

 FFI RAPPORT

 EXPERIMENT REPORT: "SECURE SOA

SUPPORTING NEC" - NATO CWID 2006

 RASMUSSEN Rolf, EGGEN Anders, HADZIC Dinko,

HEDENSTAD Ole-Erik, HAAKSETH Raymond, LUND Ketil

 FFI/RAPPORT-2006/02538

EXPERIMENT REPORT: "SECURE SOA
SUPPORTING NEC" - NATO CWID 2006

RASMUSSEN Rolf, EGGEN Anders, HADZIC Dinko,
HEDENSTAD Ole-Erik, HAAKSETH Raymond,
LUND Ketil

FFI/RAPPORT-2006/02538

FORSVARETS FORSKNINGSINSTITUTT
Norwegian Defence Research Establishment
P O Box 25, NO-2027 Kjeller, Norway

 3

FORSVARETS FORSKNINGSINSTITUTT (FFI) UNCLASSIFIED
Norwegian Defence Research Establishment _______________________________

P O BOX 25 SECURITY CLASSIFICATION OF THIS PAGE
N0-2027 KJELLER, NORWAY (when data entered)
REPORT DOCUMENTATION PAGE
1) PUBL/REPORT NUMBER 2) SECURITY CLASSIFICATION 3) NUMBER OF

 FFI/RAPPORT-2006/02538 UNCLASSIFIED PAGES

1a) PROJECT REFERENCE 2a) DECLASSIFICATION/DOWNGRADING SCHEDULE 39
 FFI-II/898/912 -
4) TITLE

EXPERIMENT REPORT: "SECURE SOA SUPPORTING NEC" - NATO CWID 2006

5) NAMES OF AUTHOR(S) IN FULL (surname first)

 RASMUSSEN Rolf, EGGEN Anders, HADZIC Dinko, HEDENSTAD Ole-Erik, HAAKSETH Raymond, LUND
Ketil

6) DISTRIBUTION STATEMENT

 Approved for public release. Distribution unlimited. (Offentlig tilgjengelig)

7) INDEXING TERMS
 IN ENGLISH: IN NORWEGIAN:

 a) Network Based Defence a) Nettverksbasert forsvar

 b) Service Oriented Architecture b) Tjenesteorientert arkitektur

 c) Web Services c) Webtjenester

 d) Experimentation d) Eksperimentering

 e) Information security e) Informasjonssikkerhet

THESAURUS REFERENCE:

8) ABSTRACT

During NATO Coalition Warrior Interoperability Demonstration (CWID) 2006 the Norwegian Defence Research
Establishment (FFI) conducted the experiment “Secure SOA supporting NEC”. This document gives an overview of the
experiment activities and results.

The technological goal for the experiment was to explore and demonstrate

− Dynamic Service Discovery, using a UDDI-based service registry
− Publish/Subscribe style information exchange based on Web Services
− End-to-end security, using labels and signatures to obtain object-level security
− Object-oriented use of the data model defined by MIP (OO/XML version of C2IEDM)

The experiment was a successful cooperation with the NATO research task group IST-061.

9) DATE AUTHORIZED BY POSITION

 This page only
2006-12-06 Vidar S. Andersen Director

 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
(when data entered)

ISBN 978-82-464-1056-2

 5

CONTENTS
 Page

1 INTRODUCTION 7

2 OVERALL EXPERIMENT DESCRIPTION 7

2.1 Scenario 8

2.2 Test Cases 9

2.3 Demonstrator overview 10

3 TECHNOLOGICAL GOALS 14

3.1 Dynamic Service Discovery 14
3.1.1 Standards and specifications 14
3.1.2 Use of the UDDI data model 16
3.1.3 Implementation of extra functionality 18

3.2 Publish/Subscribe-style Information Exchange 19
3.2.1 Theory 19
3.2.2 Architecture 19

3.3 End-to-end Security 21
3.3.1 Specifications 21
3.3.2 Basic security mechanisms 22
3.3.3 Securing the UDDI registry 23
3.3.4 Securing Subscriptions and Notifications 25
3.3.5 Architecture 25

3.4 Object-oriented C2IEDM 27
3.4.1 Theory 27
3.4.2 Architecture 27

4 EXPERIMENT RESULTS 30

4.1 Service Discovery 30

4.2 Publish/Subscribe 31

4.3 End-to-end Security 33

4.4 Object-oriented C2IEDM 34

4.5 Results summary 36

5 CONCLUSION 38

 References 39

 6

 7

EXPERIMENT REPORT: "SECURE SOA SUPPORTING NEC" - NATO CWID 2006

1 INTRODUCTION

This document describes the work performed by FFI-project 898 NBF Beslutningsstøtte to
prepare and conduct the experiment “Secure SOA supporting NEC” (SecSOA in short) during
NATO CWID 2006. A more detailed documentation, including technical implementation
details regarding the Demonstrator, may be found in [10].

Section 2 is a brief description of the experiment background and context, including the
Scenario, Test Cases and an overview of the FFI Demonstrator. In section 3 the four
technological goals of the experiment are covered. For each goal there is a brief overview of
the theory and a description of the experiment architecture supporting the goal.

Section 4 documents the results of the experiment with a subsection for each of the four
technological goals, and section 5 is the conclusion.

2 OVERALL EXPERIMENT DESCRIPTION

The NATO Coalition Warrior Interoperability Demonstration (CWID) is an annual NATO
Military Committee approved event designed to bring about continuous improvement in
interoperability for the Alliance.

The NATO CWID programme focuses primarily on testing and improving the interoperability
of NATO and national Command and Control (C2) systems. In addition to bilateral technical
testing, NATO CWID provides a venue to conduct technical testing of fielded, developmental
and experimental systems in the context of a coalition scenario.

Since 2004 the event has been arranged at Camp Jørstadmoen – primarily for three years, but
the hosting has now been prolonged for 2007 and 2008.

The FFI-project ”NBF Beslutningsstøtte” has participated in the NATO Research Task Group
IST-061, where it has been agreed to develop specifications and further implement
experimental solutions for testing during NATO CWID 2006. The area of interest for the
experiment has been four technical areas that will be further described in section 3:

• Dynamic Service Discovery
• Publish/Subscribe style information exchange
• End-to-end security
• Use of the Object-oriented version of the MIP [4] data model C2IEDM

 8

The goal of the experiment was to prove that the combination of the four areas could be
implemented, and demonstrate information exchange between nations based on the
implementations. Underlying is the strong assumption that technology like this is essential to
support Network Based Defence (NBD) or Network Enabled Capability (NEC), which is the
NATO term for it.

Figure 2.1 Participating Nations

From IST-061, the nations France, Poland and Norway were present at CWID. Germany and
The Netherlands were not able to participate in the implementation. Spain and NC3A also
joined the CWID experiment as illustrated in Figure 2.1.

The specification work was performed in the period from August 2005 to March 2006. On
March 17 there was an email distribution to the research group of version 1.0 of the document
“The NATO RTO/IST-061 Secure SOA Demonstrator Specification for CWID 2006” [6]. This
document is the foundation for all the software development for this experiment.

Implementation work started early 2006 in parallel with finalization of the specifications.
During May 2006, the development teams from each party were brought together in Oslo for
preliminary system integration testing. Last week of May the teams moved to Camp
Jørstadmoen and CWID, where the formal interoperability testing and demonstrations were
performed.

2.1 Scenario

The goals for the experiment were primarily technological, but to be able to conduct a live
demonstration of systems, we had to agree on a scenario. There was no need to comply with
the official CWID scenario, in which the Interoperability Trials took place. So the decision
was to define a simple scenario of our own.

The steps in the SecSOA scenario definition were as follows: An area in Southern England
was selected as geographic area for the Demo. Further, the area was divided into squares that
were allocated to each of the participating nations, as illustrated in Figure 2.2. In that way,

 9

each nation could develop an independent set of objects and actions within their squares. When
exchanging situational pictures, each nation would report their own area, causing no
duplicates. And the total operational picture combined would come out pretty well.

