FFIE/762/113

Godkjent Kjeller 1 november 1999

aul Voiren

Rolf Hedemark Forskningssjef

SIGNATUR- OG ATMOSFÆREMODELLER FOR BRUK I DET INFRARØDE SPEKTRALOMRÅDET

STARK Espen

FFI/RAPPORT-99/05417

FORSVARETS FORSKNINGSINSTITUTT Norwegian Defence Research Establishment Postboks 25, 2027 Kjeller, Norge

FORSVARETS FORSKNINGSINSTITUTT (FFI) Norwegian Defence Research Establishment

-

4

-

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (when data entered)

P O I 2027 REF	BOX 25 YKJELLER, NORWAY PORT DOCUMENTATIO	N PAGE		SECUI (when	RITY CLASSIFICATION C data entered)	OF THIS PAGE
1)	PUBL/REPORT NUMBER		2) SECURITY CLASS	FICATION		3) NUMBER OF
	FFI/RAPPORT-99/054	17	UNCLASSIFI	ED		PAGES
1a)	PROJECT REFERENCE		2a) DECLASSIFICATIO	N/DOWNGRAD	DING SCHEDULE	30
	FFIE/762/113		-			
4)	SIGNATUR- OG ATN	MOSFÆREM TMOSPHERI	ODELLER FOR BRU	k i det in e in the II	FRARØDE SPEKTI NFRARED REGION	RALOMRÅDET
6)	STARK Espen					
-	Approved for public re	lease. Distribu	ution unlimited. (Offe	ntlig tilgjeng	elig)	
7)	INDEXING TERMS			IN NORWEGIA	AN:	
	a) Atmospheric model	S		a) Atmosf	æremodeller	
	b) Signature models			b) Signatu	rmodeller	
	c) Infrared			c) Infrarøo	1	
	MODTRAN			MODT	RAN	
	NIRATAM			a) NIRAT	AM	
				e) MIRAI		
THE	ABSTRACT					
The cond anal moc repo	objective for the project: cepts for protection based lysed. A part of this evalu dels for calculation of sign ort are valid in the infrare	electronic wa l on tactic, flan nation will be n natures of airc d region, typic	arfare for the air force, res and ir-jammers. To models for signatures raft and models for at cal 0.2 – 20 µm. The r	protection a obtain this, and the atmo nospheric ca eport will als	gainst IR-guided mi missiles, targets and osphere. This report a alculation. The mode so give examples fro	ssiles, is to develop flares must be gives an overview over ils described in the m the different models.
9)	DATE	AUTHORIZED B	f Wacum	POSITI	ION	
	1 November 1999	F	Rolf Hedemark		Director of	Research
				UNC	CLASSIFIED	
ISBI	N 82-464-0390-7			SECUF (when	RITY CLASSIFICATION O	F THIS PAGE

INNHOLD

1	INNLEDNING	4
2	ATMOSFÆREMODELLER	4
2.1	Bølgetall	4
2.2	MODTRAN	5
2.3	FASCODE, HITRAN og HITEMP	11
2.4	MOSART	12
3	SIGNATURMODELLER	13
3.1	SPIRITS	13
3.2	NIRATAM	14
3.3	Enkle modeller	16
4	OPPSUMMERING	17
4.1	Simuleringsmodell	17
4.2	Evaluering	18
4.3	Videre arbeid	18
	Litteratur	19
APPEND	IKS	
А	MOSART	20
A.1	Inngangsdata	20
A.2	Resultat fra MOSART	21
В	AVTALE	27
	Fordelingsliste	30

SIGNATUR- OG ATMOSFÆREMODELLER FOR BRUK I DET INFRARØDE SPEKTRALOMRÅDET

1 INNLEDNING

I prosjektet EK for Luftforsvaret, delprosjekt beskyttelse mot IR-styrte missiler, er målsetningen å utvikle beskyttelseskonsepter mot missiltrusler, hovedsakelig basert på taktikk, flares og IR-jammere. For å utføre dette vil missiler, mål og flares analyseres, og et ledd i dette vil være å bruke (eller utvikle) modeller for IR-signaturer, atmosfære, kinematisk oppførsel og så videre. Denne rapporten er ment som en oversikt over modeller for beregning av signaturer til fly, radians fra avgasser, motorer o l og for radians og transmittans i atmosfæren. Rapporten omhandler modeller hvis gyldighetsområde er i det infrarøde spektralområdet, typisk 0.2 - 20 μm .

I kapittel 2 vil modeller som beregner radians og transmittans fra atmosfæren, eller f eks avgasser, motorer o l bli behandlet.

Kapittel 3 vil omhandle modeller som beregner IR signaturen til fly. Med signatur menes i denne rapporten forskjellen i stråling mellom målet og bakgrunnen. Denne forskjellen i radians kalles ofte kontrasten. Kontrasten kan være både positiv og negativ.

Det vil til slutt bli gitt en oppsummering og vurdering av de aktuelle modellene i kapittel 4.

I rapporten vises det en god del eksempler på resultater fra de forskjellige modellene. Her vil det ikke bli gitt lengre utredninger om resultatene, da rapporten kun er ment som en oversikt over de forskjellige modellene.

2 ATMOSFÆREMODELLER

I dette kapittelet blir forskjellige modeller for beregning av radians og transmittans i atmosfæren omtalt. Felles for alle programmene som omtales her er at de er underlagt en "non-disclosure agreement" med United States Air Force. Undertegnede er "teknisk ansvarlig" ved FFIE for disse programmene.

2.1 Bølgetall

Alle atmosfæremodellene er basert på spektroskopimålinger av de forskjellige molekylene. Fra disse målingene er det så dannet en database. Det kan virke som om bølgelengde, λ er en opplagt enhet å utføre slike målinger i, noe som ikke er tilfelle. Dette fordi energien til et foton er direkte proposjonal med frekvensen og ikke bølgelengden. Bølgetall er definert ved:

$$\sigma = \frac{1}{\lambda} \tag{2.1}$$

hvor

 λ - Bølgelengden

Bølgelengden (i vakuum) er gitt ved:

$$\lambda = \frac{c}{\nu} \tag{2.2}$$

hvor

v - Frekvensen

c - Lyshastigheten i vakuum

Bølgetallet er direkte proposjonalt med frekvensen og derfor energien. På grunn av dette er det bølgetall som er den mest benyttede enheten i atmosfæremodellene, siden molekyldatabasene er bygd opp med bølgetall som enhet. I denne rapporten vil det derfor bli benyttet bølgetall som enhet på eksemplene som vises.

Sammenhengen mellom strålingens bølgetall, σ , med enhet cm^{-1} og strålingens bølgelengde, λ , med enhet μm er da:

$$\sigma = \frac{10^4 cm^{-1} \mu m}{\lambda} \tag{2.3}$$

Da er f eks $\sigma = 1000 \, cm^{-1} \leftrightarrow \lambda = 10 \, \mu m$. Tabell 2.1 viser sammenhengen mellom noen bølgelengder og bølgetall.

Bølgelengde	Bølgetall
μm	cm^{-1}
3	3333
5	2000
8	1250
12	833

Tabell 2.1	Bølgelengde - bøl	getall
------------	-------------------	--------

2.2 MODTRAN

MODTRAN (1) (MODerate resolution TRANsmittance code) er utviklet ved Air Force Research Laboratory (AFRL) i USA. MODTRAN benyttes til å beregne transmittans og radians i atmosfæren. MODTRAN er utviklet og verifisert over en rekke år og er en utvidelse/etterfølger til LOWTRAN, som forøvrig ikke utvikles videre og ikke lengre må benyttes. Koden er meget godt verifisert og blir regnet som en standard når det gjelder atmosfæremodellering. MODTRAN er en båndmodell med en oppløsning på 2 cm^{-1} . Undertegnede er ansvarlig for MODTRAN på FFIE. Siste versjon er MODTRAN3.7, men MODTRAN4 finnes i beta-versjon.

I forbindelse med modellering av signaturer til fly o l vil det være naturlig å bruke MODTRAN til å beregne atmosfæriske størrelser som transmittans i atmosfæren, radians fra bakgrunnen og radians fra banen. MODTRAN har muligheten til å benytte ferdig definerte atmosfærer, eller man kan sette opp sin egen atmosfære med bakgrunn i meteorologiske data. Det er seks forhåndsdefinerte atmosfærer i MODTRAN. Disse vises i tabell 2.2 med tilhørende temperaturer ved havoverflaten.

Atmosfære	Kommentar	Temperatur [K]
Tropical	15°N Årlig midling	299.7
Midlatitude Summer	45°N Juli	294.2
Midlatitude Winter	45°N Januar	272.2
Subarctic Summer	60°N Juli	287.2
Subarctic Winter	60°N Januar	257.2
US Standard	1976 se (2)	288.2

Tabell 2.2 Forhåndsdefinerte atmosfærer i MODTRAN

Figurene 2.1 og 2.2 viser hvordan temperatur og trykk varierer med høyden for atmosfærene; *Subarctic Winter, Midlatitude Summer* og *Tropical*. I tillegg til temperatur og trykk er blandingsforholdet til en rekke molekyler definert for hver av atmosfærene. De mest radiative aktive molekylene er: vann (H_2O) , ozon (O_3) , lystgass (N_2O) , karbonmonoksyd (CO), metan (CH_4) og karbondioksyd (CO_2) . Databasen i MODTRAN er basert på HITRAN (se avsnitt 2.3), og inneholder derfor bare de molekyler som HITRAN inneholder.

For å illustrere effekten av de forskjellige molekylene er transmittansen med hensyn på tre av disse vist i figur 2.3 sammen med den totale transmittansen. De tre molekylene som transmittansen er vist for er vann (H_2O) , ozon (O_3) og karbondioksyd (CO_2) . Figuren viser hvordan absorbsjonen i CO_2 gjør seg gjeldene under 750 cm^{-1} , videre er H_2O ansvarlig for tapet i transmittans over 1300 cm^{-1} og til slutt ser vi O_3 absorbsjon rundt 1060 cm^{-1} .

I figurene 2.4 og 2.5 vises beregninger av bakgrunnstrålingen i 9000 m høyde. Atmosfæren som er benyttet i beregningene er *Subarctic Winter* som er den kaldeste av de ferdig definerte atmosfærene. Det er ingen skyer i beregningene. Figurene viser også den spektrale radiansen for et sort legeme ved den oppgitte atmosfæretemperaturen (rød linje).

