefficients.

Cf ik Cf,i (K] Wavelet packet coefficients, level j, frequency f.
djx,d;lk]  Level j detail coefficients.

f Function; Frequency index of wavepacket.

F Fourier transform operator.

hyr Impulse transfer function of a matched filter.

Id Identity operator.

L?(p) Space of functions which are quadraticly integrable with measure p.
*(Z) Space of sequences u such that >, 5 [uxl? < oo

n(t) Noise.

S Shift operator, Sf(n) = f(n + 1); Synthesis operator
R,R* Real numbers, non-negative real numbers.

s(t) Signal, transient we are looking for.

T,Te Transform, transform with respect to the funciton ¢.
Vi Scaling space j.

Vin Decomposition space at scale j, frequency n.

W; Wavelet space j.

w(t) Window function.

z(t) Input to detector or filter.

Acronym Meaning

CHESS Composite Hull Embedded Sensor System
dbn Daubechies wavelet family n.

DFT Discrete Fourier transform.



Acronym
DWT
FEM

FFI

FWT
NLR
QMF

SES
STET
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Meaning

Discrete wavelet transfrom.
Finite element method.
Forsvarets Forskningsinstitutt
Fast wavelet transform.
Naval Research Laboratory
Quadratic mirror filters.
Surface Effect Ship.
Short-time Fourier transform.
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A PRELIMINARIES

In this Appendix we present some background material and establish some conventions
and notation.

A.1 General

Measure theory
A measure p on a set X assigns non-negative values to subsets of X.

For example, we may define a measure on X = R? by u(4) = J[ 4a™% dadb, which
can conveniently be written du(a,b) = a~2 dadb. Our main use of measure theory
is purely formalistic, in that it allows us to write continuous and discrete inner
products with the same integral symbol. We denote by L?(u) the Hilbert space
of functions which are squarely integrable with respect to the measure p. The
inner product on this space is given by

o s f du() £ (70D (A1)

For example, the familiar L?(R) has measure du = dz. The Lesbegues integral is
defined using measure theory, and by choosing u as the counting measure in (A.1),
we get

(@, B 120 = f dp(n) f (g = 3 aln)B(m), (A.2)

n

which is the ordinary inner product on £2. Details and discussions can be found
in [14].

The complex logarithm
Let e = z, so that the logarithm of z is defined to be w. Let z in polar form
be z = |r|e?. We know that 6 is not unique, since we have z = ret6+2m™) for all
n € Z. The number w may always be written w = u + v, and this gives

eV = eu+iveueiv = lrlei(9+2ﬂn)° (A.3)

Equating the magnitude and argument, we get
et =|r|, v=0+2mn. (A.4)
Since u and |r| > 0 are real, we get w = u + @ = In|2| + 6 + 27n. Thus,
Inz=In|z| +0+2mn, Vnc€Z, (A.5)
which is not unique. If we pick n in such a way that we always have
—T < 0+2mn <, (A.6)

we obtain the principal value of In z, denoted Ln z. See [18]
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A.2 Signal processing

Fourier transform
We will use the following conventions:

Floi) on / dt £ (£)e2m (A7)
)= [ i (A8)

Discrete-time Fourier transform
The discrete-time Fourier transform of a sequence {f[n]}nez is

Ely)=Y_ finle =™ (A.9)
nez
The inverse transform is
1
fln] = f dv F(v)e™™. (A.10)
0

Discrete Fourier transform

The discrete Fourier transform of the (finite) sequence {f[n]}a=y is defined as
: 0
N-1
Flk] =) flnle7>m*n/N, (A.11)
n=0
The inverse transform is
g M-l
— B k 2ﬂ‘ikanu .
flnl = ; Flkle (A.12)

A.3 Linear algebra

We list some standard topics from linear algebra that we will need. Proofs and more
detail can be found in [16] or [10].

Notation
The transpose of a matrix A is denoted by AT, and the Hermitian conjugation is

denoted by A*; A* = (AT).

Eigenvalues
An eigenvalue of a square matrix is a constant A such that

Az = )z, (A.13)

Here, z is the corresponding eigenvector. If T' is a nonsingular matrix of same
size as A, and B := TAT™', then A and B have the same eigenvalues.
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Matrix exponentials

The matrix exponential is defined as
oo 4j
et = Z ., AeR*® (A.14)

The sum always converges.

Singular value decomposition

Any matrix A € R™" with r = rankA (say) may be factored into A = USV™.
where U € ™™ V e R™*, § € R™". The matrix S is diagonal and the
first r entries on the diagonal is called singular values. The singular values are
the square roots of the non-zero eigenvalues of AT A, and the remaining n — r
diagonal entries are zero. The columns of U are the eigenvectors of AA* and the
columns of V are the eigenvectors of A*A. Both U and V' are unitary. We can
write the SVD

A= (U Uy) (50‘ g) W W) (A.15)

where U € R™7, U, € R™(™m-" 1, € R** and V; € R**(n=7)  The columns
of V; is an orthonormal basis for the row space of A, and the columns of V5
is an orthonormal basis for the nullspace of A. Similarly, the columns of Uy is
an orthonormal basis for the column space of A, and the columns of Us is an
orthonormal basis for the left nullspace of A.

