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RANGE LOCALIZATION OF 10-100 KM SHOTS BY MEANS OF AN ENDFIRE 
ARRAY AND A WAVEGUIDE INVARIANT 
 

1     INTRODUCTION 

If two phenomena (signals) start out simultaneously from the same position at speeds u1 and u2, 
respectively, they will arrive at range R with time difference 
 

12
12 u

R
u
RTT −=−                                                                                                          (1.1) 

   
This can be written  
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In the context of signals in waveguides, u is termed group speed, the speed by which a sound 
signal envelope travels horizontally. u1 and u2 may refer to two different normal modes or two 
different frequencies of the same mode. It is convenient also to operate with group slowness Sg, 
which is the inverse of group speed u. 
   
Phase speed is the horizontal speed of the zero crossings of the signal. In principle group speed 
and phase speed can be measured by hydrophones in-line with the propagation direction, such 
as endfire arrays. Phase speed is easier to measure than group speed, because it requires shorter 
arrays. The main reason is that the signal envelopes have much lower frequency content than 
the signals they enclose. In practice, a direct group speed measurement may require an array 
that is prohibitively long. The approach taken here is to use phase speed measurements for 
range estimation.  
 
In many situations there is a fixed relationship between group slowness and phase slowness 
differences, a so-called waveguide invariant, usually named β 
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If this relation is known, phase slowness can be used in the range estimation formula 
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 8 

 
Using data from an experiment to be described in Chapter 2, it has been possible to check the 
applicability of Equation (1.4) by measuring both group and phase slowness. Some signal 
structures are described in Chapter 3. Expressions for determining β theoretically in 
waveguides with varying water depths are given in Chapter 4. An analogy with the Pekeris 
waveguide is also discussed. The signal processing appropriate for extracting β is described in 
Chapter 5, and comparisons between measured and theoretical β values are made. In Chapter 6 
actual range estimates by use of Equation (1.4) are found and compared to the true ranges. 
These estimates are based solely upon beamformer outputs, knowledge of the bottom and top 
bedrock profiles with range, and a rough indication of the average water sound speed, no other 
geophysical information. 

2     DESCRIPTION OF EXPERIMENT 

During an experiment in the Barents Sea in August 1999 (1, 2) a hydrophone array system was 
deployed roughly 100 nautical miles NE of North Cape. The main purpose was to provide 
signals for studies of matched field inversion and localization, but with openings for other 
kinds of signal processing. One such method is treated here.  
     

    
 
Figure 2.1     Experimental area 
 
The hydrophone array was deployed at the bottom at 72° N and 30° E in 320 m sea depth with 
longitudinal orientation close to 115°, Figure 2.1. The part of the hydrophone array which is 
relevant for the present study is shown in Figure 2.2.  
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Figure 2.2     Experimental array 

#31                              #26                          #22

 
Sound sources were SUS charges, dropped along the tracks given in Figure 2.1. Of concern 
here are only the W and E tracks, both extending more than 100 km from the array. Shallow 
(18 m), intermediate (90 m) and deep (240 m) SUS charges were used, in total 222 charges for 
this part of the experiment. 
 
Accurate drop positions and detonation times were logged at the source ship (P-code GPS). 
The ship was moving at constant speed. Shallow charges had to be dropped by means of a 
pneumatic launcher. Detonation times were logged using a towed hydrophone. Positions and 
detonation times had later to be corrected for the local offsets (3). At the receiving site the GPS 
time code was recorded together with the signals. Thereby very accurate ranges and travel 
times could be established. Appendix A comments upon this. 
 
Separate runs provided geophysical information along the tracks (seismic reflection profiles 
and refraction velocity measurements) (4). A sediment layer of varying thickness is overlying 
the bedrock, as shown in Figure 2.3. Estimated (typical) values for sound speed etc are 
indicated. Beyond 70 km East of the receiver the sediment layer was too thin to be read off 
properly. Water depth was taken from echo soundings. Some sound velocity profiles taken 
during the experiment are shown in Figure 2.4. Notwithstanding some variability, at the outset 
the area could be characterized as relatively simple and homogeneous acoustically. 
 