Figur 2.1 Atmosfæretemperatur mot høyde for Subarctic Winter (rød), Midlatitude Summer (sort) og Tropical (grønn)

Figur 2.2 Atmosfæretrykk mot høyde for Subarctic Winter (rød), Midlatitude Summer (sort) og Tropical (grønn)

Figur 2.3 Transmittans for Subarctic Winter, horisontal bane på 20 km i 100 m høyde. Total transmittans (sort), H₂O transmittans (rød), O₃ transmittans (grønn) og CO₂ transmittans (blå)

Figur 2.4 Spektral radians fra bakgrunnen. Atmosfære: Subarctic Winter, 9000 m høyde. Atmosfæretemperatur: 217.2 K

Figur 2.5 Spektral radians fra bakgrunnen. Atmosfære: Subarctic Winter, 9000 m høyde. Atmosfæretemperatur: 217.2 K

Den spektrale radiansen for et sort legeme er gitt ved Plancks strålingslov (3):

$$N_{bb}(\sigma, T) = \frac{2c^2 h \sigma^3}{e^{h c \sigma/k_b T} - 1}$$
(2.4)

hvor

 σ - bølgetall [cm⁻¹]

T - atmosfæretemperatur [K]

c - lyshastigheten i vakuum, $3 \cdot 10^{10} cm/s$

h - Plancks konstant, $6.63 \cdot 10^{-34} Ws^2$

 k_b - Boltzmanns konstant, $1.38 \cdot 10^{-23} W_s/K$

Figurene viser at tilnærmingen med et sort legeme er rimelig god i 3-5 μm området. I 8-12 μm området er det betydelig mindre radians fra bakgrunnen enn illustrert med strålingen fra et sort legeme.

MODTRAN benyttes hovedsaklig i beregning av transmittans i atmosfæren. I figur 2.6 vises en slik beregning for transmittansen med atmosfæren *Subarctic Winter*, en horisontal bane på 100 km i 9000 m høyde. Som en sammenligning er det vist en beregning for transmittansen i atmosfæren *tropical* med en horisontal bane på 2 km i 10 m høyde i figur 2.7. Figurene viser ganske klart den store forskjellen i transmittans som eksisterer mellom de to beregningene.

Det er tilgjengelig veldig god dokumentasjon på MODTRAN.

Figur 2.6 Spektral transmittans. Atmosfære: Subarctic Winter, horisontal bane 100 km, 9000 m høyde

Figur 2.7 Spektral transmittans. Atmosfære: Tropical, horisontal bane 2 km, 10 m høyde

2.3 FASCODE, HITRAN og HITEMP

FASCODE (4) (FAst atmospheric Signature CODE) er i likhet med MODTRAN utviklet ved Air Force Research Laboratory i USA. I motsetning til MODTRAN, som er en båndmodell, er FASCODE en linjemodell som beregner atmosfærisk radians og transmittans. FASCODE benytter en molekyl database, HITRAN (5). HITRAN består av nesten 1000000 spektrallinjer for 35 forskjellige molekyler. Databasen er basert på spektroskopimålinger fra hele verden og blir oppdatert fortløpende. Figur 2.8 viser en sammenligning av transmittansen, beregnet i MODTRAN3.7 og FASCODE3. Atmosfæren som er benyttet er *Subarctic Winter* med en bane på 100 km i 9000 m høyde. FASCODE beregningen er her foldet med en gaussisk foldefunksjon for å illustrere et "scan system" med en oppløsning på 1 cm^{-1} .

Figur 2.8 Sammenligning av spektral atmosfærisk transmittans beregnet med MOD-TRAN3.7 (sort linje) og FASCODE3 (rød linje). Subarctic Winter, horisontal bane 100 km, 9000 m høyde

I figur 2.3 ble transmittansen for bl a ozon vist for en gitt atmosfærisk situasjon. Figur 2.9 viser transmittansen for ozon beregnet med FASCODE med god oppløsning i området rundt ozon absorpsjonen med samme atmosfære som i figur 2.3, Subarctic Winter horisontal bane på 20 km i 100 m høyde.

I tillegg finnes det en database for 3 molekyler (H_2O , CO_2 og CO) ved høyere temperaturer, HITEMP. Denne databasen kan en gjøre nytte av ved beregninger av f eks "jet plumen" til jagerfly. Dette kan gjøres dersom man kjenner konsentrasjonene og temperaturene til de forskjellige gassene.

Dersom man ønsker å modellere strålingen fra avgassene gjøres dette ved hjelp av FASCODE. Dersom man benytter et "signatur" program for modellering av strålingen fra f

Figur 2.9 Ozon transmittans beregnet med FASCODE3, atmosfæren er Subarctic Winter med en horisontal bane på 20 km i 100 m høyde

eks et jagerfly, burde det ikke være nødvendig med egne modelleringer av avgassene.

FASCODE er en linjebasert modell og har dermed meget god oppløsning. Det kan f eks være 24000 punkter i et spektralområde på 10 cm^{-1} . FASCODE, HITRAN og HITEMP finnes ved FFIE hvor undertegnede er ansvarlig for disse programmene. Det må bemerkes at det eksisterer meget dårlig med dokumentasjon til FASCODE.

2.4 MOSART

MOSART (6) (MOderate Spectral Atmospheric Radiance and Transmittance program) inneholder egenskaper fra MODTRAN og en modell som heter APART (fra Photon Research Associates, USA). MOSART er et veldig omfattende program. MOSART finnes på FFIE med undertegnede som ansvarlig, og er meget godt dokumentert.

MOSART er designet for å beregne transmittans og radians ved lave høyder, for fri sikt baner i atmosfæren eller baner som tangerer jordas overflate. MOSART benytter en båndmodell med en oppløsning på $2 cm^{-1}$. MOSART har innebygd globale databaser for optiske og termiske egenskaper til forskjellige overflatetyper. Atmosfæren er karakterisert med klima-, aerosol-, sky-, regn- og snedatabaser som alle er integrerte komponenter i MOSART. MOSART har middelverdier for alle steder på jorda. MOSART blir ofte benyttet for scene- og signaturmodellering, resultatet fra MOSART er radians/transmittans som funksjon av bølgetall (som i MODTRAN). MOSART skal inneholde alt som er med i MODTRAN3.5.

Det er relativt vanskelig å lage gode eksempel med å bruke MOSART. I appendiks A.1 er

inngangsdata som er brukt i beregningen vist. Appendikset viser også et eksempel på resultat fra beregningen med MOSART, nemlig varmeoverføring. En nærmere forklaring på dette resultatet finnes i appendiks A.2. Siden MOSART skal inneholde alt som MODTRAN3.5 har er det selvfølgelig også mulig å beregne transmittansen. Figur 2.10 viser transmittansen for en horisontal bane på 20 km i 120 m høyde. Atmosfæriske parametre er bestemt ut fra posisjon og tid på året gitt i inngangsdataene.

Figur 2.10 Eksempel på transmittans beregning utført i MOSART for horisontal bane på 20 km i 120 m høyde

Undertegnede har foretatt en nøyere gjennomgang av snemodellen i MOSART og det har vist seg at denne ikke er korrekt. Tilliten til et så stort og omfattende program blir dermed svekket. Når det gjelder snemodellen er denne beskrevet i (7).

3 SIGNATURMODELLER

Dette kapittelet vil omhandle modeller for beregning av signaturer av objekter. Disse objektene vil i all hovedsak være jagerfly. Noen enkle modeller som bare tar hensyn til aerodynamisk oppvarming av flyet vil også bli beskrevet.

3.1 SPIRITS

SPIRITS (SPectral and Inband Radiometric Imaging of Targets and Scenes) er en modell for å generere IR bilder av forskjellige bakgrunner og mål. Modellen gir et detaljert *kart* av radiansen til gitte mål, både med og uten atmosfærisk transmittans og baneradians. Modellen er verifisert, kvalitativt, med virkelige feltmålinger. Det er tydelig at SPIRITS regnes som "state-of-the-art" når det gjelder modeller for signaturer til fly (jagerfly). Modellen er utviklet av Aerodyne Research i USA for US Air Force, og er selvfølgelig underlagt eksportrestriksjoner. Dette vil i praksis si at vi ikke kan få denne modellen.

I figurene 3.1 og 3.2 vises beregninger utført i SPIRITS. Beregningene her er av en SU-27, sett i en aspektvinkel på 20°, flyet flyr med en hastighet på 0.85 Mach, både observatør og mål befinner seg i samme høyde på 25000 fot. Beregningene er utført for et 3-5 μm område og et 8-12 μm område. Skalaen på intensiteten er *ikke* lik i de to figurene.

Det er verdt å merke seg at radiansforskjellen mellom plume og flykropp er langt større i 3-5 μm enn i 8-12 μm . Videre ser vi at i 8-12 μm tilfellet gir flykroppen et langt større bidrag til radiansen enn plumen. Hvor stor betydning har plumen i tilfeller hvor flyet sees i "nose-on" perspektiv eller få grader avvik? Det er kanskje ikke nødvendig med en veldig inngående analyse av plumen i disse tilfellene.

3.2 NIRATAM

NIRATAM (NATO Infra-Red Air TArget Model) er NATOs modell for beregning av radians fra flyvende objekter. Modellen tilhører (eies av) medlemslandene i NATO AC/243 Panel 4, RSG-18. FFI har fått denne modellen.

NIRATAM beregner IR signatur til fly under forskjellige flyforhold. For å kunne beregne signaturen til et spesifikt fly krever NIRATAM følgende inngangsdata:

- Definisjon av geometrien til flyet. Modellen krever en omfattende "wireframe" av flykroppen. Å lage en slik "wireframe" er en relativt omfattende jobb. Selve NIRATAM modellen er ugradert, men når geometrien til et spesielt fly er gitt inn vil ofte resultatet være gradert. Det er flere brukere av NIRATAM i NATO slik at det er mulig å *få* slike "wireframe" av spesielle flytyper, f eks F-16, av andre land.
- Det må gis en termisk beskrivelse av den ovennevte geometrien. Normalt vil dette omfatte aerodynamisk oppvarming, soloppvarming og intern varmeledning til overflaten.
- Beregning av "plume flowfield", dette gjøres normalt med NPLUME som følger med NIRATAM.
- Definisjon av de ønskede omgivelsene, enten ved å bruke LOWTRAN som er innebygd i NIRATAM. Eller ved å bruke MODTRAN til å utføre disse beregningene. Dersom man følger AFRLs råd blir valget at man bruker MODTRAN til å definere omgivelsene (atmosfæren, transmittans, radians osv).
- Dersom en inhomogen bakgrunn ønskes må denne genereres. En slik inhomogen bakgrunn kan f eks være delvis skyet himmel, land eller sjø.

Figur 3.1 Beregning fra SPIRITS av en SU-27, 20° nose-off, 0.85 Mach, 25 kft coaltitude. Beregningen er utført i 3-5 µm området

Figur 3.2 Beregning fra SPIRITS av en SU-27, 20° nose-off, 0.85 Mach, 25 kft coaltitude. Beregningen er utført i 8-12 µm området

- Sensorens karakteristika må defineres.