Pseudo-inverse

The pseudoinverse of a diagonal matrix, such as
[+ j

S2

5= Sy (A.16)

is given by

/1/31_ \

1/32

g% = 1/s, (A.17)

\ o)

Let A have the singular value decomposition

A=USV* (A.18)
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The pseudoinverse of A is denoted by A#_ and it is given by
A= VS*U*. (A.19)

The pseudoinverse has its main application in regularization of ill-posed problems.
For example, let 4 € R™*", z € R™*! and b € R™*1 | It is well-known that the
solution of the system of linear equations Az = b is unique only in special cases.
If we define z := A¥b, z has the following properties:

e If the equations are consistent and has a unique solution, it is given by z.

o If the equations are consistent but has a set of solutions, z is the element of
this set with least Euclidean norm.

o If the system is inconsistent, but has a unique least-square solution, this
solution is given by z.

e If the system is inconsistent and has a set of least-squares solutions, z is the
element of this set with least Euclidean norm.

Thus, the pseudoinverse gives us the exact solution if it exists and is unique, just
as the ordinary inverse.
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B PROOFS

Many of the proofs below are based on the fact that if
(f,g) =(h,g) then we say f = h, (B.1)

with the understanding that the equality does not need to hold point wise. For 'nice’
functions, we expect that it will, however.

B.1 Theorem 3

Proof

1. The operator T : H — L*(u) is an operator between Hilbert spaces. It is a
fundamental property of Hilbert spaces that such operators have a unique adjoint
T*. A proof of this is given in [43].

2. Forany f € H, g € L*(u),

(T*g, fYu = (g(m), Tf)r2(w) (B.2)
2 f du(m) g ] dt £ (@) (B.3)
= f du(m)hmg, f)u, (B.4)

proving the theorem.

3. From above we see that the operator G = T*T exist. Since ”f”iz(”) =TTy =
(T*Tf, f)x, the frame condition (3.21) can be written

A(f?f)H < (T’Tf1f)H < B(f'sf)H

By the argument in (3.24), the theorem follows. Now, [|Gf|[% = (Tf,Tf) <
B||f %, its norm is bounded;

G|l = Sl;p{IIGfH :feH|Ifl <1} < B.
4. Above, we found that Ald < G, and G < BId. These inequalities imply G~ &£
A~'Id and B~Id < G7L
5. We find
(Gf,9)r = (T*Tf,g)a = (Tf, Tg)rzy
= [ dum) (. b s

< [ dutm) (8, s, g>H ,

where we changed the order of integration in the last step.
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B.2 Theorem 4
Proof

1. That the operator S = GT* is a left inverse of T follows from
ST = (T*T) ' T"T =14, (B.5)
where we used the definition of the metric operator G.

2. By using (3.23), moving G™' under the integral sign and using the definition of
the dual frame vectors,

(Sge f) L2(p) = (G_T‘g: f}L"‘(p)

= (o= de)g(m)hm,f}m
(f dmm)g(m)h_m,f>w.

3. Let f € H, and f(m) = (Tf)(m) = (f, hm)n, Then, since S is a left inverse of
T, it follows from the results above that

F = ST =8f ={F F™)s- (B.6)

4. By the closest point property of Hilbert spaces [43], we may write any g € L*(u)
uniquely g = g, + f, where gy € Ry, and g, € R

e We show that Pgy = g: Since gj € Rr, thereisa f € H such that gy =T}/f.
Thus Pgy = PTf = T(T*T)"'T*Tf =Tf = g;.

e We show that Pg, = gy: Since g, € Ry, we have for all Tf = feRr,

0= (g1, flrz = (T°9L, fa- (B.7)

Hence, T*g, = 0.

So Pg = g, and P is the orthogonal projection onto Rr.

(Pg)(m) = (TSg)(m) = (Sg;hm)n(m)

= { [t s, b))

- Ld#(m’) 9(m")(humy h™ Y
- fd#(m')g(m')ff(hmahm’)
M
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6. The discrepancy ||g — g;Higm is minimized when gr is the unique orthogonal
projection of g onto the range of T, by the closest point property of Hilbert
spaces, [43]. Thus, g = Pg = TSg. The unique vector f € H whose transform
equals g satisfies

Tf =TSy, (B.8)
which gives f = Sg.

7. Any g satisfying Sg = f can be written g=Tf+g1, 91 € R4. Hence, Tf L gi,
5o we can write

||9|l?r.2(#) =||Tf+ 91”%2(;;) = HTf“?L?(u) + llgLlizzw 2 HTf“%?(n)’ (B.9)
with equality only if g, = 0.

