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Abstract: Coregistration errors in multi- and hyperspectral imaging sensors 
arise when the spatial sensitivity pattern differs between bands or when the 
spectral response varies across the field of view, potentially leading to large 
errors in the recorded image data. In imaging spectrometers, spectral and 
spatial offset errors are customarily specified as “smile” and “keystone” 
distortions. However these characteristics do not account for errors resulting 
from variations in point spread function shape or spectral bandwidth. This 
paper proposes improved metrics for coregistration error both in the spatial 
and spectral dimensions. The metrics are essentially the integrated 
difference between point spread functions. It is shown that these metrics 
correspond to an upper bound on the error in image data. The metrics 
enable estimation of actual data errors for a given image, and can be used as 
part of the merit function in optical design optimization, as well as for 
benchmarking of spectral image sensors. 
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1. Introduction 

Multi- and hyperspectral imaging records spectral characteristics of the incoming light within 
each image pixel. Through image processing, a variety of information products can be 
extracted. The processing of spectral images generally assumes that the image sensing process 
provides full spatial and spectral coregistration. In other words, it is assumed that for any 
given image pixel, all spectral bands measure light from the same area, and also that for any 
given band, all pixels have the same set of spectral responses. It is well known that even small 
coregistration errors can lead to large errors in the measured pixel spectrum [1–3]. Therefore, 
spatial and spectral coregistration are critical factors for the quality of a spectral imaging 
sensor. Unfortunately, perfect coregistration is not possible in a practical optical design. 
Coregistration errors can be introduced by aberrations, distortions and diffraction. 
Coregistration performance may also depend on scanning schemes and data preprocessing. 

A widely discussed type of coregistration error is the “keystone” distortion in imaging 
spectrometers, where wavelength-dependent magnification leads to spatial offset between 
pixel centers in different bands. Spatial coregistration errors between bands may also have the 
form of differences in the size and shape of the sensitivity distributions in the scene, as 
illustrated in Fig. 1. In the spectral dimension, spatially varying band offset error is known as 
“smile”. Coregistration error can also result from differences in the width or shape of the 
spectral response. A separate, rarely discussed form of coregistration error can arise within a 
single band and pixel if the spatial and spectral responses are interdependent. 

Spectral and spatial coregistration has been the topic of numerous studies [1–14]. For 
imaging spectrometers, the offset-type coregistration error due to keystone and smile 
distortions is usually expressed in percent of the sampling interval. However, there appears to 
be no commonly accepted way to express differences in the size or shape of the spatial or 
spectral sensitivity distributions [3,5,9]. Also, there appears to be no common way to compare 
the effect of different types of coregistration errors, or to express their combined effect. It is 
thus desirable to find a common metric which can be used to characterize all forms of 
coregistration error, in a way that reflects the effect of the error on the measured signal. 

A metric for spatial coregistration error was proposed in Ref. [13] based on analysis of 
particular cases of spatial coregistration error, and also put forward in Ref. [14] at the same 
conference. Here it is shown that this kind of metric can give a general upper bound on the 
signal errors resulting from coregistration errors, both spatial and spectral. After an 
introduction of basic terminology and concepts, spatial coregistration error is analyzed in 
detail in Section 2. The same methodology is then applied to spectral coregistration errors in 
Section 3, as well as coregistration errors due to spectral-spatial interdependence in Section 4. 
The treatment applies to all types of spectral image sensors. For pure keystone and smile  
 

 

Fig. 1. Conceptual illustration of spatial coregistration error. Black lines represent nominal 
image pixel boundaries. The red and yellow lines represent the actual spatial responses for two 
bands in one image pixel. Coregistration errors result from differences in the position, size or 
shape of the spatial response, formulated in this paper in terms of the “sampling point spread 
function” (SPSF). 
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error, the metric value approximates the conventional “percent of a pixel” measure under 
reasonable assumptions. The metrics discussed here have potential to become a universal way 
of specifying the coregistration performance of any spectral imaging sensor. 

2. Analysis of spatial coregistration errors 

2.1 Preliminaries and definitions 

First, it can be noted that there is a lack of established terminology to fully describe the 
concepts that are encountered in the analysis of coregistration errors. The terminology used in 
this paper is as follows: The treatment considers a generic spectral image sensor, which 
incorporates optics, photodetector elements, data preprocessing, scanning and possibly other 
parts. The scene is the landscape or object to be imaged. Details of the scene physics are not 
considered, and the term scene is taken as equivalent to the spectral and spatial distribution of 
light seen by the sensor (excitance or radiance for scenes at finite and infinite distance, 
respectively). The overall function of the sensor is to receive light input from the scene and 
produce a spectral image as its output. The sensor has a field of view composed of one or 
more sensor pixels. The spectral image data consists of image pixels. Each image pixel 
consists of samples of the light input in a set of spectral bands. In some cases, such as an 
imaging spectrometer, an image pixel corresponds to a particular sensor pixel. In other cases, 
such as a filter wheel camera on a moving platform, a preprocessing step is needed to 
compose image pixels from multiple sensor pixels. A region in the scene or image 
corresponding to the nominal “footprint” of an image pixel is referred to as a pixel, but the 
meaning should be clear from context. The sample values output by the sensor are referred to 
as signals, and are assumed to be proportional to the light input. The proportionality ratio of 
signal output to light input is the responsivity. Sometimes, redundant terminology such as 
“light samples” is used, hopefully assisting the reader. 