Denne listen er en kort introduksjon til NIRATAM. For bruk av selve programmet referes til (8). Det vil i senere rapporter bli gitt en mer omfattende beskrivelse av modellen, og selvfølgelig bruk av NIRATAM på aktuelle flytyper (F-16).

Figurene 3.3 og 3.4 viser et enkelt eksempel på bruk av NIRATAM. Figurene viser beregninger av signaturen til en F-5 i henholdsvis 3-5 μm og 8-12 μm området.

Figur 3.3 Beregning fra NIRATAM av en F-5, 20° nose-off, 0.85 Mach, 25 kft coaltitude. Beregningen er utført i 3-5 µm området

Figur 3.4 Beregning fra NIRATAM av en F-5, 20° nose-off, 0.85 Mach, 25 kft coaltitude. Beregningen er utført i 8-12 µm området

Geometrien i beregningen er valgt slik at den er lik SPIRITS beregningene som ble vist i forrige avsnitt. Dersom vi sammenligner disse to forskjellige beregningene er det noen egenskaper som vi ser er lik i de to. I begge tilfellene stråler selve flykroppen mer enn plumen i 8-12 μm området, i motsetning til i 3-5 μm området.

3.3 Enkle modeller

For modellering av fly kan en langt enklere modell benyttes dersom en utelukker avgasser og oppvarming av motor o l. Slikt arbeid er det gjort en del av her ved FFIE, ofte da i en sammenheng for beregning av deteksjonsavstander av fly. I forbindelse med NSM-prosjektet er det gjort en rekke slike arbeider for deteksjon av fartøy (båter) på havet. Modellen er imidlertid generell og kan enkelt overføres til å gjelde for fly. En slik modell er beskrevet i (9). Den eneste forskjellen her er at overflatetemperaturen til flyet blir gitt av atmosfæretemperaturen og hastigheten til flyet. Dette er utført i forbindelse med vurderinger/beregninger som er utført i forbindelse med evaluering av nye kampfly.

Det er også laget en forenklet modell basert på aerodynamisk oppvarming av flyet som er beskrevet i (10). Mye av teorien bak slike modeller er beskrevet i (11).

4 **OPPSUMMERING**

I dette kapittelet vil det bli gitt en oppsummering om de forskjellige modellene som er omtalt, og det vil bli vist hvilke modeller som kan benyttes for å lage en mere komplett modell.

4.1 Simuleringsmodell

Målsetningen til delprosjektet er å utvikle beskyttelseskonsepter mot IR-styrte missiler. For å kunne gjøre dette er det ønskelig å simulere bakke-til-luft eller luft-til-luft angrep med ett eller flere missiler mot ett eller flere fly. Flyene kan benytte seg av navigasjon og motmidler i form av f eks IR-flare.

Første oppgave i en slik modell, vil være å generere scenen i det infrarøde spektralområdet. For å gjøre dette kan flere av de omtalte programmene benyttes. Dersom man tar utgangspunkt i følgende objekter i modellen; fly, missil, flares, atmosfære og bakgrunn, kan man si litt om hver av disse delene.

Flyet kan modelleres i NIRATAM, denne modellen kan generere et bilde av flyet sett mot en bakgrunn. Modellen inneholder aerodynamisk oppvarming av flyet, flykroppen, plumen osv. Så langt virker det som om NIRATAM gjør det som vi trenger for å generere *signaturen* til flyet.

Modellering av flares kan være vanskelig. Det enkleste vil nok være å basere seg på spektrale målinger av forskjellige typer flares. Her er tidsaspektet interessant, hvordan den utvikler seg som funksjon av tiden; radians, areal osv.

For å modellere atmosfæren benyttes MODTRAN, man kan da benytte en standard atmosfære eller man kan lage en egendefinert atmosfære. MODTRAN inneholder også

noen ferdig definerte skyer. Hovedresultatet fra MODTRAN vil være transmittansen i atmosfæren, som spiller en veldig viktig rolle for vurderinger av ytelsen til en infrarød sensor. Når det gjelder modellering av nedbør (se (7)) er modellen for regn i MODTRAN tilstrekkelig. Når det gjelder sne er dette et langt vanskeligere problem. Det finnes et antall typer sne og det er ingen modeller som dekker disse særlig bra.

Bakgrunnen vil være en del av beregningen fra NIRATAM. Beregningen som utføres i NIRATAM blir gjort av en LOWTRAN basert modul, med en oppløsning på $20 \, cm^{-1}$. Denne kan erstattes med en beregning utført av MODTRAN, dette vil gi en homogen bakgrunn. Dersom man ønsker en inhomogen bakgrunn, deler med skyer eller lignende må denne generes frittstående. Generering av terrengbakgrunner og sjøoverflater er særdeles vanskelig og er et stort prosjekt i seg selv. Med de ressurser som er tilgjengelig i dette prosjektet er det ikke mulig å gå inn på modellering av terreng og sjø.

Helt bevisst er det ikke sagt noe om en modell for missilet, da dette er en svært vanskelig del, og ingen av de omtalte modellene dekker denne delen.

4.2 Evaluering

Flere av de andre modellene som er nevnt kan benyttes til å evaluere deler av en slik simuleringsmodell. F eks kan FASCODE benyttes til å evaluere radiansen fra plumen.

4.3 Videre arbeid

Undertegnedes videre arbeid vil i hovedsak bestå i bruk og evaluering av NIRATAM. Dette arbeidet er viktig slik at et mest mulig korrekt bilde av de ønskede scenene dannes. I tillegg må de forskjellige modulene tilrettelegges slik at de kan inngå i en komplett simuleringsmodell.

Litteratur

- Anderson G P (1996): The Modtran 2/3 Report and LOWTRAN 7 Model, F19628-91-C-0132, Air Force Research Laboratory, USA.
- (2) NASA (1976): US Standard Atmosphere Supplements, 1976, US Government Printing Office, Washington DC.
- (3) Stark E (1998): Deteksjon av fartøy i det infrarøde spektralområdet modell for beregning av søkfeltbredde, FFI/RAPPORT-98/00956, Forsvarets forskningsinstitutt (Begrenset).
- (4) Wang J, Anderson G P, Revercomb H E, Knuteson R O (1996): Validation of FASCOD3 and MODTRAN3: comparison of model calculations with ground-based and airborne interferometer observations under clear-sky conditions, *Applied Optics* 35, 30, 6028–6040.
- (5) Rothman L S, et al (1998): The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition, *Journal of Quantitative* Spectroscopy & Radiative Transfer 60, 5, 665–710.
- (6) Cornette W M (1994): Moderate Spectral Atmospheric Radiance and Transmittance Program, Vol III: Technical Reference Manual, National Imagery and Mapping Agency, USA.
- (7) Stark E (2000): Transmittans i nedbør og tåke i det infrarøde spektralområdet (under utarbeidelse), FFI/RAPPORT-00/xxxxx, Forsvarets forskningsinstitutt (Offentlig tilgjengelig).
- (8) NATO RSG-18 (1998): NIRATAM Software User Guide, TR/DERA/WSS/WX3/TR980154/1.0, DERA.
- (9) Stark E (1998): Statistical description of detection range for an infrared missile sensor, In: Proceedings of the Battlespace Atmospheric and Cloud Impacts on Military Operations (BACIMO) Conference, 1-3 December 1998 (Eds P Tattelman), AFRL-VS-HA-TR-98-0103 In Environmental Research Papers, No. 1217, Air Force Research Laboratory, USA.
- (10) Fosseide K T, Villanger A S (1995): Beregninger av IR-deteksjonsavstander for fly, FFI/NOTAT-95/00241, Forsvarets forskningsinstitutt (Begrenset).
- (11) Bingen E (2000): Fotonstøybegrensede IR-sensorer Beregning av forventet ytelse (under utarbeidelse), FFI/RAPPORT-00/xxxxx, Forsvarets forskningsinstitutt (Offentlig tilgjengelig).

APPENDIKS

A MOSART

Dette apendikset viser et eksempel på en beregning utført med MOSART, først vises fila som er inngangsdata til MOSART, og deretter vises et resultat i form av radians gjennom atmosfæren.

A.1 Inngangsdata

Her vises fila raptest2.in som er inngangsdata for MOSART beregningen som er utført som et eksempel. De atmosfæriske parametre velges ut fra posisjon og tidspunkt. Her er det Kjeller en dag i april 1999 som er valgt som scenario. Det utføres 4 beregninger med disse inngangsdata: bakgrunnsberegning, beregning ved kilden, horisontal bane og kildeberegning.

```
Moderate Spectral Atmospheric Radiance and Transmittance (MOSART) (Ver. 1.50)
User-specified Parameters -----
 Header (< 40 char) ..... Ny test for rapport
 Printout Switch (S/M/L) ..... L
 Terrain Temperature Calcul. (Y/N) ..... Y
 Multiple Scattering Calcul. (Y/N) ..... N
 Solar/Lunar Ephemeris (Y/S/L/N) ..... N
Position Parameters -----
 Coordinate Refer. (Observer/Source) ... 0
 Latitude (deg) (+ North, - South) ..... +59 58.5
 Longitude (deg) (+ East, - West) ..... +11 2.813
 Day of the month (integer) ..... 13
 Month of the year (name/integer) ..... 4
 Year (integer) ..... 1999
 Time of day (24-hr HH.MMSS/HH:MM:SS) .. 12:50
 Time index (LST/LDT/GMT) ..... GMT
Geometry Parameters -----
Observer Azimuths (deg) (<=30) ..... 0
Azimuth Reference (Relative/True) .... T
No. Index Obs. Alt. Sr/Tn.Alt. Sl.Rng. Earth Ang. Obs.Angle Src. Angle Length
           (km) (km) (deg) (deg.) (deg.) Switch
                      ****
  1 Be
            .120
                              20.000
                                         ****
                                                     ****
                                                               ****
                                                                         0

        1
        De
        120
        2000

        2
        Ae
        .120
        *****
        *****

        3
        He
        .120
        *****
        20.000

        4
        Se
        .120
        .500
        20.000

                                           ****
                                                     ****
                                                               ****
                                                                           0
                                          *****
                                                     ****
                                                               *****
                                                                         0
                                           ****
                                                     ****
                                                               ****
                                                                           0
End of Geometry Data/
Spectral Parameters -----
Spectral Calculations (MO/LO/MM) ..... MO
Wavenumber or Wavelength (WN/WL/FR) ... WN
  Initial wavenumber (cm**-1/um/GHz) .. 600
  Final wavenumber (cm**-1/um/GHz) .... 3500
```

