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PREDICTION OF CONCRETE PENETRATION USING FORRESTAL'S FORMULA

1 INTRODUCTION

Many empirical equations exist for predicting the penetration depth in concrete targets. As
shown in Teland (21), these formulas give different results, and have a limited range of
validity.  Explaining the difference is difficult since most of the original empirical data
behind the various formulas are not available.  The range of the parameters used in the
experiments is known, though.

In this report, an explanation will be attempted by comparing the empirical formulas to
Forrestal’s approach, which has the nice feature of giving good results while being based
on physical principles.  Some special assumptions will make it possible to suggest
explanations for the discrepancy between the formulas.

After some introductory remarks on dimensional analysis and various existing empirical
formulas in chapter 2 and 3, Forrestal’s formula is examined in Chapter 4.  In Chapter 5, it
is compared to existing empirical data.  In Chapter 6, the most important empirical
formulas are compared to Forrestal’s formula within their experimental range of
parameters.  In Chapter 7, Forrestal’s formula is applied to different modern weapons.

2 DIMENSIONAL ANALYSIS

The majority of the existing formulas are dimensionally wrong, which either means that
the formulas are purely empirical or that some important parameters are not included in the
formulas.  In Table 2.1, the parameters used in Forrestal’s formula are listed, and these
parameters are also used in the majority of the empirical equations.

Table 2.1:  The quantities used in Forrestal’s formula.

Quantity Description Dimension

x Penetration depth L

d Diameter of the projectile L

r Radius of ogivity L

m Mass of the projectile M

v Striking velocity MT-1

σc Compressive strength of concrete ML-1T-2

ρ Density of concrete ML-3
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From dimensional analysis (Buckingham’s π-teorem), see Baker et al (2), 4 non-
dimensional quantities can be formed from the quantities in Table 2.1, for example:
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(2.1)

where g is an arbitrary function of r/d.  It should be noted that the non-dimensional mass M
for a cylindrical geometry is proportional to the length to diameter ratio of the projectile, a
parameter which is known to be important in penetration problems.
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Figure 2.1 Definition of the geometrical parameters for the projectile.

3 EXISTING EMPIRICAL FORMULAS

In Teland (21), the different existing empirical penetration formulas were studied, and the
predicted penetration depth was seen to be strongly dependent on the formula used. This is
shown in Figure 3.1 for parameters corresponding to penetration of a GBU-28 into normal
concrete.  The resulting penetration depth when applying different formulas can vary by a
factor 2-3, which is a too large uncertainty in the resulting penetration depth.

The empirical equations can be divided into three categories:

•     The experimental data are available
•     The range of the experimental parameters used is available
•     Only the equations are available
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Figure 3.1 Comparison of some different empirical formulas for penetration of GBU-28
into normal concrete.

Most of the formulas shown in Figure 3.1 are used beyond their experimental range. In
addition to the formulas shown in Figure 3.1, some other formulas exist. Examples are the
Adeli & Amin formula (1) and the Haldar & Miller formula (12), which are only valid for
penetration depths less than twice the diameter, and Kar’s formula (15), which is a slight
correction to the NDRC formula.

4 FORRESTAL’S FORMULA

Forrestal’s formula is the only one of the existing empirical formulas that is based upon
sound physical principles.  The projectile is assumed to be rigid, and the target is semi-
infinite. The force acting on the projectile is found from the cavity expansion theory, see
Forrestal & Luk (7) and Teland (23). The force decelerating the projectile can be written as

θθ cos,cos)( vudAupf
A

rx == (4.1)

where v is the projectile velocity,  pr is the radial stress in the target material close to the
penetration channel and the integration is performed over the surface area A of the nose.
For a simple material model, it is estimated by cavity expansion theory that

2)( BvAvpr += (4.2)

It is then found that A is proportional to the compressive strength of the target material, and
B is proportional to the density of the target.  The integral in Equation (4.1) gives
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The nose factor N is given by
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and is shown in Figure 4.1.

The penetration depth is then found from Newton’s 2nd law:
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where S
VV 22ˆ = .  The derivation of Forrestal’s Equation (4.2) is performed in Appendix A.

It is seen that the penetration depth in Forrestal’s formula only depends on two non-
dimensional parameters; M/N and V/S1/2.  In Section 4.5, it will be shown that the
penetration depth is very sensitive to the value of M/N.
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Figure 4.1 The nose factor N as a function of r/d.

4.1 The “S-factor”

From Equation (4.5), the S-factor can be explicitly calculated:
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From Forrestal’s experiments (7), (8), (9), the S-factor is experimentally determined as a
function of the compressive strength

544.0

610
6.82

−
�

�
�

�= cS σ (4.7)

where σc is measured in SI-units (Pa). The constant S is, by definition, non-dimensional,
but the right-hand side of Equation (4.5) does not satisfy this requirement. In principle, S
should be on the form

�
��
�

�
=

p
fS cσ

(4.8)

where p has dimension stress.  As shown in Section 5.6, when discussing the data behind
Bernard’s formula, the S-factor calculated for concrete in Equation (4.9), gives inaccurate
results when applied to rock targets.  This further indicates that the S-factor should depend
on other material parameters than the compressive strength as well.

The S-factor as defined by Forrestal in Equation (4.5) is only valid for compressive
strengths below 100 MPa.  By including some experiments with compressive strengths up
to 200 MPa, as well as some other available experiments, a corrected expression for the S-
factor was found to be

43.0

610
5.49

−
�

�
�

�= cS σ (4.9)

The new and old S-factors are compared in Figure 4.2 together with the experiments used
to determine the corrected S-factor.  Figure 4.2 shows that there is larger difference in the
experimental determined S-factor for concrete with low compressive strength compared to
concrete with large values of σc.  Forrestal’s S-factor and the corrected S-factor for high
performance concrete gives approximately the same value.
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Figure 4.2 Comparison of Forrestal’s S-factor to the modified S-factor, and the
experimental data behind the modified S-factor.