Figure 2.2 SecSOA Scenario Map

Norway was responsible of delivering the Maritime Picture, while France and Poland were to
deliver Land Pictures. Norway was also to deliver MTI Tracks (MTI = Moving Target
Indicator). All of these were to be delivered in a Publish/Subscribe manner.

For the demonstration, there was set up a special service called Sensor Request, to be delivered
by Norway. The operational use of Sensor Request was that France, needing additional sensor
coverage on an area (preplanned to be the Isle of Wight), would access this Norwegian service,
requesting an area to be covered. In response, Norway would confirm that a sensor - being an
Unmanned Aerial Vehicle (UAV) - would be launched, the time when sensor data would start
coming, and the topic that the requester should subscribe to.

It should be pointed out that this hardly deserves the term ”operational scenario”. There were
no coordinated operations, no ”master plan”, only a set of objects that may or may not move
over time. Nevertheless, being extremely simple, the scenario turned out to be sufficient for the
purpose of the experiment – to show that the technology for information exchange was
working.

2.2 Test Cases

As part of the procedure for entering an Interoperability Demonstration into the NATO CWID
management system, there has to be defined Test Cases. These are the criteria that the test
results are to be evaluated against.

Traditionally at CWID, the Test Cases are numerous and quite detailed. ”System A shall send
<data> to System B” may be one Test Case, and ”System B shall send <data> to System A”
may be another. Given the coarse-grained scenario definitions that SecSOA was based on, and

 10

the exploratory nature of the experiment, it was made an early decision to keep the Test Cases
for SecSOA few and at a relatively high abstraction level.

For the Norwegian SecSOA we defined seven Test Cases. The numbering (TC#) refers to the
identification in the official NATO CWID Test Case Tool. The Status column indicates the
Test Case evaluation from Norwegian team.

TC# Heading Description Status

615 Information
delivery using
Publish/Subscribe

Show that services are made available to others by
publishing, and that efficient delivery of updates is
achieved by subscribing to an information delivery
service

Success

616 New services
made ready for use

Show that a new instance of a well-known service
interface, or a new service with a not previously
defined data format, can be published and used

Partial
success
(50%) 1

617 COI Cooperation Show Net Centric cooperation between the C2 and
ISR COIs using the object oriented MIP data model

Success

618 Enhanced end-to-
end WS-Security

Show that all SOAP messages exchanged between
nations are secured using PKI-based end-to-end
object level security mechanisms

Success

619 Access control at
the object level

Show that the information objects (WS-notifications
or UDDI records) may be securely marked and that
only users with the right security privileges are
allowed to access/receive them

Partial
success
(90%) 2

620 Distributed
Security
Management

Show that Certificates/user privileges can be issued
or revoked, and evaluate the time needed till full
effect among all nations involved

Success

621 Dynamic Service
Replacement

Show that a broken service may be automatically
replaced

Not tested

The experiment results are discussed in more detail in section 4.

2.3 Demonstrator overview

This section gives a brief overview of the Demonstrator. It was implemented by the FFI team
with important contributions from Thales Norway, especially on the security modules.

The implementation builds upon the Picture Compilation Demonstrator used by FFI in former
experiments, with substantial technical extensions as specified in [6].

1 We did not test new data formats
2 UDDI (see section 3.1.1) records were not secured due to lack of functionality in the implementation

 11

The FFI demonstrator is a distributed system consisting of several loosely coupled modules
deployed across different physical machines. Figure 2.3 illustrates the deployment at CWID
2006, where the demonstrator consisted of the following parts:

• Simulation environment (VR-Forces and SensorSim2)
• A set of interacting Data Publishing Nodes (DPNs)
• Service registry
• Security Management servers

HQ DPN Frigate DPN UAV DPN

SensorSim2

VR-Forces Security Management Service Registry

Pub/sub

 CWID Network

Figure 2.3 Demonstrator deployment CWID 2006

More details on the simulation environment may be found in [10]. The other parts are briefly
described in the following.

Data Publishing Node
The DPN is a major component in the FFI Demonstrator. Each DPN represents a physical unit
having a set of sensors attached to it, with an ability to communicate to other DPNs. Three
national DPNs were used at CWID 2006:

• HQ DPN, which represents the national headquarters
• Frigate DPN, representing a frigate
• UAV DPN, representing an unmanned aerial vehicle (UAV)

Each DPN implements the Publish/Subscribe mechanism. Publish/subscribe allows a DPN to
communicate with the network, either by acting as data producer or data consumer.

 12

Seen from outside (other nations’ view), the Demonstrator offers a set of services that can be
accessed using the publish/subscribe interaction mechanism. Each service is offered at a single
DPN. In addition, a DPN is responsible for building a Common Operational Picture (COP)
based on data from different sources, and for information security.

Service Registry
The service registry was based on a commercial implementation of the UDDI v3.0
specification, provided by Systinet [13]. The registry allows the DPNs to register their services
so they can be discovered by other DPNs. The FFI service registry was available to be used by
all participating nations in the experiment.

Custom built and integrated with the Systinet registry were

• the UDDI abstraction layer outlined in section 3.1.3
• the registry client

Figure 2.4 shows a screenshot of the GUI of the registry client. The GUI provides information
on UDDI entities and how they relate to each other on the left hand side, and a more detailed
description of the chosen entity on the right hand side.

Figure 2.4 UDDI Browser

Security
For Public Key Infrastructure (PKI) we used the software product KeyOne from Safelayer
[12]. A Lightweight Directory Access Protocol (LDAP, see also section 3.3.5) server
contained security certificates. Each national LDAP server contained:

• Its own data stored under its branch (certificates and revocation lists)
• A copy of the data extracted from the other LDAP servers of the other nations

The security modules in the Demonstrator were developed by Thales Norway and made
available to all participants in the experiment for integration into the national systems. The

 13

Security Protection Component (SPC) was built into the DPN and the service registry. Being
an integral part of these components, the SPC is not visible in Figure 2.3. The important role of
the SPC is more properly illustrated in Figure 3.9.

SensorRequest
The SensorRequest service was an important part of the scenario. SensorRequest allows an
entity requiring intelligence support to ask another entity for sensor coverage within a
specified geographic area. Such a request is shown in Figure 2.5. Based on the request
information, the decision maker can either accept or reject the request.

Figure 2.5 Sensor Request graphical interface

NORCCIS-II integration
Being an operational command and control information system, NORCCIS-II provides
professional functionality for visualizing and handling tracks. To include NORCCIS-II in the
demonstration, a Web Services based integration between the two systems was created:

• data received by the demonstrator was pushed to NORCCIS-II where it was presented
• NORCCIS-II could send messages to the demonstrator, which would relay these as

notifications to all of its subscribers
The data exchange format was the object-oriented version of the MIP [4] data model C2IEDM.

FFI
demonstrator

NORCCIS-II

OO MIP Messages

OO MIP Messages

Web Service interfaceJava implementation .NET implementation

pub/sub

Figure 2.6 Two-way communication between the FFI demonstrator and NORCCIS-II

 14

3 TECHNOLOGICAL GOALS

Before going into the details of the technological goals outlined in section 2, it is important to
present the foundation for all these activities. The overarching theme for all areas of focus is
the use of technologies for, and implementation of, Service Oriented Architecture (SOA). SOA
is a powerful but simple architectural principle inspired by the way business is performed.
Simplified an SOA consist of a Service Provider who offers its service, by publishing it in a
registry, to Service Consumers. Service Consumers find these services by using the registry
and is then able to bind to the Service Producer, as illustrated in Figure 3.1.

Service
Registry

Service
Consumer

Service
Provider

Bind

PublishFind Service
Contract

Service
Registry

Service
Consumer

Service
Provider

Bind

PublishFind Service
Contract

Figure 3.1 Service Oriented Architecture (SOA)

SOA may best be defined as a collection of services that communicate with each other. A
service encapsulates standalone functionality which maybe delivered across a network. A
service is well defined by a contract. The services can be combined to form the desired
application or system.