In the spectral dimension, the sample values represent a weighted average over the 
spectrum of light according to a weighting function which ideally is common to all samples in 
a given band. This spectral response function (SRF) is further discussed in section 3. A more 
general description of the spatial and spectral sampling is given in section 4. In this first part 
of the paper, I consider only the spatial sampling of the sensor. 

In the spatial dimensions, each sample value is ideally an integral of the light input over 
the nominal pixel area in the scene. In practice, the spatial distribution of responsivity usually 
has the form of a peak at the pixel location, but with some overlap with the neighboring image 
pixels as illustrated in Fig. 2 a). Conventionally, the spatial resolution of imaging optics is 
described by the point spread function (PSF). However, the PSF is usually understood to be a 
shift-invariant impulse response function. The spatial sampling into discrete image pixels is 
sometimes described in the literature by a “system point spread function” which characterizes 
the overall spatial performance, including the sampling by the photodetector elements. Often, 
characterization of imaging systems assumes that all pixels exhibit identical spatial sampling 
properties. To characterize coregistration, however, it is necessary to consider the detailed 
spatial and spectral characteristics of each sample in the image. 

Here, the spatial distribution of responsivity corresponding to an individual light sample 
will be termed a sampling point spread function (SPSF). Consider a single sample in the 
image, in a band with index i. Let the SPSF be a dimensionless function ( , )if x y  proportional 
to the sensor responsivity at the point (x,y) for this sample, where x and y are image 
coordinates in pixel units. Thus, for convenience of notation, the pixel boundaries are 
assumed to form a rectangular grid. Furthermore, let the SPSF be scaled so that it satisfies 

 
,

( , ) 1i

x y

f x y dxdy   (1) 

where the integral is over the entire image plane. Thus, the SPSF ( , )if x y  is a distribution 
function representing the combined effects of the photodetector size, the PSF of the optics, 
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and any other form of spatial blurring. The blurring ensures that the SPSF will be smoothly 
varying with position in the image. To describe spatial coregistration, it is only necessary to 
consider one image pixel at a time, therefore a pixel index is omitted in the notation here. 

Note that the SPSF makes no reference to the internal details of the spectral image sensor, 
it only describes a relation between the light input and the image data output. The radiometric 
characteristics of the sensor are not part of the SPSF due to the normalization (1). However, it 
must be assumed that the sensor's radiometric response is linear, otherwise the SPSF would 
depend on the light input. 

An ideal sensor has no coregistration errors, and the SPSFs of light samples from different 
bands in the same image pixel will be identical. In practice, the SPSFs of different bands in a 
given pixel will differ slightly from each other in position and shape due to sensor 
imperfections, as illustrated in Fig. 1. These differences between SPSFs contain the full 
information about spatial coregistration errors between bands in the image pixel under 
consideration. The main point of this paper is to propose a simple way to characterize the 
coregistration performance based on the set of SPSFs for all bands and all pixels. 

2.2 Signal error for a single image pixel with two bands 

The effect of coregistration errors depends on the properties of the scene. If the scene is 
uniform then such errors will have no effect on the recorded signal. Thus, coregistration errors 
will not affect an image pixel that is “pure” in the sense that the light input is constant within 
the extent of its SPSFs (one for each band). To characterize coregistration error, it is desirable 
to obtain an upper bound on its effect in the image. We must then find a scene that causes the 
largest effect on the signal. Clearly, this worst case must occur for a “mixed” pixel, containing 
different scene materials within the SPSF. 

Consider the simplest possible case of a single image pixel and two spectral bands i and j. 
Assume that the scene consists of two materials A and B, with a sharp boundary between 
them. Ideally, the measured spectrum will be a weighted sum of the spectra of materials A 
and B. The weight of material A in band i is 

 , ( , )A i i

A

w f x y dxdy   (2) 

where the integral is over the scene region containing material A. By Eq. (1), the weight of 
material B is 1 Aw . The ideal signal in band i is then 

 , , , ,(1 )i A i A i A i B iS w S w S     

where SA,i and SB,i are the signal levels in band i for pure pixels of materials A and B. (The 
treatment here is independent of the measurement unit for the signals, since it is based on the 
normalized responsivity distribution.) Thus, the ratio of contributions from materials A and B 
in band i is , ,/ (1 )A i A iw w . 

Assume that the SPSF of band j has a different shape, or an offset in position, due to some 
coregistration error. Then the weight of material A will be different in band j by an amount 

  ( , ) ( , )j i

A

w f x y f x y dxdy    (3) 

which will be termed the weighting error. The same amount of change occurs in the opposite 
direction for material B. Note that Eq. (1) ensures that the weighting error satisfies 

 0 1Aw w     (4) 

so that the total weight can never exceed 1. The signal in band j becomes 

 , , , , , , , ,( ) (1 ) ( )( )j A i A j A i B j B j A i A j B jS w w S w w S S w w S S              
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so that in band j, the ratio of contributions from materials A and B is 

, ,( ) / (1 )A i A iw w w w     . Thus, for 0w  , the relative weighting of the two materials is 

different in the two bands. Then the measured spectrum cannot be formed by any linear 
mixing of the spectra of materials A and B within the image pixel, as pointed out in Ref. [1]. 

The effect of coregistration error can be expressed as the change of the signal in band j 
due to the coregistration error: 

 , ,( )j A j B jS w S S     (5) 

which will be termed the signal error. Note that there is no real asymmetry between bands i 
and j in this treatment, but Eq. (5) expresses the effect of coregistration error in terms of an 
equivalent error in the signal value for band j. 