4.2 Maximum penetration depth

For very long projectiles, the penetration depth as a function of the non-dimensional
impact velocity is determined by

2
ˆ1ˆ2lim 2

ˆ

π
π

>+==
=

∞→
VVXX

constV

max
N

M
(4.10)

It should be noted that this is a theoretical limit only, as extremely slender penetrators may
break up during the penetration process.  (Erosion phenomena are not relevant within this
rigid-body approach.)

4.3 Inflection point

Forrestal’s formula, as given in Equation (4.5), shows a logaritmic behaviour.  For low
values of the impact velocity, the penetration depth goes like v2, which means that there
must exist an inflection point, i.e.

0ˆ 2

2

=
∂

∂
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Derivation of Equation (4.5) twice gives
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By solving Equations (4.11) and (4.12), it is found that the inflection point velocity is
given by

N
MVi =ˆ (4.13)

This is schematically shown in Figure 4.3.

V/S1/2

x/d

N
M

Figure 4.3  The inflection point in Forrestal’s formula.

4.4 Flat nosed projectiles

One of the assumptions behind Forrestal’s formula is that the force acting on the projectile
is given by cavity expansion theory only for penetration depths larger than two calibers.  In
the first phase of the penetration process, the force is assumed to be proportional to the
penetration depth, i.e. the force is increasing linearly from zero to maximum force given by
cavity expansion theory.  For flat nosed projectiles, the actual force will act almost
instantanously on the projectile, without the first phase that exist for ogive nosed
projectiles.  This assumption will give a modified version of Forrestal’s formula

�
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�
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π

(4.14)

The derivation of this formula can be found in Appendix A.



14

4.5 Variation of M/N

From Equation (4.5), the parameter M/N is seen to be important when determining the
penetration depth.  In Figure 4.4, the non-dimensional penetration depth as a function of
non-dimensional impact velocity is shown for different values of M/N.
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Figure 4.4 Forrestal’s formula for different values of M/N.

Figure 4.4 shows a similar difference in penetration depth as the empirical formulas shown
in Figure 3.1.  This indicates that the different sets of empirical data might have been based
upon experiments with different values of M/N.  This is further discussed in Chapters 5
and 6.

4.6 General cavity expansion theory

The material model, and hence the expression for the stress in the target material, is
simplified in order to calculate the penetration equation analytically.  In general, the radial
stress pr is at least dependent on the elastic parameters K and G (bulk and shear modulus,
respectively), the porous equation of state p(ρ), and the yield surface σy(p). This gives a
more general expression for the force, as shown in Equation (4.15):

( ) ( )( )=
A

Yrx dAppGKpf �,,,, σρ (4.15)

The penetration depth based on this general expression of the force will not be studied in
this report.  Some numerical analysis of the cavity expansion theory using different
material models for concrete is discussed in Berthelsen (5).
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5 COMPARISON WITH EMPIRICAL DATA

The empirical data behind some of the equations are available, and are in this chapter
analysed and compared to Forrestal’s formula.  In addition some other empirical data are
compared to the theoretical model.  The experiments are performed with a large range of
M/N (from 5.6 to 210) and against concrete targets with compressive strengths between 12
and 200 MPa.

5.1 Forrestal’s data

0
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50

60

0 2 4 6 8 10

V/S1/2

x/d

Forrestal's formula       (M/N = 125)

Forrestal's experiments (14 MPa)

Forrestal's experiments (36 MPa)

Forrestal's experiments (97 MPa)

Figure 5.1: Forrestal’s formula compared to Forrestal’s data.

The experimental data, which Forrestal calculated the S-factor from, is taken from the
references (7) – (9).  The experiments were performed against concrete targets with
compressive strength varying between 14 and 108 MPa.  The data are listed in Table 5.1,
and are compared to Forrestal’s formula in Figure 5.1.

Table 5.1: Empirical data taken from Forrestal’s papers (7), (8) and (9).

Comp
strength
[MPa]

Mass

[kg]

Diameter

[mm]

Nose factor M/N Impact
velocity

[m/s]

Penetration
depth
[mm]

14 0.0642 12.7 0.106 151 371 127

14 0.0642 12.7 0.106 151 590 312

14 0.0642 12.7 0.106 151 670 359

14 0.0642 12.7 0.106 151 722 414

14 0.0642 12.7 0.106 151 945 640

14 0.0642 12.7 0.076 210 345 111

14 0.0642 12.7 0.076 210 585 312
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14 0.0642 12.7 0.076 210 722 439

14 0.0642 12.7 0.076 210 900 663

35,2 0.906 26.9 0.156 126 277 173

37,8 0.91 26.9 0.156 126 410 310

38,1 0.907 26.9 0.156 126 431 411

33,5 0.912 26.9 0.156 127 499 480

38,4 0.91 26.9 0.156 126 567 525

36,9 0.905 26.9 0.156 126 590 729

40,1 0.901 26.9 0.156 125 591 513

35,4 0.903 26.9 0.156 125 631 607

34,7 0.905 26.9 0.156 126 642 620

36 0.901 26.9 0.156 125 773 866

32,4 0.904 26.9 0.156 126 800 958

90,5 0.907 26.9 0.156 128 561 353

91 0.898 26.9 0.156 126 584 384

95 0.908 26.9 0.156 128 608 422

101,4 0.905 26.9 0.156 127 622 437

94 0.907 26.9 0.156 128 750 630

108,3 0.9 26.9 0.156 127 793 605

5.2 FFI data

In (19), some small scale experiments with flat nosed steel projectiles against concrete
targets were reported.  Most of these experiments resulted in deformed projectiles, which
was due to either high impact velocity or high compressive strength of the concrete targets.
Some of the experiments were, however, performed with low impact velocity against
standard concrete.  The experimental data from these experiments are listed in Table 5.2,
and are in Figure 5.2 compared to Forrestal’s formula, and the modified formula for flat
nosed projectiles (Equation (4.14)).  From figure 5.2, it is seen that the modified
penetration formula (4.9) gives a better prediction of the penetration depth than the original
formula by Forrestal (Equation (4.5)).

