FFI RAPPORT

Mechanical testing by uniaxial compressive test of DPX-6

Gunnar Ove Nevstad

FFI/RAPPORT-2007/01664

Mechanical testing by uniaxial compressive test of DPX-6

Gunnar Ove Nevstad

FFI/RAPPORT-2007/01664

FORSVARETS FORSKNINGSINSTITUTT Norwegian Defence Research Establishment P O Box 25, NO-2027 Kjeller, Norway

FORSVARETS FORSKNINGSINSTITUTT (FFI) Norwegian Defence Research Establishment

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (when data entered)

P O BOX 25 N0-2027 KJELLER, NORWAY REPORT DOCUMENTATION PAGE		SECURITY CLASSIFICATION OF (when data entered)	THIS PAGE
1) PUBL/REPORT NUMBER	2) SECURITY CLASSIFICAT	ION	3) NUMBER OF
FFI/RAPPORT-2007/01664	UNCLASSIFIED		PAGES
1a) PROJECT REFERENCE	2a) DECLASSIFICATION/DOV	WNGRADING SCHEDULE	32
FFI-V/873/130	-		
4) TITLE MECHANICAL TESTING BY UN	IAXIAL COMPRESSIVE T	EST OF DPX-6	
5) NAMES OF AUTHOR(S) IN FULL (surname f NEVSTAD Gunnar Ove	irst)		
6) DISTRIBUTION STATEMENT Approved for public release. Distri	oution unlimited. (Offentlig t	ilgjengelig)	
7) INDEXING TERMS IN ENGLISH:	IN NO	RWEGIAN:	
a) PBX	a) <u> </u>	PBX	
b) Pressing	b) [pressing	
c) Compression		kompresjon	
d) Mechanical Properties		nekaniske egenskaper	
e) DPX-6		DPX-6	
THESAURUS REFERENCE:			
8) ABSTRACT			
 DPX-6 is a press-filled PBX containing F 50 wt% while the content of aluminium is the plasticizer DOA. We have in this report pressed pellets at r pellets have been used to characterize the The obtained max stress properties go from ax stress goes from 6.0 % to 4.78 %. 	s 45.9 wt%. The last 4.1 wt% oom temperature to an average mechanical properties at – 50	is the binder (Hytemp/DOA ge density of 2.038 g/cm ³ or 9 0, 20, 40 and 60°C by uniaxi) of which 73 wt% is97% of TMD. These al compression test.
9) DATE AUTHORIZED	BY	POSITION	
5) DATE AUTHORIZED This page only	21	FUSITION	
2007-06-22	Jan Ivar Botnan	Directo	or
ISBN 978-82-464-1212-2		UNCLASSIFIED	

SECURITY CLASSIFICATION OF THIS PAGE (when data entered)

CONTENTS

		Page
1	INTRODUCTION	7
2	EXPERIMENTALLY	7
2.1	Pressing	7
2.2	Compression Mechanical Properties Testing	7
3	RESULTS	8
3.1	Properties of tested pellets	8
3.2	Room temperature	8
3.3	40°C	9
3.4	60°C	10
3.5	Low Temperature	11
3.6	Comparison	12
4	SUMMARY	13
APPE	ENDIX	
A	CONTROL REPORT	14
В	TEST REPORT SHEETS	15
B.1	Room Temperature	15
B.2	40°C	19
B.3	60°C	23
B.4	Low Temperature	28
	References	32

Mechanical testing by uniaxial compressive test of DPX-6

1 INTRODUCTION

M72 LAW (Light Antiarmour Weapon) has been redesigned with a new warhead for urban warfare. M72 ASM-RC (Anti-Structure Munition Reduced Caliber) has as the name indicates a new warhead for combat of light buildings. This requires a main charge explosive different from that used in shaped charge warheads. A candidate as main charge explosive is DPX-6, an aluminized PBX which is press filled into the warhead. This composition has lately been qualified according to STANAG 4170 (1) and accompanying AOP-7 (2). Uniaxial compressive properties are not a separate test of the qualification programme, but these properties were in the qualification obtained as part of an ageing programme (3).

Here we will report on uniaxial compressive properties of DPX-6 pellets pressed at room temperature. The uniaxial compressive test has been performed according to STANAG 4443 (4).

2 EXPERIMENTALLY

2.1 Pressing

All pellets tested in this report have been pressed at FFI. The pellets have been pressed by a force of 6.8 tons at room temperature with a dwell time of 60 seconds. In Appendix A is given the control report for the used explosive composition.

2.2 Compression Mechanical Properties Testing

The compression testing was performed on a MTS, High Rate Test System on cylindrical charges with diameter 20.88±0.02 mm and height 21.3±0.1 mm. The compression rate was 50 mm/min. Precondition time was 2 hours or more. The used test conditions have been as described in STANAG 4443 (4). All pellets have been tested by use of a load cell of 25 kN. Appendix B gives test report sheets for every tested pellet and contain all necessary information about each pellet and the condition under which they were tested. In addition the test report sheet shows the stress-strain curve.

3 RESULTS

3.1 Properties of tested pellets

Tested pellets were pressed with a force of 6.8 tons at room temperature with a dwell time of 60 seconds. The L/D ratio is approximately 1.26. Measured dimensions and weight of each pellet is given in Table 3.1 together with calculated density. Obtained average density 2.038 g/cm³ is 97% of TMD (TMD =2.1014 g/cm³). This density is slightly lower than Dyno Nobel has obtained by use of vacuum during pressing (3).

Test Temp.	Pellet	Height	Diameter	X-Sect. Area	Volume	Weight	Density
(°C)	No	(mm)	(mm)	(\mathbf{mm}^2)	(mm^3)	(g)	(g/cm^3)
	FFI-1	23.63	18.58	271.13	6406.86	13.0575	2.038
-50	FFI-2	23.55	18.58	271.13	6385.17	13.0195	2.039
	FFI-3	23.51	18.58	271.13	6374.32	12.9907	2.038
	FFI-4	23.43	18.58	271.13	6352.63	12.9708	2.042
	FFI-5	23.53	18.58	271.13	6379.74	13.0093	2.039
	FFI-6	23.48	18.58	271.13	6366.19	12.9924	2.041
20	FFI-7	23.45	18.58	271.13	6358.05	12.9901	2.043
	FFI-8	23.45	18.59	271.42	6364.90	12.9890	2.041
	FFI-9	23.47	18.59	271.42	6370.33	12.9742	2.037
	FFI-10	23.62	18.60	271.72	6417.94	13.0389	2.032
40	FFI-11	23.50	18.60	271.72	6385.33	13.0099	2.037
	FFI-12	23.43	18.59	271.42	6359.47	12.9515	2.037
	FFI-13	23.61	18.59	271.42	6408.33	13.0401	2.035
	FFI-14	23.64	18.60	271.72	6423.37	13.0760	2.036
60	FFI-15	23.45	18.60	271.72	6371.75	12.9600	2.034
	FFI-16	23.55	18.59	271.42	6392.04	12.9890	2.032
	FFI-17	23.57	18.59	271.42	6397.47	13.0590	2.041
				Average			2.038
				_			<u>+</u> 0.003

Table 3.1Dimensions and weights of pellets used for compression testing.