2.3 Basic metric for coregistration error between two bands in a single image pixel 

For the case of two bands and two scene materials, the maximum signal error occurs when the 
weighting error (3) has its largest possible value. A similar error model could be established 
for a scene with more than two materials. However, the maximum error for a multi-material 
scene could not be any larger than that given by Eq. (5) when the two materials are chosen so 
that one is bright and one is dark in the sense that their output signals are at opposite ends of 
the dynamic range of the sensor. Therefore, the case of two scene materials is sufficient to 
represent the largest possible signal error. 

 

Fig. 2. Illustration of two different cases of coregistration error. a) Sampling point spread 
function (SPSF) for one band, taken to be a Gaussian centered within the nominal pixel area 
indicated by black lines. b) SPSF for another band exhibiting coregistration error in the form of 
a 0.25 pixel shift with respect to the SPSF in a). c) An SPSF with a different coregistration 
error where the offset is the same as in b) and the peak is narrower. In d) and e), the SPSF in a) 
is plotted together with that of b) and c) respectively. In both cases, the boundary line where 
the SPSFs intersect defines the scene geometries which are most sensitive to the coregistration 
error, as discussed in the text. The graphs in f) and g) show cross sections of d) and e) along a 
line through the two peaks. Shading indicates the volume between SPSFs. 
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The worst-case spatial arrangement of a two-material scene can be found by a geometric 
argumentation based on SPSFs: Note first that the scene can be divided into two parts so that 
in one part of the scene i jf f  and elsewhere i jf f . The boundary between these parts at 

the SPSF intersection i jf f  will be a smooth line, since the SPSFs will be smooth. The 

division of the scene is illustrated by the examples in Fig. 2 for two specific cases. The largest 
weighting error occurs for a scene in which the line i jf f  coincides with the boundary 

between the two scene materials. For example, assume that material A is present wherever 

i jf f  and material B is present wherever i jf f . Then w  has its largest possible value 

maxw  and, as is clear from the figure, we have found the scene geometry that produces the 
largest signal error. 

The maximum weighting error maxw  can then be calculated by integrating the over the 
region filled with one of the materials as in Eq. (3). We can observe, however, that this worst-
case weighting error can also be found directly from the SPSF itself without considering a 
particular scene geometry: Using the notation above, we have 

 , , , , , , , ,1A i B i A j B j A i A j B j B iw w w w w w w w          

Inserting for the weights and using the linearity of the integration operation, we obtain 

    ( , ) ( , ) ( , ) ( , )i j j i

A B

f x y f x y dxdy f x y f x y dxdy      

showing that the volume between the SPSFs on one side of the boundary i jf f  is matched 

by an equal volume on the other side. This is illustrated by the cross sections in the bottom of 
Fig. 2. With the worst-case arrangement of scene materials, both of these volumes are equal to 
the worst-case weighting error maxw . The total volume between the SPSFs is found by 
integrating the absolute difference between them, without reference to a particular scene 
geometry. Therefore, maxw  can be found directly from the SPSFs by 

 max ,

,

1
( , ) ( , )

2

def

j i s ij

x y

w f x y f x y dxdy      (6) 

In principle, the integral is taken over the entire image plane, but in practice, the main 
contribution comes from an area surrounding the pixel under consideration. This expression 
can be used as a metric for spatial coregistration error in the pair of bands i and j, denoted 
here by the symbol ,s ij . The metric (6) does not express signal error directly, but has the 

useful property of being determined by the sensor alone, independent of the scene. 
For fully coregistered bands, , 0s ij  . For the case of SPSFs with no overlap at all, we 

have , 1s ij   independent of the separation between the SPSFs in the image plane. If 

, 1s ij  and the SPSF width is comparable to the spatial sampling interval then obviously a 

better coregistration can be obtained by reindexing the data so that pixel spectra are composed 
of overlapping SPSFs. Thus, in most cases we will have , 0.5s ij  . Higher values of the 

coregistration metric are in principle possible in a system where the SPSF width is much 
smaller than the spatial sampling interval. This is not likely to be a concern in practice, 
however, since an improvement in coregistration performance could be achieved simply by 
defocusing to make the SPSFs overlap. 

In [14], spatial coregistration was expressed as ,1 s ij , a figure of merit that increases 

with performance. Here, I prefer to express the error ,s ij , which relates more directly to the 

physical imperfections and to the signal error. 
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2.4 Aggregate coregistration metric for multiple bands and multiple pixels 

For most practical uses, a metric for coregistration error must be an aggregate value over 
multiple bands and/or multiple pixels. It is reasonable to assume that a given amount of 
coregistration error between two bands is equally bad regardless of which image pixel or 
which pair of bands the error appears in. The basic metric ,s ij  varies linearly with the signal 

error, so an aggregate metric can be formed by averaging over all band pairs in each image 
pixel, and then averaging over all pixels. For B bands and P pixels, the average is 

 
1

1

( 1)

P

s ijp
p i j iPB B

 
 


   (7) 

since , 0s ii  . Here ,s ijp  is the value of the basic metric (6) for bands i and j in image pixel 

p. In cases where each image pixel corresponds to a single sensor pixel, P is the number of 
sensor pixels. However, when image pixels are composed from multiple sensor pixels, the 
averaging over pixel index in Eq. (7) must be understood to include an average over all 
possible preprocessing cases. When it is known that the signal to noise level will vary 
between bands, it may be appropriate to include a weighting factor in the averaging over band 
index, for example based on the information rate in each band [15]. 