Table 5.2: Empirical data taken from the FFI experiments (19) with non-deformed
projectiles.

Comp
strength
[MPa]

Mass

[kg]

Diameter

[mm]

Nose factor M/N Impact
velocity

[m/s]

Penetration
depth
[mm]

35 0.0205 12 1 5.6 414 25

35 0.0205 12 1 5.6 445 30
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35 0.0205 12 1 5.6 567 37

35 0.0205 12 1 5.6 572 54

35 0.0205 12 1 5.6 749 65

35 0.0205 12 1 5.6 754 53
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Figure 5.2: Forrestal’s formula compared to the FFI data with non-deformed
projectiles.

5.3 NDRC data

The NDRC formula is based on 12.7 mm  projectiles against various concrete qualities
(18). The experimental results are listed in Tables 5.3 – 5.5, and are in Figure 5.3
compared to Forrestal’s formula.

Table 5.3: Empirical data taken from experiments behind the NDRC-formula (18)
                       (compressive strength 12 MPa).

Comp
strength
[MPa]

Mass

[kg]

Diameter

[mm]

Nose factor M/N Impact
velocity

[m/s]

Penetration
depth
[mm]

12 0.029 12.7 0.2 32.2 338 76

12 0.029 12.7 0.2 32.2 353 79

12 0.029 12.7 0.2 32.2 368 78

12 0.029 12.7 0.2 32.2 373 95

12 0.029 12.7 0.2 32.2 337 84

12 0.029 12.7 0.2 32.2 338 90

12 0.029 12.7 0.2 32.2 379 95

12 0.029 12.7 0.2 32.2 422 113
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12 0.029 12.7 0.2 32.2 437 122

12 0.029 12.7 0.2 32.2 466 144

12 0.029 12.7 0.2 32.2 360 87

12 0.029 12.7 0.2 32.2 513 138

12 0.029 12.7 0.2 32.2 527 167

12 0.029 12.7 0.2 32.2 529 148

12 0.029 12.7 0.2 32.2 544 160

12 0.029 12.7 0.2 32.2 551 162

12 0.029 12.7 0.2 32.2 553 167

12 0.029 12.7 0.2 32.2 351 81

12 0.029 12.7 0.2 32.2 383 90

12 0.029 12.7 0.2 32.2 591 182

12 0.029 12.7 0.2 32.2 632 214

12 0.029 12.7 0.2 32.2 634 207

12 0.029 12.7 0.2 32.2 649 191

Table 5.4: Empirical data taken from experiments behind the NDRC-formula (4)
                       (compressive strength 29 MPa).

Comp
strength
[MPa]

Mass

[kg]

Diameter

[mm]

Nose factor M/N Impact
velocity

[m/s]

Penetration
depth
[mm]

29 0.029 12.7 0.2 32.2 256 35

29 0.029 12.7 0.2 32.2 316 47

29 0.029 12.7 0.2 32.2 323 47

29 0.029 12.7 0.2 32.2 331 50

29 0.029 12.7 0.2 32.2 212 26

29 0.029 12.7 0.2 32.2 233 31

29 0.029 12.7 0.2 32.2 367 53

29 0.029 12.7 0.2 32.2 478 80

29 0.029 12.7 0.2 32.2 491 83

29 0.029 12.7 0.2 32.2 231 28

29 0.029 12.7 0.2 32.2 618 112

29 0.029 12.7 0.2 32.2 671 139

29 0.029 12.7 0.2 32.2 164 21

29 0.029 12.7 0.2 32.2 338 50

29 0.029 12.7 0.2 32.2 368 56
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29 0.029 12.7 0.2 32.2 722 143

29 0.029 12.7 0.2 32.2 780 167

Table 5.5: Empirical data taken from experiments behind the NDRC-formula (4)
                       (compressive strength 51 MPa).

Comp
strength
[MPa]

Mass

[kg]

Diameter

[mm]

Nose factor M/N Impact
velocity

[m/s]

Penetration
depth
[mm]

51 0.029 12.7 0.2 32.2 226 23

51 0.029 12.7 0.2 32.2 243 19

51 0.029 12.7 0.2 32.2 337 35

51 0.029 12.7 0.2 32.2 433 58

51 0.029 12.7 0.2 32.2 447 60

51 0.029 12.7 0.2 32.2 210 22

51 0.029 12.7 0.2 32.2 269 30

51 0.029 12.7 0.2 32.2 356 43

51 0.029 12.7 0.2 32.2 496 61

51 0.029 12.7 0.2 32.2 591 83

51 0.029 12.7 0.2 32.2 611 89

51 0.029 12.7 0.2 32.2 369 71

51 0.029 12.7 0.2 32.2 522 71

51 0.029 12.7 0.2 32.2 719 113

51 0.029 12.7 0.2 32.2 734 117

51 0.029 12.7 0.2 32.2 752 120

51 0.029 12.7 0.2 32.2 796 136

51 0.029 12.7 0.2 32.2 346 43

51 0.029 12.7 0.2 32.2 852 157

51 0.029 12.7 0.2 32.2 874 167
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Figure 5.3: Forrestal’s formula compared to the NDRC data.

5.4 Bofors data

In the Swedish-Norwegian project on ”High Performance Concrete”, some penetration
experiments against concrete targets with compressive strength varying from 30 to 200
MPa have been performed.  The relevant data are listed in Table 5.6 for 152 mm
projectiles, and Table 5.7 for 75 mm projectiles.