Web Services is currently the preferred technology for implementing a Service Oriented
Architecture. Web Services is essentially a set of XML based standards used to implement a
SOA. As a consequence of the fact that Web Services is quickly becoming the de-facto
standard to implement a SOA, we have based our work on these technologies.

3.1 Dynamic Service Discovery

3.1.1 Standards and specifications

In a Service Oriented Architecture (SOA) the ability to discover services during both design
and run time is very important. This involves both finding and selecting services that match the
current requirements from the client. Look up services have accompanied many technologies
for distributed computing, e.g. JINI, Java RMI, JXTA and CORBA. For Web Services
different alternatives exist for service discovery, the most common solution is the Universal
Description, Discovery and Integration (UDDI) specification. Other alternatives include for
instance the ebXML Registry [2] and Web Services Dynamic Discovery [14].

Service discovery may be separated into design-time and run-time discovery. Design-time
discovery is utilized by client-software developers when designing and implementing client

 15

software. By run-time discovery we mean service discovery performed during execution of a
system. This may involve human intervention or be an autonomous process of searching,
finding and choosing which service to use. Run-time discovery of services is often performed
using a pre-known technical fingerprint of a service. This fingerprint may have been
discovered by using design-time discovery. The experiment describe here involves both types
of service discovery.

To enable dynamic service discovery in an NBD, a service registry is vital. Furthermore, the
service registry should be able to provide support for environments ranging from static to
highly dynamic. In contrast to the fairly stable service availability found in static
environments, services and even networks may come and go in a non-deterministic fashion in
a dynamic environment.

For our demonstration it was decided to use the UDDI specification. The argument for this was
first of all that this is a specification that is in daily use and is perhaps the most used COTS
specification for services registry and has strong vendor support. It has also been going
through extended development to improve usability and performance through several versions.
The latest version, UDDI v3.0 [7], was ratified as an OASIS standard in February 2005.
Several advantages of this specification counted for using it versus the older UDDI v2.0, this
includes e.g.; support for digital signatures, subscription API3, support for multi-registry
environments and better search API. Our main concern of using this specification was the lack
of open source implementations. The solution was to use a commercial available product from
Systinet, the Systinet Registry [13]. In addition, this satisfied our need for stability and
performance at the registry.

Figure 3.2 UDDI Data Model

3 Application Programming Interface

 16

The UDDI data model consists of four core entities; businessEntity, businessService,
bindingTemplate and tModels, shown in Figure 3.2. The businessEntity entity is used to
describe and represent providers of services like businesses and organizations. Relationship
between businessEntities may also be established by using what is known as a
publisherAssertion construct. This way one could visualize different types of relationships
such as parent- and subsidiary companies, departmental structure within a company or
different military units.

A businessEntity contains zero or more businessService entities. The businessService entity is
used to describe services in a non-technical way. This description outlines the purpose of the
service and may contain different metadata used for discovery of services. The businessService
entity contains zero or more bindingTemplate entities. A bindingTemplate represents one
individual implementation of the service described in the businessService. The information
contained in a bindingTemplate is used by a client to bind to and interact with the service. The
bindingTemplate is basically a collection of references to tModels, also known as Technical
Models. tModels are used within UDDI to represent unique concepts or constructs like
specifications, transport and protocols. The businessService entity with the referenced tModels
together forms a technical fingerprint of the service. It is important to note that tModels are not
confined to describing technical fingerprints. Other concepts like categorization schemes for
businesses and services, identifier schemes and other might be expressed using tModels.

The decision made to use UDDI as the service registry left us in need to provide some
additional functionality. First of all; the security mechanisms featured in the UDDI registry
chosen is not inline with the security outlined for this experiment. Particularly the use of
security label for access control is provided by neither the UDDI specification nor the
implementation. For further details on the security mechanisms implemented please refer to
[10].

The second additional functionality identified was service termination. A standard UDDI
registry has no knowledge of how long an instance of a service will be valid. In order to avoid
that the content becomes stale the registry is dependent on a graceful delete of services that are
no longer valid. This is often not the case, and thus the registry content potentially becomes
stale. To avoid this, all services to be registered in this experiment need to have an expiration
time associated. The functionality to enforce this, including registration enforcement and
deletion of expired services, must thus be implemented.

The third and last extra functionality identified is the need for extended search capabilities
needed for military purposes. In specific there is a requirement to do inquiries for services
within a specified geographic area, either for services physically placed within or having
coverage of this area.

3.1.2 Use of the UDDI data model

In order to ease discovery of businesses and services we used an agreed upon set of metadata
in combination with the UDDI data model presented above. The content of the defined
metadata is taxonomies used to classify e.g. the service description, domain specific attributes
of interest, service interface, transport protocols and message encodings. These taxonomies are

 17

represented as canonical tModels. In common for all these tModels is that they are used to
categorize or identify UDDI entities in order to ease the process of discovery. For this
experiment 13 such tModels were defined. These can roughly be divided into two subgroups,
namely those concerned with describing businessEntities and businessServices respectively.

To categorize businessEntities three additional tModels were defined. The first extension was
the inclusion of an identification string which is used to identify the business uniquely within
our own identifier system. The businesses are also categorized by what type or organization
they represent. This is achieved by using a tModel named entity type. For this experiment three
values for organizational units was identified; nation, asset and Community of Interest (COI).
The third, and last, additional tModel used to categorize businessEntities is used to provide an
improved and more accurate categorization of assets. The asset categorization tModel can be
used to describe what kind of asset the described entity is, e.g. an UAV.

To categorize businessService entities, nine tModels were defined in addition to the predefined
UDDI categorization tModels. Services can be categorized using the defined service taxonomy
tModel. This describes what type of service this is, e.g. sensor. Included in our service
categorization scheme is also the ability to describe geographical position and coverage area.
The coverage area is described by using the coverage area canonical tModel in combination
with the longitude and latitude tModels. The coverage area tModel is used to group together
two references for longitude and two references for latitude, which together form a rectangle
with upper left and lower right coordinates. In addition, the exact geographical position of the
service may be described using the position tModel. It is important to note that this
categorization only provides information on where this position can be obtained, e.g. a URL to
a service providing this information, not the position itself. This is due to the fact that this is
highly dynamic information thus not fitted for storing in the registry itself.

Another important categorization scheme included was the service termination policy. A
service can, by using the published and valid until tModels, be categorized by when it was
registered and when it is not valid longer. This can be used by clients to choose relevant
services and by the registry itself to clean up and delete expired services. Categorization
tModels are also used to represent security. This includes security labels and reference to
security certificates represented by the LDAP distinguished name.

Support for WS-Notifications and registration of services supporting WS-Notification is not
included in the UDDI v3.0 specification. In order to provide this support a categorization
scheme for topics and topic spaces were introduced by using tModels. Each topic and topic
space were themselves registered as tModels using these categorizations, and each service
which produces data on the topic is linked with this. For more details on WS-Notification
please refer to section 3.2.

In addition to the canonical tModels, we also defined tModels that are used to classify each
service identified. These are specified according to the OASIS Technical Note describing how
to publish WSDL files in UDDI [8].

 18

3.1.3 Implementation of extra functionality

The extra functionality identified in section 3.1.1 was implemented using an abstraction layer
in front of the UDDI server, see Figure 3.3. The abstraction layer functioned as an extra tier
and implemented the necessary UDDI version 3 APIs, and no clients had direct contact with
the UDDI registry. The choice of using this architecture with an additional tier was taken
based on the fact we used a commercial UDDI registry from Systinet [13], and we did thus not
have access to the source code. Since we didn’t have access to the source code the only option
left was the implementing the extra functionality outside the registry.

Figure 3.3 UDDI Registry with Abstraction Layer

The abstraction layer itself does not hold or store any information and use the information
stored in the UDDI registry. As a consequence of this, the implementation of all the identified
extra functionality essentially becomes filtering of return information from the registry. The
exception from this is the security functionality which performs the initial check on message
validity before messages are forwarded to the UDDI registry. Access control on UDDI objects
are though performed by filtering the reply. Since no clients are in direct contact with the
UDDI registry we can assume that all access to the registry is subject to these security checks.
It must be emphasized that this is only a demonstrator setup and this is not a valid assumption
when implementing this in a real life setting.