From the available pellets we set up a test programme for testing of compressive mechanical properties at 4 different temperatures.

3.2 Room temperature

Four pellets, No 5 to 8 were used to test mechanical properties at room temperature. All available information about tested pellets are given in Appendix B.1 which contains a test sheet of each pellet. Figure 3.1 gives a plot of all stress-strain curves, and Table 3.2 summaries the obtained mechanical properties. As Figure 3.1 shows the stress-strain curves for all tested pellets at room temperature have the same form and approximately the same maximum stress.

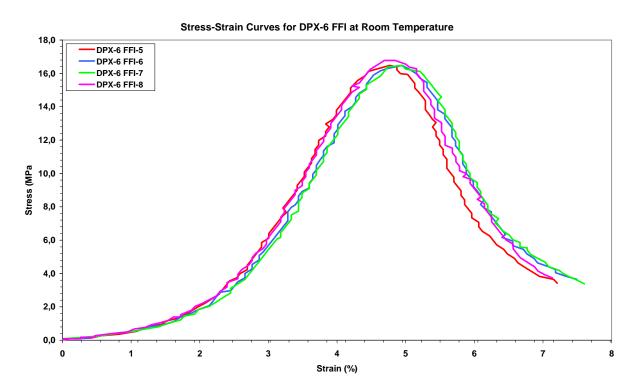


Figure 3.1 Stress-strain curves at room temperature for DPX-6.

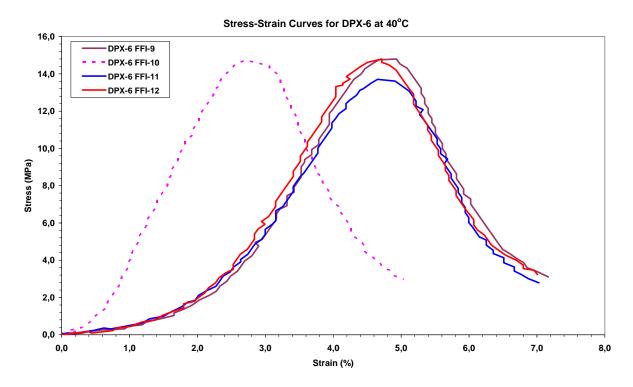
Pellet No	Max Stress	Strain at Max Stress	E-Modulus
	(MPa)	(%)	(MPa)
DPX-6 FFI-5	16.478	4.77	762.38
DPX-6 FFI-6	16.478	4.95	730.82
DPX-6 FFI-7	16.478	4.95	734.77
DPX-6 FFI-8	16.775	4.85	742.08
Average	16.55 <u>+</u> 0.15	4.88 <u>+</u> 0.09	742.5 <u>+</u> 14.0

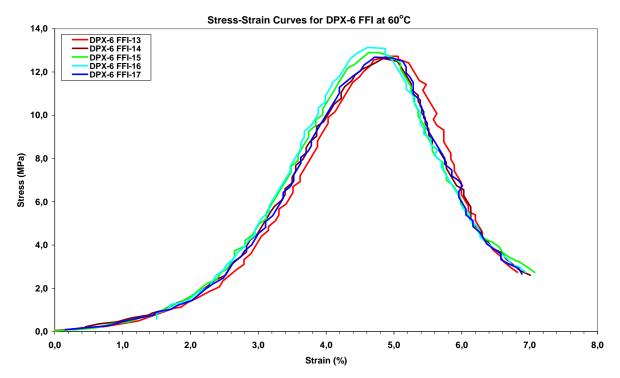
Table 3.2Compressive mechanical properties of DPX-6 at room temperature.

3.3 40°C

At 40°C four pellets, No 9 to 12 were tested. All available information about tested pellets is given in Appendix B.2. Appendix B.2 contains test sheets for every tested pellet. Figure 3.2 gives a plot of all stress-strain curves, and Table 3.3 summaries the obtained mechanical properties. As Figure 3.2 shows, the stress-strain curve for one of the tested pellet (No 10) have not the same form as the curves for the three other pellets, however all stress-strain curve for pellet No 10 is most probably an instrumentation failure rather than a failure in the pellet since it has the same maximum stress as two of the other pellets. The observed variation in properties gives slightly higher standard deviations at 40°C than at room temperature. The stress at 40°C is significantly lower than at room temperature, while the strain at max stress for

the three pellets with normal stress-strain curves is not significantly different from the obtained properties at room temperature.




Figure 3.2 Stress-strain curves for DPX-6 tested at $40^{\circ}C$.

Pellet No	Max Stress (MPa)	Strain at Max Stress (%)	E-Modulus (MPa)
DPX-6 FFI-9	14.796	4.93	661.45
DPX-6 FFI-10	13.702	4.85	561.94
DPX-6 FFI-11	14.736	2.70	748.85
DPX-6 FFI-12	14.796	4.71	660.03
Average All	14.51 <u>+</u> 0.54	4.30 <u>+</u> 1.07	658.1 <u>+</u> 57.0
Average all-FFI-11		4.83<u>+</u>0.11	627.8 <u>+</u> 76.4

Table 3.3 Compressive mechanical properties of DPX-6 at 40°C temperature.

3.4 60°C

At 60° C we tested 5 pellets, No 13 to 17. All available information about tested pellets is given in Appendix B.3. Appendix B.3 contains test sheets for every tested pellet. Figure 3.3 gives a plot of all stress-strain curves and Table 3.4 summaries the obtained mechanical properties. As Figure 3.3 shows, the stress-strain curves at 60° C are almost identical. From Table 3.4 one finds that the max Stress is 12.8 MPa which is significant lower than at 40° C and at room temperature. The obtained average result with regard to strain at max stress fall within the standard deviation of the result at room temperature and at 40° C. The average E-modulus at 60° C is significantly lower that at both room temperature and at 40° C.

Pellet No	Max Stress (MPa)	Strain at Max Stress (%)	E-Modulus (MPa)
DPX-6 FFI-13	12.728	4.99	551.48
DPX-6 FFI-14	12.624	4.84	535.25
DPX-6 FFI-15	12.890	4.76	515.94
DPX-6 FFI-16	13.132	4.61	570.36
DPX-6 FFI-17	12.683	4.71	556.97
Average	12.81 <u>+</u> 0.20	4.78 <u>+</u> 0.14	546.0 <u>+</u> 21.0

Table 3.4 Compressive mechanical properties of DPX-6 at 60°C temperature.

3.5 Low Temperature

At low temperature (-50°C) four pellets were tested. All available information about tested pellets is given in Appendix B.4. Appendix B.4 contains test sheets for every tested pellet. Figure 3.4 gives a plot of all stress-strain curves, and Table 3.5 summaries the obtained mechanical properties. As Figure 3.4 shows the three stress-strain curves at -50°C are almost identical while the fourth curve obtained from pellet FFI-3 is different. From Table 3.5 one finds that the average max stress is 35.1 ± 0.7 MPa which is significantly higher than for the other temperatures. With regard to strain at max stress, the obtained average result at -50°C is slightly higher that at room temperature. The observed E-modulus is significantly higher at low temperature that at room temperature.