Table 5.6: Empirical data taken from experiments performed at Bofors with 152 mm
projectiles.

Comp
strength
[MPa]

Mass

[kg]

Diameter

[mm]

Nose factor M/N Impact
velocity

[m/s]

Penetration
depth
[mm]

36 44.76 152 0.4 14.5 576 1700

30 44.76 152 0.4 14.5 481 1020

41 44.76 152 0.4 14.5 468 1030

34 44.76 152 0.4 14.5 481 670

90 44.76 152 0.4 14.5 583 980

90 44.76 152 0.4 14.5 479 630

90 44.76 152 0.4 14.5 486 590

90 44.76 152 0.4 14.5 488 560

132 44.76 152 0.4 14.5 581 830

140 44.76 152 0.4 14.5 584 810

140 44.76 152 0.4 14.5 480 595

140 44.76 152 0.4 14.5 480 420
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180 44.76 152 0.4 14.5 473 600

200 44.76 152 0.4 14.5 580 530

250 44.76 152 0.4 14.5 481 460

200 44.76 152 0.4 14.5 480 300

203 44.76 152 0.4 14.5 480 450

200 44.76 152 0.4 14.5 480 450

220 44.76 152 0.4 14.5 478 350

Table 5.7: Empirical data taken from experiments performed at Bofors with 75 mm
projectiles.

Comp
strength
[MPa]

Mass

[kg]

Diameter

[mm]

Nose factor M/N Impact
velocity

[m/s]

Penetration
depth
[mm]

35 6.28 75 0.2 34 647 990

38 6.28 75 0.2 34 484 680

38 6.28 75 0.2 34 483 655

38 6.28 75 0.2 34 482 660

90 6.28 75 0.2 34 653 560

90 6.28 75 0.2 34 571 410

140 6.28 75 0.2 34 647 440

180 6.28 75 0.2 34 485 250

180 6.28 75 0.2 34 489 235

180 6.28 75 0.2 34 485 240

200 6.28 75 0.2 34 480 200

200 6.28 75 0.2 34 650 440
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Figure 5.4: Forrestal’s formula compared to the Bofors data with 152 mm projectiles.
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Figure 5.5: Forrestal’s formula compared to the Bofors data with 75 mm projectiles.

5.5 Bergman’s data

Bergman (3) analysed different experiments to develop his penetration formula.
Unfortunately, most of these data can only be found as point in diagrams.  This means that
there is some uncertainty in the values for impact velocity and penetration depth in Tables
5.8 – 5.14.  The value of M/N varies between 25 and 39 in Bergman’s experiments, and
each test series is compared to Forrestal’s formula in Figures 5.6 – 5.12.
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Table 5.8:  Experiments with 75 mm projectiles (3).

Comp
strength
[MPa]

Mass

[kg]

Diameter

[mm]

Nose factor M/N Impact
velocity

[m/s]

Penetration
depth
[mm]

33.9 5.45 75 0.2 29 160 107

33.9 5.45 75 0.2 29 168 103

33.9 5.45 75 0.2 29 318 222

33.9 5.45 75 0.2 29 329 220

33.9 5.45 75 0.2 29 439 311

33.9 5.45 75 0.2 29 493 332

33.9 5.45 75 0.2 29 493 348

33.9 5.45 75 0.2 29 596 434

33.9 5.45 75 0.2 29 661 506

33.9 5.45 75 0.2 29 685 498

33.9 5.45 75 0.2 29 700 549

Table 5.9:  Experiments with 37 mm projectiles (3).

Comp
strength
[MPa]

Mass

[kg]

Diameter

[mm]

Nose factor M/N Impact
velocity

[m/s]

Penetration
depth
[mm]

39.2 0.867 37 0.2 39 233 71

39.2 0.867 37 0.2 39 246 79

39.2 0.867 37 0.2 39 313 114

39.2 0.867 37 0.2 39 317 105

39.2 0.867 37 0.2 39 408 142

39.2 0.867 37 0.2 39 508 188

39.2 0.867 37 0.2 39 517 160

39.2 0.867 37 0.2 39 638 250

39.2 0.867 37 0.2 39 658 265

39.2 0.867 37 0.2 39 700 296

39.2 0.867 37 0.2 39 788 364

39.2 0.867 37 0.2 39 857 463

39.2 0.867 37 0.2 39 857 438

39.2 0.867 37 0.2 39 858 429
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Table 5.10:  Experiments with 155 mm projectiles (3).

Comp
strength
[MPa]

Mass

[kg]

Diameter

[mm]

Nose factor M/N Impact
velocity

[m/s]

Penetration
depth
[mm]

33 40.2 155 0.2 25 260 330

33 40.2 155 0.2 25 320 400

33 40.2 155 0.2 25 634 980

33 40.2 155 0.2 25 672 1100

33 40.2 155 0.2 25 730 1300

Table 5.11:  Experiments with 76 mm projectiles (3).

Comp
strength
[MPa]

Mass

[kg]

Diameter

[mm]

Nose factor M/N Impact
velocity

[m/s]

Penetration
depth
[mm]

35 6.81 76 0.2 35 254 177

35 6.81 76 0.2 35 296 215

35 6.81 76 0.2 35 471 437

35 6.81 76 0.2 35 638 627

35 6.81 76 0.2 35 704 754

Table 5.12:  Experiments with 307 mm projectiles (3).

Comp
strength
[MPa]

Mass

[kg]

Diameter

[mm]

Nose factor M/N Impact
velocity

[m/s]

Penetration
depth
[mm]

38.6 454 307 0.2 36 295 1140

38.6 454 307 0.2 36 305 1060

38.6 454 307 0.2 36 305 1150

38.6 454 307 0.2 36 310 1150

Table 5.13:  Experiments with 11 mm projectiles (3).