A.2 Resultat fra MOSART

Som et eksempel på et av mange resultater vises her strålingsoverføring gjennom en ni-lags atmosfære. For å kunne beregne temperatur på jordas overflate, som er påvirket av radiansen i miljøet, er det ønskelig å beregne radians fluks oppover og nedover, dette gjøres ved å integrere sort legeme strålingen ganger den diffrensielle fluksen mellom lagene. I motsetning til andre resultater har dette resultatet ingen spektral informasjon. For hvert klokkeslett vises solas posisjon, temperatur, direkte irradians (beam), oppover og nedover diffus irradians. Her er "short-wave" (SW) 0.4-2.5 μm (kalles også sol-båndet) og "long-wave" (LW) 2.5-25.0 μm (jord-båndet).

```
1 Heat Transfer Data - Altitude
                                          =
                                                     .00 km
 Ny test for rapport
  MOSART Radiative Environment Summary (Ver. 1.50) Tue Apr 13 13:53:03 1999
    LST --- Solar --- Temp.
                                   ----- SWIR (w/m**2) ----- -- LWIR (w/m**2) --
   (hr) Elev. Azim. (K)
                                  Beam Diff(+) Diff(-) Diff(+) Diff(-)

        .00
        420.76

        .00
        .00
        393.45

        .00
        .00
        .00
        354.23

        .00
        .00
        .00
        418.73

        .00
        .00
        .00
        392.64

        .00
        .00
        .00
        353.20

        .00
        .00
        .00
        .00

    .00 -22.16 355.58 290.3
                                     .00
                                                .00
                                                          .00 420.76
                                                                             366.64
                                     .00
         -22.16 355.58 290.3
                                                                             345.01
                                     .00
          -22.16 355.58 290.3
                                                                               306.27
    .25 -22.24 359.59 290.1
                                                                               365.75
         -22.24 359.59 290.1
                                                                               344.79
         -22.24 359.59 290.1
                                                                               305.93
                                      .00
                                                .00
    .50 -22.18 3.59 290.0
                                                                    416.79
                                                            .00
                                                                               364.89
         -22.18 3.59 290.0
                                     .00
                                                .00
                                                           .00
                                                                  391.87
                                                                               344.58
                                                .00
         -22.18 3.59 290.0
                                     .00
                                                           .00 352.58
                                                                               305.61
                                     .00
    .75 -21.99 7.59 289.9
                                                .00
                                                           .00 414.97
                                                                               364.09
         -21.99 7.59 289.9
                                                .00
                                                          .00 391.15
                                     .00
                                                                               344.37
         -21.99 7.59 289.9
                                     .00
                                                .00
                                                                  351.82
                                                          .00
                                                                               305.31
                                     .00
   1.00 -21.66 11.56 289.7
                                                          .00
                                                .00
                                                                   413.27
                                                                               363.34
                                     .00
                                                          .00
         -21.66 11.56 289.7
                                                .00
                                                                    390.47
                                                                               344.11
                                                .00
                                                          .00
         -21.66 11.56 289.7
                                      .00
                                                                    351.11
                                                                               305.02
   1.25 -21.20 15.52 289.6
                                                .00
                                                            .00
                                      .00
                                                                    411.69
                                                                               362.64
                                                .00
         -21.20 15.52 289.6
                                      .00
                                                                  389.84
                                                            .00
                                                                               343.87
                                                .00
                                      .00
         -21.20 15.52 289.6
                                                           .00 350.45
                                                                               304.76
                                                .00 .00 350.45
.00 .00 410.23
                                     .00
   1.50 -20.62 19.43 289.5
                                                                               362.00
```