Pellet No	Max Stress	Strain at Max Stress	E-Modulus
	(MPa)	(%)	(MPa)
DPX-6 FFI-1	35.838	6.05	1306.5
DPX-6 FFI-2	35.568	5.98	1307.3
DPX-6 FFI-3	34.352	6.92	1141.6
DPX-6 FFI-4	34.667	5.94	1249.3
Average All	35.11 <u>+</u> 0.71	6.22 <u>+</u> 0.47	1251.2 <u>+</u> 77.9
Average all -FFI-3		5.99 <u>+</u> 0.06	1287.7 <u>+</u> 33.3

Compressive mechanical properties of DPX-6 at low temperature. Table 3.5

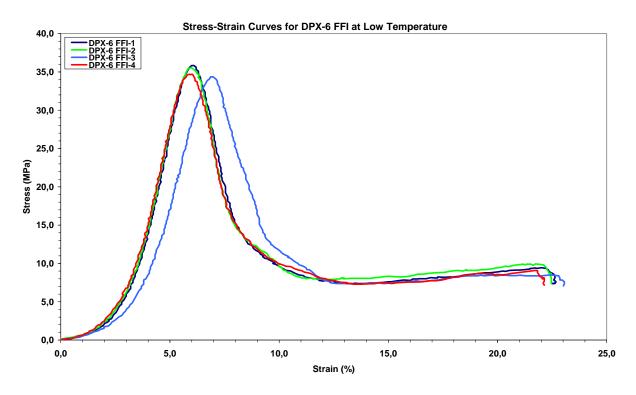


Figure 3.4 Stress-strain curves for DPX-6 FFI pressed pellets at low temperature.

Comparison 3.6

In Table 3.6 has average compressive properties at all test temperatures been summarised.					
Temperature (°C)		Max Stress (MPa)	Strain at Max Stress (%)	E-Modulus (MPa)	
-50	Average All	35.11 <u>+</u> 0.71	6.22 <u>+</u> 0.47	1251.2 <u>+</u> 77.9	
	Average all -FFI-3		5.99 <u>+</u> 0.06	1287.7 <u>+</u> 33.3	
20	Average	16.55 <u>+</u> 0.15	4.88 <u>+</u> 0.09	742.5 <u>+</u> 14.0	
40	Average All	14.51 <u>+</u> 0.54	4.30 <u>+</u> 1.07	658.1 <u>+</u> 57.0	
	Average all-FFI-11		4.83 <u>+</u> 0.11	627.8 <u>+</u> 76.4	
60	Average	12.81 <u>+</u> 0.20	4.78 <u>+</u> 0.14	546.0 <u>+</u> 21.0	

Table 3.6 Average compressive properties at different temperature for DPX-6.

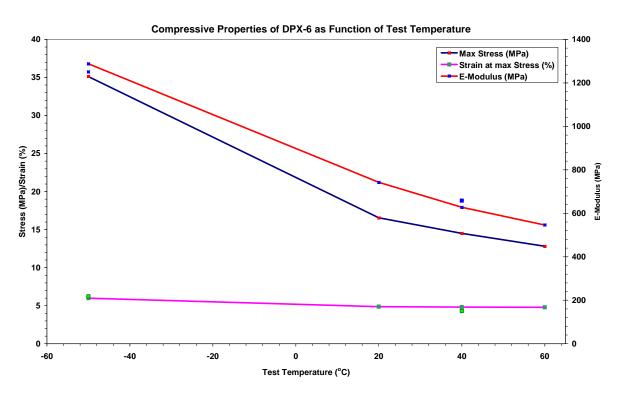


Figure 3.5 Compressive properties as function of test temperature for DPX-6.

Figure 3.5 plots the results in Table 3.6. The plots in Figure 3.5 are close to linear for all measured properties as function of test temperature.

4 SUMMARY

Pellets of DPX-6 were pressed at room temperature to satisfactory density without use of vacuum. These pellets were tested with regard of compressive mechanical properties at four different temperatures from -50° C to $+60^{\circ}$ C.

In the temperature range from -50° C to $+60^{\circ}$ C DPX-6 pellets with density 2.04 g/cm³ have reproducible compressive properties.