Comp
strength
[MPa]

Mass

[kg]

Diameter

[mm]

Nose factor M/N Impact
velocity

[m/s]

Penetration
depth
[mm]

30.2 0.02 11 0.2 34 280 19

30.2 0.02 11 0.2 34 575 56
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30.2 0.02 11 0.2 34 575 64

30.2 0.02 11 0.2 34 595 56

30.2 0.02 11 0.2 34 600 59

Table 5.14:  Experiments with 12,7 mm projectiles (3).

Comp
strength
[MPa]

Mass

[kg]

Diameter

[mm]

Nose factor M/N Impact
velocity

[m/s]

Penetration
depth
[mm]

46.3 0.0291 12.7 0.2 32 260 24

46.3 0.0291 12.7 0.2 32 388 36

46.3 0.0291 12.7 0.2 32 446 47

46.3 0.0291 12.7 0.2 32 575 61

46.3 0.0291 12.7 0.2 32 692 85

46.3 0.0291 12.7 0.2 32 788 106

46.3 0.0291 12.7 0.2 32 908 127
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Figure 5.6:  Experiments with 75 mm projectiles (3) compared to Forrestal’s formula.
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Figure 5.7:      Experiments with 37 mm projectiles (3) compared to Forrestal’s formula.
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Figure 5.9:      Experiments with 76 mm projectiles (3) compared to Forrestal’s formula.
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Figure 5.12:      Experiments with 12.7 mm projectiles (3) compared to Forrestal’s
formula.

5.6 Bernard’s data

In Bernard (4), some experiments against normal concrete and rock targets were reported.
The data from these experiments are listed in Tables 5.14 and 5.15, and are compared to
Forrestal’s formula in Figure 5.13.  All experimental data points in this figure are
calculated using the modified S-factor (4.9), which is designed for concrete targets.  As
seen in Figure 5.13, the experimental data does not fit the Forrestal curve for rock targets.
Hence, the S-factor must  depend on other material parameters than the compressive
strength, as indicated in Equation (4.8).
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Table 5.14:   Experimental data with 76.2 mm  projectiles (4) against normal concrete.

Comp
strength
[MPa]

Mass

[kg]

Diameter

[mm]

Nose factor M/N Impact
velocity

[m/s]

Penetration
depth
[mm]

34.5 5.9 76.2 0.2 28 306 203

34.5 5.9 76.2 0.2 28 312 229

34.5 5.9 76.2 0.2 28 381 254

34.5 5.9 76.2 0.2 28 453 369

34.5 5.9 76.2 0.2 28 541 419

34.5 5.9 76.2 0.2 28 602 597

34.5 5.9 76.2 0.2 28 616 495

34.5 5.9 76.2 0.2 28 709 660

34.5 5.9 76.2 0.2 28 716 610

34.5 5.9 76.2 0.2 28 741 698

34.5 5.9 76.2 0.2 28 773 737

34.5 5.9 76.2 0.2 28 809 749

Table 5.15:   Experimental data from Bernard (4) against rock targets.

Compressive
strength
[MPa]

Mass

[kg]

Diameter
[mm]

Nose factor M/N Impact
velocity

[m/s]

Penetration
depth
[mm]

60 208 165.1 0.2 119 372 2220

60 208 165.1 0.2 119 411 2590

60 208 165.1 0.2 119 475 3600

60 208 165.1 0.2 119 501 3350

60 208 165.1 0.2 119 503 3350

23.4 208 165.1 0.2 111 444 3570

23.4 208 165.1 0.2 111 459 3720

27.5 390 228.6 0.2 185 325 3960

48.9 1166 258.8 0.2 156 251 3110

40.8 613 203.2 0.2 171 268 3050

46.2 613 203.2 0.2 139 262 3810
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Figure 5.13:   Bernard’s data compared to Forrestal’s and Bernard’s formulas.

6 DISCUSSION OF EMPIRICAL FORMULAS

For the majority of the empirical formulas, the original data which the formulas are based
on, are not available.  However, the range of validity for some of the important parameters
is known, and in the present chapter, the value of M/N is estimated from the range for the
mass and diameter for the projectile.  For convenience, the nose-factor, as defined by
Forrestal, is set equal to 0.2 when calculating M/N.

As shown in Teland and Sjøl (24), most of the existing empirical formulas for predicting
penetration into concrete can be written on the form

bVaX n += ' (6.1)

where a’, b and n are ”constants”.  The ”constants” are not really constants, because the
empirical formulas are not dimensionally correct, and when introducing the non-
dimensional impact velocity V, the ”constants a’, b and n may depend on some parameters
with dimension.  In this document, the non-dimensional impact velocity V in Equation
(6.1) will be replaced by V̂ , giving

bVaVgX n +== ˆ)ˆ( (6.2)

where a is another ”constant” which, together with b and n, is defined in Table 6.1 for the
empirical formulas analysed in this report.  In Table 6.2, the range of the parameters used
in the experiments behind the various empirical formulas ae listed.
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Table 6.1:  The parameters a, b, and n for different empirical formulas

Formula               n                                      a                               b

ACE [10]               1.5                       073,0165,025,0562,0 −
cA dN σρ                               0.5

Bergman [11]     zz 005.044.1 18.0 ++         n
B

n
c

nn MNd 5.015.0285.02.05.014 1371068.3 −−−− ⋅⋅ σρ                     0

Bernard [12]               1.0                                  215.08.34 −
cMσ                                         0

NDRC [13]               1.8                            1.001.01.01.027.0 MdN cN σρ                               1.0

TBAA [14]           25.051.97 −
cσ                    ( ) nn

cc
dn M 5.015.0285.01.0257.06104.2 −−⋅ σ                        0

Young [15]                1.0                  2.0015.03.02.0)11(0409.0 MdkpN cY
−−− σρ

                                                                                                     72.03.03.07.03 )11(1006.9 MdkpN cY
−−− −⋅ σρ

Table 6.2:  Range of validity for different empirical formulas.