B.3 Theorem 5 (Parseval)

The proof uses the following standard result [43];
Theorem 25 (The polarization identity) Let H = (U, (;, Yv) and denote the norm
on H induced by the inner product by || - ||#. Then, for any f,g € H,
3
1 - .
(f,9)n = Zzﬁ I f +igll% (B.10)
n=0

a

Proof of Parseval’s Theorem
First note that any Hilbert space is also necessarily a inner product space, so the
polarization identity is valid in any Hilbert space. The frame condition reads

IT(f + 9)lIZ2y = AllF + 9l -

Using the polarization identity,

3
(.00 = 3 SO + il (B.11)
n=0
Atd
== 2_"IT(f +ig)llzz (B.12)
n=0
At
=~ >_7ITf +iTqllzaq (B.13)
n=0
= A"N(Tf, Tg)r2(u), (B.14)

where we used the frame condition to get (B.12), the linearity of T to get (B.13) and
the polarization identity a second time to get (B.14). [
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B.4 Theorem 12

Proof By the definition of the wavelet packets, we have for € € {0,1},

Yoftrejk = 279/ Mhy (2778 — k) (B.15)
= 279720712y " b [n]up+(2(277t — k) — ) (B.16)
nez
= 5~U-D2Y " p, ]t see(2707Vt = (2k + n)) (B.17)
nel
=" hen — 2k|Ysrei-1n(t) (B.18)
neZ

Using this result, we can recursively find the wavelet packet coefficients.

Cofregk = (fr Vasreik) (B.19)
= [ a1 £ 3 bl ~ 2Hpves 100 (B.20)
neL
= Z he[n — 2K)(f, ¥r+ej-1.n) (B.21)
nez
= (Hetfpeg-1)TK] (B.22)

Setting f = 0, this also prove Theorem 8 if we identify ¥ with the scaling function
¢;x and ¥y, with the wavelet ¢;x, and the sequences co,; and c;; with ¢; and d;,
respectively. B

B.5 Kalman filter

The conventional Kalman filter is given by [2]

Tre1 = AZr + Kie(ye — Ci;) (B.23)
Py = APBAT + Q — K (ABCT + 5)T (B.24)
K = (AB.CT + S)(CB.CT + R)™} (B.25)
(B.26)

when there is no input (u = 0). We have written B, for the more common Pk[k-—l and,
similarly Zx instead of &xx—1. Now, by replacing Py by ° — By, we get

Ky = (AX°CT + S —APIC)(C2°CT + R—CP.CT)™! (B.27)
=G =Ap

= (G — AP,.CT)(Ao — CP.CT), (B.28)
which is identical to (6.36). We have used some of the relations in Theorem 22. For

B, we find from (B.24) using Q = £° — AT AT,
T8 — Py = ATUAT — APAT +Q — Ki(AZ*CT + S—ARLCT)T (B.29)

=G

= AT AT — AP AT + X% — ATAT — K (G — ARCT)T (B.30)



110

So
Ppi1 = APAT + K (G — ARCT),

which is identical to (6.35).

(B.31)
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C OTHER RESULTS

In this Appendix we present the results from some of the analyses not included in the
main text.
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Figure C.1  Boz-and-whisker plot showing the spread of the estimated frequency of

the 5.2 Hz vibration in 10 separate time series at model orders in the
range [1,60] (top and second). For each of these 10 time series, the
spread of the estimates for model orders in the range [18,60] at dif-
ferent times is shown in the third plot. The distribution of the middle
90% of the data is shown at the bottom.
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following the data used in Figure C.2.
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in the range [1,60] (top and second). For each of these 10 time se-
ries, the spread of the estimates for model orders in the range [15,60]
at different times is shown in the third plot. The distribution of the
middle 90% of the data is shown at the bottom.
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D wdnf - WAVELET-BASED MATCHED FILTERING

This appendix presents the first version of general stand-alone C++ program, which
performs matched filtering in the wavelet domain. This first prototype has since been
further developed by both the present author and Emil Urnes, but this program is not
included here.

D.1 Syntax

Given a data file and a reference signal, the program wdmf detects occurences of signals
with a waveform similar to the given reference signal. It returns the output of a wavelet
domain mathced filter and, optionally, estimates of the amplitude and time of arrival
for each detected signal-

The command line syntax for the is
wdmf wavelet data signal levels outfile [threshold index amplitude] .
The meaning of the parameters are

wavelet is a file containing the wavelet filter coefficients specifying the type of wavelet
to be used. Its contents must be of the formath0(1) h0(2) ... h0(n) *
h1(0) hi(1) ... hi(n), where hO are the coefficients in the low-pass filter
and h1 the corresponding high-pass filter. The asterix * serves as a delimiter.

data is a file containing the data to be analysed.
signal is a file containing the the reference signal to be used in the matched filter.

levels is a sequence of Os and 1s with no spaces specifying which levels of the wavelet
decomposition are to be used in the matched filtering. The first entry refers to
the approximation level, and for n > 1, the nth entry refers to detail level n — 1.
A 1 means that the corresponding level should be used in the matched filter,
whereas a 0 means that the level should be included.

outfile is the name of the file to which the detector output should be written. The
detector output is scaled in such a manner that at any instant, it can be regarded
as an estimate of the amplitude of a signal similar to that contained in the file
signal as if it ocurred at that instant.