 

c=147O m/sec 
ρ=1.O g/cm3 
α=O.O dB/λ 
 

c=18OO m/sec 
ρ=2.O g/cm3 
α=O.5 dB/λ 
 

c=24OO m/sec 
ρ=2.2 g/cm3 
α=O.1 dB/λ 

 
Figure 2.3     Bottom and top bedrock profiles. Geophysical parameters from (4) 
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Figure 3.1     Spectrograms or ‘Lofargrams’ for two sample shots 
                     Frequency resolution = 1/12 octave (±3%)  
                     Each filter output is normalized to max = 1 
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Taking the signals from any particular 1/12 octave band and using all the hydrophones in the 
array, the signal set can be beamformed. An unweighted delay-and-sum beamformer was 
applied, which seemed reasonable when operating with transient signals. After squaring and 
some smoothing, results for the 51 km E shot are shown in Figure 3.2, at six different 
frequencies. The main “blobs” are modes, which arrive at different times and vertical angles. 
Note that the directional scale is not in incidence angle θ itself, but in sin θ. Comparison with 
Figure 3.1 at frequencies in question will verify the number of modes and their delays. More 
details about a beamformer operating on transient signals in a dispersive medium are given in 
Appendix B. 
 
From Figure 3.2 it can be seen that the mode maxima follow straight lines fairly closely. The 
slope values of the lines are nearly the same for all frequencies. This is a manifestation of a 
waveguide invariant. The slopes will be different for different shots, becoming steeper with 
increasing range, making range discrimination possible. This is the main clue of the study. 
 
Straight line patterns can be seen up to relatively high frequencies, typically 200 Hz, which is 
far above where the mode patterns in the time/frequency diagram (Figure 3.1) disappears. This 
means that invariance is retained, even if individual mode arrivals fluctuate. 

 
   



 13 

 sin θ from vertical sin θ from vertical

 

 sin θ from vertical sin θ from vertical

 

 sin θ from vertical
 
Figure 3.2     B
                     F
                     θ
 

sin θ from vertical
eam versus time diagrams for the Eastern 51 km shot at six frequencies 
ilter bandwidths = 1/12 octave 
 = angle of incidence      Vertical: θ=0°     Endfire: θ=90°  

 
   



 14 

4     THE WAVEGUIDE INVARIANT β 

4.1     Constant waveguide 

The definition of the waveguide invariant β is in accordance with (5, 6, 7). Slightly rewriting 
Equation (1.4),  
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n
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p

S
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SS
SS
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−=

−

−
−=β                                                                                                (4.1) 

 
Here m and n are mode indices or frequency indices (or combinations). Equation (4.1) 
expresses the relation between phase and group slowness differences in the mode-
number/frequency plane. 
 
 In a constant waveguide there are no depth or speed changes etc with range, and β will be 
constant with range for certain mode groups and frequency intervals (6,7). A waveguide with  
reflecting bottom will have a β different from the β of a surface channel waveguide, for 
instance.  

4.2     Adiabatic waveguide 

When the waveguide parameters are slowly changing with range and there is no energy transfer 
between modes, the waveguide is said to be “adiabatic”. Then the invariant β itself will be a 
function of range according to the expression (5, 7) 
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∆
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−=β                                                                                                      (4.2) 

 
Here Sp(rec) is phase slowness at the receiver andSg(r) is average group slowness over the 
range. Conveniently, this is what the experiment provides, the phase slowness measurement is 
local at the array, and the group slowness measurement is an average over range. Thus changes 
in β over range are determined by the change in average group slowness. 

4.3     Adiabatic “ideal” waveguide 

Assuming that the adiabatic waveguide has constant sound speed but varying water depth with 
reflecting bottom, and that β(0) = 1 at the receiver site (i e for very short ranges), then β will be 
a function of range according to the expression (7) 
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4.4     The invariant β and a Pekeris waveguide analogy 

It was indicated earlier that the present waveguide had some features similar to the Pekeris 
waveguide. This will now be looked into. 
 
Using the minima of Figure 3.1, related to the cut-off frequencies, which again are determined 
mainly by water depth and water/bottom sound speeds, rough Pekeris analogues could easily 
be found. It soon became clear that the sediment sound speed of 1800 m/sec was too low to 
obtain a fit, and that a speed closer to the nominal bedrock speed of 2400 m/sec had to be used 
instead. Using 2300 m/sec and the top of bedrock instead of the sea bottom gave good 
correspondence, shown in Figure 4.1. The resulting parameter values are indicated. That the 
sediment should be somewhat transparent at these low frequencies seems reasonable. 
Comparing Figure 4.1 to Figure 3.1 indicates strongly that the mode indices as given in 
Chapter 3 are correct. 
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Sp=0.0006, corresponding to sinθ > 0.88 , i e grazing angles less than 30°. As will be shown 
later, the most useful frequency interval for range estimation turns out to be 20 – 80 Hz. Figure 
4.2 (right) is similar to the earlier diagram, but covers only these frequencies. There is very 
little β spread between the modes in this frequency interval. 
 