Formula v [m/s] m [kg] d [mm] σσσσc [MPa]

ACE 200 - 1000 0.02 – 454 11 - 155 26.5 - 43.1

Bergman 200 - 1000 0.02 – 454 11 - 305 26.5 - 43.1

Bernard 300 - 800 5.9 - 1066 76.2 - 259 34.5 - 63

Hughes 27 - 1050 0.1 - 343 30 - 305 22.1 - 49.1

TBAA < 1030 0.14 - 9975 13 - 960 5.5 - 69.1

Young 61 - 1350 3.17 - 2267 25.4 - 762 14 – 63

6.1 Least square approximation

Since the experimental data behind some of the empirical equations are unknown to us,
least square approximations to Forrestal’s formula will be made instead. As shown in
Section 4.5, each value of M/N gives different relationships between the penetration depth
and the impact velocity.  In Section 6.1.1, it is assumed that M/N is constant, and we try to
calculate the equation on the form (2) that best fits the corresponding ”Forrestal curve” for
a given impact velocity range.

If an empirical equation is based on experiments with different values of M/N, the example
in Section 6.1.2 will show that identical range of scaled parameters does not necessarily
result in identical empirical equations.
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6.1.1 Constant value of M/N

A least square approximation on the form

]ˆ,ˆ[ˆˆ)ˆ( 21 VVVbVaVgX n ∈+== M/N = constant (6.3)

will be calculated as a best fit to a given ”Forrestal-curve”.

From Table 6.2, it is seen that some of the empirical formulas are based on a large range of
the parameters.  However, it is reasonable to believe that the small masses and small
diameters, and the large masses and large diameters correspond to each other.  In addition,
the nose factor N in Forrestal’s formula is assumed to be N = 0.2, which corresponds to a
nose with r/d = 1.5. With this assumption, the range of the parameter M/N and the
inflection point velocity can be calculated.

In this analysis, all performed experiments with unavailable data are assumed to agree
exactly with Forrestal’s formula. In the actual experiments, there will surely have been
some scattering, resulting in some data points lying above or below the assumed value.
Neglecting this is not expected to cause significant errors in the analysis.
Assume that the penetration depth as a function of the impact velocity can be written on
the form given by Equation (6.3).  The least square error between the ”empirical formula”
g and Forrestal’s formula f can be written as

[ ]−=
2

1

ˆ

ˆ

2 ˆ)ˆ()ˆ(
V

V

VdVgVfE (6.4)

where ]ˆ,ˆ[ 21 VV  is the range of impact velocity for the actual formula.  By minimizing the
error, the constants a, b and n are found to be:
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The velocity exponent n which minimizes the least square error must be calculated
numerically, and is shown as a function of the range of non-dimensional impact velocity in
Figure 6.1. It is seen that the velocity exponent giving the best fit may vary from 0.6 to 3.0
depending on the range of the non-dimensional impact velocity.  Especially, if  the impact
velocity for all experiments are below the inflection point velocity given by Equation
(4.13), the velocity exponent is very sensitive to the impact velocity range, and can take
almost every value between 1 and 3.  If, however, the velocity range includes impact
velocities larger than the inflection velocity, the exponent will be between 1.0 and 1.7.
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Figure 6.1: The velocity exponent n as a function of the upper range for the impact
velocity.

In Figure 6.1 it is seen that for formulas based on a large range of scaled impact velocities,
the velocity exponent is close to 1.0, i.e. a linear relationship between the penetration depth
and the impact velocity.  For experimental data with impact velocities below the inflection
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point, the velocity exponent is very sensitive to the range of validity.  The non-dimensional
impact velocity relative to the inflection point is given by

 v
S
N

V
V

c

t

i σ
ρ

=ˆ
ˆ

(6.7)

This means that the scaled range of validity for the impact velocity does not depend on the
projectile size, but only on the compressive strength of the concrete target.  Some of the
formulas analysed in this report have a large range of validiy for the compressive strength,
and we will show below that this can influence the least square approximation.

Table 6.3: Least square approximations.

Formula Vmin/Vi Vmax/Vi n (least square) n (formula)

ACE 0.2 1.0 – 1.2 1.51 – 1.54 1.5

Bergman 0.2 1.0 – 1.2 1.51 – 1.55 > 1.5

Bernard 0.3 0.7 – 0.9 1.59 – 1.90 1

Hughes 0.03 1.0 – 1.3 1.37 -

NDRC 0.18 0.95 1.51 1.8

TBAA 0 0.9 – 1.9 1.27 – 1.39 1-2

Young 0.1 1.2 – 1.9 1.16 – 1.64 1

6.1.2 Example

To show that different velocity ranges can result in different empirical formulas, different
subsets of  the NDRC data have been analysed.  The NDRC experiments have all been
performed with the same projectile with M/N = 31.9. In Figure 5, the resulting empirical
formulas are shown, and compared to Forrestal’s formula for the actual NDRC projectile.
The velocity exponent can vary from 1.5 to 1.8, depending on the velocity range.

The prediction of the penetration depth based on these ”empirical formulas” is not very
different from each other, provided the projectile and target parameters from the NDRC
experiments are used.  For other values of input parameters, especially with different
values of M/N, these ”empirical” equations may result in wrong predictions of the
penetration depth.  For a projectile with m = 400 kg, d = 0.155 m and v = 1000 m/s against
normal concrete, which is completely different from the NDRC projectile, the penetration
depth varies between 12 m and 18 m, depending on which empirical equations from the
subsets of the NDRC data is used.
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6.1.3 Different values of M/N

Many formulas are based on experiments with different values of M/N.  As shown in
Chapter 4, different values of M/N give different formulas for the penetration depth.  If
empirical formulas are based on such experiments, the resulting empirical formula is very
sensitive to the combination of the different parameters. This is illustrated by the following
example:

Suppose that experiments are performed with two different values of M/N, say 10 and 100.
In Figure 6.2, some fictive data points are shown.  The data points “A” result from
experiments with M/N = 10, the data points “B” from experiments with M/N = 100. In
addition, the data points “C1” correspond to M/N = 100 and “C2” to M/N = 10.  If the data
points “A”, “B” and “C1” are used to construct an empirical formula, a curve close to
Forrestal’s curve for M/N = 100 will arise. If the data points “C1” are substituted by the
points “C2”, the resulting empirical formula will be equal to Forrestal’s formula for M/N =
10. In both cases, the range of the parameters used are idendical, but the resulting empirical
formulas give different predictions of the penetration depth.