The average metric s  gives a measure of the overall coregistration error, but no upper 
limit. The largest errors tend to appear at the ends of the spectral range or at the edges of the 
field of view, and may then be significantly larger than the mean error. Thus, it may also be 
desirable to know the largest coregistration error between any pair of bands in any image 
pixel: 
 ,max ,

, ,
maxs s ijp
i j p

    

For reporting of sensor performance to the data user, it would be informative give both the 
average coregistration error s  and the maximum error ,maxs . This pair of values is suggested 

here as a possible standard for reporting of spatial coregistration performance for spectral 
imagers. 

In some cases, a more detailed specification of coregistration may be of interest. If, for 
example, a subset of sensor pixels exhibits significantly better coregistration, then their 
performance can be reported separately so that the user can select higher quality data when 
needed. Similarly, the coregistration error can be reported separately for each band as an 
average of its coregistration with the other bands: 

 , ,
1

1
.

( 1)

P

s i s ijp
j i pP B

 
 


   (8) 

For many sensor types, such as the imaging spectrometer, the design aims to provide 
coregistration in the sensor hardware (as opposed to software preprocessing of raw data). 
Design of such a spectral imaging sensor faces a compromise between pixel count and 
coregistration. By binning the image data to form an image with fewer pixels, coregistration 
error will tend to be reduced by a factor equal to the binning factor. The sensor pixel count P 
and the average spatial coregistration error s  can therefore be expressed in a combined 

performance metric which may be termed “limiting number of pixels” limP : 

 lim .
s

P
P


   

This is a figure of merit which is invariant with binning of the image, and which also 
reflects the increased utility of a sensor with a larger number of pixels in its field of view. 
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Fig. 3. Weighting change resulting from an offset-type coregistration error. The graphs 
illustrate the case of two SPSFs offset by a small amount at a pixel center x0 = 0. The SPSFs 
are projected onto the direction of the offset, as discussed in the text. The maximum weighting 
error occurs for the case of a boundary in the scene at x = 0. The weighting error then 
corresponds to the area of the shaded rectangle. From the figure, it is clear that this is the same 
as the area between the SPSFs on one side of their intersection. This is the value of the 
coregistration metric (6) and approximates the conventional keystone measure, as discussed in 
the text. 

2.5 Equivalence with conventional measure of keystone error 

Consider “keystone” coregistration error, where there is an offset between the SPSFs of two 
bands, often specified as a fraction of the pixel sampling interval. This form of error can be 
analyzed in one dimension by projecting the SPSF onto a line in the direction of the offset. 
Assume, without loss of generality, that the two bands are offset along the x-axis. Then the 
projected SPSF is obtained by 

 ( ) ( , )f x f x y dy




    

This projected SPSF can be seen as a line spread function for a line at the pixel center. Let 
the width of the projected SPSF be ∆x, according to some reasonable measure such as full 
width at half maximum (FWHM). Then the peak amplitude of ( )f x  will be on the order of 

1/∆x since the integral of ( )f x  is 1. 
For a small offset, the largest signal error occurs when a scene boundary passes through 

the SPSF peak, as shown Fig. 2 d). The resulting worst-case weighting error is the part of the 
SPSF volume moved across the boundary by the offset, as illustrated in Fig. 3. If the offset is 
a fraction q of a pixel, and the pixel center and scene boundary is at x0, then 

 max 0( ) /sw qf x q x      (9) 

Thus, the coregistration metric (6) expresses keystone error as a fraction of the SPSF 
width, approximately. 

The width of the SPSF is normally comparable to one pixel, in the sense that most of the 
volume under the SPSF falls within the nominal pixel boundary. (This assumes that the sensor 
design is balanced so that blurring effects are matched to the pixel pitch of the image.) Then 
to satisfy Eq. (1), the peak height of the SPSF is 0( ) 1f x   and from Eq. (9) we have 

 0( )s qf x q     

This analytical result has been compared to a numerical simulation of coregistration 
between two Gaussian SPSFs, both with FWHM of 1 pixel, at varying offset q. In this case, 
the metric slightly underestimates the offset, but remains within 80% of the correct value up 
to an offset of q=0.8 pixel. Thus, under reasonable assumptions, the spatial coregistration 
error metric s  approximates the offset q and can be interpreted as “fraction of a pixel”, in 
accordance with the customary way of specifying keystone error. 
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2.6 Effect of coregistration error on image processing 

Coregistration error may have a significant impact on image processing. For example, 
signature-specific detection of a small target may fail because the target spectrum is distorted 
by background signals in a way that is inconsistent with a linear mixing assumption. 
Coregistration is also critical for any form of parameter estimation, such as indices calculated 
from specific band ratios, or abundance estimation based on the linear mixing model. Image 
processing may be particularly sensitive to coregistration error when the scene exhibits strong 
spatial variation, or when the processing result must be obtained with good spatial resolution. 