 

 

M1 

M2 

 
 
Figure 4.2     Group slowness versus phase slowness for Pekeris analogue 

1 – 2OO Hz 2O – 8O Hz 

                     Dotted lines: β = 1.0 ±10%  
 
The information in Figure 4.2 could also be plotted as curves for individual frequencies. This is 
not shown here, as such diagrams become rather messy because of the discrete nature of the 
modes. A recommendation drawn from Figure 4.2 would be to stay well away from the cutoffs 
for the present application. 
 
The Pekeris analogy was introduced mainly in support of  β ≈ 1. No other Pekeris-derived 
parameters will be used for the final range estimation. 
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5     MEASUREMENTS OF THE INVARIANT β 

5.1     Group versus phase slowness diagram 

It will now be shown how diagrams like those in Figure 3.2 can be transformed into group 
slowness versus phase slowness diagrams simply by changing units along the axes. Then the 
slope of the pattern will determine 1/β. This is shown in Figure 5.1, which is an enlargement of 
the 16 Hz diagram of Figure 3.2. 
 
Horizontal axis. The horizontal scale (sin θ) is proportional to phase slowness Sp, because the 
horizontal phase slowness is   
 

0

sin
c

S p
θ

=                                                                                                                           (5.1) 

 
c0 is the water sound speed at the array. Therefore sinθ=1 corresponds to Sp=1/c0, sinθ=0.5 
corresponds to Sp=1/(2c0) and sinθ=0 would correspond to Sp=0. Part of this is written into 
Figure 5.1. Therefore for phase slowness differences, 
 

0

sin
c

S p
θ∆

=∆                                                                                                                   (5.2)                 

 
Vertical axis. In the vertical direction (time dimension) the mode envelopes will show up at 
their respective delays or travel times. Travel time is proportional to group slowness. Referring 
to Figure 5.1, t=0 will correspond to Sg=0 because zero travel time corresponds to infinite 
speed. T0 is the shortest possible travel time, corresponding to horizontal speed c0. Then 
Sg=1/c0  at T0. This is also written into Figure 5.1. The number of Sg units per time unit is 
therefore 1/(c0 T0). Then for group slowness, 
 

00Tc
tS g =                                                                                                                           (5.3) 

 
For the differences, 
 

00Tc
TS g

∆
=∆                                                                                                                   (5.4) 

  
Travel time T0 for all the shots was measured during the experiment. It was actually measured 
from the first arrivals of the high frequency part of the shot. All information needed for 
measuring β is now available through measurement of the slope. 
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Measurement of slope. The slope of the straight-line pattern is  
 

θsin∆
∆

=
Tslope                                                                                                                    (5.5) 

 
It can be determined “automatically” and fast by using a standard straight-line fitting 
procedure. Because of the inevitable sidelobes (can be seen in Figure 5.1) and possibly noise 
bursts, the fitting is preceded by some masking and threshold setting. Maxima below a certain 
sin θ are also left out. β is found by  
   

slope
T

T
T

S
S
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p
meas

0
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∆
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−=
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∆
−=

θβ                                                                     (5.6)       

 
Here it is understood that the slope must be taken as negative. Thus it is not necessary actually 
to pinpoint pairs of modes, say identify them, in order to find β as Equation (4.1) might 
indicate, but only draw the line and find the slope.  
 
The β values according to Equation (5.6) will now be compared to theoretical β values 
following Equation (4.3) and assuming β = 1 close to the receiver. Theoretical β values will be 
found for both bottom versus range and bedrock versus range profiles. For the E run outside 70 
km the sediment thickness was set to 15 m.  

5.2     The median of slope values 

The line-fitting method can fail, however, due to fluctuations and irregularities in the data. In 
order to cut out (most of) way-off β values automatically, slope values for a group of close 
frequencies were first found. For instance, within a 1/3 octave band were computed 7 slope 
values from each of 1/12 octave filters with 1/24 octave spacing. Within a full octave band 
were computed 23 values etc. Then the final slope value was taken as the median of this group.  
 