Optionally, three additional parameters may be specified. They all relate to estimating
the time of arrival and the amplitude of signals similar to the one specified in signal.
Their meaning are as follows.

threshold is a number defining the lowest detector output the program should register
in the output files below.
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index is the name of the file to which the element numbers (indices) of the detector
output which correspond to a local maxima should be written. The nth element
in this file corresponds to the nth element in in amplitude.

amplitude is the name of the file to which the estimated amplitudes should be written.
The nth element in this file corresponds to the nth element in in index.

D.2 Example of use

An example of the use is as follows.
tdwf db6 sensor_a.dat trans.dat 00011 detector.dat 12 i.dat a.dat

Here, we search for for waveforms similar to trans.dat in sensor_a.dat using the two
highest detail levels levels in a 4-level wavelet decomposition. We record the detector
outputs which correspond to detection of signals with amplitudes greater than 12 in
the files i.dat and a.dat. In MATLAB, we may write

>> Ts=0.011; % Define your own sampling period Ts here
>> load i.dat a.dat detector.dat

>> subplot(2,1,1)

>> bar([( i(1)-1) : ( i(length(i))-1 )1*Ts, a)

>> xlabel(’Time of arrival (s)’)

>> ylabel (’Estimated amplitude’)

>> subplot(2,1,2)

>> plot([O:length(detector)-1]*Ts,abs(detector))

>> xlabel(’Time of arrival (s)’)

>> ylabel(’Estimated amplitude’)

D.3 Program listing

The program for performing wavelet-based matchewd filtering is called wdmf .C (short
for wavelet domain matched filtering). It needs the module Signal.h, which contains
general classes and methods for signal processing.

D.3.1 Signal.h - Signal processing module

#include<vector>
#include<iostream.h>
#include<math.h>

typedef double Tsample ;

typedef vector<Tsample> Tsignal;
typedef Tsignal::size type size_type;

class Signal{
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private:
Tsignal s_ data;

// size_type length;

public:
// CONSTRUCTORS AND OPERATORS
Signal();
Signal(size_type initial _size): s_data(initial _size){};
//,length(initial_ size){ };
Signal(size type initial _size, Tsample data)

: s_data(initial _size data){}: //,length(initial_ size){ };
Signal(Tsample * from, size_type elements); //double af10];Signal s(a,7);
~Signal(){};

Tsample& operator||( size_type i){return s_datali];}:
Tsample operator|]( size_type i)const{return s_datali];};
Signal& operator=(Signal& rhs);

// DATA HANDLING FUNCTIONS

Signal& downsample2(const Signal & in);

Tsignal::iterator begin() {return s_data.begin();}; //not
Tsignal::iterator const end(){return s_data.end();}; // const!
size_type size()const{return s_data.size();};

Tsample vector _product ( Signal& b); //, Signalé b);

Tsample vector _product ( Signal& b, size_ type start_a,
size_type end_a,size_type start_b);
Signal& convolute (const Signal& h, const Signal& x,size_type q0);
friend ostream& operator< (ostream& out, const Signal& in);
s // End Class Signal

inline Signal& Signal::operator=(Signal& rhs){

if (this==&rhs) return xthis;
s _data=rhs.s_data;
return rhs;

5
Signal& Signal::downsample2(const Signal & in){

/«Down-samples the signal in by two, keeping the _odd_ indices. It is equal
to MATLAB'’s dyaddouwn(z), which keeps the even indices on vectors starting
with one. */

size_type |_d=in.size()/2;
//Length of downsampled signal (integer division,).
Tsignal tmp(1_d);
for(size_type i=0;i<]_d;i++){
tmpli]=in[2+i+1];

s _data=tmp; //There is probably a better way, for instance vector.resize()
return (xthis);
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}

Signal::Signal(Tsample* from, size_type n_elements):s_data(n_elements){
for(int i=0;i<n_elements;i—~+)
s_data[i|=xfrom—-+;
}

Signal::Signal(){}

inline Tsample Signal::vector_product( Signal& b){
// length(a)<=length(b)
Tsample out=0.0;
Tsignal::iterator first1=begin();
Tsignal::iterator lastl=end():
Tsignal::iterator first2=b.begin();
while (firstl # lastl)
out +=xfirst1++ * *first2++;
return out;

inline Tsample Signal::vector _product( Signal& b,size_type start_a, size_type
end _a,
size_type start_b=0){
// length(a)<=length(b)
//cout<< "a= "< <xthis<<endl;
Tsample out=0.0;
size_type firstl=start_a;
size_type lastl=end_a;
size_type first2;
first2=start_b;
//cout<< b= "<<b<<endl;
while (firstl < lastl) {
//  cout<<vp:firstl, first?= "<<first1<<", "<<first2<<":
if (first1>s_data.size()) {cout<"errorfirsti>=a.size";exit(1);}
if (first2>b.size()) {cout< "error:first2>b.size";exit(1);}
//  cout<<s_dataffirstl]<<" x "<<bffirst2]<<"="<<s_dataffirst1] x b[first2];
out +=s_datal[first1+-+| * b[first2++];
/) cout<<" out="<<out<<endl;