21

	-20.62	19.43	289.5	.00	0.0	00	389 25	343 65
	-20.62	19.43	289.5	.00	.00	.00	349 84	304 51
1.75	-19.91	23.31	289.4	.00	.00	.00	408.92	361 42
	-19.91	23.31	289.4	.00	.00	.00	388.73	343 45
	-19.91	23.31	289.4	.00	.00	.00	349.29	304.29
2.00	-19.09	27.15	289.3	.00	.00	.00	407.74	360.90
	-19.09	27.15	289.3	.00	.00	.00	388.25	343.27
	-19.09	27.15	289.3	.00	.00	.00	348.80	304.10
2.25	-18.15	30.93	289.3	.00	.00	.00	406.70	360.44
	-18.15	30.93	289.3	.00	.00	.00	387.84	343.11
	-18.15	30.93	289.3	.00	.00	.00	348.36	303.92
2.50	-17.10	34.66	289.2	.00	.00	.00	405.81	360.05
	-17.10	34.66	289.2	.00	.00	.00	387.48	342.97
	-17.10	34.66	289.2	.00	.00	.00	347.99	303.77
2.75	-15.94	38.33	289.1	.00	.00	.00	405.07	359.72
	-15.94	38.33	289.1	.00	.00	.00	387.18	342.86
	-15.94	38.33	289.1	.00	.00	.00	347.68	303.65
3.00	-14.69	41.95	289.1	.00	.00	.00	404.49	359.47
	-14.69	41.95	289.1	.00	.00	.00	386.95	342.77
	-14.69	41.95	289.1	.00	.00	.00	347.43	303.55
3.25	-13.36	45.51	289.1	.00	.00	.00	404.06	359.27
	-13.36	45.51	289.1	.00	.00	.00	386.77	342.70
	-13.36	45.51	289.1	.00	.00	.00	347.25	303.48
3.50	-11.93	49.02	289.0	.00	.00	.00	403.78	359.15
	-11.93	49.02	289.0	.00	.00	.00	386.66	342.66
	-11.93	49.02	289.0	.00	.00	.00	347.13	303.43
3.75	-10.43	52.48	289.0	.00	.00	.00	403.66	359.10
	-10.43	52.48	289.0	.00	.00	.00	386.61	342.64
	-10.43	52.48	289.0	.00	.00	.00	347.08	303.41
1 Heat 1	ransfer	Data -	Altitude	3	= .0	00 km		
Ny tes	t for ra	ipport .				N REFT IN	212 212 213 21	21 10 20 50 5
Ny tes MOSARI	t for ra Radiati	pport ve Envi	ronment	Summary	(Ver. 1.50)	Tue Apr	13 13:53:0	3 1999
Ny tes MOSARI	Radiati	opport ve Envi	ronment	Summary	(Ver. 1.50)	Tue Apr	13 13:53:0	3 1999
Ny tes MOSART LST (br)	t for ra 'Radiati Sol Elev.	ve Envi ar Azim.	Temp.	Summary	(Ver. 1.50) SWIR (w/m**	Tue Apr 2)	13 13:53:0	3 1999 /m**2)
Ny tes MOSARI LST (hr)	t for ra Radiati Sol Elev.	opport ve Envi .ar Azim.	ronment Temp. (K)	Summary Beam	(Ver. 1.50) SWIR (w/m** Diff(+)	Tue Apr 2) Diff(-)	13 13:53:0 LWIR (w Diff(+)	3 1999 /m**2) Diff(-)
Ny tes MOSART LST (hr) 4.00	t for ra Radiati Sol Elev. -8.86	ve Envi ar Azim. 55.88	Temp. (K) 289.0	Summary Beam	(Ver. 1.50) SWIR (w/m** Diff(+) 00	Tue Apr 2) Diff(-)	13 13:53:0 LWIR (w Diff(+) 403 70	3 1999 /m**2) Diff(-) 359 12
Ny tes MOSART LST (hr) 4.00	t for ra 'Radiati Sol Elev. -8.86 -8.86	pport ve Envi ar Azim. 55.88 55.88	Temp. (K) 289.0	Summary Beam .00	(Ver. 1.50) SWIR (w/m** Diff(+) .00	Tue Apr 2) Diff(-) .00	13 13:53:0 LWIR (w Diff(+) 403.70 386 63	3 1999 /m**2) Diff(-) 359.12 342 65
Ny tes MOSART LST (hr) 4.00	t for ra Radiati Sol Elev. -8.86 -8.86 -8.86	ar Azim. 55.88 55.88 55.88	Temp. (K) 289.0 289.0 289.0	Summary Beam .00 .00	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00	Tue Apr 2) Diff(-) .00 .00	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347 10	3 1999 /m**2) Diff(-) 359.12 342.65 303 42
Ny tes MOSART (hr) 4.00 4.25	<pre>st for ra r Radiati Sol Elev8.86 -8.86 -8.86 -8.86 -7.23</pre>	pport ve Envi ar Azim. 55.88 55.88 55.88 55.88 55.88 55.24	Temp. (K) 289.0 289.0 289.0 289.0 289.0	Summary Beam .00 .00 .00	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00	Tue Apr 2) Diff(-) .00 .00 .00	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20
Ny tes MOSART (hr) 4.00 4.25	<pre>st for ra r Radiati Sol Elev8.86 -8.86 -8.86 -7.23 -7.23</pre>	ar Azim. 55.88 55.88 55.88 55.88 59.24 59.24	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0	Summary Beam .00 .00 .00 .00	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00	Tue Apr 2) Diff(-) .00 .00 .00 .00	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68
Ny tes MOSART (hr) 4.00 4.25	<pre>st for ra r Radiati Sol Elev8.86 -8.86 -8.86 -7.23 -7.23 -7.23</pre>	pport ve Envi Azim. 55.88 55.88 55.88 55.88 59.24 59.24 59.24	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.0	Summary Beam .00 .00 .00 .00 .00 .00	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45
Ny tes MOSART (hr) 4.00 4.25 4.50	<pre>st for ra r Radiati Sol Elev8.86 -8.86 -8.86 -7.23 -7.23 -7.23 -5.54</pre>	pport ve Envi ar Azim. 55.88 55.88 55.88 59.24 59.24 59.24 59.24 62.56	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1	Summary Beam .00 .00 .00 .00 .00 .00 .00	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36
Ny tes MOSART (hr) 4.00 4.25 4.50	<pre>st for ra r Radiati Sol Elev8.86 -8.86 -8.86 -7.23 -7.23 -7.23 -5.54 -5.54</pre>	pport ve Envi ar Azim. 55.88 55.88 55.88 59.24 59.24 59.24 59.24 62.56 62.56	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .00	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73
Ny tes MOSART (hr) 4.00 4.25 4.50	<pre>st for ra r Radiati Sol Elev8.86 -8.86 -8.86 -7.23 -7.23 -7.23 -5.54 -5.54 -5.54</pre>	pport ve Envi ar Azim. 55.88 55.88 55.88 59.24 59.24 59.24 59.24 62.56 62.56 62.56	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00 .00	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .00 .00	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00 .0	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85 347.33	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73 303.51
Ny tes MOSART (hr) 4.00 4.25 4.50 4.75	<pre>st for ra r Radiati Sol Elev8.86 -8.86 -8.86 -7.23 -7.23 -7.23 -5.54 -5.54 -5.54 -3.80</pre>	pport ve Envi ar Azim. 55.88 55.88 55.88 59.24 59.24 59.24 62.56 62.56 62.56 62.56 65.84	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1 289.1	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00 .0	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85 347.33 404.76	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73 303.51 359.58
Ny tes MOSART (hr) 4.00 4.25 4.50 4.75	<pre>st for ra r Radiati Sol Elev8.86 -8.86 -8.86 -7.23 -7.23 -7.23 -5.54 -5.54 -5.54 -3.80 -3.80</pre>	pport ve Envi ar Azim. 55.88 55.88 55.88 59.24 59.24 59.24 62.56 62.56 62.56 62.56 65.84 65.84	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1 289.1 289.1	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00 .0	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85 347.33 404.76 387.05	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73 303.51 359.58 342.81
Ny tes MOSART (hr) 4.00 4.25 4.50 4.75	<pre>st for ra r Radiati Sol Elev8.86 -8.86 -7.23 -7.23 -7.23 -5.54 -5.54 -5.54 -3.80 -3.80 -3.80</pre>	pport ve Envi ar Azim. 55.88 55.88 55.88 59.24 59.24 59.24 62.56 62.56 62.56 62.56 65.84 65.84 65.84	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1 289.1 289.1 289.1	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00 .0	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85 347.33 404.76 387.05 347.54	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73 303.51 359.58 342.81 303.59
Ny tes MOSART (hr) 4.00 4.25 4.50 4.75 5.00	<pre>st for ra r Radiati Sol Elev8.86 -8.86 -7.23 -7.23 -7.23 -5.54 -5.54 -5.54 -3.80 -3.80 -3.80 -2.01</pre>	pport ve Envi ar Azim. 55.88 55.88 55.88 59.24 59.24 59.24 62.56 62.56 62.56 62.56 65.84 65.84 65.84 69.09	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1 289.1 289.1 289.1 289.1 289.1 289.2	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00 .0	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85 347.33 404.76 387.05 347.54 405.42	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73 303.51 359.58 342.81 303.59 359.87
Ny tes MOSART (hr) 4.00 4.25 4.50 4.75 5.00	<pre>st for ra r Radiati Sol Elev8.86 -8.86 -7.23 -7.23 -7.23 -7.23 -5.54 -5.54 -5.54 -3.80 -3.80 -3.80 -2.01 -2.01</pre>	pport ve Envi ar Azim. 55.88 55.88 55.88 59.24 59.24 59.24 62.56 62.56 62.56 62.56 65.84 65.84 65.84 65.84 69.09 69.09	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1 289.1 289.1 289.1 289.1 289.1 289.2	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00 .0	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85 347.33 404.76 387.05 347.54 405.42 387.32	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73 303.51 359.58 342.81 303.59 359.87 342.91
Ny tes MOSART (hr) 4.00 4.25 4.50 4.75 5.00	<pre>st for ra r Radiati Sol Elev8.86 -8.86 -7.23 -7.23 -7.23 -7.23 -5.54 -5.54 -5.54 -3.80 -3.80 -3.80 -2.01 -2.01 -2.01</pre>	pport ve Envi ar Azim. 55.88 55.88 55.88 59.24 59.24 59.24 62.56 62.56 62.56 62.56 62.56 65.84 65.84 65.84 65.84 69.09 69.09	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1 289.1 289.1 289.1 289.1 289.1 289.2 289.2 289.2	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00 .0	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85 347.33 404.76 387.05 347.54 405.42 387.32 347.82	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73 303.51 359.58 342.81 303.59 359.87 342.91 303.71
Ny tes MOSART (hr) 4.00 4.25 4.50 4.75 5.00 5.25	<pre>st for ra r Radiati Sol Elev8.86 -8.86 -8.86 -7.23 -7.23 -7.23 -5.54 -5.54 -5.54 -3.80 -3.80 -3.80 -2.01 -2.01 -2.01 -1.18</pre>	pport ve Envi ar Azim. 55.88 55.88 55.88 59.24 59.24 59.24 62.56 62.56 62.56 62.56 65.84 65.84 65.84 65.84 65.84 69.09 69.09 72.32	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1 289.1 289.1 289.1 289.1 289.1 289.2 289.2 289.2 289.2	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00 .0	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85 347.33 404.76 387.05 347.54 405.42 387.32 347.82 406.23	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73 303.51 359.58 342.81 303.59 359.87 342.91 303.71 360.23
Ny tes MOSART (hr) 4.00 4.25 4.50 4.75 5.00 5.25	<pre>st for ra r Radiati Sol Elev8.86 -8.86 -8.86 -7.23 -7.23 -7.23 -7.23 -5.54 -5.54 -5.54 -3.80 -3.80 -3.80 -2.01 -2.01 -2.01 -1.818</pre>	pport ve Envi ar Azim. 55.88 55.88 55.88 59.24 59.24 59.24 62.56 62.56 62.56 62.56 65.84 65.84 65.84 65.84 65.84 65.84 69.09 69.09 72.32 72.32	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1 289.1 289.1 289.1 289.1 289.1 289.1 289.2 289.2 289.2 289.2 289.2	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .0	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00 .0	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85 347.33 404.76 387.05 347.54 405.42 387.32 347.82 406.23 387.65	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73 303.51 359.58 342.81 303.59 359.87 342.91 303.71 360.23 343.04
Ny tes MOSART (hr) 4.00 4.25 4.50 4.75 5.00 5.25	<pre>st for ra r Radiati Sol Elev. -8.86 -8.86 -7.23 -7.23 -7.23 -7.23 -5.54 -5.54 -5.54 -3.80 -3.80 -2.01 -2.01 -2.01 -2.01 -1.18 18 18</pre>	pport ve Envi ar Azim. 55.88 55.88 55.88 55.88 59.24 59.24 59.24 62.56 62.56 62.56 62.56 62.56 65.84 65.84 65.84 65.84 65.84 65.84 69.09 69.09 72.32 72.32 72.32	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1 289.1 289.1 289.1 289.1 289.1 289.2 289.2 289.2 289.2 289.2 289.2	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .0	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00 .0	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85 347.33 404.76 387.05 347.54 405.42 387.32 347.82 406.23 387.65 348.16	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73 303.51 359.58 342.81 303.59 359.87 342.91 303.71 360.23 343.04 303.84
Ny tes MOSART (hr) 4.00 4.25 4.50 4.75 5.00 5.25 5.50	<pre>st for ra r Radiati Sol Elev8.86 -8.86 -8.86 -7.23 -7.23 -7.23 -7.23 -5.54 -5.54 -5.54 -3.80 -3.80 -3.80 -2.01 -2.01 -2.01 -1.81818 1.68</pre>	pport ve Envi Azim. 55.88 55.88 55.88 55.88 59.24 59.24 59.24 62.56 62.56 62.56 62.56 65.84 65.84 65.84 65.84 65.84 69.09 69.09 72.32 72.32 72.32 75.53	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1 289.1 289.1 289.1 289.1 289.1 289.2 289.2 289.2 289.2 289.2 289.2 289.3	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .0	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00 .0	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85 347.33 404.76 387.05 347.54 405.42 387.32 347.82 406.23 387.65 348.16 407.19	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73 303.51 359.58 342.81 303.59 359.87 342.91 303.71 360.23 343.04 303.84 360.66
Ny tes MOSART (hr) 4.00 4.25 4.50 4.75 5.00 5.25 5.50	<pre>st for ra r Radiati Sol Elev8.86 -8.86 -8.86 -7.23 -7.23 -7.23 -7.23 -5.54 -5.54 -5.54 -3.80 -3.80 -3.80 -2.01 -2.01 -2.01 -1.81818 1.68 1.68</pre>	pport ve Envi Azim. 55.88 55.88 55.88 55.88 59.24 59.24 59.24 62.56 62.56 62.56 62.56 65.84 65.84 65.84 65.84 65.84 65.84 69.09 69.09 72.32 72.32 72.32 75.53 75.53	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1 289.1 289.1 289.1 289.1 289.1 289.1 289.2 289.2 289.2 289.2 289.2 289.2 289.3 289.3	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .0	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00 .0	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85 347.33 404.76 387.05 347.54 405.42 387.32 347.82 406.23 387.65 348.16 407.19 388.03	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73 303.51 359.58 342.81 303.59 359.87 342.91 303.71 360.23 343.04 303.84 360.66 343.19
Ny tes MOSART (hr) 4.00 4.25 4.50 4.75 5.00 5.25 5.50	<pre>st for ra radiati Sol Elev8.86 -8.86 -8.86 -7.23 -7.23 -7.23 -7.23 -5.54 -5.54 -5.54 -5.54 -3.80 -3.80 -3.80 -2.01 -2.01 -2.01 -2.01 -1.1818 1.68 1.68 1.68 1.68</pre>	pport ve Envi Azim. 55.88 55.88 55.88 55.88 59.24 59.24 59.24 62.56 62.56 62.56 62.56 62.56 65.84 65.84 65.84 65.84 65.84 65.84 69.09 69.09 72.32 72.32 72.32 75.53 75.53	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1 289.1 289.1 289.1 289.1 289.1 289.1 289.2 289.2 289.2 289.2 289.2 289.2 289.3 289.3 289.3	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .0	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00 .0	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85 347.33 404.76 387.05 347.54 405.42 387.32 347.82 406.23 387.65 348.16 407.19 388.03 348.56	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73 303.51 359.58 342.81 303.59 359.87 342.91 303.71 360.23 343.04 303.84 360.66 343.19 304.00
Ny tes MOSART (hr) 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75	<pre>st for ra r Radiati Sol Elev8.86 -8.86 -8.86 -7.23 -7.23 -7.23 -7.23 -5.54 -5.54 -5.54 -5.54 -3.80 -3.80 -3.80 -2.01 -2.01 -2.01 -1.818 1.68 1.68 1.68 1.68 3.56</pre>	pport ve Envi Azim. 55.88 55.88 55.88 55.88 59.24 59.24 59.24 62.56 62.56 62.56 62.56 62.56 65.84 65.84 65.84 65.84 65.84 65.84 69.09 69.09 72.32 72.32 72.32 75.53 75.53 75.53 78.72	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1 289.1 289.1 289.1 289.1 289.1 289.2 289.2 289.2 289.2 289.2 289.2 289.2 289.3 289.3 289.3 289.4	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .0	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00 .0	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85 347.33 404.76 387.05 347.54 405.42 387.32 347.82 406.23 387.65 348.16 407.19 388.03 348.56 408.30	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73 303.51 359.58 342.81 303.59 359.87 342.91 303.71 360.23 343.04 303.84 360.66 343.19 304.00 361.14
Ny tes MOSART (hr) 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75	<pre>st for ra r Radiati Sol Elev. -8.86 -8.86 -8.86 -7.23 -7.23 -7.23 -7.23 -7.23 -7.23 -7.554 -5.54 -5.54 -5.54 -3.80 -3.80 -3.80 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -3.80 -3.55 -3</pre>	pport ve Envi ar Azim. 55.88 55.88 55.88 59.24 59.24 59.24 62.56 62.56 62.56 62.56 62.56 65.84 65.84 65.84 65.84 65.84 65.84 69.09 69.09 69.09 72.32 72.32 72.32 75.53 75.53 75.53 78.72 78.72	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1 289.1 289.1 289.1 289.1 289.1 289.2 289.2 289.2 289.2 289.2 289.2 289.2 289.3 289.3 289.3 289.4 289.4	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .0	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00 .0	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85 347.33 404.76 387.05 347.54 405.42 387.32 347.82 406.23 387.65 348.16 407.19 388.03 348.56 408.30 388.48	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73 303.51 359.58 342.81 303.59 359.87 342.91 303.71 360.23 343.04 303.84 360.66 343.19 304.00 361.14 343.36
Ny tes MOSART (hr) 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75	<pre>st for ra r Radiati Sol Elev. -8.86 -8.86 -8.86 -7.23 -7.23 -7.23 -7.23 -7.23 -7.23 -7.554 -5.54 -5.54 -5.54 -5.54 -3.80 -3.80 -3.80 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -3.80 -3.55 -3</pre>	pport ve Envi ar Azim. 55.88 55.88 55.88 59.24 59.24 59.24 59.24 62.56 62.56 62.56 62.56 62.56 65.84 65.84 65.84 65.84 65.84 65.84 65.909 69.09 69.09 72.32 72.32 72.32 72.32 75.53 75.53 75.53 78.72 78.72 78.72	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1 289.1 289.1 289.1 289.1 289.2 289.2 289.2 289.2 289.2 289.2 289.2 289.3 289.3 289.3 289.4 289.4 289.4	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .0	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00 .0	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85 347.33 404.76 387.05 347.54 405.42 387.32 347.82 406.23 387.65 348.16 407.19 388.03 348.56 408.30 388.48 349.03	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73 303.51 359.58 342.81 303.59 359.87 342.91 303.71 360.23 343.04 303.84 360.66 343.19 304.00 361.14 343.36 304.19
Ny tes MOSART (hr) 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00	<pre>st for ra r Radiati Sol Elev. -8.86 -8.86 -8.86 -7.23 -7.23 -7.23 -7.23 -7.23 -7.23 -5.54 -5.54 -5.54 -5.54 -5.54 -3.80 -3.80 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -18 -18 1.68 1.68 1.68 3.56 3.56 3.56</pre>	pport ve Envi ar Azim. 55.88 55.88 55.88 59.24 59.24 59.24 59.24 62.56 62.56 62.56 62.56 62.56 62.56 65.84 65.84 65.84 65.84 65.84 65.84 65.84 65.90 969.09 69.09 72.32 72.32 72.32 72.32 75.53 75.53 75.53 78.72 78.72 78.72 81.91	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1 289.1 289.1 289.1 289.1 289.2 289.2 289.2 289.2 289.2 289.2 289.2 289.2 289.3 289.3 289.3 289.4 289.4 289.4 289.5	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .0	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00 .0	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85 347.33 404.76 387.05 347.54 405.42 387.32 347.82 406.23 387.65 348.16 407.19 388.03 348.56 408.30 388.48 349.03 409.54	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73 303.51 359.58 342.81 303.59 359.87 342.91 303.71 360.23 343.04 303.84 360.66 343.19 304.00 361.14 343.36 304.19 361.69
Ny tes MOSART (hr) 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00	<pre>st for ra r Radiati Sol Elev. -8.86 -8.86 -8.86 -7.23 -7.23 -7.23 -7.23 -7.23 -7.23 -5.54 -5.54 -5.54 -5.54 -3.80 -3.80 -2.01 -2.02 -2.01 -2.02 -2.01 -2.02 -2.01 -2.02 -2.01 -2.02 -2.01 -2.</pre>	pport ve Envi ar Azim. 55.88 55.88 55.88 59.24 59.24 59.24 59.24 62.56 62.56 62.56 62.56 62.56 65.84 65.84 65.84 65.84 65.84 65.84 65.84 65.90 969.09 69.09 72.32 72.32 72.32 72.32 75.53 75.53 75.53 75.53 78.72 78.72 78.72 81.91 81.91	Temp. (K) 289.0 289.0 289.0 289.0 289.0 289.0 289.0 289.1 289.1 289.1 289.1 289.1 289.1 289.2 289.2 289.2 289.2 289.2 289.2 289.2 289.2 289.3 289.3 289.3 289.3 289.4 289.4 289.4 289.5 289.5	Summary Beam .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	(Ver. 1.50) SWIR (w/m** Diff(+) .00 .00 .00 .00 .00 .00 .00 .0	Tue Apr 2) Diff(-) .00 .00 .00 .00 .00 .00 .00 .0	13 13:53:0 LWIR (w Diff(+) 403.70 386.63 347.10 403.90 386.71 347.18 404.25 386.85 347.33 404.76 387.05 347.54 405.42 387.32 347.82 406.23 387.65 348.16 407.19 388.03 348.56 408.30 388.48 349.03 409.54 388.98	3 1999 /m**2) Diff(-) 359.12 342.65 303.42 359.20 342.68 303.45 359.36 342.73 303.51 359.58 342.81 303.59 359.87 342.91 303.71 360.23 343.04 303.84 360.66 343.19 304.00 361.14 343.36 304.19 361.69 343.55