When the shots are relatively close to the receiver, the method becomes somewhat unstable and 
erratic, because the modes are not well resolved. Therefore shots inside 10 km have not been 
included in the study. 

5.3     β as function of frequency for two sample shots 

Figure 5.2 shows measured β values, for the two sample shots, taken over frequencies in 1/12 
octave bands with 1/24 octave separation. Within roughly 10 - 100 Hz the values of β are 
reasonably stable, but with a slowly increasing trend in β. The W run has β values around 0.8 
while the E run has β values around 1.0. There is higher variability towards both the low and 
the high frequency ends. A reasonable “area of interest” would therefore be the band just 
indicated, but establishing the limits will be done later. As will be shown, the over-all 
bandwidth within which the median method is applied has importance for the stability of the 
estimates. 
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Figure 5.2     Measured β as function of frequency for the two sample shots 
                     Basic filter bandwidth is 1/12 octave 

5.4     Octave bands: measured versus theoretical β values for all shots 

Measured β values were found for octave bands by the median method, with 23 of 1/12 octave 
filters within the band. Theoretical and measured β values will now be compared. 
 
Figure 5.3 shows the W run for octave bands at 20, 40 and 80 Hz. Theoretical β profiles 
according to Equation (4.3) for water depth and top bedrock are shown as lines. They are in 
this run close together. The measured β values given as asterisks show good concentration, 
with little preference for any particular of the theoretical lines. There is not much difference 
between frequencies, but 40 Hz has the best concentration. The measured values have on 
average a slight tendency of being higher than the theoretical values. 
 
Figure 5.4 shows the E run at 20, 40 and 80 Hz. The theoretical β values are to a large degree 
dominated by the depth depression at 12 - 20 km, the bedrock β values less so than those for 
the bottom. Now there is more difference between frequencies. At 20 and 40 Hz the measured 
values lie closest to the bedrock pattern, but a constant β = 1 would be a better assumption. At 
20 Hz the depression appears to have no influence whatsoever. At 80 Hz the measured values 
lie closest to the bottom-related pattern. The depression has an influence, but not to the full 
extent of the theoretical line.  
 
The range estimates will be treated in the next chapter. But to give a hint: the relative deviation 
of the measured β values from the theoretical ones will reflect the relative error in the range 
estimates.    
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  West    Octave    2O Hz 
          Bandwidth 14 Hz 

 

 

  West    Octave    4O Hz 
          Bandwidth 28 Hz 

 

 

  West    Octave    8O Hz 
          Bandwidth 57 Hz 

 
Figure 5.3     Measured and theoretical β values at different frequencies for the W run 
                      1/1 octave bands 
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  East    Octave    2O Hz 
          Bandwidth 14 Hz 

 

 

  East    Octave    4O Hz 
          Bandwidth 28 Hz 

 

 

  East    Octave    8O Hz 
          Bandwidth 57 Hz 

 
Figure 5.4     Measured and theoretical β values at different frequencies for the E run 
                      1/1 octave bands 
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5.5     Smoothing the profiles 

Compared to the W run, the fit for the E run was less satisfactory, although roughly within 
±10%. The difference seemed to be somehow connected with the depression at 12 – 20 km. In 
order to investigate this, β lines from bottom and top bedrock profiles with much of the 
depression “filled in” were produced, Figure 5.5. Compared to Figure 5.3 there is a slightly 
better fit, but there still is a discrepancy. This will be discussed later. 

5.6     The importance of bandwidth 

There are two bandwidths to consider: the basic (narrow) filter bandwidth and the bandwidth 
over which the median is extracted. The basic filter bandwidth of 1/12 octave was chosen as a 
resolution compromise. Too narrow filters gave long impulse responses and bad time 
resolution. Too broad filters gave also bad time resolution because of high dispersion within 
the band and in addition bad angular resolution. Broader filters up to maximum over-all 
bandwidth were attempted, but gave inferior performance, even for close shots. 
 