}

return out;

}

ostream& operator<(ostream& out, Signal& in){
Tsignal::iterator first=in.begin();
Tsignal::iterator last=in.end();

if (first>last) cout<"error in cout"<endl;
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while(first#last)
out<xfirst—-+<" ¥ :
return out;
}

Signal& Signal::convolute(const Signal& h, const Signal& x, size_type offset=0){
size_type | _y=h.size()+x.size()-1-offset;
size_type | _h=h.size();
size type | _x=x.size()-offset;
Signal tmp(l_y,0.0);
s_data=tmp.s_data;
size _type t=0;
size_type k=0;
for(t=1_h-1;t<l_x;t+—+){
for(k=0; k<1_h;k+-+){
this—s_ data[t]+=h[k]* x[t-k-+offset];
} }
for( t=0;t<l_h-1;t++){ //FIRST PART OF s_data
for( k=0; k<l_h-(1_h-1-t);k++){
this—s_ data[t]+=h[k]*x|t-k+offset];
}

}
for( t=1_x;t<l_y;t++){ //LAST PART OF s_data

for( k=t+1_h-1_y; k<l_hk++){
this—s_ data[t]-+=h[k]*x[t-k+offset];
}
}

return xthis;

}

/***x***********************#***********************/

class W _ filter{
public:
Signal high;
Signal low;
W _filter(Signal a,Signal b){high=b;low=a;};
W_filter(){};
~W_filter(){};

¢

class WT{
vector<Signalx> ptable;

public:
size_type original _size()const{return L|L.size()-1];}
vector<size type> L;
size _type n_ scales; //number of detail scales in the decomposition
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WT(){n_scales=0;};
WT(size_type n){vector<Signal*> tmp(n+1);ptable=tmp;};
~WT();
Signal& cA()const{return x(ptable[ptable.size()-1]):}:
Signal& cD(size_type j)const{if (j< ptable.size()) return *(ptable[j-1]);
cout<"feil";};
void one_scale decomposition(W _filter& h, Signal &s, size_type
scale,Signal &approx);
void wavelet _transform(const W _filter& h, const Signal &w, size_type scales,
size_type q0);
friend ostream& operator<(ostream& out, const Signal& in);

£
ostreamé& operator< (ostreamé& out, const WT'& in){
cout< "Approximation" < endl; //To cout because out might be to a file
out<Kin.cA(); //If out is a file, we only want data to be written to it
cout<endl;
//for(size_type i=1; i<=in.n_ scales;i++){
for(size_type i=in.n_scales; i>1;i--){
cout<K "Details "<Kikendl;
out<in.cD(i);
cout<endl;
}
return out;
}
WT:~WT(){

cout<L"~WT" < endl,;
for(size _type i=0;i<ptable.size();i++){
delete ptableli];
}
}

void WT::wavelet _transform (const W_filter& h, const Signal &w, size_type
scales,
size__type q0=0) {
Signal approx;
Signal c¢_s(w.size()-q0); //Current signal to work on
for(size_type i=0;i<c_s.size();i++)c_sli]=w[i+q0];
vector<Signalx> init(scales+1);
ptable=init;
vector<size type> L _init(scales+2,33);
//approzimation + scales + original length
L=L_init;
L|L.size()-1]=w.size()-q0;
n_scales=scales;
for(size_type c_scale=0; c_scale<ptable.size()-1;c_scale++){  //current scale
ptable[c_scale]=new Signal;
ptable[c_scale]=&ptable[c_ scale]—
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downsample2(ptable[c_ scale]—+convolute(h.high,c_s));
L[L.size()-2-c_scale|=ptable[c_scale]—size(); P
c_s=approx.downsample2(approx.convolute(h.low,c_s));

ptable[ptable.size()-1]=new Signal;
(*ptable[ptable.size()-1])=c_s:

L[0]=ptable[ptable.size()-1]—size();
}

inline size type pow_i(double d, int i){
return static_cast<size_type>(pow(d,i));
}
double log2(double x){
return log(x)/log(2);
}
inline size _type qfactor(size_ type q0){
double out;
if (q0 > 1)
out=floor(log2(0.5+q0));
else if (q0==1||q0==0)
out=0;
return static_cast<size_type>(out);