This analysis indicates that if the span of the parameter M/N is large, the resulting formula
is determined by the experiments with the highest value of the scaled impact velocity.
Since it is not determined by the range of the parameters alone, the formula is therefore in
some sense ”arbitrary”.
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Figure 6.2: Data points from experiments with different values of M/N.

6.2 Comparison between Forrestal’s formula and some empirical formulas

We will now look more closely at the individual formulas, and try to explain their
difference.  Unfortunately, this analysis can not be completed without the data behind all
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the empirical formulas.  For some of the formulas discussed below, we have the data
available, and can therefore compare the present analysis with the actual empirical data.
In the Figures 6.3 – 6.8, the solid lines for the relative error are within the range of impact
velocity, while the dotted lines indicate the error when the formulas are used outside their
range of the impact velocity.

6.2.1 ACE formula

The ACE-formula is not sensitive to the compressive strength, as the penetration depth is
proportional to 07.0−

cσ , as shown in Table 1.

The deviation from Forrestal’s formula is less than 20 % within the range of the impact
velocity for both small and large projectiles.  The ACE formula is based on the same
experimental data as Bergman’s formula, and the value of the parameter M/N does not vary
much in this data set, see the discussion below for Bergman’s formula.

The velocity exponent for the ACE-formula is 1.5, which is also in good agreement with
the least square approximation, as shown in Table 6.2.
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Figure 6.3:        Relative error between the ACE formula and Forrestal’s formula

6.2.2 Bergman’s formula

Bergman’s formula seems to be mainly based on projectiles with low impact velocities.
For small projectiles with impact velocities SV  between 2 and 4, the deviation from
Forrestal’s formula is less than 35 %.  For these projectiles, Bergman’s formula can be
used somewhere outside the range of the impact velocity, but for impact velocities

SV greater than 10, the deviation from Forrestal’s formula is growing, due to the
increasing velocity exponent.  For the large projectiles, only one impact velocity was used
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in the experiments (300 m/s; corresponding to SV equal to 1.8). In this case, the
deviation from Forrestal’s formula is approximately 30 %.  For larger impact velocities,
the deviation from Forrestal’s formula is almost constant, but is increasing for impact
velocities larger than the inflection point velocity.

The velocity exponent in Bergman’s formula depends on the impact velocity, and this
exponent can be shown to be greater than 1.5 for all impact velocities giving penetration
depths larger than 3.5 calibres.

This means that Bergman’s formula is very sensitive to the impact velocity, especially
when applied to high impact velocities. The value of M/N in the data behind Bergman’s
formula is between 25 and 39, and all experiments were performed with impact velocities
below the inflection point velocity. This explains the fact that the velocity exponent in
Bergman’s formula is an increasing function of the impact velocity.
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Figure 6.4:        Relative error between Bergman’s formula and Forrestal’s formula.

6.2.3 Bernard’s formula

The least square approximations of Bernard’s formula give velocity exponents larger than
1.5 for both the small and large projectiles. Bernard’s formula gives a linear relationship
between the penetration depth and the impact velocity, but this is predefined, and not a
result from curce fitting procedures.

For small projectiles, the deviation from Forrestal’s formula is less than 20 % for all
velocities used in the experiments behind Bernard’s formula.  In fact, the experimental data
against concrete targets taken from (4) are all performed with the smaller projectiles, as
shown in Table 5.15.
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For the large projectiles, the deviation from Forrestal’s formula is less than 20 % for
SV  > 7.  The larger projectiles were all fired against rock targets, and the comparison in

Figure 13 shows that more investigation of the material model for rock targets in
Forrestal’s formula, i.e. further research on the S-factor, must be performed.
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Figure 6.5:        Relative error between Bernard’s formula and Forrestal’s formula.

6.2.4 Hughes’ formula

Hughes’ formula seems to be the only formula which is based on experiments with
approximately contant value of M/N, which again should result in good agreement to
Forrestal’s formula.  Figure 6.6 shows that this is indeed the case. The deviation from
Forrestal’s formula is less than 20 % in all cases, and the formulas are almost identical for
experiments against low strength concrete (σc = 22.1 MPa).
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Figure 6.6:        Relative error between Hughes’ formula and Forrestal’s formula.

6.2.5 NDRC formula

The NDRC formula is based on experiments with 12.7 mm projectiles, i.e. the value of
M/N is constant.  These data are compared to Forrestal’s formula in Figure 13.  As shown
in Figure 5, the velocity exponent in the resulting empirical formula can vary from 1.5 to
1.8, depending on the velocity range of the experiments.  The velocity exponent in the
NDRC formula is 1.8.

6.2.6 TBAA formula

The velocity exponent for the TBAA formula depends on the compressive strength of the
concrete.  For high strength concrete (σc = 69.1 MPa), the velocity exponent is
approximately 1.0, and for the low strength concrete, n = 2.0.  The scaled impact velocity
V/S1/2 is reduced when the compressive strength is increased, which indicates higher
velocity exponent for experiments with high strength concrete.

The only way to explain the velocity exponent in the TBAA formula is that the
experiments against high strength concrete were performed with high impact velocities.
Against the low strength concrete, the impact velocity must have been in the lower range
for the impact velocity.