The extended search capabilities, in this demonstrator the geographical search, was also
performed by using filtering of return values from the UDDI registry. As for the extra function
of service termination we had two choices; either do active polling of the registry to discover
expired services, or perform filtering of return information from the UDDI registry. Both
alternatives have advantages and disadvantages, but in the end we chose alternative two, doing
filtering. Before a reply from the UDDI registry is forwarded to the client it is filtered and all
expired services is removed from the reply. The expired service is also marked for deletion
from the registry. The main advantage of this approach is that we can assure that all
information delivered is up to date. Doing this filtering may however reduce the response time
of search inquiries.

In addition to the original UDDI v3.0 API functionality implemented by the abstraction layer,
we have extended the publishing API by two methods. First, a method for publishing services

 19

described by WSDL files and by the categorization information defined above. Second, a
method for resetting the content, i.e. the services, of a businessEntity was implemented. This
functionality was used for administration purposes during experimentation and demonstration.

3.2 Publish/Subscribe-style Information Exchange

3.2.1 Theory

Publish/subscribe, often abbreviated to pub/sub, is a well known communication pattern for
event-driven, asynchronous communication. Publish/subscribe makes it possible to link
together data producers and data consumers into loosely coupled, scalable and dynamic
networks. We have chosen to rely on WS-Notification group of specifications from OASIS [9],
which use Web Services to realize the publish/subscribe pattern. We have applied two WS-
Notification specifications, namely WS-Topics [17] and WS-BaseNotification [15].

Using WS-Notification terminology, a service that publishes data at a specified Topic is called
a NotificationProducer. The data format of each topic is well defined by an XML schema
(XSD). A client, called a NotificationConsumer, first creates a subscription to the service. The
client will subsequently receive notifications as they are produced by the NotificationProducer
(see Figure 3.4).

Figure 3.4 Publish/subscribe overview. NotificationConsumer creates a subscription to a

Topic, and will subsequently receive notifications as they are produced

3.2.2 Architecture

Our goal was to utilize the WS-Notification family of specifications to realize efficient
message distribution and dynamic communication management between national C2 systems.

By introducing the publish/subscribe pattern and WS-Notifications, we established a
standardized way of communication and communication management (pausing, resuming,
creating, destroying and renewing the subscriptions), which, in turn, is a significant advantage
for interoperability. Each data publishing service could be accessed using the same interaction
mechanism, regardless of how the national backend C2 system is implemented.

NotificationConsumer

Subscribe 1

NotificationProducer

Notification(s) 2

. . .

Topic A

 20

The publish/subscribe service architecture consists of a set of interconnected nodes called Data
Publishing Nodes (DPN). Each participating nation developed and deployed at least one DPN
in their national domain. The set of DPNs forms a NATO Data Publishing Network (NATO
DPNet), illustrated in Figure 3.5.

NATO
Data Publishing

Network

Data
Publishing

Node

Data
Publishing

Node

Data
Publishing

Node

Country B
Systems

Country C
Systems

Country A
Systems

Data publishing path
between 2 nations

Country A

Country C

Country B

Figure 3.5 NATO Data Publishing Network (DPNet) consists of a set of national Data

Publishing Nodes (DPNs)

A Data Publishing Node is the representative of a given nation on the NATO Data Publishing
Network. However, a DPN is not itself a publisher or a subscriber. Rather, a DPN hosts and
exposes to other nations a set of subscribers and publishers. Publishers and subscribers are
logical entities structuring the public view of the nation’s information production and
consumption. It is each nation’s choice, to expose only one publisher and one subscriber, or
several of each (see Figure 3.6). How publishers and subscribers are mapped to or glued with
the national systems is a national concern.

NATO
Data Publishing

Network

Data Publishing Node

Country A
Systems

Country A

Publisher

Publisher

Subscriber

Subscriber

Figure 3.6 A DPN consisting of two publisher and two subscriber modules

 21

The interoperability between nations is achieved by:
• The definition of common Topics and data format for each topic (data interoperability),
• The definition of a common publish-subscribe protocol between national publishers

and subscribers (technical interoperability).

Three topics have been defined in our scenario:

• ACP_MaritimePictureTopic, providing maritime area tracks in C2IEDM format
• ACP_LandPictureTopic, providing land area tracks in C2IEDM format
• ACP_MTITracksTopic, providing tracks in MTI (Moving Target Indicator) format

In order to create a valid subscription to a NotificationProducer, clients need to provide the
following set of parameters, which can by dynamically acquired from the UDDI registry:

• Address of the Publisher service endpoint, as defined by the WS-Addressing
specification

• Topic definition, consisting of the name and the namespace of the topic

The data format of the notification messages is defined by an application-specific XML
schema (XSD). The data format is implicitly given by the topic name, i.e. if the topic name is
ACP_MaritimePictureTopic or ACP_LandPictureTopic then the data format is implicitly the
reduced C2IEDM format, while the data format for the ACP_MTITracksTopic is MTI.

3.3 End-to-end Security

The increased information sharing in SOA may lead to increased vulnerability if security is not
properly integrated. The situation of today is that separate networks protect information of
different classification using physical, cryptographic and administrative separation.
Introduction of security mechanisms which allows for dynamic and seamless exchange of
information between units will be a challenge in NBD. IP level security will give
confidentiality between systems, but will not prevent unauthorized access from within the
systems or LANs. Computer Network Attacks (CNA) will focus on attacks behind the
firewalls (crypto devices) within the LANs/Systems. Therefore, end-to-end security services
are required in order to secure the information in the NBD systems and LANs.

Security is often thought of as a challenge with respect to NBD, making sharing of information
difficult. In our experiment we have focused on application-level end-to-end security, which is
highlighted as the long term goal in the NATO NEC Feasibility Study [5]. The use of end-to-
end security solutions does not exclude additional use of traditional network and transport
level security, but in this paper the latter will not be emphasized.

Use of the security technology described in this paper depends on adequate security policy and
management procedures, which are assumed to be in place.

3.3.1 Specifications

All of the Web Services specifications are based on XML and most often the use of SOAP
messages. Therefore XML general security specifications may be used for securing the
different Web Services components.

 22

Many specifications have been written for securing XML documents. Some of them have
become standards. The major standardization organizations in this area are the W3C, OASIS
and IETF. In addition Microsoft and IBM have developed the Web Services Security Road
Map (further reference may be found in [11]), which describes a set of security specifications
building on the OASIS WS Security standard [16].

What is missing in the wide variety of XML specifications and standards is an XML
specification for security labelling of information objects. Security label specifications have
earlier been developed for X.400 messaging (X.411 [11]) and SMTP (IETF S/MIME ESS
[11]) and these may be used as a basis for the development of an XML Security Label
specification.

The following bullets outline the security functionality that has been developed for SecSOA:

• All SOAP messages are attached a security label, encrypted and signed
• All advertisements in the service registry are attached security labels and signed before

storage
• Before any notifications or UDDI records are sent to a requestor, her security privileges

are checked against the security label of the information objects.
• A PKI and an LDAP Directory are used for providing the security infrastructure for

exchange of certificates and certificate revocation lists.

The implementation uses a combination of several security mechanisms in order to achieve the
goal of end-to-end security at the information object level. Each area is described in the
following.

3.3.2 Basic security mechanisms

SOAP Security
All information exchange is done using SOAP messages. The security of the SOAP messages
is based on the use of the OASIS WS-Security standard with extensions in order to include an
XML Security Label. The OASIS WS-Security standard specifies how to extend the SOAP
message header in order to achieve message integrity, confidentiality, authentication of
originator and replay protection. The security label (and other important fields) is bound to the
SOAP message by a digital signature. The content of the SOAP messages will be compressed,
encrypted, labelled and signed before transmission. Upon arrival the security will be validated
and the originator may be identified in order to see if the message comes from a reliable
source.