}

//CLASS DECLARATION TIWT
class TIWT{

vector< vector<Signalx> > ptable;
size _type org_length; //Length of original signal
size_typex whichscales;

public:
void ti_ wavelet_transform(const W _ filter& h, const Signal & x,
size _type nscales);

void qfactor2j(size_type& q0, size_type& ql,size_type t,size_type

scale)const;
Signal& cD(size type shift,size_type scale)const;

Signal& cA(size _type shift)const;

TIWT(){};

~TIWT();

TIWT (int nscales, Tsamplex W size _type length);

vector<Signalx>x wt(const W _filter& h, const Signal &w, size_type scales,
size_type q0);

void tiwt_mf(Signal& y, const WT& s,const size_type *const whichscales,
size_type n_ scales);

friend ostream& operator<(ostream& out,const TIWT& in);
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double norm(size_ type nscales,const size_types w_scales);
b
//END CLASS TIWT DECLARATION//END CLASS TIWT DECLARATION

inline Signal& TIWT::cD(size_type shift, size_type scale)const{
if (scale==0) {cout<"TIWT::cD error. Scale=0 undefined"<endliexit(1);}
size _type scale_index=ptable[0].size()-scale;
//Approzimation + Detail levels -the scale we want=correct index
if (scale index>ptable[shift].size()) {
cout<<"TIWT::cD error. Too high index"<endl;
exit(1);
}

return (ptable[shift][scale_index]);

}

inline Signal& TIWT::cA(size_type shift)const{
if (shift>ptable.size()) {
cout<<"TIWT: :cA error. To high shift"<end];
exit(1);

return *(ptable[shift][0]);

}

void TIWT:tiwt_mf(Signal& out, const WT& s,
const size_typex const whichscales, size_type n_scales){
char tmp;
size _type ly=s.L[s.L.size()-1]-org_length;
size _type qO; size_type ql;
cout< "org_length="<«org_length<endl;

Signal y(s.L[s.L.size()-1],0.0); //Detector output initialised with length and data
//cout< < "y="< <y<<endl;
for(int t=0;t<ly;t++){
for(int j=1;j<n_scales;j++){
if (whichscales|j]){
qfactor2j(q0, q1, t, j);
size_type ls=this—cD(q0,j).size();
/3 cout< < "mf:q0="<<q0<<", ql="<<ql<<", scale="<<y;
cout<<" fra(ql),til(q1+1s-1) "<<qi<<","<<ql+ls-1<<endl;
//yft]+=s.cD(j).vector_product((xthis).cD(q0,5),0,s.cD(j).size()-1,q1);
y[t]+=this—cD(q0,j).vector _product(s.cD(j),0,
Is-1,q1);
}
}
}

cout<"Now approximations.."<lendl;
if (whichscales[0]£0){
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for(size _type t=0;t<ly;t++){
gfactor2j(q0, ql, t, n_scales);
size_type ls=this—cA(q0).size();
y[t]==this—cA(q0).vector _product(s.cA().0,1s-1,q1):
}
}

Tsample nrm_sq=pow(this—norm(n_scales, whichscales).2 );
for(size_type i=0:i<y.size();i+-+){
ylil=ylil/nrm_sq;

out=y;

}

void TIWT::qfactor2j(size _type& q0, size_type& ql.size_type t,size_type scale)
const{
gl=static_cast<int>(floor(t/pow_i(2.0,scale)));
q0=t-ql*pow _i(2.0,scale);

}

TIWT:TIWT();

TIWT::~TIWT(){
for(int j =0; j<ptable.size();j++){
for(int q0=0;q0<ptablelj].size();q0++){
delete ptable[j|[q0];
}
}
}

ostream& operator<(ostream& out, const TIWT& in){

for(size_type q0=0;q0<in.ptable.size();q0++){
outk"Shift "<« q0<endl;
out<"W.cA ("« q0«")="«in.cA(q0)<endl;
for(size_type j=in.ptable[0].size()-1;j>in.ptable[0].size()-in.ptable[q0].size();j--){
out<"W. D (" q0K" , "KjK") ="«Kin.cD(q0,j)<endl;
}
}

return out;

}

vector<Signalx>% TIWT::wt(const W _filter& h, const Signal &w, size_type scales,
size_type q0=0){
Signal approx;
Signal ¢_s(w.size()+q0,0.0); //Current signal to work on- to +, 0.0
for(size _type i=0;i<w.size();i++)c_s[i+q0]=wl[il;

vector<Signalx>% peker;
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peker = new vector<Signal«> (scales+1);

Signal* ptmp;

for(size_type c_scale=peker—size()-1; c_scale>1;c_scale--){ //current scale
ptmp = new Signal;
xptmp=( ptmp—

downsample2( ptmp—sconvolute(h.high.c_s)) ):

(xpeker)[c_scale]=ptmp:
//cout< < "wt:scale= "<<c_scale<<" ¢c_s= "<<c_s<<endl;
¢_s=approx.downsample2(approx.convolute(h.low.c_s)):

}

//cout<< "wt: ¢_s= "<<c_s<<endl;

ptmp=new Signal;

xptmp=c_s;