6.25	7.39	85.10	289.6	7.87	40.03	561.28	410.93	362.30
	7.39	85.10	289.6	33.04	30.66	419.43	389.53	343.76
	7.39	85.10	289.6	74.70	33.57	442.53	350.13	304.63
6.50	9.32	88.29	289.7	68.09	50.27	657.61	412.44	362.97
	9.32	88.29	289.7	96.23	35.86	463.84	390.14	343.99
	9.32	88.29	289.7	128.75	37.10	468.44	350.77	304.88
6.75	11.26	91.51	289.8	160.41	57.58	686.38	414 08	363 70
	11,26	91.51	289.8	171.78	39 92	486 33	390 79	344 23
	11.26	91 51	289 8	186 19	40.07	191 91	351 45	305 16
7 00	13 19	94 74	289 9	255 15	62 84	404.JI	A15 05	364 40
	13 19	94.74	200.0	233.13	12.09	406 06	415.05	304.40
	13 10	04 74	209.9	247.73	43.09	496.05	391.50	344.47
7 25	15 11	00 01	209.9	243.05	42.57	494.80	352.19	305.45
1.25	15.11	98.01	290.1	342.21	66.81	669.77	417.72	365.30
	15.11	98.01	290.1	319.09	45.61	498.64	392.24	344.68
7 50	15.11	98.01	290.1	297.12	44.65	500.16	352.97	305.77
7.50	17.02	101.32	290.2	418.94	69.87	650.92	419.71	366.18
	17.02	101.32	290.2	383.65	47.62	497.13	393.03	344.89
ante contrario	17.02	101.32	290.2	347.30	46.40	502.43	353.80	306.10
7.75	18.91	104.67	290.4	485.30	72.25	630.80	421.79	367.10
	18.91	104.67	290.4	441.02	49.22	493.25	393.86	345.12
	18.91	104.67	290.4	393.16	47.85	502.58	354.66	306.44
1 Heat Tr	ransfer	Data -	Altitude	9	= .0	0 km		
Ny test	for ra	apport						
MOSART	Radiat:	ive Env:	ironment	Summary	(Ver. 1.50)	Tue Apr	13 13:53:03	1999
LST	So:	lar	Temp.		SWIR (w/m**	2)	LWIR (w/	'm**2)
(hr)	Elev.	Azim.	(K)	Beam	Diff(+)	Diff(-)	Diff(+)	Diff(-)
8.00	20.76	108.08	290.5	542.24	74.10	610.82	423.97	368.06
	20.76	108.08	290.5	491.54	50.51	488.04	394.72	345.35
	20.76	108.08	290.5	434.69	49.07	501.31	355.56	306.79
8.25	22.58	111.55	290.7	591.02	75.54	591.68	426.23	369.06
	22.58	111.55	290.7	535.82	51.54	482.12	395.61	345.60
	22.58	111.55	290.7	472.10	50.10	499 14	356 50	307 07
8.50	24.36	115.10	290 9	632 84	76.67	573 71	428 56	370.09
	24 36	115 10	290.9	574 59	52 37	175 02	326.50	345 95
	24 36	115 10	290.9	505 64	50.96	406 35	357 46	343.05
8 75	26 08	118 72	201 0	669 90	27 55	490.35	130.06	307.35
0.75	26.00	110.72	201 0	600.00	52 14	AEC 00	430.96	371.14
	26.00	110.72	291.0	525 61	52.14	400.92	397.47	346.10
9 00	20.00	100.74	291.0	535.61	51.69	493.20	358.45	307.64
9.00	27.75	122.44	291.2	699.88	78.26	541.87	433.41	371.97
	27.75	122.44	291.2	638.23	52.66	450.39	398.43	346.36
0.05	21.15	122.44	291.2	562.34	52.30	489.87	359.45	307.94
9.25	29.35	126.24	291.4	726.78	78.83	528.09	435.91	372.69
	29.35	126.24	291.4	664.24	53.07	444.20	399.41	346.63
	29.35	126.24	291.4	586.10	52.81	486.50	360.48	308.24
9.50	30.87	130.15	291.6	750.04	79.29	515.63	438.45	373.42
	30.87	130.15	291.6	686.98	53.41	438.43	400.39	346.90
	30.87	130.15	291.6	607.17	53.24	483.18	361.52	308.55
9.75	32.31	134.16	291.7	770.14	79.65	504.47	441.01	374.15
	32.31	134.16	291.7	706.82	53.69	433.12	401.39	347.17
	32.31	134.16	291.7	625.76	53.61	480.00	362.56	308.85
10.00	33.65	138.28	291.9	787.47	79.95	494.54	443.58	374.88
	33.65	138.28	291.9	724.05	53.91	428.30	402.39	347.43
	33.65	138.28	291.9	642.08	53.91	477.02	363.61	309.16
10.25	34.88	142.50	292.1	802.32	80.19	485.81	446.16	375.61
	34.88	142.50	292.1	738.92	54.10	423.99	403.38	347.70
	34.88	142.50	292.1	656.30	54.17	474.26	364.66	309.47
10.50	36.00	146.84	292.3	814.96	80.38	478.22	448.73	376.34
	36.00	146.84	292.3	751.65	54.25	420.18	404.38	347.97
	36.00	146.84	292.3	668.55	54.38	471.78	365.70	309.77
10.75	37.00	151.28	292.5	825.58	80.53	471.72	451.28	377 06
	37.00	151.28	292.5	762.40	54.37	416 88	405 36	348 23
								- 20.20

.