Security Labels and User Security Privileges
A security label is attached to the information objects to be secured. This Security Label gives
flexibility in marking the information, and is an XML translation of the IETF S/MIME ESS
[11] security label. It has the following fields as defined in [11]:

• Security Policy Identifier: A security policy is a set of criteria for the
provision of security services. It indicates the semantics of the other
security label components.

 23

• Security Classification: A Security Classification may have one of a
hierarchical list of values defined by the security policy in force.

• Privacy Mark: The Privacy Mark may give additional required
information defined by the security policy in force or by the originator
of the security label.

• Security Categories: The Security Categories provide further
granularity for the sensitivity of the information.

Each user is issued a certificate (X.509), which is extended to include her security privileges.
A user in this context may be a person, a role, an application or a process. The users are
granted security privileges, which are compared with the security labels of the objects, which
the user requests access to. This may be UDDI records of the service registry or notifications,
which the user has initiated a subscription for. An illustration of the relations between object
security labels and user certificates is given in Figure 3.7.

Figure 3.7 The Security Label bound to the information is compared with the privileges in the
user’s certificate in for access control to the information object

The security privileges component of the certificate is defined as a “security label”, and is
named a “privilege label” (see [10] for more details).

The use of XML Security Labels is proposed in [6]. How to associate security tokens with
SOAP messages is specified in WS-Security 2004 [11]. Placing the privileges in the certificate
is not a dynamic solution in that one would need to issue a new certificate in order to change a
user's privileges. This solution is chosen for simplicity.

3.3.3 Securing the UDDI registry

All records stored in the UDDI registry are labelled and signed in order to indicate their
sensitivity and to protect them from being changed during storage.

UDDI v.3 defines Application Program Interfaces (APIs) for access to the data within the
service registry. Two of these are the Inquiry API, which is used for searching for records, and
the Publish API, which is used for insertion and updates of records. In order to secure these
interfaces and enforce differentiated access control on the stored records, we have introduced a
security component called the System Protection Component (SPC) as part of the Security
Abstraction Layer in front of the UDDI APIs. This security abstraction layer will perform the
WSS related security processing of the SOAP messages (authentication, signature handling

 24

and encryption), in addition to performing differentiated access control on the UDDI records
based on the security labels of the UDDI records and the privileges in the user certificates.

Inquiry API
Access to the methods of the UDDI Inquiry API Set is restricted to users with a valid
certificate, and the SOAP message carrying the inquiry needs to be correctly signed and
encrypted. Access to the information in the result set of the inquiry is controlled comparing the
security label of the UDDI records with the privileges in the user’s certificate. The user
certificate is retrieved from the distributed LDAP directory using the X509IssuerSerial and
X509SubjectName from the signature of the incoming SOAP message. A list of UDDI records
that matches the user’s privileges is built and returned to the requestor in a compressed,
encrypted, labelled and signed SOAP message. This process is illustrated in Figure 3.8.

Figure 3.8 Securing the UDDI registry requires support of PKI and LDAP Directories for
distribution of Certificates and CRLs

Publish API
In order to be allowed to publish to the registry, a publisher must be listed in the Access
Control List of the registry. The publisher gets an authorization token by requesting the UDDI
Security Policy API. This authorization token gives the right to publish using the UDDI
registry Publication API. This functionality is a part of the software from Systinet [13].

SOAP messages carrying UDDI requests and responses must be labelled and signed correctly
in order to be forwarded from the abstraction layer to the UDDI registry. Several services may
be published in the same publish message given that they have equivalent security labels. If the
services have different security labels, they must be published using one publish message for
each variation of the security label. The security label from the SOAP message used in the
publish request, will be used to mark the records put into the UDDI registry. The SOAP
message used to send the response will have the same security label as was used for the
request.

 25

3.3.4 Securing Subscriptions and Notifications

The WS-BaseNotification standard [15] makes a distinction between the roles
NotificationConsumer and Subscriber, but in this context a Subscriber will also be the
Notification Consumer. These restrictions influence the specification of the security
functionality because it is not allowed to subscribe to a service on behalf of others.

When a subscription request is received in a SOAP message, security processing of the SOAP
message is performed (as described above). The X509IssuerSerial and X509SubjectName of
the SOAP signature may be used to fetch the certificate with the User Privileges from the
LDAP Directory. The NotificationProducer will create a Subscription Resource for the
Subscription. The User Privileges found in the certificate will be included in this Subscription
Resource for matching against the InformationSecurityLabel of the Notifications.

The NotificationProducer will match the InformationSecurityLabel in the SOAP message of
the notification against the User Privileges registered for each subscription. A match is
required to issue the Notification. Notifications will be encrypted, labelled and signed by the
Notification Producer. The classification of the InformationLabel attached to the SOAP
message will be set to the highest classification of the included information.

3.3.5 Architecture

The security concept described in this document results from our work with the group NATO
RTO IST “Secure SOA Supporting NEC”, and is also in line with in the long term goal of the
NATO NEC Feasibility Study [5], where the security is moved to the end systems.

This Security architecture describes a set of national LANs interconnected through the CWID
WAN. A Secured Web Services Gateway is used in one of the domains for access control of
the information entering and leaving the national domains. Each national LAN contains a Web
Service Provider and a Directory. The services that a nation wants to share with its allies are
replicated to the Web Service Provider of the LAN.

 26

CWID

PURPLE
WAN

Nation 2

Main
Service
Registry

Service
Provider LDAP

Directory

Nation 1

Local
Service
Registry

LDAP
Directory

Service
Provider

Secured
Web

Services
Gateway

 SPC
 SPC

 SPC

Service
Provider

LDAP
Directory

 SPC

 SPC

Service
Consumer

 SPC

Service
Consumer

 SPC

 SPC

Service
Consumer

Nation N

Firewall

Firewall

Figure 3.9 The figure shows the security model of the distributed demonstrator. The security
functionality (SPC) may be placed in the end systems or in a Secured Web services Gateway.

In addition, one of the nations (or the NATO organization) will provide a Main Web Service
Registry for looking up services published by the nations. Other nations may have a Local Web
Service Registry, which may be synchronized with the Main service registry. The Directory
systems are used for replication of X.509 Certificates and Certificate Revocation Lists (CRLs).
The System Protection Components (SPC) will provide the end-to-end security processing of
the Web Services components.

Security Infrastructure
In order to use digital signatures and asymmetric encryption, a security infrastructure was
needed in order to issue and distribute Certificates and Certificate Revocation Lists (CRLs).
To serve these mechanisms we used a PKI system consisting of Certificate Authorities,
Certificates, and LDAP servers. The commercially available KeyOne product from Safelayer
[12] was used as CA and OpenLDAP [6] was used for directory services. Smartcards were also
used to store user certificates.The replication of the LDAP information were done periodically
exchanging LDIF files [11] using Publish/Subscribe functionality. By subscribing to the
periodical update of each national LDAP server (using the WS-Notification specification), the
LDAP information replicated will be protected by the SOAP security functionality. This also
shows how a non-XML legacy system like LDAP may be included using Web Services
technology.

All components that provide or consume services must contain security functionality. Figure
3.9 shows SPCs at all nodes that are not protected by the secure gateway. This component will
handle all parts of the security processing, i.e., perform certificate validation, create and

 27

validate signatures, encrypt and decrypt, and do access control based on the security labels.
Thus, in our architecture security is handled in an end-to-end fashion.

3.4 Object-oriented C2IEDM

3.4.1 Theory

For data exchange on an interoperability level (i.e. between nations), we chose the data model
defined by the Multilateral Interoperability Programme (MIP) [4]. This is an effort towards
providing a common understanding of the battle space between different countries, and
independent of doctrines, procedures, and tactics. The MIP model has been developed over
many years of work, starting as a land model, and it is currently being extended to cover joint
environments. The aim of the MIP is to achieve international interoperability of Command and
Control Information Systems (C2IS) at all levels, in order to support multinational operations.

Note that, we are only using the data model from MIP and have chosen the C2 Information
Exchange Data Model (C2IEDM) from MIP Baseline 2. Instead of using database replication
as defined by MIP in the current Data Exchange Mechanism (DEM), we are using Web
Services as the information exchange mechanism.