(xpeker)[0]=ptmp;

//for(int i =0;i< (xpeker).size();i++) cout<<"— "< <x ((*peker)[i])< < endl;
return peker;

}

void TIWT::ti_wavelet _transform(const W _filter& h,const Signal & x,
size _type nscales){

char tmpc;
ptable=vector<vector<Signal*> > (pow_i(2.0,nscales));
vector<Signal*>x* peker; //pointer to wavelet transformation

org_length=x.size();

for(int q0=0;q0<pow_i(2.0,nscales);q0++){
//cout< < "q0="< < q0<<endl;
size_type qf= qfactor(q0);
cout<"Now transforming shift q0="<q0<endl;
ptable|q0]=vector<Signal>(nscales+1-qf); //details + approzimation - factor
peker=wt(h,x,nscales,q0); : //q0 is left shiftRIGHT!!!
if ('peker) coutk"error"<endl;

for(int j=0;j<nscales+1;j++){ //details

if (j<nscales-qf){
ptable[q0][j]=(xpeker)[j];
//cout<< "scala="<<nscales+1-j<<" ";
//cout< < "sptable["<< g0< < "J["< <j< < "]="< < xptable[q0][j]< <endl;
}
else {
//cout<< "delete "<<j<<endl;
delete (*peker)[j];
}
}
delete peker;
}
}
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double TIWT::norm(size_type nscales, const size_typex wscales){

Tsample norm_sq=0.0;
for(size_type j=1;j<nscales;j—=){
if (wscales[j]){
norm_gq-;-:this—)cD(O,j).vector_product(this—>cD([},j));

}

if (wscales|0]){
norm_sq-—=this—cA(0).vector_product(this—cA(0)):

}

return sqrt(norm _sq);

}

D.3.2 wdmf.C - Main program

#include"signalr.h"
#include<fstream.h>
#include<iostream.h>
//#include< stream.h>

void error(const charx const message_1,const char * const message_2=""){
cerr<message_ 1<’ '<message_2<end};
exit(1);

}

size_type file_size(const char * const filename){

ifstream file(filename);

if (Ifile){

error("error in opening" filename);
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}

double temp;
size__type 1=0;

while(file>temp){

) e
cout"f_s";
return i;

}

void matlab_wavelet( WT& wx, const charx const data_name,
const charx const L_name){

/x Writes the wavelet transform wz to disk in MATLAB’s format; i.e.
to the two files specified by data_name and L_name, which can be used
as [C L] as output by MATLAB’s wavedec. x/

ofstream tol(data_name); //Open output file for writing

if ('tol){
error("error in opening",data_name);

}

ofstream to2(L_ name); //Open output file for writing

if (to2){
error("error in opening",L name);

}

tol€wx;

for(size_type i =0;i<wx.L.size();i++){
to2<«wx.L[i]<" *;

}

}

Tsample maximum(const Signal& in, const size_type i_a, const size_type i_b,
size_type& i_max){

if ( (i_a>in.size())||(i_b>in.size()) ){
error("maximum: index overflow");

}
if( (i_a<0)||(i_b<0) ){
error("maximum: index underflow");

if( (i_b<i_a) ){
error("maximum: not a legal index range");

}

Tsample cand=inli_a];
i_max=}_a;
for(size _type i=i_a;i<i_ bii++){
if (in[i]>cand){
cand=inlil;
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i_max=i;
}
}

return cand;

}

void extract(vector<Tsample>& out_amp, vector<size type>& out_ind,
const Signal& in, const Tsample thresh, const size type width){
vector<size type> tmps;
vector< Tsample> tmpt;
out__amp=tmpt;
out_ind=tmps;
size typei_lower=0;
size _type ii=0;
Tsample current__highest=0.0;
size _type i=0;
while( i<in.size()-1-width){
//for the length of the signal-width do this

if (in[i]>thresh){ //Transient here
if (i<width){ //Preventing negative indices into mazimum
i_lower=0;
}
else{

i_lower=i-width;
}
if (in[i]>maximum(in,i_lower,i,ii)){
current _highest=inl[i]; //Largest so far
while( (i<in.size()-1-width)&&
(maximum(in, i, i+width, ii)>current _highest)) {

i=ii; //this is the index of the highest value so far
current_highest=in[i]; //Largest so far
}
out_amp.push_back(current_highest); //Store amplitude
out_ind.push_ back(i); //Store index
cout<L"i="<iKendl;
} //
i++;
} //transient
else
i++;