The velocity exponent given by the least square approximations correspond to compressive
strengths between 25 MPa and 35 MPa, which is the compressive strength of standard
concrete.
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Figure 6.7:        Relative error between the TBAA formula and Forrestal’s formula.

6.2.7 Young’s formula

The velocity exponent in Young’s formula is 1.0, which is in best agreement with the least
square approximation for the large projectiles.  From Figure 12, the deviation from
Forrestal’s formula is also best for the large projectiles within the range of the impact
velocity.
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Figure 6.8:        Relative error between Young’s formula and Forrestal’s formula.
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7 APPLICATION TO MODERN WEAPONS

In Teland (22), the empirical equations were applied to different kinds of modern weapons.
However, the formulas were used outside the range of validity, especially when applying
them to HPC targets.  In Chapter 5, Forrestal’s formula was shown to be valid for
compressive strengths up to 200 MPa.  The penetration depth into concrete for the three
weapons studied in (22) is in Figure 7.1 shown as a function of the compressive strength.
In Table 7.1, the data of the actual weapons are listed.

Table 7.1: Data for different modern weapons.

GBU-28 Modern weapon I Modern weapon II

Mass [kg] 2040 500 113

Diameter [mm] 368 250 155

Impact velocity [m/s] 500 500 1500

Length to diameter ratio 11 10 10

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180 200
σσσσc [MPa]

Pe
ne

tr
at

io
n 

de
pt

h 
[m

]

GBU 28
Modern weapon I
Modern weapon II

Figure 7.1: Penetration depth for 3 different modern weapons as function of the
compressive strength of the concrete target calculated by Forrestal’s
formula.

8 SUMMARY AND CONCLUSIONS

Forrestal’s formula can be written on a non-dimensional form, giving the non-dimensional
penetration depth as a function of non-dimensional impact velocity and the non-
dimensional mass.  For each value of the non-dimensional mass, there is a corresponding
relationship between the penetration depth and impact velocity.  This may explain the
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difference between the existying empirical formulas, as they may be based on experiments
with different projectiles.

As seen in Figures 6.3 – 6.8, the relative error between the different empirical formulas and
Forrestal’s formula are zero somewhere in the range of the parameters used in the
experiments.  This may indicate which projectiles that were used in the experiments.
Most empirical formulas seem to be based on experiments with different values of M/N in
their data sets.  As shown in Section 4.5, Forrestal’s formula gives one formula for each
value of M/N, which means that the resulting empirical formula strongly depends on the
range of the other parameters used in the experiments.  Hughes’ formula is the only
formula based on experimental data unknown to us, where a constant value of M/N
( 30≈N

M ) seems to have been used.  It gives best agreement with Forrestal’s formula
compared to all the other empirical formulas.

Experiments with constant value of M/N can also result in different empirical equations.
As shown in Section 6.1.1, the velocity exponent strongly depends on the range of the
impact velocity, especially if this range is below the inflection point velocity given by
Equation (4.13).  For the empirical equations analysed here, this seems to be the case.

Since the velocity exponent is very sensitive to the impact velocity range used, one should
be very careful when using the empirical formulas for high velocities.  Especially for
Bergman’s formula, where the velocity exponent is an increasing function of the impact
velocity. This formula is therefore not recommended for high impact velocities.

Bernard’s formula and the NDRC formula are based on experiments with constant value of
M/N, and in these cases the deviation from Forrestal’s formula is less than 20 %.  Both
formulas are based on experiments with approximately the same value of M/N, but the
velocity exponents are 1.0 for Bernard’s formula and 1.8 for the NDRC formula.  From
Table 3, there should only be a slight difference in the velocity exponent using a least
square technique, which is due to the impact velocity range.  However, Bernard (4) has
chosen a linear relationship between the penetration depth and impact velocity, i.e. it is not
found from curve fitting procedures. This explains the apparently large difference between
two empirical formulas that ”should have been” almost identical.

The analysis in this paper shows the importance of using non-dimensional parameters in
planning and performing experiments.  Since Forrestal’s formula results in one formula for
for each value of M/N, experiments with different values of M/N should not be used to
produce a single empirical formula.  This was probably done for the majority of the
existing empirical formulas, which explains why they have turned out to be so different.
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APPENDIX

A DERIVATION OF FORRESTAL’S PENETRATION EQUATION

The force acting on the projectile is, by Forrestal , assumed to be
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Where c is a constant which will be determined later.  Equation (A.1) shows that the force
is proportional to the penetration depth for x/d < 2, and a function of the impact velocity
for x/d > 2.  To determine the penetration depth, the penetration depth is first calculated for
x/d > 2, using the initial conditions x0 = 2 og v0 = v1.  The velocity v1 will be determined
later.  Newtons 2. law gives
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By recalling the non-dimensional quantities given by Equation (2.1),
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the following differential equation arise:

��
�

��
�

�
+−=

∂
∂

S
V

M
NS

T
X 2

2

2

1
4

π (A.4)

The non-dimensional time T has been defined in such way that V
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the differential equation (A.5) can be written on separable form
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Equation (A.6) is solved by integrating from V=V1 to V=0. This gives the following
relationship between the scaled penetration depth X and V1:
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The velocity V1 is then found from the equation
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Transforming to non-dimensional quantities, the penetration depth as a function of time is
found from
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which yields
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Defining the time T=T1 where X=2 and V=V1, giving
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Continuity at T=T1 gives
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Combining Equation (A.11) and (A.12), gives the velocity when X=2 as a function of the
impact velocity:
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Inserting this expression into Equation (A.7), the scaled penetration depth as a function of
impact velocity is finally found to be
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For flat nosed projectiles, the force acting on the projectile is given by cavity expansion
theory from t=0.  This means that the maximum penetration depth is found by integrating
Equation (A.6), giving following modified formula:
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