3.4.2 Architecture

In order to adapt the model to our needs, we have defined a suitable subset of the C2IEDM,
which we call a miniMIP [6], and we exchange information using an object-oriented (OO)
XML-version of this model. In the Entity-Relationship (ER) diagram for the original C2IEDM,
there are approximately 240 entities. Using expertise on MIP and taking our internal data
model into consideration, we selected 30 of these entities, sufficient to represent the
information present in the internal model. Out of these 30 entities, there are six independent
entities, i.e., entities that do not depend on other entities for identification. These are:

1) object_item, which represents an object, either materiel or organization;
2) object_type, which describes the type of an object item;
3) affiliation, which denotes the nationality of an object item;
4) location, which denotes the position of an object item together with
5) vertical_distance; and finally
6) reporting_data, which provides information (metadata) about reports. All other entities

are dependent on one or more of these six entities.

The ER diagram of these 30 entities provides a good human-readable description of the
information exchange contents, but such a representation is inherently tied to storage of
information in a relational database. Therefore, it was necessary to transform this
representation into something that was more suitable for message exchange. Given that the
information to be exchanged was about physical objects present in the battlefield, our approach
was to use object items as the fundamental entity, and then include all relevant data connected
to that entity.

Using an object-oriented XML-version of the C2IEDM, the result is an object item XML
structure containing all other relevant structures (embedding), which is one of two alternative

 28

ways of structuring such an XML-document. The general rule in this approach is that
everything, except other object items, can be embedded in an object item. Thus, for reporting
organizations and for object item associations, object-id (OID) references must be used. This
rule is necessary to avoid infinite loops.

It should be noted that there is also an alternative approach, where a flat structure is used. In
this approach, all identifiable entities (the six entities listed above) are placed directly below
the root (C2IEDM) element, and all associations are realized using OID references.

We chose to use the embedding approach for our demonstrator, as we believed that this
structure would provide easier processing of the messages sent and received. Our experiences
from the demonstrator showed that this was only partially true. On the one hand, the messages
no doubt became more human-readable, with all information related to an object item grouped
together. On the other hand, making every object item structure self-contained, including type,
location, and affiliation, as well as all associated reporting data does introduce considerable
redundancy, since much information will be repeated for every object item.

For instance, object type information, which could be common for several object items, is
embedded within the object item, and therefore needs to be repeated. Type information can
constitute as much as 28 lines of XML code, so it is clear that this principle of embedding can
represent a considerable overhead. The problem is particularly pronounced for reporting data
(i.e., information about a report): It is reasonable to assume that several pieces of information
normally would be included in the same report (in other words, one report can contain
information about several types of information on an object, such ass object type, affiliation,
and status). However, the embedding principle means that the reporting data must be repeated
for each such piece of information.

 <ObjectItemAffiliationInObjectItemList>
 <ObjectItemAffiliationInObjectItem>
 <Affiliation xsi:type="AffiliationGeopolitical"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <OID>209400000000003</OID>
 <Code>NOR</Code>
 </Affiliation>
 <ObjectItemAffiliation>
 <ReportingData xsi:type="ReportingDataAbsoluteTiming"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <OID>209020000000000003</OID>
 <CategoryCode>REP</CategoryCode>
 <ReportingDate>19700101</ReportingDate>
 <ReportingTime>000004</ReportingTime>
 <ReportingOrganisationRef xsi:type="UnitRef">
 <OID>209000000000123</OID>
 </ReportingOrganisationRef>
 <EntityCategoryCode>OIAFFL</EntityCategoryCode>
 <EffectiveStartDate>19700101</EffectiveStartDate>
 </ReportingData>
 </ObjectItemAffiliation>
 </ObjectItemAffiliationInObjectItem>
 </ObjectItemAffiliationInObjectItemList>
Figure 3.10 Example of the complexity of the miniMIP

 29

Furthermore, the C2IEDM (and also the miniMIP) specifies that there may be multiple
relationships between entities. This is realized by adding an index to the primary key in the
association entities (e.g., in object-item-type, object-item-affiliation, and object-item-
association), such that the index number separates the different relationships. Since the XML
schema for the miniMIP is auto-generated, the result is a more complex schema, in order to
handle such multiple relationships. As an example, in order to express the geopolitical
affiliation of an object item (a three-letter code), six lines of XML are needed, and together
with the reporting data, a total of 21 lines of XML are needed, as illustrated in Figure 3.10.

Another effect of embedding and multi-relationships is that the XML documents usually
contain a relatively large number of nesting levels. Each document usually contains seven
levels of sub-elements under the root element, and as we will describe later, this represents a
challenge for the XML parsers.

 30

4 EXPERIMENT RESULTS

This section contains the perceived results of the experiment. Technical results are first given
for each of the four focus areas, and then there is a more general summary of overall results.

4.1 Service Discovery

The use of UDDI as service registry in this experiment is all in all satisfactory, although some
points of improvement have been identified. It is important to note that the backend UDDI
registry provided by Systinet worked as expected. The improvement potential identified is
rather concerned with the UDDI specification rather than this implementation.

Actually, considerable amount of time was used in the design process just defining the
metadata to be used, not on the implementation as such. Describing both services and business
entities is important to be able to discover services, and more precisely the correct services, at
the correct time. Coming to an agreement on what metadata was needed and how to represent
these was a challenging task. And as experience shows, changes to the metadata had to be
performed late in the process, as new or modified requirements emerged. UDDI is highly
extendable when using the tModel construct, but it comes with a cost in complexity. In our
limited experiment with simplified service and business descriptions, we had to produce a
large number of tModels. This may lead to a management challenge when more complex
environments are introduced. The time used in the design process substantiates the concern on
complexity.

The ability to do service discovery based on geographical position or coverage area was
identified as a very desirable feature for military service discovery. By nature these types of
data are highly dynamic and it thus becomes a challenge to represent these values in a UDDI
registry. This use is inconsistent with both the purpose and the design of UDDI, which is best
suited to describe fairly stable services with stable descriptions. If this information is to be kept
up to date at all times one would possibly encounter performance issues on both client and
server side. Our solution to this problem involved defining a static coverage area for a service,
and defining an additional service used to fetch the current position. This solution reduces the
stress on the UDDI registry, but one should investigate the possibility of more general
solutions for service discovery in a highly dynamic environment.

The adoption of the abstraction layer tier architecture, and the fact that we needed to extend the
UDDI specification, should be enough to point out areas were we feel UDDI have
shortcomings. The extra tier architecture has advantages, but also some disadvantages. Most
notably is the danger of increasing response time for clients when one extra layer of processing
is introduced. One factor playing an important role in this is the filtering. As mentioned above,
filtering of information is performed for security reasons, geographical search and the
identification of expired services. The problem is that filtering have to be performed on the
reply from the backend UDDI server. Many UDDI inquiries return only partial information,
and often the returned information is not sufficient to do filtering so the abstraction layer must
fetch extra information. These numerous interactions with the backend UDDI registry may

 31

become a performance issue. The extra functionality should ideally be placed within the UDDI
registry to avoid these issues. However, since no open-source alternatives were present at the
time of the experiment, this was not possible.

Another issue identified during the experiment is the problem of identifying one unambiguous
security context for UDDI entities. The problem is that a UDDI entity often is put together of
many small entities, which also can be used by other entities. This makes it difficult to label
the objects. As a consequence it becomes difficult to establish one unambiguous security
context to perform the object level access control on UDDI entities.

From the experiment described in this document it should be clear that creating an architecture
for dynamic service discovery is hard. UDDI proved to perform as expected, but the need to
include extra functionality does in itself prove potential for improvement. We would like to see
the extra functionality included in UDDI, as this is becoming the de-facto service registry
standard for Web Services.

Even though UDDI registries can be federated to provide a distributed registry, it is still a
centralized architecture for service discovery. Decentralized discovery, known from peer-to-
peer systems and others, may often be more appropriate in highly dynamic environments. In
the future we would like to see a combination of these technologies. One scenario is using
decentralized discovery to locate a more capable registry, which can be based on UDDI.