Many processing algorithms assume that the distribution of pixel spectra falls within a 
subspace of the “spectral space” defined by the multivariate image data. Coregistration error 
can lead to large deviations from this assumption. For illustration, consider the simple case of 
two bands and two scene materials discussed above. Ideally, all image spectra are distributed 
along a line joining the two endmember spectra of material A and B, as illustrated in Fig. 4. 
Even for a perfect sensor, the distribution of data is blurred by noise, illustrated in Fig. 4 by 
the blue region. However, coregistration errors can easily have a much larger effect than the 
noise. For a randomly varying scene, the weighting difference w  between the bands will 
tend to vary randomly from pixel to pixel. This variation tends to broaden the linear 
distribution into a two-dimensional region whose full width is given by ,maxs . This is 

illustrated in the figure for ,max 0.15s  , comparable to the specified keystone error for some 

practical sensors. The red region is the signal variation resulting from a weighting error w  
varying randomly in the range ±0.15. When the contrast between the scene materials spans a 
large fraction of the signal range, as in the figure, then the effect of coregistration error easily 
dominates over the noise, leading to a large deviation from the assumption of linear mixing. 
For an image containing a large fraction of relatively homogeneous areas, the overall 
broadening of the spectral distribution may tend to be less than suggested by the figure. Still, 
image data from boundaries and pixel-size features in the scene would tend to fall outside the 
true distribution due to coregistration errors. 

 

Fig. 4. Effect of coregistration error on the distribution of image pixels in spectral space for the 
case of two spectral bands i and j. The scene is assumed to consist of two randomly distributed 
materials A and B with spectra SA and SB respectively. In principle, all pixel spectra will fall on 
a line between the two endmember spectra. Even for an ideal sensor, the distribution is blurred 
by noise, as illustrated by the blue region, which represents a noise level of 1.5% of full scale. 
The red region shows the much larger broadening that may result from a coregistration error 

varying up to ,max 0.15s  , equivalent to 15% keystone. This illustrates the potentially 

serious effect of coregistration error on image processing. 
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In Fig. 4, distribution broadening due to coregistration error spans a region which is larger 
than the noise by a factor on the order of 10 for the case of two bands. If another band is 
added, distribution broadening will occur in the new dimension as well. Thus, in the case of a 
large number of bands, the distribution broadening due to coregistration errors may become 
very large compared to the broadening by noise. It can be noted, though, that in practice the 
SPSFs of neighboring bands may be correlated in shape, since optical distortions tend to 
evolve slowly with wavelength. Therefore, the effect of coregistration error on the signal 
distribution may be less serious than suggested by extrapolation from Fig. 4 into a higher 
dimensionality. 

2.6 Estimating signal errors using the coregistration metric 

The data user may be interested in an estimate of the effect of coregistration error. The signal 
error can be seen as an uncontrolled and band-dependent signal contamination from some 
neighboring constituent of the scene. Given an image and a value for the coregistration 
metric, it is possible to estimate the magnitude of signal errors in the image: First, it is 
necessary to calculate a relevant measure of image contrast such as the average difference 
between nearest neighbor image pixels. Let this contrast measure in band i be i . The 
coregistration metric (8) can then be used to find an estimate of the signal error in band i 

 ,i s i iS     (10) 

The estimated signal error can potentially be used in image processing. For example, if a 
target detection threshold is exceeded by a pixel spectrum then it may be of interest to check 
whether the exceedance can be explained by coregistration error. 

 
Fig. 5. Spectral coregistration error. The peaks (blue) represent the spectral response functions 
(SRF) in a given band, for two image pixels with a spectral coregistration error between them. 
The resulting signal error is largest for an input spectrum with steps at the wavelengths where 
the SRFs intersect (black). 

3. Metric for spectral coregistration errors between image pixels 

Now consider the analogous problem of spectral coregistration error. Then we can consider a 
single band, hence the following notation does not include a band index. Let the spectral 
response function (SRF) in the band for an image pixel with index p be ( )pg  . This function 

describes the variation of responsivity with wavelength  , normalized so that 

 
0

( ) 1.pg d 


   

A metric of spectral coregistration between two pixels p and q in the band under 
consideration can be obtained from the respective SRFs by 
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0

1
( ) ( )

2

def

pq p qg g d   


   (11) 

in analogy with Eq. (6). In analogy with the worst-case spatial arrangement of two materials 
described in Sec. 2.3, the metric , pq  represents the error that results from a square-wave 

shaped spectrum where the steps occur at the wavelengths where the two SRFs intersect. This 
shape is illustrated in Fig. 5. Then Eq. (11) gives the error in the weighting of the “high” and 
“low” spectrum values. The largest error occurs when the spectrum spans the full dynamic 
range. 

While material boundaries and shadows are common in the spatial domain, analogous 
step-like rearrangements do not occur arbitrarily in the spectral domain. Therefore Eq. (11) 
will tend to overestimate the signal error, particularly for a smooth spectrum recorded by a 
hyperspectral imager. There are nevertheless important physical effects that lead to steep 
slopes in spectra, notably the “chlorophyll edge” and atmospheric absorption lines, which 
have been shown to cause large signal errors [1,4,6]. In analogy with the spatial metric (6), 
the spectral coregistration metric (11) can give an upper bound on these errors. 

In the case of a spectral offset error, or “smile” distortion, the metric (11) expresses the 
offset approximately as a fraction of the bandwidth, in direct analogy with Eq. (9). Thus, if 
the bandwidth is approximately equal to the spectral sampling interval then the metric 
corresponds to the conventional way of specifying smile, while also capturing coregistration 
errors due to differences in the shape or width of the SRF. 