.

		37.00	151.28	292.5	678.97	54.55	469.58	366.73	310 07
	11.00	37.86	155.82	292.6	834 34	80 65	466 29	453 80	377 76
		37.86	155 82	292 6	771 30	54 46	414 00	405.00	349.40
		37 96	155 92	202.0	607 65	54.40	467.70	400.32	340.49
	11 05	30 50	100.44	292.0	007.05	54.09	467.70	307.75	310.37
	11.25	38.59	160.44	292.8	841.37	80.75	461.87	456.27	378.45
		38.59	160.44	292.8	778.47	54.54	411.80	407.27	348.75
		38.59	160.44	292.8	694.67	54.80	466.13	368.75	310.66
	11.50	39.16	165.15	293.0	846.77	80.82	458.44	458.70	379.13
		39.16	165.15	293.0	783.99	54.59	410.02	408.20	349.00
		39.16	165.15	293.0	700.10	54.89	464.90	369.72	310.94
	11.75	39.58	169.91	293.1	850.62	80.87	455 98	461 06	379 78
		39 58	169 91	203 1	797 04	54 63	400 73	401.00	340.04
		20 50	160 01	295.1	707.34	54.05	400.75	409.10	349.24
-		39.30	109.91	293.1	703.99	54.95	464.00	370.67	311.21
1	Heat T	ranster	Data -	Altitude	9	= .0	0 km		
	Ny test	t for ra	apport						
	MOSART	Radiat:	ive Envi	ronment	Summary	(Ver. 1.50)	Tue Apr	13 13:53:03	3 1999
	LST	Sol	lar	Temp.		SWIR (w/m**	2)	LWIR (w)	(m**2)
	(hr)	Elev.	Azim.	(K)	Beam	Diff(+)	Diff(-)	Diff(+)	Diff(-)
								()	/
	12 00	20 04	174 71	202.2	050 07	00 00	454 40	462 24	200 42
	12.00	39.04	174.71	293.3	002.97	00.09	454.48	403.34	380.42
		39.84	1/4./1	293.3	790.35	54.66	407.94	409.97	349.47
		39.84	174.71	293.3	706.39	54.99	463.44	371.58	311.48
	12.25	39.95	179.54	293.4	853.85	80.91	453.91	465.54	381.02
		39.95	179.54	293.4	791.25	54.66	407.64	410.80	349.69
		39.95	179.54	293.4	707.30	55.00	463.22	372.46	311.73
	12.50	39.88	184.37	293.6	853.27	80.90	454.29	467.64	381.60
		39.88	184.37	293.6	790.67	54.66	407.83	411 60	349 90
		39 88	184 37	293 6	706 73	54.00	463 36	373 30	311 07
	10 75	20.00	109.37	293.0	700.75	54.55	403.30	373.30	311.97
	12.75	39.00	189.18	293.7	851.23	80.87	455.60	469.63	382.15
		39.66	189.18	293.7	788.58	54.64	408.51	412.35	350.10
		39.66	189.18	293.7	704.69	54.96	463.83	374.09	312.20
	13.00	39.28	193.96	293.8	847.69	80.83	457.87	471.50	382.66
		39.28	193.96	293.8	784.96	54.60	409.69	413.06	350.29
		39.28	193.96	293.8	701.16	54.91	464.65	374.84	312.42
	13.25	38.74	198.68	294.0	842.61	80.76	461.10	473.26	383.14
		38.74	198.68	294.0	779.78	54.55	411.37	413.72	350 47
		38 74	198 68	294 0	696 10	54 83	465 80	375 53	312 62
	13 50	30.05	202 22	204.1	035 02	90.60	465.00	474 97	303 50
	13.30	30.05	203.32	294.1	333.32	50.00	403.32	4/4.0/	303.30
		38.05	203.32	294.1	112.91	54.48	413.54	414.33	350.63
		38.05	203.32	294.1	689.46	54.72	467.29	376.17	312.80
	13.75	37.22	207.88	294.2	827.53	80.56	470.55	476.35	383.98
		37.22	207.88	294.2	764.46	54.39	416.22	414.88	350.78
		37.22	207.88	294.2	681.19	54.59	469.09	376.76	312.97
	14.00	36.25	212.34	294.3	817.31	80.42	476.83	477.67	384.34
		36.25	212.34	294.3	754.12	54.27	419.40	415.38	350.91
		36.25	212.34	294.3	671.21	54.42	471.21	377.28	313.12
	14.25	35.16	216.70	294.3	805.11	80.23	484.20	478 84	384 66
		35 16	216 70	294 3	741 84	54 13	423 10	415 82	351 02
		35 16	216 70	294.3	650 41	54.22	472 62	277 74	313 35
	14 50	22.00	210.70	294.5	039.41	34.22	473.03	377.74	313.25
	14.50	33.95	220.96	294.4	790.73	80.01	492.69	479.84	384.93
		33.95	220.96	294.4	727.45	53.95	427.30	416.19	351.12
		33.95	220.96	294.4	645.69	53.97	476.32	378.14	313.36
	14.75	32.64	225.10	294.5	773.95	79.73	502.37	480.68	385.15
		32.64	225.10	294.5	710.76	53.74	432.01	416.51	351.21
		32.64	225.10	294.5	629.91	53.68	479.25	378.47	313.46
	15.00	31.23	229.14	294.5	754.46	79.38	513.27	481.35	385.34
		31.23	229.14	294.5	691.53	53.47	437.20	416.76	351.27
		31.23	229 14	294.5	611.90	53 33	482 38	378 74	313 53
	15.25	29 73	233 07	294 5	731 90	78 94	525 46	481 94	385 17
		29 73	233 07	294 5	660 47	52 16	112 07	416 04	361 33
		29.13	233.07	234.3	501 40	55.15	444.0/	10.94	331.32
	15 50	29.73	233.07	294.5	591.48	52.92	485.66	378.93	313.59
	15.50	28.15	236.90	294.6	705.81	78.40	538.97	482.16	385.55

٠

.

	28.1	5 236.90	294.6	644.24	52.75	448.96	417.06	351.35
	28.1	5 236.90	294.6	568.43	52.43	489.02	379.06	313.62
1	5.75 26.5	240.63	294.6	675.63	77.72	553.83	482.29	385.59
	26.5	240.63	294.6	615.42	52.26	455.42	417.11	351.37
	26.5	240.63	294.6	542.50	51.85	492.37	379.11	313 64
1 H	eat Transfe	r Data -	Altitude	-	= .0	0 km		525.04
N	y test for :	rapport			1.5.0. 			
M	SART Radia	ive Env	vironment	Summary	(Ver. 1.50)	The Apr	13 13 . 53 . 03	1999
				1	11021 21007	rac upr	10 10.00.00	
	LST Se	olar	Temp.		SWTR (w/m**	2)	IWTR (W)	(m**2)
	(hr) Elev	Azim	(K)	Ream	Diff(+)	Diff(-)	Diff(+)	Diff(_)
			(/	Doan	Dirte(.)	DILL()	DILL("/	DILL(-)
10	5.00 24.79	244.28	294.6	640 66	76 86	570 05	192 25	305 50
	24.79	244 28	294 6	582 51	52 53	474 50	417 00	361 36
	24.79	244.28	294 6	513 41	51 16	405 58	379 09	312 62
16	5.25 23.01	247.84	294 5	600 02	75 77	587 60	192 03	305 50
_	23.03	247.84	294 5	544 93	51 74	490 71	402.03	361.34
	23.03	247 84	294 5	480 86	50 33	100.71	379 00	312 61
1.6	5.50 21 22	251 33	294.5	552 70	74 39	406 33	101 60	305 41
	21.22	251 33	294.5	502 00	50 76	406 71	401.02	365.41
	21.22	251.33	294.5	111 52	10.76	400.71	410.00	351.30
1.6	21.22	251.33	294.5	444.00	49.35	500.82	378.84	313.56
τ¢	10.20	234.70	294.5	497.50	12.61	625.98	481.05	385.25
	19.30	254.70	294.5	453.03	49.54	492.13	416.64	351.24
1.0	19.38	254.70	294.5	404.13	48.18	502.31	378.62	313.50
11	.00 17.50	258.13	294.4	433.22	70.34	645.98	480.29	385.05
	17.50	258.13	294.4	397.34	48.01	496.37	416.36	351.17
	17.50	258.13	294.4	359.45	46.78	502.51	378.32	313.41
17	.25 15.61	261.45	294.4	358.83	67.44	665.11	479.37	384.80
	15.61	261.45	294.4	334.54	46.11	498.54	416.02	351.08
	15.61	261.45	294.4	310.46	45.12	500.80	377.96	313.31
17	.50 13.69	264.73	294.3	274.12	63.69	680.74	478.29	384.51
	13.69	264.73	294.3	264.81	43.72	497.10	415.61	350.97
	13.69	264.73	294.3	257.47	43.13	496.30	377.53	313.19
17	.75 11.77	267.97	294.2	180.87	58.77	686.61	477.04	384.17
	11.77	267.97	294.2	189.73	40.72	489.41	415.14	350.85
	11.77	267.97	294.2	201.37	40.75	487.76	377.03	313.05
18	9.84	271.19	294.1	86.64	52.00	667.02	475.64	383.79
	9.84	271.19	294.1	113.50	36.90	470.62	414.62	350.71
	9.84	271.19	294.1	144.02	37.92	473.31	376.48	312.89
18	.25 7.91	274.39	294.0	15.97	42.40	588.30	474.10	383.37
	7.91	274.39	294.0	45.93	32.00	432.39	414.04	350.55
	7.91	274.39	294.0	88.77	34.56	450.36	375.87	312.71
18	.50 6.00	277.59	293.9	.00	31.92	452.69	472.42	382.91
	6.00	277.59	293.9	5.94	26.13	367.76	413.40	350.38
	6.00	277.59	293.9	41.34	30.63	415.87	375.20	312.52
18	.75 4.09	280.78	293.8	.00	.00	.00	470.60	382.41
	4.09	280.78	293.8	.00	21.51	305.01	412.72	350.20
	4.09	280.78	293.8	10.17	26.38	369.48	374.48	312.31
19	.00 2.21	283.97	293.7	.00	.00	.00	468.67	381.88
	2.21	283.97	293.7	.00	.00	.00	411.99	350.01
	2.21	283.97	293.7	.31	22.79	323.04	373.71	312.09
19	.25 .35	287.18	293.5	.00	.00	.00	466.62	381.32
	. 35	287.18	293.5	.00	.00	.00	411.21	349.80
	.35	287.18	293.5	.00	21.05	298.43	372.89	311.86
19	.50 -1.47	290.40	293.4	.00	.00	.00	464.47	380.73
	-1.47	290.40	293.4	.00	.00	.00	410.40	349.58
	-1.47	290.40	293.4	.00	.00	.00	372.03	311.61
19	.75 -3.26	293.65	293.2	.00	.00	.00	462.23	380.11
	-3.26	293.65	293.2	.00	.00	.00	409.55	349.36
	-3.26	293.65	293.2	.00	.00	.00	371.14	311.35
1 He	at Transfer	Data -	Altitude		= .00	0 km		

Ny test for rapport

5

.