One of the key challenges of dynamic service discovery is closing the gap between design time
and run-time discovery. In order to get a truly dynamic service discovery these two types of
service discovery come closer. From our point of view this would involve using semantics and
defining a common vocabulary for enabling the extended use of metadata. The ultimate goal
would be to enable run-time discovery of new and previously unknown services during run-
time. When using UDDI services are discovered during design-time and instances of these
services can be discovered during run-time.

4.2 Publish/Subscribe

Having used the publish/subscribe pattern realized with WS-Notifications in a military context,
we have gained much experience with this technology, presented and discussed in this section.

Publish/subscribe proved to be a reliable way of communication in our scenario. It provided us
with a standardized interaction mechanism, which was a considerable step towards
interoperability between the national C2 systems. All exchange of military intelligence data
was based on this pattern, using different data formats for different data types.

In the subscription creation phase, the subscriber will suggest a termination time of the
subscription. The publisher either accepts this, or decides a new termination time based on its
local policies. At the later stage, it is possible to modify the lifetime of the subscription by
sending a Renew or Unsubscribe message to publisher. After the initial subscription phase, a
client will receive notifications from the publisher (NotificationProducer) as long as the
subscription is valid.

 32

However, a client has no means of controlling the size, amount, and frequency of notifications
to receive. If the NotificationProducer generates notifications frequently, the
NotificationConsumers may get flooded with large amount of messages. Consequences are
increased CPU processing time, memory, and bandwidth usage. Although this was not a
serious problem at CWID where a high speed network was available, this is an important issue
to address when considering an operational implementation, where both computational and
network resources may be limited. In such cases, there is a need to establish a policy that
determines the size, amount, frequency and other Quality of Service (QoS) parameters between
the NotificationConsumer and the NotificationProducer.

The WS-Notification specification does not define a way to set up QoS parameters per
subscription - the flow control and QoS mechanisms are missing. However, the specification
does offer an optional field called SubscriptionPolicy, which may be included in the
subscription request message (see Figure 4.1). The content of the field is not specified, i.e. it is
defined as an XML Any type, meaning that applications are free to use the SubscriptionPolicy
field proprietarily, at the expense of interoperability.

Figure 4.1 WS-Notification defines SubscriptionPolicy field without defining its content.

SubscriptionPolicy could be used specify the lacking QoS between producer and
consumers, but it needs to be standardized throughout the coalition.

In order to use the SubscriptionPolicy field for specifying the QoS parameters of military
applications using the publish/subscribe mechanism, we need to define a common
understanding, i.e. standardize the field content throughout the coalition. The
SubscriptionPolicy parameters need to be specified in an XML schema and integrated into
NotificationProducer implementations. Then, for each incoming subscription request, the
content of the SubscriptionPolicy field would be validated against the SubscriptionPolicy
XML schema. If the validation succeeds, the NotificationProducer would accept and store the
requested QoS settings. If the validation fails, it would reject the subscription request.

We consider the following SubscriptionPolicy parameters to be necessary:

• Message size. Specifies the maximum size of the notification. Useful if the client has
limited communication bandwidth or processing power

• Message frequency. Specifies whether the notifications will arrive asynchronously, or
periodically. If periodically: specify the time period

• Message content. Specifies whether the message contains the “full dump” of the
operational picture, or only the updates since the last notification.

The publish/subscribe mechanism was a reliable communication mechanism in our
demonstrator. However, the challenges may become more obvious if the number of
subscribers grows significantly larger than in our system. The message distribution is a
potential bottleneck since web services utilize point-to-point communication, and more
efficient mechanisms such as multicast of SOAP messages need to be considered.

 33

Furthermore, the large size of notification messages could be reduced by transferring the full
C2IEDM data model initially, and subsequently only transferring the updates since the last
notification. Finally, various methods could be applied to reduce the overhead of XML data
structures, such as binary XML and data compression.

WS-Notification supports hierarchical aggregation of topics into topic trees. We have omitted
using this feature, leaving our topics flat – each topic representing all messages from a single
service. However, topic trees could be introduced as a fine-grained filtering of messages to
receive. For example, several subtopics could be defined for the ACP_MaritimePictureTopic:

• Based on unit classification: a subtopic called “Frigate” would deliver tracks for all
observed frigate units

• Based on location: a subtopic could be defined to deliver maritime tracks for a
specified geographical area

4.3 End-to-end Security

While implementing the security mechanisms, two distinct packages were identified; the
Security Protection Component (SPC) and the Label Handling Component (LHC). The SPC is
a generic component for signing and encrypting SOAP messages and it is implemented using
various COTS software available from Apache and standard Java APIs for certificate handling.
The LHC is a special purpose component developed for generating and comparing security
labels for access control. This is also implemented using standard Java XML handling
software.

The most significant challenge we experienced during the implementation of these security
mechanisms was integration with the chosen COTS products, both for publish subscribe
message exchange and the service registry. As a result of the choice of using the Systinet
UDDI registry as our service registry, the Abstraction Layer had to include, and make use of,
both the SPC and LHC. To enable access control to and ensure the integrity of the UDDI
content, all records must be labelled and signed. Since records in UDDI often are comprised of
numerous small entities with only loose connections, e.g., service descriptions with associated
tModels, it becomes hard to establish one security context to label and sign. In our
demonstrator we chose to only label business and service entities, since tModels often can be
shared. To minimize the changes that had to be made to standard UDDI v3 client
implementations, we chose to extract the security label associated with the SOAP messages
when storing records in UDDI. This was possible since the content of these messages is
identical to the records to be stored in the UDDI and should thus be classified at the same level
under the same security policy.

The Access Control to the UDDI records is also performed by the Abstraction Layer at the
Inquiry API. This includes checking the security label of the record against the user’s
privileges and verifying the signature to ensure that the record has not been tampered with.
Again, as with filtering of e.g., service expiration, the need to perform numerous interactions
with the backend registry in order to retrieve enough information may reduce the performance
of the Abstraction Layer (see section 3.1).

 34

The actual integration of the SPC and LHC with UDDI Abstraction Layer proved to be one of
the major challenges faced. Although the Abstraction Layer uses Apache Tomcat and Axis [1],
which enabled us to do low level SOAP message manipulation, differences in the serialization
of Java objects to actual XML documents often resulted in broken signatures. The lesson
learned is that care has to be taken in order to preserve the signatures.

Integrating the SPC and LHC with the Globus Toolkit used for WS-Notification also proved to
be a challenge. In order to ensure that no subscribers are receiving messages that they are not
authorized for, all outgoing SOAP messages must be filtered. This is based on the fact that on
time of subscription it is not guaranteed which security level the produced messages on a given
Topic will have, and this may even change during execution. As a result, the Globus Toolkit
Manager must store the privileges, or a link to the NotificationConsumers certificate, in order
to do the matching between the XML security label of the SOAP message and the privileges.
Furthermore, the SOAP messages must be encrypted and signed in addition to the fact that
Globus Toolkit only provides access to high-level data structures and not the actual SOAP
message. While this provides an easy to use interface to WS-Notification developers, it is a
challenge when wanting to manipulate the actual SOAP message. It was solved by extending
the Globus Toolkit source code to include the filtering mechanisms.

The specification did not include a secure binding between the certificate ID (Distinguished
Name) and the FROM address in the SOAP message. This means that we couldn’t check if the
FROM address was correct as part of the security verification. One solution to solve this could
be to include the URL in the endpoint of the certificate.

4.4 Object-oriented C2IEDM

Although the miniMIP is small compared to the original C2IEDM, it is still a quite complex
model, with its 30 different entities and a large number of relationships. Furthermore, using
XML to express object-oriented structures inherently leads to relatively large and complex
documents. Thus, during the development of the demonstrator, it quickly became clear that the
complexity of the data model represented a considerable challenge for the participants.
Substantial effort was required to achieve a common understanding of the model among the
participants. An additional factor contributing to the complexity was the fact that, in several
cases, we were unable to detect incompleteness of the C2IEDM documents during internal
testing. It was first when exchanging data with our NATO partners that the errors became
visible.