The over-all bandwidth has influence upon the stability of the β estimates. The greater the 
bandwidth, the better is the concentration or stability of  β (and the range estimates to be shown 
later). Figure 5.6 shows results for the E run at 40 Hz when using 1/12, 1/3 and double octave 
bands, respectively. 1/1 octave band is already shown in Figure 5.4. The improvement in 
stability by going to larger bandwidths is evident. 
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Figure 5.5     Influence of smoothing the depression  
                     Measured and theoretical β values at diff
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6     RANGE ESTIMATES 

Range estimates will now be found. It will be assumed that Equation (1.4) applies, such that 
  

slopecTc
S
TR theortheor

p
theor 00 sin

β
θ

ββ −=
∆
∆

−=
∆
∆

−=                                                    (6.1) 

 
The only actual measurement involved is estimation of the slope ∆T/∆sinθ of patterns in 
diagrams such as Figure 3.2. It will be assumed that the sound speed at the receiver c0 is 
roughly known (an error of a few m/sec will do little harm). The arrival time T0 does not enter. 
Theoretical β values were (as above) found from the bottom profiles and top bedrock profiles 
by Equation (4.3). It should be noted that Equation (6.1) actually has to be “solved” for R, 
because βtheor is a function of R. This is simply done by stepping R until equality is obtained.  
 
Figures 6.1 – 6.2 give estimated shot ranges for the same cases as in Figures 5.3 - 5.4, 
presented in two different ways, one giving absolute range and the other percentage deviation. 
Theoretical top bedrock β values were used at 20 and 40 Hz, bottom β values at 80 Hz. The W 
run in Figure 6.1 has no special trends, but gives slightly underestimated ranges at 40 and 80 
Hz. Using bottom β values at 40 Hz gave more underestimation (not shown). The spread is 
about the same for all ranges. The E run in Figure 6.2 at all frequencies gave as a trend some 
overestimation for the closer shots, and gave some underestimation for the longer at 20 and 40 
Hz. The spread is about the same for all ranges, except for some extreme values at close ranges 
for 80 Hz. 
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Figure
          
                     West     Octave     2O Hz      
                          Bandwidth 14 Hz     β ref top bedrock
 

                     West     Octave     4O Hz 
                          Bandwidth 28 Hz     β ref top bedrock
 

 

 

                     West     Octave     8O Hz 
                          Bandwidth 57 Hz     β ref sea bottom
 

 6.1     Range estimates in octave bands at different frequencies for the W run 
          20 and 40 Hz:  βtheor from top bedrock          80 Hz:  βtheor from sea bottom profile 
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Figure
          
                      East    Octave    2O Hz 
                           Bandwidth 14 Hz    β ref top bedrock
 

                      East    Octave    4O Hz 
                           Bandwidth 28 Hz    β ref top bedrock
 

 

                      East    Octave    8O Hz 
                           Bandwidth 57 Hz    β ref sea bottom
 

 6.2     Range estimates in octave bands at different frequencies for the E run 
          20 and 40 Hz:  βtheor from top bedrock           80 Hz:  βtheor from sea bottom profile 
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6.1     Smoothing the profiles 

‘Filling-in” the depression at 12 – 20 km as shown in Figure 5.5 gave slightly better results 
(not shown) than those in Figure 6.2. 

6.2     Ignoring the changing bathymetry 

Figure 6.3 shows the E run with the theoretical invariant set to β =1 for all ranges, i e with no 
regard for the bottom or bedrock profiles. This gives at 20 and 40 Hz better estimates than 
those in Figure 6.2.  

6.3     Variation of over-all bandwidth 

Over-all bandwidth plays an important role. Figure 6.4 shows the same cases as Figure 5.6. 
Here only diagrams for percentage deviation are given. The importance of bandwidth is 
evident. However, it may be of some interest that even narrow bands (1/12 octave) can give 
range estimates of some concentration (here roughly ±10%).  

6.4     Pushing the frequency limits 

In an attempt to stretch the frequency range, estimates below 20 Hz and above 80 Hz were 
made. The following gives about the limits for usable β concentrations and range estimates. 
Figure 6.5 (top) shows an octave around 16 Hz for the W run. The octave extends down to 11 
Hz. Figure 6.5 (bottom) shows an octave at 160 Hz. The octave extends upwards to 225 Hz. 
Both octaves give estimates within ±20%. Figure 6.6 gives similar diagrams for the E run, with 
comparable concentrations. 