Note that the SRF is defined to be proportional to responsivity, which conventionally 
characterizes response per unit power of the incoming light. Alternatively, the responsivity 
can be defined as response per photon. (This is arguably the preferred definition, since the 
fundamental measured quantity is a photon count.) Depending on the definition used, 
different values for , pq  will result. However, this difference will normally not be large for 

multi- and hyperspectral imagers, where the relative width of each band tends to be small. 
Aggregate metrics for spectral coregistration can be defined and used in analogy with the 

spatial metrics in Sec. 2.4. The average and max operation are then taken over all pixel pairs. 
Average values can be given over all bands and for each band separately, in analogy with Eqs. 
(7) and (8). For a given spectral image, actual signal errors can be estimated in analogy with 
Eq. (10) by using the aggregate metrics and an estimate of spectral contrast such as the mean 
difference between neighboring bands. 

4. Metric for spectral-spatial interdependence error for a single light sample 

A separate and rarely discussed case of coregistration error occurs if the spectral and spatial 
responsivity distributions are interdependent. For a single light sample, the spatial distribution 
of responsivity, described above by the SPSF, is usually assumed to be completely 
independent of the spectral responsivity distribution, described by the SRF. For many image 
sensors, this assumption holds to such a high degree that it is normally not made explicit in 
the literature. However, some spectral image sensor concepts have potential to introduce 
spectral-spatial interdependencies in the sampling process, which can lead to signal errors. 

Consider the sampling of light in a single band i in a single image pixel p. The response 
distribution in xy  space for this sample can be described by a spectral-spatial distribution 

function ( , , )ipF x y   whose integral over xy  space is 1. Strictly, the SPSF ( , )ipf x y  and 

SRF ( )ipg   can only be defined as averages, obtained by integration of ( , , )ipF x y   over the 

spectral axis or the image plane respectively: 

 
0 ,

( , ) ( , , )   and  ( ) ( , , )ip ip ip ip

x y

f x y F x y d g F x y dxdy   


    (12) 
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Ideally, the spectral and spatial responsivity distributions are independent. Then the sensor 
response distribution in xy  space is separable, ie ( , , ) ( , ) ( )ip ip ipF x y f x y g  , in full 

analogy with the criterion for independence of continuous distributions in statistics. In the 
interpretation and exploitation of the image data, it must be assumed that the sensor behaves 
in this ideal way. However, if the SPSF and SRF are interdependent then the spectral response 
varies within the extent of the SPSF, and/or the spatial response varies within the band. In that 
case, the signal is influenced by the spatial arrangement of scene materials in a non-ideal way. 

 

Fig. 6. Illustration of interdependence of the spectral and spatial responsivity distributions. For 
simplicity, only one spatial dimension is considered. Assume a sensor with a spectral-spatial 
responsivity distribution which is uniform within the blue parallelogram, and zero elsewhere in 
the x-λ plane. The resulting SPSF f (x) and SRF g (x) are shown in the insets. The scene 
consists of a monochromatic point source indicated by a red dot. In one case, the source is at 
x1. Then the source will produce a larger output signal than expected from the SRF. If instead 
the source is at x2, the signal will be zero. Thus, the spectral-spatial interdependence can cause 
signal errors. 

As an example, consider the widely used imaging spectrometer, with a slit defining the 
field of view, and a grating or prism for spectral dispersion. Since the dispersion is in the 
direction across the slit, the spectral response will change from one side of the slit to the other, 
causing interdependence between the spectral and spatial responsivities for a single sample. 
An idealized imaging spectrometer case is illustrated in Fig. 6, where only the x and λ 
dimensions are considered. The x direction is assumed to be across the slit. This is normally 
also the scan direction, but here no scan movement is considered. Then the spectral-spatial 
responsivity distribution has form of a parallelogram, as illustrated in the figure. The 
responsivity is assumed to be constant for positions and wavelengths within the 
parallelogram, and zero outside. The SPSF and SRF, as defined by Eq. (12), are shown in the 
insets. The sensor records a signal from a pixel area defined by the extent of the SPSF. 
Consider a scene consisting of a monochromatic point source with wavelength λ0, located at 
different points within the pixel. In the case where the source is located at x1, it is recorded 
with a responsivity that is higher than 0( )g  , leading to a signal value that is too high. If 
instead the source is located at x2, the signal is zero. Thus, in this extreme case, spectral-
spatial interdependence causes large errors. 

In Fig. 6, it can also be seen that the signal error would depend on the wavelength of the 
point source. For an extended source in the form of a mixed pixel, the spectral-spatial 
interdependence would lead to a situation where the weighting of a scene material depends 
not only on its spatial distribution but also on its spectral properties, which is clearly non-
ideal. In practice, optical blur or scan motion may make the errors significantly smaller than 
suggested by Fig. 6. Nonetheless, a residual error is likely to exist in many systems. 