}
}

void ampest(const WT& wx, const TIWT& ws, const size_typex whichscales,
const vector<size_type>& index, vector<Tsample>& ahat){

size_type q0;size_type ql;
Tsample norm=0.0;
ahat=vector<Tsample> (index.size(),0.0);
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for(size _type i=0;i<indexsize();i++){//FOR ALL TIMES WITH TRANSIENT
size _type t=index|i];
for(size_type j=1;j<wx.n_scales;j+-+){
if (whichscales]j]){
coutk" (t,j)=0"<tK", "Kj<Kendl;
ws.qfactor2j(q0, ql, t, j);
size _type ls=ws.cD(q0,j).size();
ahat[i]+=ws.cD(q0,j).vector _product(wx.cD(j),0,
Is-1,q1);
norm-+=ws.cD(0.j).vector _product(ws.cD(0,j),0.
Is-1);
}

if (whichscales[0]){
ws.gfactor2j(q0, ql, t, wx.n_scales);
size_type ls=ws.cA(q0).size();
ahat[t]+=ws.cA(q0).vector _product(wx.cA(),0,s-1,q1);
norm+=ws.cA(wx.n_scales).vector _product(ws.cA(wx.n_scales),0,

Is-1);
}

} //end loop over t
for(size_type j=1;j<wx.n_scales;j++){
if (whichscales|j]){
size_type ls=ws.cD(0,j).size();
norm+=ws.cD(0,j).vector _product(ws.cD(0,j),0,ls-1);

}

}
if (whichscales|0]){
size _type ls=ws.cA(0).size();
norm-+=ws.cA(0).vector _product(ws.cA(0),0,ls-1);
}
for(size_type i=0;i<index.size();i++){ahat[i]=ahat[i] /norm;}
cout<< "norm="<norm<endl;

/x —- MAIN PROGRAM —- +/

int main(int arge, char* argv{]){

size_ type nscales=4; L
size_ type whichscales[]={0,0,0,0,1};
Tsample threshold=5;
size_type width=950; //Should be about half the length of the mf
if (arge#7){

error("Format: wdmf [w-filter] [source] [m-filter] [output][i]l[a] ");

}
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/% — Processing command line inputs — =/
size_type lwfilter=file _size(argv[1]); //Wavelet filter coefficients
ifstream wfilter(argv(1]):
if ('wfilter){
error("error in opening".argv[l]);

}

size _type Isource=file _size(argv[2]); //Source data
ifstream source(argv[2]);
if (Isource){
error("error in opening",argv(2]);
}
coutK "source file length is "<Isource<lendl;
doublex source_data = new double|lsource]; //allocate memory
if ('source data){
error("Error in allocating array");

}

size_type Imfilter=file _size(argv[3]); //Matched filter impulse response
ifstream mfilter(argv(3]);
if ('mfilter){

error("error in opening",argv(3]);
t}:louble* mfilter data = new double[lmfilter]; //allocate memory
if ('mfilter _data){

error("Error in allocating array");

}

ofstream outind(argv[5]); //Open output file for writing
if (‘outind){

error("error in opening",argv[5]);
}
ofstream outamp(argv|6]); //Open output file for writing
if (‘outamp){

error("error in opening",argv[6]);

}

ofstream out(argv(4]); //Open output file for writing
if (fout){
error("error in opening",argv[4]);

}

size_type i=0;

/% — Read input data - */

while(source>>source_datali]){ //Source data
i++;

}

Signal x(source_data,lsource);

delete[] source_ data;
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i=0;
while(mfilter>>mfilter _datali]){ //Matched filter impulse response
i++;

}

Signal h_ mf(mfilter_data,lmfilter):

delete|] mfilter _data;

i=0; //Create wavelet filter

size _type filterlength;

double* tmp=new double[lwfilter|;

while(wfilter>tmpli]){ //The IN2-norm is 1 for all filters, so coeffs.<=1.
if (tmpli]==66.6) {filterlength=i;} //66.6 separates lowpass and highpass
1+

}

Signal h_0(tmp,filterlength);

Signal h_1(tmp-filterlength—+1 filterlength);

W _filter h(h_0,h_1);

delete]] tmp;

/x~ Compute wavelet transforms and filter - x/
coutk"Taking WT of input signal..."<endl;
WT wx;
wx.wavelet _transform(h,x,nscales);
cout<"Taking TIWT of filter..."<endl;
TIWT tiwh _mf;
tiwh_mf.ti_wavelet _transform(h,h_mf nscales);

cout< "Matched filtering..."<endl;
Signal detector;
tiwh _mf.tiwt mf(detector,wx,whichscales,nscales);

/% — Clean up and write to disk - x/
cout<"Writing detector to disk..."<end];
out<detector;

//matlab_ wavelet(wz, argu[5],argu[6]);
//cout< <tiwh_ mf;

/* — Estimate amplitude — x/
vector<size type> index;
vector<Tsample> ampdet;
cout< "Extracting. . ."<endl;
extract(ampdet, index, detector,threshold,width);

/% — write to disk — x/
coutK"Writing exctract to disk..."<endl;
cout"
index.size() ="<index.size()<endl« "ampdet . size () ="<ampdet.size() <endl;
if ( index.size()#ampdet.size() ){
coutK"detect: index and amplitude are of incompatible sizes"<endl;



}

for (i=0;i<index.size();i++){
outamp<ampdet[i]<" ";
outind<index[i]<" ";

}
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