6.5     “Best results” 

Using the double octave around 40 Hz, i e 20 – 80 Hz, Figure 6.7 gives the best results 
obtained for range estimation, with both good concentration and good averages. For the W run, 
the bedrock β profile was used. For the E run β = 1 was chosen.  
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Figure 6.3     Range estimates
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Figure 6.4     Range estima
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Figure 6.5     Pus
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  East    Octave    16 Hz 
         Bandwidth 11.3 Hz                                               β ref top bedrock 

  East    Octave    16O Hz 
         Bandwidth 113 Hz                      β ref sea bottom 

 
Figure 6.6     Pushing the frequency limits: 16 and 160 Hz the E run 
                     Octave bands  
                     16 Hz:   βtheor from top bedrock               160 Hz: βtheor from sea bottom profile 
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  West   2x Octave   4O Hz 
         Bandwidth 2O – 8O Hz                  β ref top bedrock 

 
 
 
 

 

  East   2x Octave   4O Hz 
         Bandwidth 2O – 8O Hz                         β = 1

 
Figure 6.7     “Best results”. Double octave bandwidth (20 – 80 Hz) 
                      West: βtheor from bedrock profile       East: βtheor  = 1.0 
 

6.6     The Eastern discrepancy 

Contrary to the good agreement between theory and experiment in the Western run, the Eastern 
run showed some − although modest − differences at low frequencies, as demonstrated above. 
One could suspect that the water depth is changing too fast with range, so some ideal 
assumptions in connection with Equations (4.2) – (4.3) might be violated. On the other hand, in 
the W run the water depth changes relatively fast with range too, and that gives no problem. 
But there might be part(s) of the E run when the measured bottom or bedrock profiles miss the 
true steepness. There might also be some unknown features in the bottom compositions. 
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There is a main difference between the Western and Eastern runs. In the Western run there is a 
smooth and uniform change of slope in the vicinity of the receiver. The propagation is over 
more or less flat areas with downslope near the receiver. In the Eastern run there are more 
dramatic changes inside 20 km. The propagation is first downslope, then upslope. The Eastern 
run also has in its deeper parts a cold layer close to the bottom, as Figure 2.4 indicates. Closer 
investigation of the approximations, and maybe modelling based upon more fine-grained 
geophysical inputs could give an explanation for this, and provide better β profiles. 
 
For the Eastern run, with its relatively large irregularities in the vicinity of the receiver, it was 
best at low frequencies to assume that β ≈ 1, as bottom or bedrock β profiles made things 
worse. In the present case, this reduced the estimation errors by a half. For both runs there is a 
tendency, although not strong, for the measured β values on average to lie closer to β =1 than 
what the present theory with its somewhat idealized assumptions predict. 

7     CONCLUSIONS 

Group speeds are difficult to measure locally. Phase speeds can be measured by means of an 
endfire array, and range estimates for shots can be found provided the so-called waveguide 
invariant β is known. For short ranges it was found by a Pekeris analogy that β ≈ 1 for grazing 
angles less than 30°. For longer ranges and changing sea depth, theoretical β profiles were 
found by well-known formulas.  
 
Both ranges and travel times were monitored during the experiment in question. β values could 
therefore actually be measured and checked against theoretical values. Extracting β values 
from measurements required a certain amount of processing of the beamformed signals. The 20 
– 80 Hz frequency range was found to be the safest, but with possibilities within the larger 
band of 10 – 200 Hz. The accuracy and stability of the measured β values increased with the 
bandwidth used. Still, estimates better than ±20% were obtained even by using 1/12 octave (= 
±3%) bandwidth. 
 
In general, range estimates will be influenced by the quality of the array. For the present study, 
the array had 10 hydrophones of uneven spacing over 820 m, with 20 m as the smallest 
spacing, in fact a rather sparse array. More hydrophones might improve the frequency limits 
and the stability.  
 
The Western run obtained the best concentrations and good fit to the true values. It was 
possible in octave bands to give range estimates within ±5% of the correct value, based solely 
upon the bottom and top bedrock profiles and an approximate value of the water sound speed.  
 
For the Eastern run at low frequencies (20 – 40 Hz) the measured β values did not fit the 
theoretical values that well. The discrepancy is at present unexplained. Still, the range 
estimates were even then typically within ±10% of the correct values. The estimates improved 
towards ±5% by setting the invariant β = 1. At higher frequencies (80 Hz) the fit was better 

 
   



 36 

using the sea bottom β profile. Typically there was a slight overestimation with a spread of  
±5%.  
 
It is worth noting that the relative spread in the range estimates was roughly constant over the 
whole range 10 – 115 km, except for an occasional increase by the closer shots. 
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APPENDICES 

A VERIFICATION OF GPS-BASED RANGES AND TRAVEL TIMES 

A simple method for verification of correct GPS ranges and travel times is by checking the 
corresponding average sound speeds (= range/time). Figure A.1 shows this for the two runs. 
Average sound speed is about 1472 m/sec for shots close to the receiver. Eastwards it drops 
eventually to around 1469 m/sec, while westwards it increases to approx 1473 m/sec. All three 
source depths are included. Shallow charges are indicated by circles. 
 