It is possible to define a worst-case signal error due to spectral-spatial interdependence. 
Consider first a light input which is spectrally and spatially uniform and produces a signal 
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value a. Then consider a case where the light input is changed in some part of xy  space to 
another constant level corresponding to a signal value b. Such an input is of course fictitious, 
but analogous to the mixed pixel case in section 2. Consider a sample recorded in a pixel and 
band located in xy  space such that it overlaps with the boundary between the two light 
input levels. The signal will then be a weighted average of a and b. The weighting of the 
value a in the output signal will be 

 ( , , )a

a

w F x y dxdyd     

with the integration taken over the part of xy  space where the input level corresponds to a. 
(For clarity, band and pixel indices have been omitted since the treatment here considers a 
single light sample.) In the ideal case, spectral and spatial responsivity distributions are 
independent, and the weighting is 

 , ( , ) ( )a ideal

a

w f x y g dxdyd     

where the SPSF ( , )f x y  and SRF ( )g   are defined by Eq. (12). It is therefore possible to 
define a weighting error for spectral-spatial responsivity interdependence as 

  ( , , ) ( , ) ( ) .a

a

w F x y f x y g dxdyd      

In analogy with Figs. 2 and 5, there will be a surface in xy  space defined by 

 ( , , ) ( , ) ( ) 0F x y f x y g     
The worst-case signal error due to spectral-spatial interdependence arises when the input 

level changes abruptly from one value to another at this boundary. Therefore, in analogy with 
Eqs. (6) and (11), a metric for spectral-spatial interdependence error can be defined as 

 ,

1
( , , ) ( , ) ( )

2

def

s ip ip ip ip

xy

F x y f x y g dxdyd


      (13) 

It may be unlikely that a scene will produce an input signal that corresponds to the worst 
case outlined above. However, it is clear that the errors expressed by Eq. (13) may be 
significant in some cases such as the non-scanning imaging spectrometer above. Therefore, 
the interdependence error metric is relevant for design and specification of instruments. 

As with the spatial and spectral metrics above, aggregate metrics for the spectral-spatial 
interdependence can be specified in terms of average or maximum values for s , as well as 
by bandwise averages, according to Sec. 2.4. 

5. Practical estimation of coregistration metrics 

For the proposed metrics to be of practical interest, it must be possible to determine their 
values experimentally. Spatial resolution is customarily characterized in terms of MTF, but 
this does not enable a unique determination of the SPSF. In the literature on spectral imagers, 
characterization of coregistration has focused on offset-type errors, and in some cases 
measurement of peak FWHM [9,14]. 

The SPSF can be measured directly by scanning a subpixel source, although such a 
measurement is not entirely trivial. Different ways to measure SPSF are described in Refs 
[16–18]. An efficient technique for measuring spatial coregistration performance is suggested 
in Fig. 7. A back-illuminated reticle with a periodic pattern of relatively wide opaque bars is 
projected in the field of view of the imaging sensor, forming a set of knife edges. The reticle 
is scanned in subpixel steps through one bar period while recording a series of image data. 
Each sensor pixel then produces a step-like signal, which can be differentiated to form an 
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estimate of the projected SPSF. The scan is repeated in a set of different directions. An 
estimate of the full SPSF can then be obtained by tomographic reconstruction [18,19]. With a 
broadband light source, the SPSF can be obtained for all bands. In principle, the technique can 
measure all sensor pixels, even for sensors with a two-dimensional pixel layout as indicated in 
the figure. In practice, limitations of the collimator may dictate that sections of the sensor 
field of view must be measured separately. 

The accuracy of SPSF estimation will be limited by noise. However, it appears realistic to 
reduce the noise significantly by averaging. Since the SPSF is smooth, only a limited number 
of sampling points is needed to represent its shape. As an example, consider a case where the 
SPSF is resolved in 10×10 sampling points spanning 3×3 pixels. The reticle may need to 
make at least 20 steps to achieve good obscuration in the dark part of the scan for all pixels. 
Thus, the required number of reticle positions (angles and steps) is on the order of 200. This 
number of frames can usually be recorded in less than a minute, so that there is ample 
opportunity for noise reduction by multi-frame averaging or repeated measurements. 
Therefore, good signal to noise ratio should be achievable. Noise can possibly also be reduced 
by averaging over neighboring sensor pixels, which will tend to behave similarly. The effect 
of noise in the tails of the SPSF can be remedied by thresholding to select only values above 
the noise floor. Roughly speaking, this will be acceptable as long as the discarded 
measurements represent a fraction of the SPSF that is smaller than the fraction of noise in 
image data. Reference 19 discusses the effect of noise on the tomographic reconstruction. 

 

Fig. 7. Sketch of a procedure to measure the SPSF by tomographic reconstruction. Left: A 
back-illuminated reticle with multiple slits is projected by a collimator (not shown) onto the 
imaging sensor field of view (green, assumed here to be a two-dimensional pixel array). The 
reticle is scanned in subpixel steps, as indicated by the blue arrows, while recording image 
data. Each bar and slit in the reticle is wide relative to the sensor pixel size, and the reticle is 
scanned by about one bar period. The scan is repeated in several discrete directions as 
indicated by the red arrow and dial. Right: The scanning creates a knife-edge cross section 
through all sensor pixels (green squares) in the field of view, assumed here to be a two-
dimensional array. The SPSF of all sensor pixels can then be obtained by tomographic 
reconstruction [18,19]. 

For characterization of spectral coregistration, the SRF is relatively easy to measure, using 
a monochromator-based test source [5]. Thus, it is clearly feasible to evaluate the spectral 
coregistration metric (11) and the corresponding aggregate measures characterizing a sensor. 
In both the spatial and spectral case, it is only necessary to characterize a representative set of 
the sensor pixels. 

Regarding spectral-spatial interdependence errors within a single band and pixel, I can 
find no publications that discuss this type of error in any detail. To evaluate the proposed error 
metric (13), it is necessary to measure the full spectro-spatial responsivity distribution 
function , ( , , )i pF x y  . By using a tunable narrowband light source, the setup of Fig. 7 is in 

principle capable of making such a measurement. This is not trivial, however, since it requires 
a tunable laser with potential issues related to availability, stability and speckle noise. 