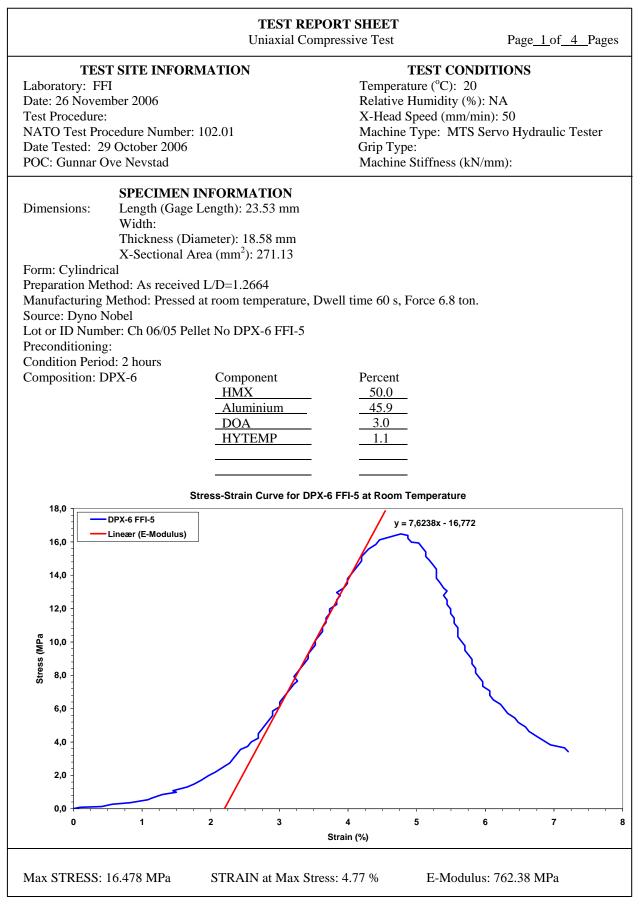
APPENDIX

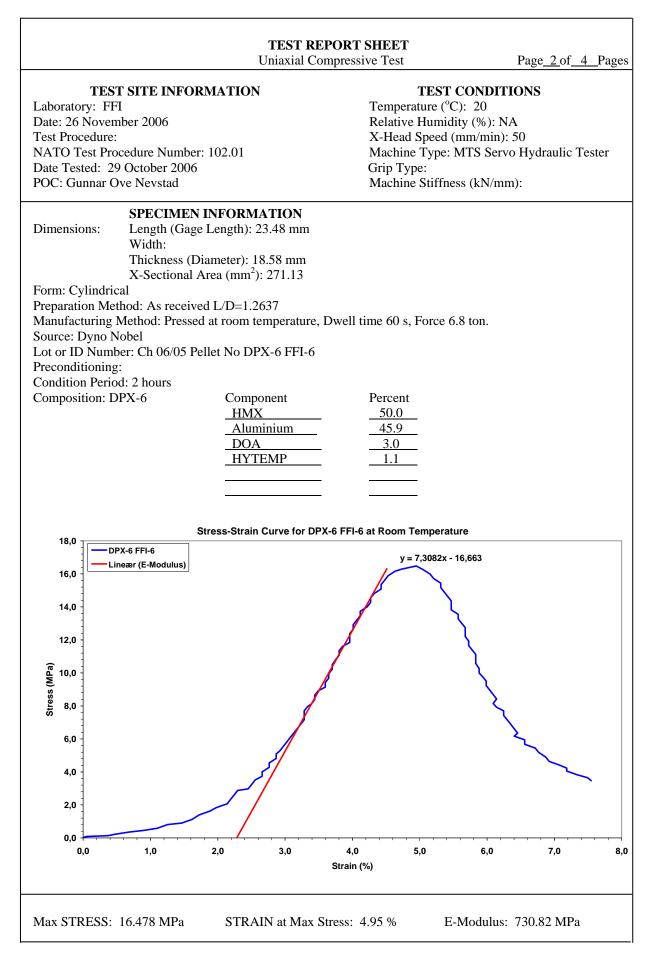
CONTROL REPORT Α

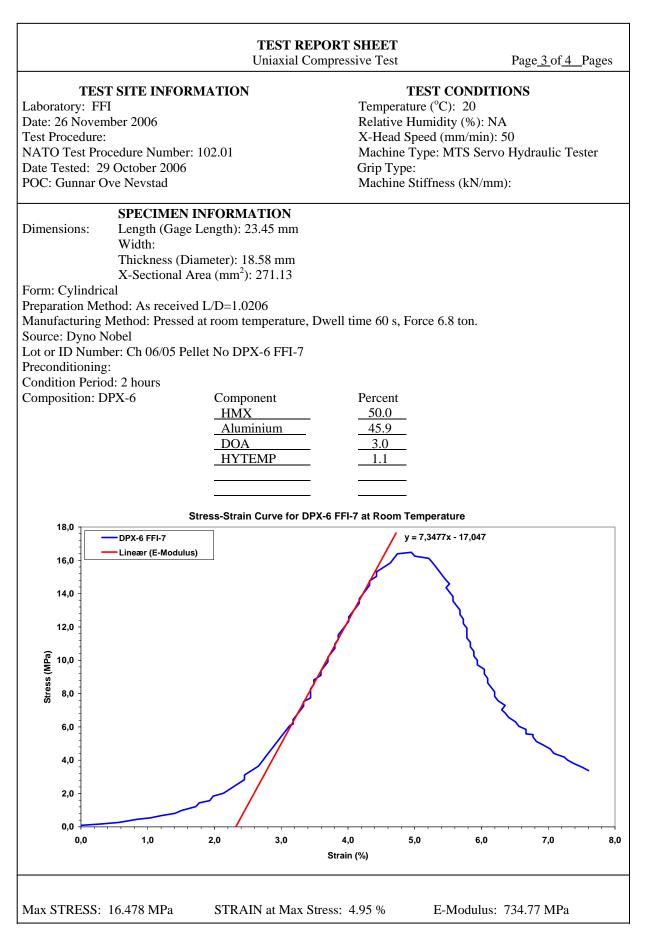
DYNO

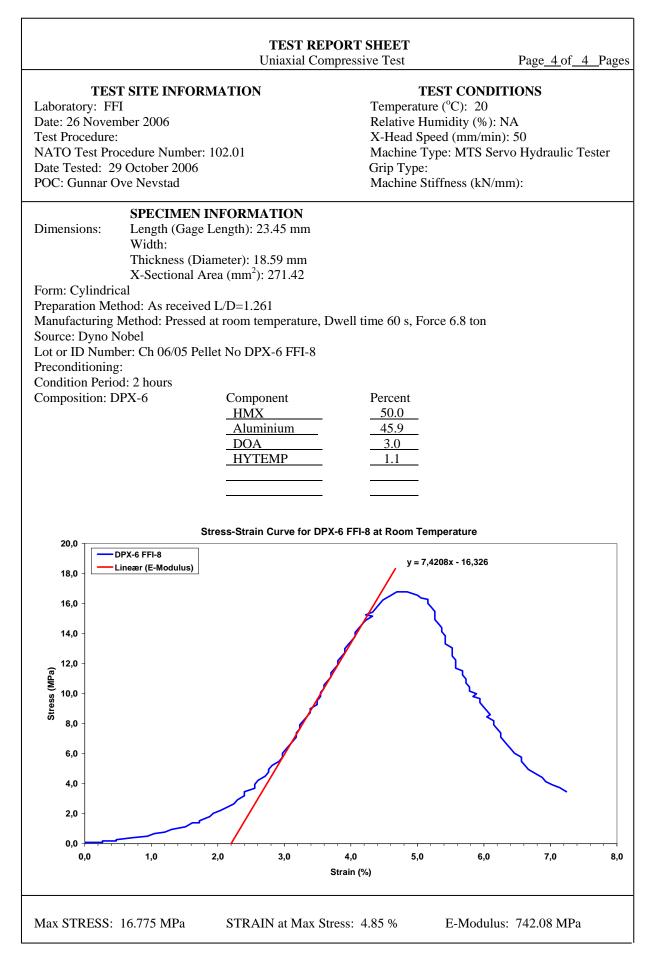
High Energy Materials

Kontrollrapport etter EN 10204 – 2.3

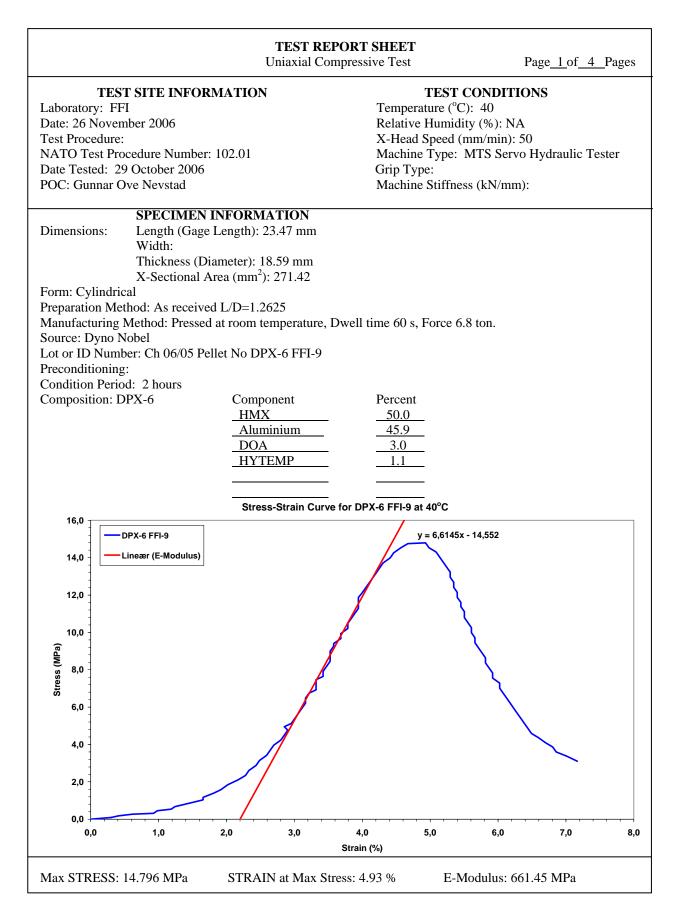

ad		Bestillingsdato				
v/ Gunnar Nevstad				Kontroll dato 25.11.05		
Produsent Dyno Nobel ASA N-3476 Sætre NORGE			Produksjonsdato 24.11.05		Offentlig oppdragsnummer	
		Mengde				
45 % Alumini	um (kl 6))	725 gram Leveringsbetingelser/Teknisk underlag Kun informative verdier, 45 % aluminium				
er						
may			DOA	Fuktighet	Volumvek	
Informativ	Informativ	Informativ	Informativ	≤ 0,10 %	Informativ	
50,0	45,9	1,1	3,0	0,02	0,90	
	Granu	alatfordeling, 9	6 gjennom US	SS Nr.		
6 (3350 µ)	8 (2360 µ)	12 (1700 µ)	18 (1000 µ)	25 (710 µ)	40 (425 µ)	
Informativ	Informativ	Informativ	Informativ	Informativ	Informativ	
100	100	99	55	28	5	
	45 % Alumini er HMX Informativ 50,0 6 (3350 μ) Informativ	45 % Aluminium (kl 6)) er HMX Aluminium Informativ Informativ 50,0 45,9 50,0 45,9 Gram 6 (3350 μ) 8 (2360 μ) Informativ Informativ	Mengde 725 gram Leveringsbeting Kun information HMX Aluminium HYTemp Informativ Informativ So,0 45,9 1,1 50,0 45,9 1,1 Granulatfordeling, 9 6 (3350 μ) 8 (2360 μ) 12 (1700 μ) Informativ	Mengde 725 gram Leveringsbetingelser/Teknisk und Kun informative verdier, 45 45 % Aluminium (kl 6)) er Marcoline Marcoline Marcoline Marcoline Marcoline Leveringsbetingelser/Teknisk und Kun informative verdier, 45 er Marcoline Sammensetning Marcoline Marcoline Sammensetning Marcoline Marcoline Sammensetning Marcoline Marcoline Sammensetning Marcoline Sammensetning Marcoline Granulatfordeling, % gjennom US	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