 

 
 
 
Figure A.1     GPS-based average sound speed values for the two runs 
                      All three source depths. Circles: shallow (18 m) shots 
                      Dotted lines: single depth theoretical spread according to (3) 
 
In the E run the shallow charges show lower sound speeds than the deeper. This shallow/deep 
difference is almost constant with range. If this had something with the local geometry at the 
transmitting vessel to do, the difference should be smaller with increasing range. Not being the 
case, it is likely that the shallow/deep differences are right, and are due to the actual sound 
speed conditions. 
 
In the W run shallow and deep charges give about the same speed for the longer ranges, and 
the opposite shallow/deep trend of Run E for the closer ranges. There is an unexplained change 
around 33 km. By the same argument as above, the values are probably right. 
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The original aim was to bring the range error down towards ±15 m and the travel time error 
towards ±10 msec (3). Translating these into speed error gives the expressions 
 

T
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At the bottom of Figure A.1 these limits are indicated. In comparing them with the measured 
values, one should bear in mind that they only express variations around a mean value, which 
from West to East will go from 1473 m/sec to 1469 m/sec. For any of the three charge depths, 
the variations of actual speeds are comparable in magnitude to the theoretical errors. 

B DISPERSIVE TRANSIENTS AND BEAMFORMING 

What is to be demonstrated now can all be deduced from theory and simulation, and are well-
known features of the acoustic waveguide. However, it is always gratifying to see the same 
happen with real signals.  
 
Figure B.1 shows signals recorded at the ten hydrophones of the horizontal array for an Eastern 
shot at 37 km. Center frequency is 10 Hz, bandwidth is 1/6 octave, i e  ± 0.6 Hz. Four modes 
can be seen as envelopes enclosing the frequency components in the band. There are also some 
small disturbances, such as that in front of Mode 4. Signal #31 is a little more than 0.5 sec later 
than signal #22. Still, 
 

Signal #31 is what signal #22 would look like after travelling 820 m along the array. 
 
But they will not be exactly alike. What is not so readily seen in this picture is,  
 

As it moves horizontally, the signal will “stretch” in distance between the modes as 
higher mode numbers have lower group speeds, Figure 4.1. The mode envelopes 
themselves will also stretch. 

 
By lining up the signals, i e give them the same starting point at Mode 1, Figure B.2 is 
produced. Here it can clearly be seen that signal #31 is longer than signal #22. The stretching 
of the blobs themselves is too small to be seen in this picture. 
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Figure B.2     Demonstration
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Mode 3 
v=18OO m/sec 

Mode 2 
v=161O m/sec 

Mode 1 
v=15OO m/sec 

 Mode 4 
v=233O m/sec 

Figure B.4     Lined-up hydrophone signals for the different modes. Inserted delays = Li/v 
 
It will now be demonstrated that signals of individual modes must be lined up by using speeds 
v which can be far higher than the sound speed of 1470 m/sec. Take for instance the signal 
section from 8.5 – 10.5 sec around Mode 4. Delays are put in according to Equation (B.3). 
After some cut and try, v = 2330 m/sec is settled for. Figure B.4 (bottom) shows the result, 
where for illustration purposes the vertical spacing between the traces have been shrunk. The 
waveforms in Mode 4 have now been lined up properly. Summation would produce the 
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maximum beam outputs. This value of 2330 m/sec is unique since the array has uneven 
hydrophone spacing. No other value of v will give full line-up. Figures B.4 shows also similar 
diagrams for Modes 1, 2 and 3 at speeds v = 1500, 1610 and 1800 m/sec, respectively. All 
these speeds are phase speeds. Checking with Figure 4.1 will support this (the speeds compare 
very well). Thus 
 

A delay-and-sum beamformer can measure phase speeds. 
 

Group speeds.     Trying to line up the envelopes of Mode 4 gives Figure B.5. The necessary 
speed for this is v = 1100 m/sec. Lining-up of the other modes was more uncertain. Here v is 
the group speed. This is supported by Figure 4.1. But 
 

After envelope extraction a delay-and-sum beamformer can in principle measure group 
speeds. In practice long arrays are required, longer than the present one. 
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