Even without any measurements, it is possible to estimate values for the coregistration 
metrics from optical simulations. As outlined in [3], the responsivity distributions can be 
estimated by convolving the simulated optical PSF with other broadening factors such as the 
size of the photodetector element, the slit width and the scan movement. The actual 
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coregistration performance tends to be degraded by manufacturing tolerances. Still, an 
estimate of coregistration performance based on optical simulation can be useful by giving a 
lower limit on the metric values. Simulations may be the best way to estimate the spectral-
spatial coregistration error metric s . 

6. Discussion 

Coregistration errors can lead to large errors in recorded spectral images, but the errors are 
scene dependent. In cases where scene objects are large and spectra are smooth relative to the 
sensor sampling interval, the signal errors tend to be small. (Thus, the radiometric calibration 
accuracy is completely decoupled from coregistration error.) For small scene objects or 
rapidly changing spectra, coregistration errors can approach the maximum values represented 
by the metrics proposed here. It may be argued that such cases are rare, but on the other hand, 
it is these challenging cases that drive the specification of sensor resolution in the first place. 
Therefore, an upper-bound metric is an appropriate way to specify coregistration error even if 
the maximum error occurs very rarely. In fact, it seems possible that the effects of 
coregistration error on image processing can go unnoticed, since the signal error is largest in 
cases that are considered difficult anyway, such as mixed pixels or small targets. 

Some classes of sensors, such as imaging Fourier transform spectrometers or filter wheel 
cameras, do not record all spectral components simultaneously. Then instabilities in the 
sensor pointing during recording, and possibly also parallax effects, will lead to coregistration 
errors. Furthermore, motion or other temporal variation in the scene will lead to similar image 
artifacts. On the other hand, sensor movement during recording will generally tend to reduce 
the signal error by motion blurring of the SPSF, at least for a stationary scene. Thus, in some 
cases the scanning, sensor pointing and scene properties must be taken into account, either in 
the reported metric value or in the estimation of signal error in an image. 

Currently, spectral image sensors tend to be specified in terms of spatial and spectral 
sampling interval, combined with a specification of smile and keystone distortions. As 
discussed here, these parameters do not give complete information about coregistration. On 
the other hand, smile and keystone are easy to measure and widely understood. Still, in view 
of the potential for large signal errors, it appears that a more complete and well defined 
measure of coregistration error should be used to specify sensors. Measurement of sensor 
performance according to the metrics discussed here is not a standard practice at this time. 
However, such measurements should be entirely feasible, for example using the procedure 
outlined in Fig. 7. Even without measurement, metric values can be estimated from simulation 
of the optics. In view of the large signal errors that can result from coregistration error, and 
the potential for characterizing and estimating such errors using the metrics proposed here, it 
appears that more emphasis should be put on measurement of the SPSF and SRF of spectral 
imagers. 

It can be noted that the spatial metric (6), and also the spectral-spatial metric (13), can be 
used to characterize the performance of whiskbroom-type hyperspectral sensors as well as 
non-imaging spectrometers such as those used for “ground truthing” in remote sensing. Also, 
it can be noted that the spectral metric (11) and the spectral-spatial metric (13) apply even to 
monochrome imaging. 

For design of spectral imager optics, it is necessary to define a global merit function for 
system performance, in which coregistration errors will be an important part. It is then 
necessary to specify coregistration performance in a single number. The metrics proposed 
here are proportional to the error, therefore, their values can be combined by simple linear 
combination 
 total s s s sa a a           

which can be part of the overall system merit function. The scaling factors a must be selected 
according to the expected amount of spectral and spatial contrast in the application. If spatial 
and spectral contrasts are both comparable to the dynamic range of the signal, as in the case of 
reflective-domain remote sensing, then the metrics may be simply be given equal weight. 
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Compared to the method outlined in [3], this represents a significant simplification, and 
probably an improvement. 

7. Conclusions 

The current way of specifying coregistration error in hyperspectral sensors in terms of 
keystone and smile does not fully represent the coregistration performance. At the same time, 
coregistration errors can have a very detrimental effect on the image data and processing 
results. It is even possible for the effects of coregistration error on image processing to go 
unnoticed, since the signal error is largest in cases that are considered difficult. 

This paper proposes metrics for all types of coregistration error in multi- and hyperspectral 
imaging: 1) spatial coregistration error between bands in the same image pixel (including 
keystone), 2) spectral coregistration error between different image pixels in the same band 
(including smile), as well as 3) interdependencies between spectral and spatial response 
distribution within a single band and pixel. The metrics are given in Eqs. (6), (11) and (13), 
respectively. These metrics are independent of the image sensor technology, and represent an 
upper bound on the possible error in the recorded images. Based on the metric values for a 
given image sensor, the actual signal error in an image can be estimated. The coregistration 
metrics can be summed together for use as part of the merit function in optimization of optical 
designs. The spatial and spectral-spatial coregistration metrics s  and s  are also applicable 
to non-imaging spectrometers, such as those used for ground truthing in remote sensing. 
Values for the metrics can be obtained from measurements, and also from simulations of 
imaging optics. It is suggested that the proposed metrics should be adopted as a standard for 
reporting coregistration performance of spectral image sensors. 
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