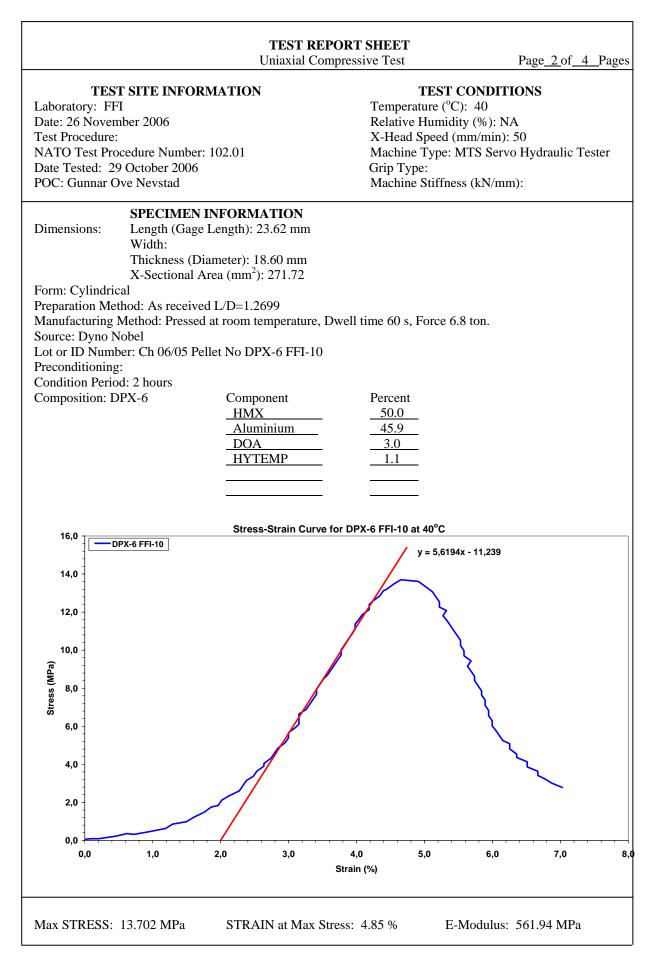

Øyvind H. Johansen FoU Sjef

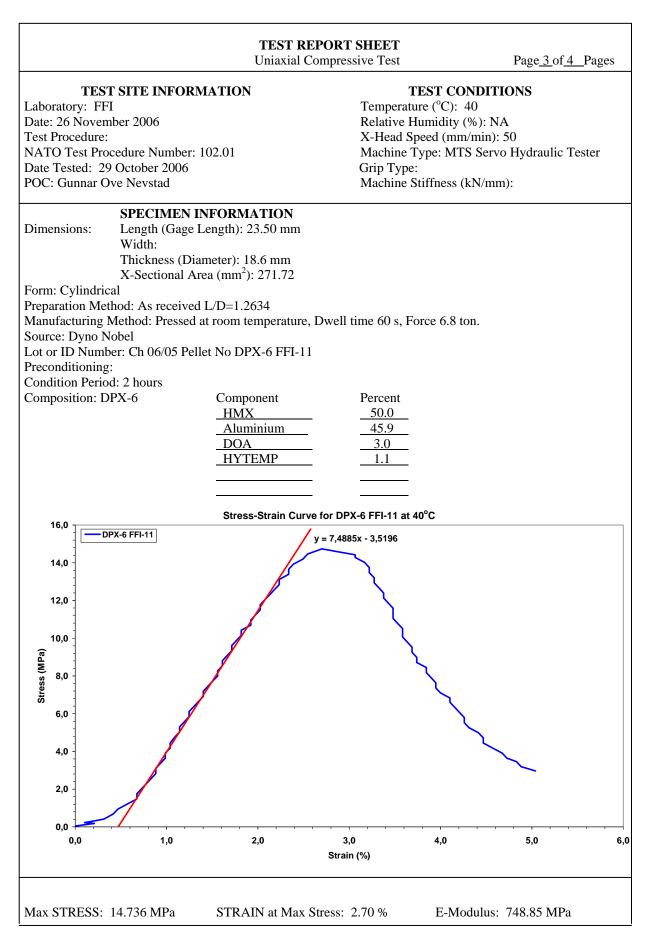

m Kjell-Tore Smith Forsker

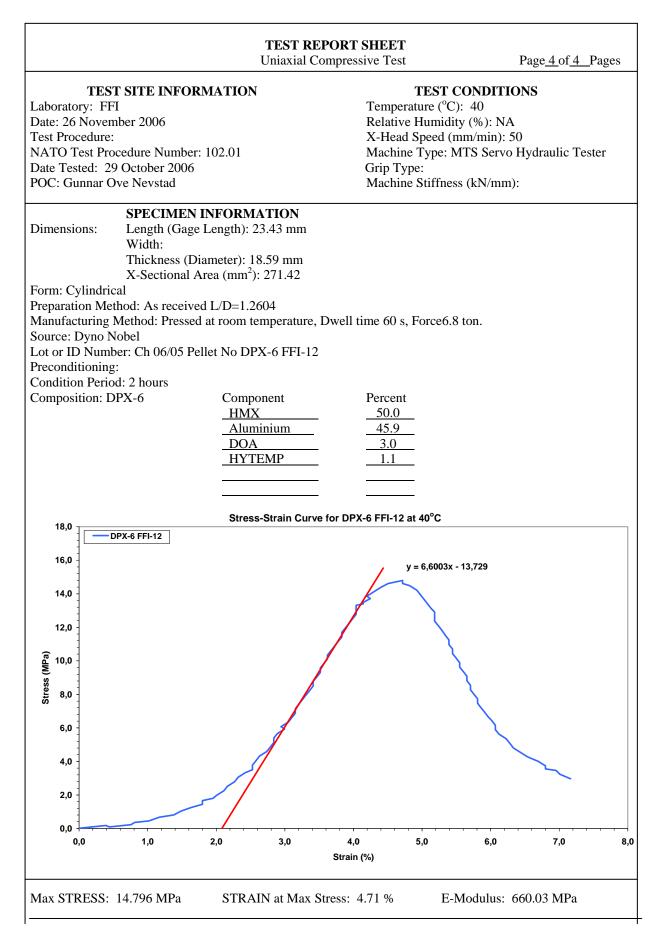

B TEST REPORT SHEETS

B.1 Room Temperature

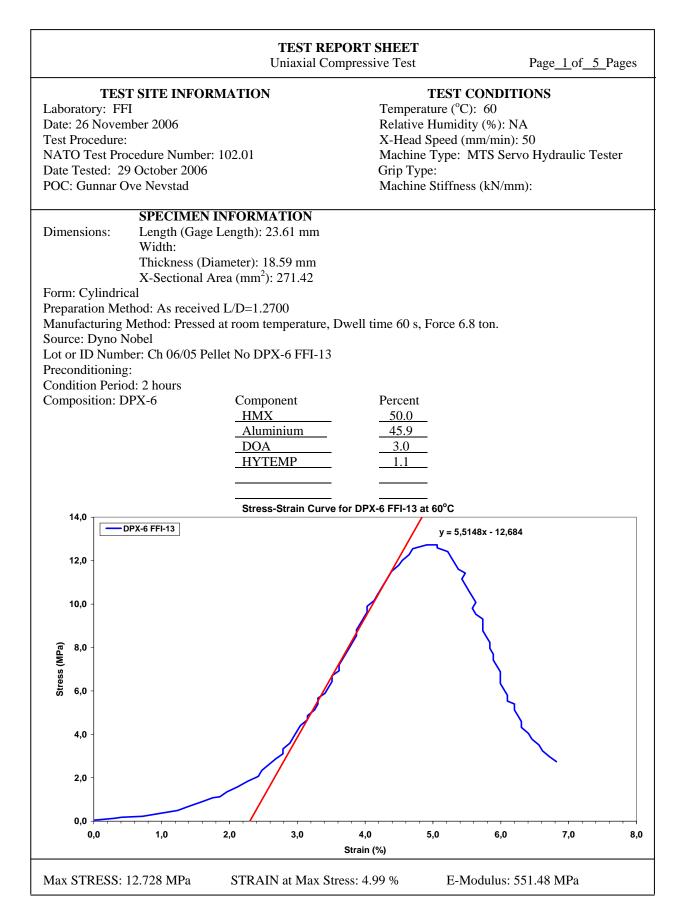


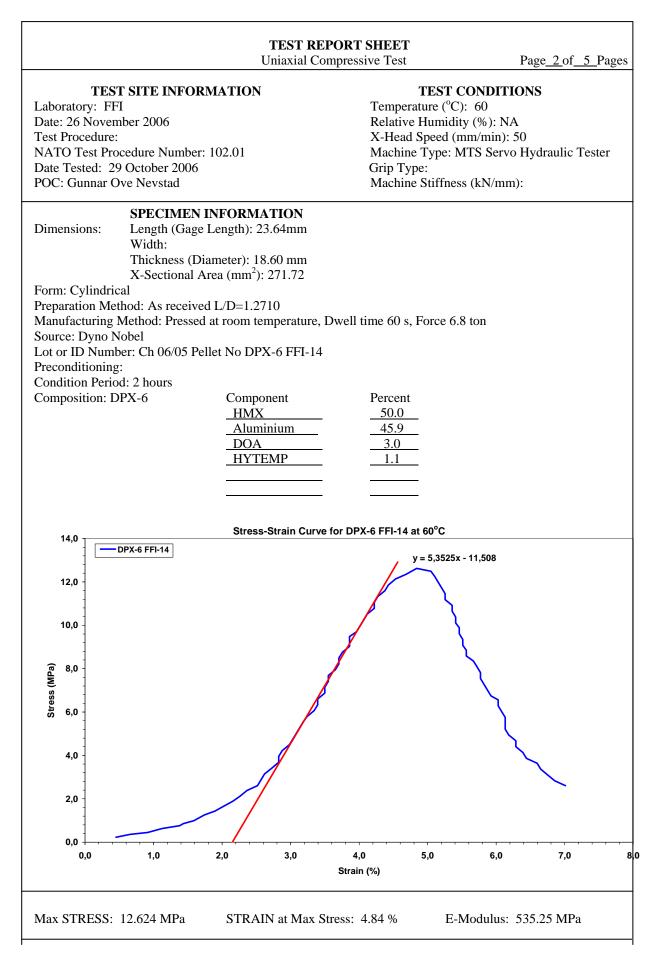


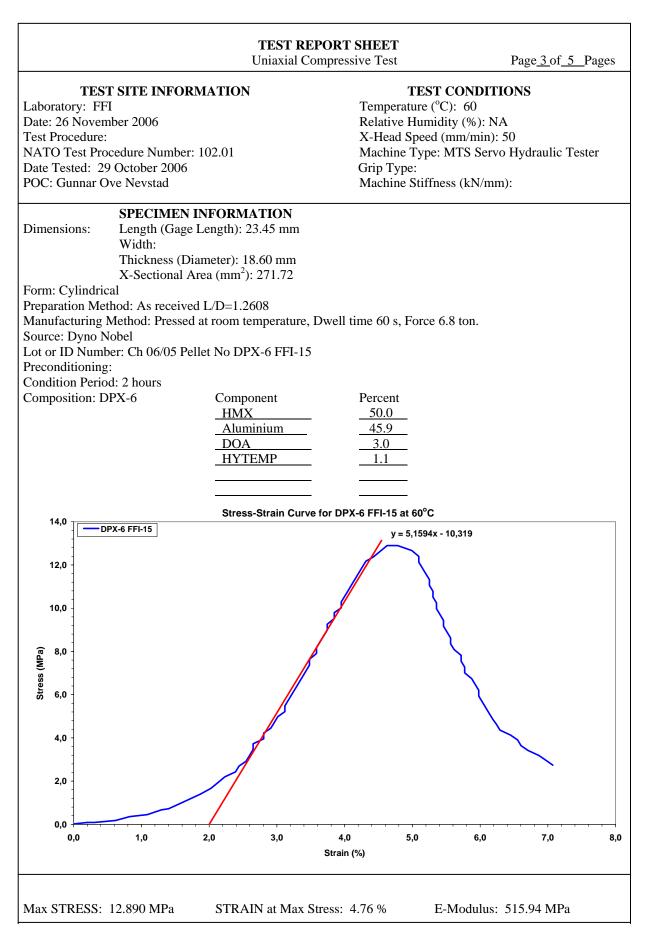


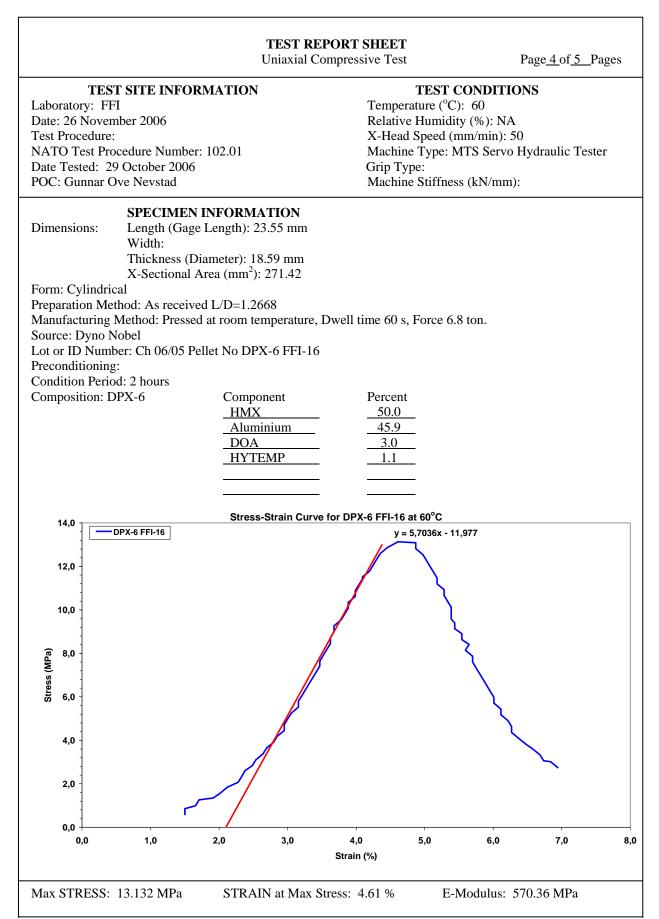