4

MOSART Radiative Environment Summary (Ver. 1.50) Tue Apr 13 13:53:03 1999

25

LST	So	lar	Temp.		SWIR (w/m*)	*2)	LWIR (w	/m**21
(hr)	Elev.	Azim.	(K)	Beam	Diff(+)	Diff(-)	Diff(+)	Diff(-)
								,
20.00	-5.00	296.92	293.1	.00	. 00	.00	459.91	379 47
	-5.00	296.92	293.1	.00	. 00	00	408 66	349 12
	-5.00	296.92	293.1	.00	. 00	00	370 21	311 08
20.25	-6.70	300.23	292.9	00	00	.00	457 52	378 80
	-6.70	300.23	292.9	.00	.00	.00	407 75	349 99
	-6 70	300.23	292.9	.00	.00	.00	360 35	340.00
20 50	-8 33	303 50	202.7	.00	.00	.00	309.25	310.80
20.30	_0.33	202 50	292.7	.00	.00	.00	455.07	378.12
	-0.33	303.59	292.7	.00	.00	.00	406.81	348.63
20 25	-0.33	303.59	292.1	.00	.00	.00	368.26	310.52
20.75	-9.91	306.98	292.6	.00	.00	.00	452.57	377.42
	-9.91	306.98	292.6	.00	.00	.00	405.85	348.37
	-9.91	306.98	292.6	.00	.00	.00	367.25	310.22
21.00	-11.41	310.43	292.4	.00	.00	.00	450.04	376.71
	-11.41	310.43	292.4	.00	.00	.00	404.88	348.11
	-11.41	310.43	292.4	.00	.00	.00	366.23	309.92
21.25	-12.84	313.92	292.2	.00	.00	.00	447.48	375.98
	-12.84	313.92	292.2	.00	.00	.00	403.89	347.84
	-12.84	313.92	292.2	.00	.00	.00	365.19	309.62
21.50	-14.18	317.47	292.0	.00	. 00	.00	444 90	375 26
	-14.18	317.47	292.0	.00	.00	0.0	402.90	347 57
	-14.18	317.47	292.0	.00	.00	00	364 15	309 32
21 75	-15 44	321 07	291 8	.00	.00	.00	442 32	374 53
22.15	-15 44	321.07	291.0	.00	.00	.00	442.32	3/4.52
	-15 44	321.07	291.0	.00	.00	.00	401.90	347.30
22 00	16 60	224.72	291.0	.00	.00	.00	363.10	309.01
22.00	-10.00	324.73	291.7	.00	.00	.00	439.76	373.79
	-16.60	324.73	291.7	.00	.00	.00	400.90	347.03
00.05	-10.60	324.73	291.7	.00	.00	.00	362.05	308.70
22.25	-17.66	328.45	291.5	.00	.00	.00	437.21	373.06
	-17.66	328.45	291.5	.00	.00	.00	399.91	346.77
	-17.66	328.45	291.5	.00	.00	.00	361.01	308.40
22.50	-18.62	332.21	291.3	.00	.00	.00	434.69	372.34
	-18.62	332.21	291.3	.00	.00	.00	398.93	346.50
	-18.62	332.21	291.3	.00	.00	.00	359.98	308.09
22.75	-19.45	336.03	291.1	.00	.00	.00	432.21	371.62
	-19.45	336.03	291.1	.00	.00	.00	397.96	346.24
	-19.45	336.03	291.1	.00	.00	.00	358.96	307.79
23.00	-20.18	339.89	290.9	.00	.00	.00	429.78	370.62
	-20.18	339.89	290.9	.00	.00	.00	397.01	345.98
	-20.18	339.89	290.9	.00	.00	.00	357.96	307.50
23.25	-20.77	343.79	290.8	.00	.00	.00	427.41	369.58
	-20.77	343.79	290.8	.00	.00	.00	396.07	345.72
	-20.77	343.79	290.8	.00	.00	.00	356.99	307.21
23.50	-21.25	347.72	290.6	.00	.00	.00	425.11	368.56
	-21.25	347.72	290.6	.00	.00	00	395 17	345 48
	-21.25	347.72	290.6	.00	00	00	356 04	306 93
23 75	-21 59	351 69	290.4	.00	.00	.00	422.00	367 50
23.15	-21 59	351 69	290.4	.00	.00	.00	422.09	345 34
	_21.59	351 69	290.4	.00	.00	.00	394.29	345.24
1 West m	-21.39	551.09 Date	290.4	.00	.00	.00	355.12	306.63
I Heat T	tansier	Data -	AILILUDE		= .0	U KIM		
My tes	Dadiati	apport		G		-	10 10 00 0	
MOSART	Radiati	ve Envi	ronment	Summary	(Ver. 1.50)	Tue Apr	13 13:53:03	1999
LST	So]	lar	Temp.		SWIR (w/m**	2)	LWIR (w/	/m**2)
(hr)	Elev.	Azim.	(K)	Beam	Diff(+)	Diff(-)	Diff(+)	Diff(-)
62000 0000	0.01.01	20. 12 Mar						
24.00	-21.80	355.66	290.3	.00	.00	.00	420.76	366.64
	-21.80	355.66	290.3	.00	.00	.00	393.45	345.01
	-21.80	355.66	290.3	.00	.00	.00	354.23	306.27

÷

•

.

APPENDIKS

B AVTALE

Vedlagt i dette appendiks er avtalen som er inngått mellom FFI og AFRL. En slik avtale er inngått for MODTRAN, MOSART og FASCODE.

NON-DISCLOSURE AGREEMENT

THIS AGREEMENT is entered into for the purpose of establishing the respective rights and interests of the parties hereto.

WHEREAS, THE UNITED STATES AIR FORCE, at the Air Force Research Laboratory, Hanscom AFB, located at 29 Randolph Rd., HAFB, MA 01731, (hereinafter referred to as "the AIR FORCE") is in possession of certain proprietary information including prototype software, MODTRAN 3.7, related to atmospheric radiative transfer (hereinafter referred to as "MODTRAN 3.7"), and

WHEREAS, the AIR FORCE is currently holding a patent on MODTRAN (Patent Number 5,315,513, 24 May, 1994); AND

WHEREAS, Norwegian Defence Research Establishment/Div. E (FFI/E), (hereinafter referred to as "the CORPORATION"), a fully owned corporation, government agency, or non-profit institution, and subsidiaries thereof, is desirous of inspection, reviewing, and using MODTRAN 3.7 in order to permit the CORPORATION to evaluate and participate in its continued development and application, and the AIR FORCE is willing to disclose the same to the CORPORATION under the terms and conditions specified below;

NOW, THEREFORE, it is agreed that:

- 1. The AIR FORCE will provide/disclose MODTRAN 3.7 to the CORPORATION;
- 2. The AIR FORCE will permit open communications between the AIR FORCE personnel and the personnel of the CORPORATION as may be directly involved in the evaluation and implementation of MODTRAN 3.7, such interactions limited to regular working hours. The exact dates and length of such communications will be left open to the exigencies of AIR FORCE support. The potential for more complex and special interfacing on MODTRAN 3.7 may have to be separately negotiated between the CORPORATION AND THE AIR FORCE with funding provided by the CORPORATION;
- The CORPORATION agrees to receive MODTRAN 3.7 in confidence and to maintain its proprietary status, that MODTRAN 3.7 is to be used by the CORPORATION solely for the purpose of CORPORATION applications, and the

CORPORATION agrees that it will not use or disclose the same in any proprietary way without first obtaining written permission from or entering into a Patent License and/or a Cooperative Research and Development Agreement (CRDA) with the AIR FORCE which will permit such disclosure;

- The CORPORATION will have no monetary obligation to the AIR FORCE if the CORPORATION does not disclose or distribute MODTRAN 3.7 to other potential recipients, as submitted to it under this agreement;
- The CORPORATION'S obligation to maintain MODTRAN 3.7 in confidence shall not extend to portions of MODTRAN 3.7 which are general knowledge or available in the public domain or in the Corporation's possession or custody as evidenced by dated prior releases or papers;
- 6. MODTRAN 3.7, as provided to the CORPORATION by the AIR FORCE under this agreement, shall remain the property of the AIR FORCE; the CORPORATION shall make no copies of any of MODTRAN 3.7 provided hereunder, except to the extent necessary to permit proper use and evaluation within the CORPORATION;
- 7. The CORPORATION shall limit access to MODTRAN 3.7 provided hereunder to only those of its personnel as may be directly involved in the CORPORATE applications and inform such personnel that said MODTRAN 3.7 is the property of the AIR FORCE, and the CORPORATION shall provide to the AIR FORCE the list of all the CORPORATION personnel having had access to MODTRAN 3.7; AND
- 8. Notwithstanding any of the foregoing provisions, nothing herein contained shall be construed as giving the CORPORATION any license or right in any invention or discovery or information arising directly out of MODTRAN 3.7 provided hereunder. This provision will not constitute any infringement of the CORPORATION's pursuit of scientific applications, validation, presentation, and publication in which MODTRAN 3.7 may have been employed. The CORPORATION retains sole control over its implementation of its own scientific data and insights, without prior regard to MODTRAN 3.7 disclosure. All such traditional use of MODTRAN 3.7 is encouraged.
- If the CORPORATION elects to include MODTRAN 3.7 in any commercial and/or proprietary venture, as a subroutine or feature of a commercial product, the CORPORATION agrees to enter into a Licensing Agreement and/or CRDA with the AIR FORCE.
- 10. While modification of the code or databases is permitted for non-commercial use, any and all results produced with such modified code must be clearly identified as output from a "Modified Version of MODTRAN 3.7"; and

11. While government agencies may sign this agreement, they have full access to MODTRAN 3.7 by right. Government agencies may also sign for specific CORPORATIONS if the intended use by the CORPORATION is solely for that government agency. Note that this implies that CORPORATIONS may have to sign multiple agreements, depending on each specific use of MODTRAN 3.7.

Paul Narum for the CORPORATION P.O.Box 25, N-2027 Kjeller, Norway Phone: +47 63 80 70 00 CORPORATION Address, Telephone Number, Espen Stark Espen.Stark@ffi.no Technical Point of Contact, INCLUDE e-mail address

for the AIR FORCE

1

4