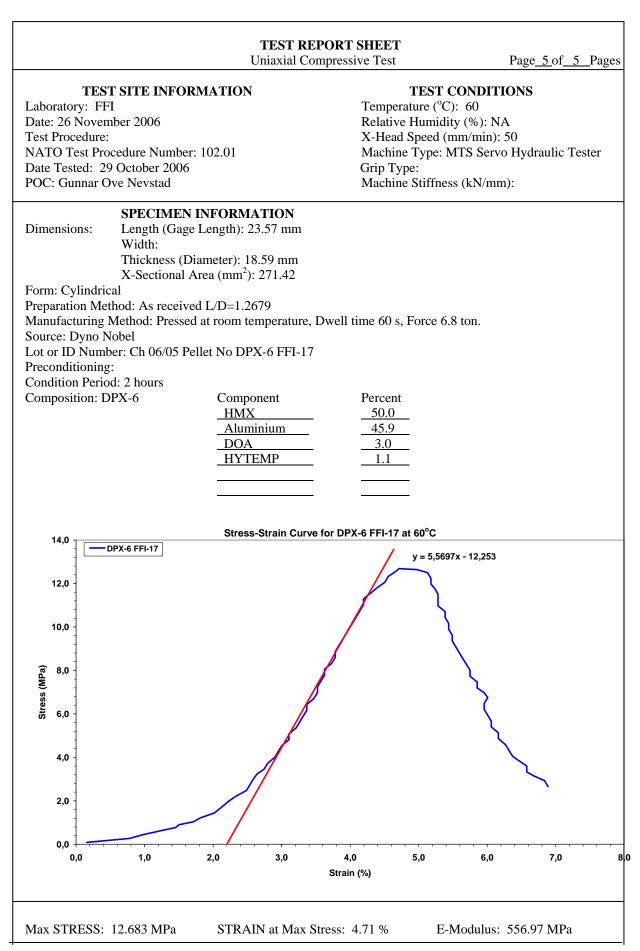
B.2 40°C

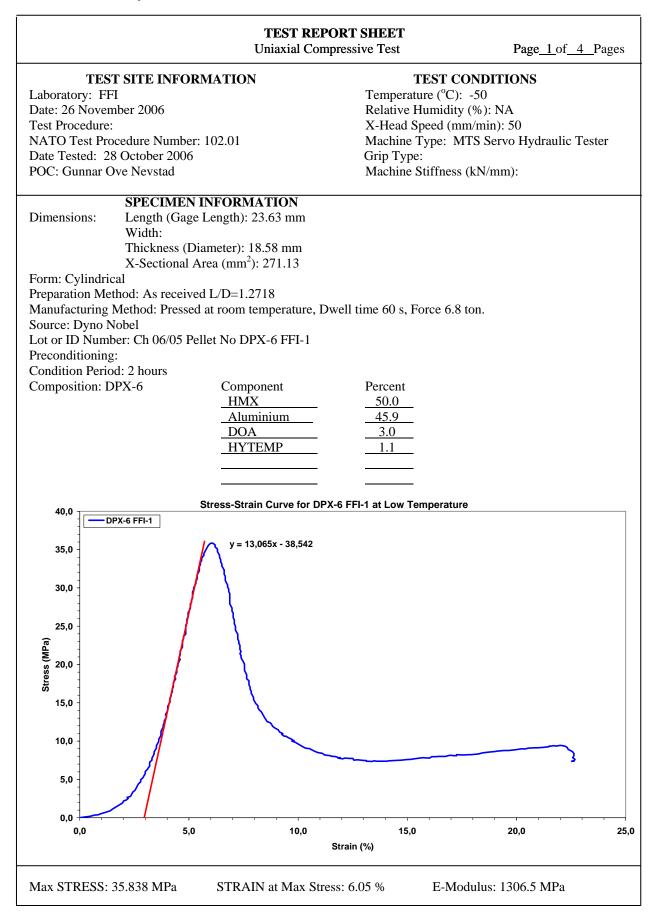


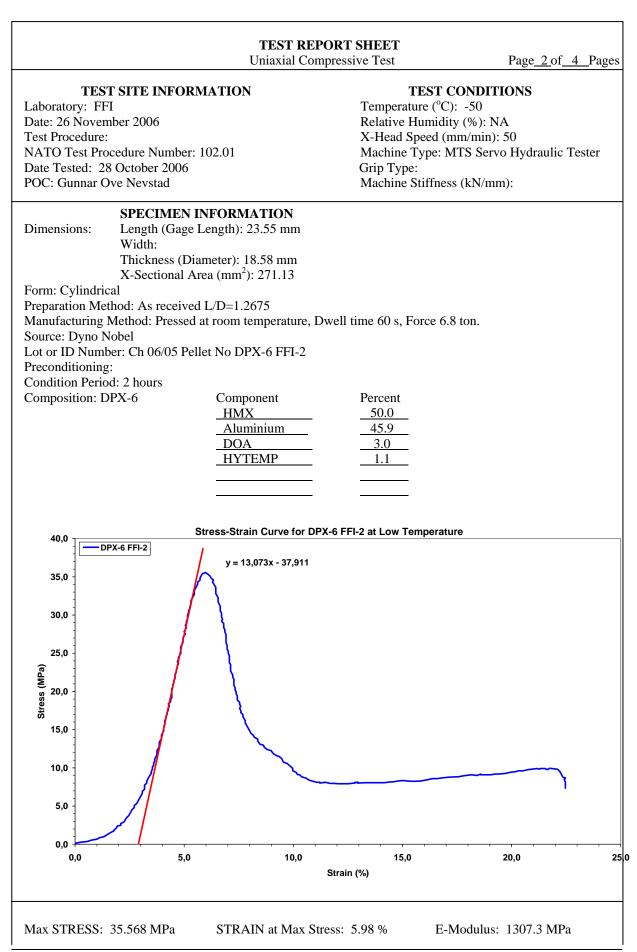


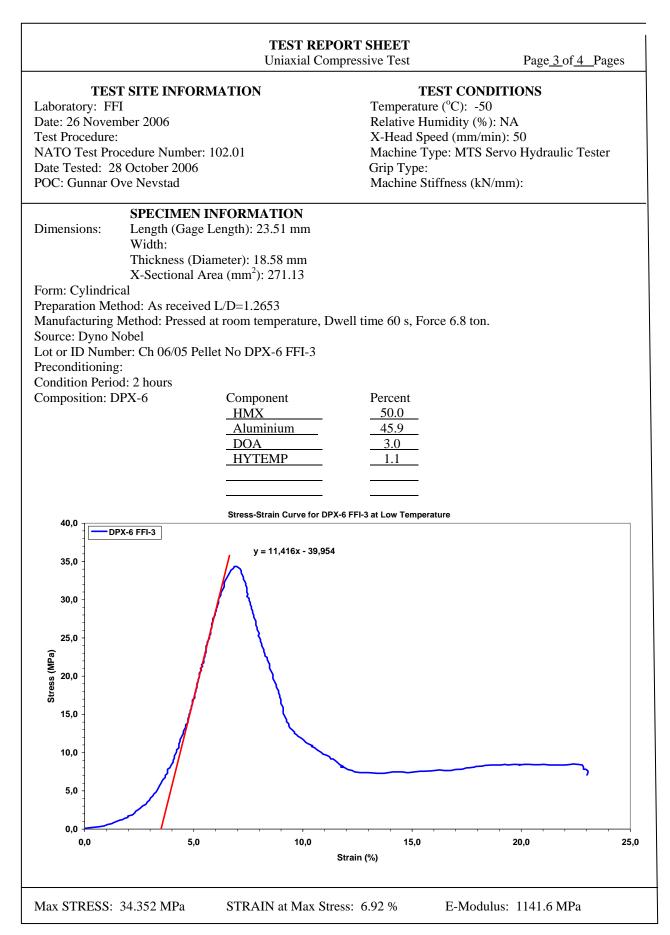


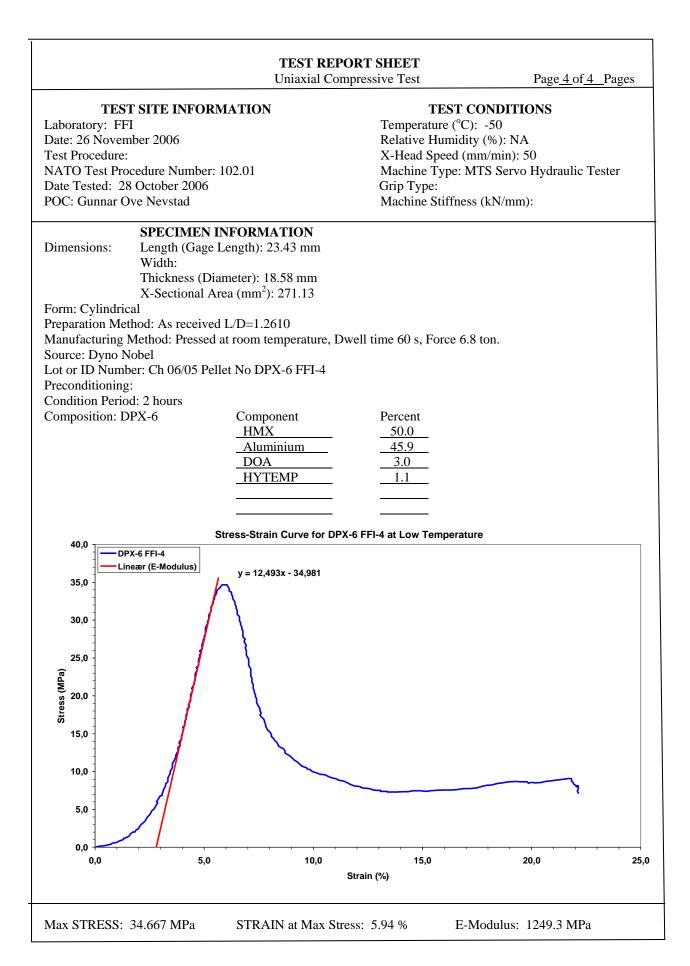



B.3 60°C









B.4 Low Temperature

References

- (1) NATO (AC/326 Subgroup 1) (2001): STANAG 4170 Edition 2, "Principles and Methodology for Qualification of Explosive Materials for Military Use".
- (2) NATO /AC/326 Subgroup 1) (2004): AOP-7, Edition 2 Rev. 1, "Manual of Data Requirements and Tests for the Qualification of Explosive Materials for Military Use".
- (3) NEVSTAD Gunnar Ove (2006): Mechanical properties of DPX-6 before and after accelerated Ageing at 71°C, FFI/RAPPORT-2006/13686, Unclassified.
- (4) NATO /MAS (1998): STANAG 4443 PPS (EDITION 1), "Explosives Uniaxial Compressive Test ". MAS/285-PPS/443, 14 July.