In order to help understanding the schema, and for testing out software, there was a particular
need for example documents at all parties. However, without the necessary serialization
software in place, the first examples had to be hand-made. Although containing several errors
(in particular with respect to namespaces), these hand-made examples proved valuable as a
basis for discussion during the early phase of the development process.

One complicating factor was the fact that the attribute EntityCategoryCode, under reporting
data, is defined as mandatory. This attribute only exists in the physical schema, and not in the

 35

logical schema. However, although not carrying information that is being used in the
demonstrator, this attribute proved necessary, as the serialization of miniMIP-objects failed
without it.

In addition, we found it necessary to make a few minor changes to the C2IEDM schema, in
order to make the serialization/de-serialization work, and to produce valid XML documents.
The most important change was the need to change the type defined for the C2IEDM element.
In the original miniMIP schema, this element is defined as an anonymous type (i.e., a type
with no name). However, this resulted in JAXB4 not generating a marshalling class for the
C2IEDM element, making it impossible to serialize miniMIP messages at all. Therefore, the
type of this element was explicitly named C2IEDM, i.e., the same as the name of the element.
This had no practical implications, and there were no changes in the produced XML
documents. Furthermore, the arm-category-code under Unit-Type contained an empty value in
its enumeration of allowed values. For some reason, the inclusion of this empty value caused
the corresponding Java class for this attribute not to be generated, and we therefore removed
this empty value.

As a result of the format of our internal COP, we made a clear distinction between reporting
units and reported objects. Only the reported objects were displayed on our DPNs; and through
an “own report”, there was an implicit association between a reporting unit and a
corresponding physical object displayed on the DPNs. Furthermore, there is not much
emphasis put on the reporting unit itself, beyond a name and some information about the
sensor used.

In the miniMIP on the other hand, this association is made explicit, through the object-item-
association entity. Furthermore, the miniMIP puts Materiel and Unit on the same footing (both
are sub-types of Object-Item), which means that considerably more information is stored about
Units. To resolve this imbalance, we chose a simple solution for our demonstrator, and
maintained the approach used in our COP. This meant that relatively sparse information was
provided for the units. In addition, the units were not associated with Materiel objects, which
in turn meant that the units did not have a location.

Since location is not mandatory according to the C2IEDM schema, this was not a problem,
although it was remarked by some of our partners. On the other hand, this also implied that we
did not use the object-item-association construct, meaning that we did not get the chance to
test this aspect of the miniMIP model.

It should also be mentioned that, in the COP model a track is identified by a trackId.
Consequently, it is a prerequisite for the translator that the messages being translated from
miniMIP are referentially complete, as the object-oriented COP model does not contain
identifiers for other objects than tracks.

4 Java Architecture for XML Binding, see Internet java.sun.com for more info

 36

A final issue that caused some problems was the use of OIDs. One of our partners did not use
OIDs internally, and therefore did not support maintaining OIDs between messages. As a
consequence, the OIDs were not kept consistent between messages:

• Each object item may have different OIDs from message to message
• An OID used for one object item in one message may be used for another object item

in the next message
The rationale for doing so was that the partner assumed a “cancel-update” approach. This
means that each new message cancels and replaces the previous message, which in turn
implies that when a new message arrived, all displayed object should be removed, and the new
ones displayed instead.

This could potentially have represented a problem for us, since our DPNs are not able to
remove objects from the display, and each new message therefore would lead to a new set of
objects being displayed. However, our partner did not achieve the goal of sending periodic
messages to us during CWID, so this did not become a problem. In addition, the partner used
unique names for each of the object items, so it could have been possible for us to implement a
mapping between names and OIDs.

4.5 Results summary

The results of the CWID 2006 SecSOA experiment are several. Depending on what
stakeholders we refer to, different results can be identified.

First, for those who participated from the FFI-project ”NBF Beslutningsstøtte”, the experiment
took a lot of efforts, especially if you include all preparation work. And the results of those
efforts can be summed up in an extremely valuable learning experience for the participants.
The specific technological results for each technical area are described in the previous
subsections.

At the conceptual level, the results can be viewed as good examples of how SOA using Web
Services may be a suitable technology for systems that are to support Network Based Defence
or Network Enabled Capability. Military resources are made available as services, securely
accessible from the network using end-to-end security. Services are described by metadata that
is published to the network using a service registry.

Internationally, this experiment is a result of the work in the NATO Research Task Group IST-
061, where all member nations have put in resources and efforts, and gained experience
accordingly. An important result of the work in the group is the set of specifications [6] that
has been developed. The viability of the experimental implementations of the specification is a
reinforcement to the value of the specifications. An updated version of the specification
document will be made publicly available. For further evaluations at the NATO RTO level,
please refer to the final report from IST-061 that will be issued by the end of 2006.

Another international result is the fact that topics from this experiment have been presented as
papers at CCRTS in June 2006 [11] and ICCRTS in September 2006 [3].

 37

On the national level, information exchange between our state-of-the-art experimental
Demonstrator and the national operational C2 system NORCCIS-II is a small result worth
mentioning. Working together on-site CWID 2006 has reinforced relations between the
participants of the Norwegian CWID delegation, creating a good foundation upon which an
even better CWID participation for the coming years can be built. As CWID hosts for at least
2007 and 2008, Norway should aim for excellence in its own CWID participation.

Also, the SecSOA experience helps FFI and the Norwegian Defence in the evaluation of
leading technology and how to use it in future implementations of the Information
Infrastructure (INI).

For FFI, the results can be summed up into experience for the scientists and documentation
aimed at internal and external use. FFI is in this experiment recognized as a valuable
contributor to NATO RTO. Being clearly visible as a CWID 2006 participant is also assumed
to be a positive result for FFI.

Finally, there are explicit results of the CWID Test Cases described in section 2. The NATO
CWID 2006 Report concludes on the Norwegian SecSOA at an overall level: ”The information
was retrieved successfully by partners.”

However, there are a few areas where our initial expectations were not met. Although the
ambition level of the CWID Test Cases referred in section 2.2 was relatively high, it is
necessary to point out that only four out of seven were considered 100% successful.

First, as indicated in section 2.2, ”Dynamic service replacement” (TC# 621) was cancelled.
That was a team decision based on the fact that the implementation architecture did not
provide fully dynamic behaviour in itself. Custom implementation would have been possible
for demo purposes, but that was determined to be outside scope for the experiment.

Second, ”New services made ready for use” (TC# 616) was not tested with a “not previously
defined data format”. Again, a customized demo could have been set up, but time and
resources were used elsewhere. And finally, regarding “Access control at the object level”
(TC# 619), the implementation of security on the service registry turned out not to be
compatible with the respective implementation already made in the Data Publishing Nodes. As
a result, we could not fully test object level security in the service registry.

These are to a large extent implementation shortcomings, and not limitations of the technical
concept given in the specifications. But some of them clearly point in the direction of limited
“dynamicity”, especially when it comes to the Service Discovery and the use of metadata.

It is hard to be objective about the level of success for an effort like the SecSOA experiment at
CWID 2006. Many important goals have been achieved, but in hindsight it is easy to spot parts
that could have been improved. On the overall, the many positive achievements certainly
qualify for the label “Success”. Nevertheless, there are goals that were not met. “Limited
dynamicity” and “Specifications were not detailed enough” are examples of limiting factors.

 38

These examples may indicate that the appropriate label is “Partial success”, if we consider the
shortcomings as reductions to the success level. On the other hand, it may be argued that these
findings, and the learning process that lead to them, are very valuable results in itself. Several
potential technological improvements have been identified. In that respect the shortcomings
may count positively instead of limiting the success.

5 CONCLUSION

The experiment was successful in proving that the specifications could be implemented, and
that actual information exchange took place between respective nations’ experimental systems.
The interoperability testing during NATO CWID 2006 was purely technical, using a very
simple simulated operational environment as demonstration backdrop. Participating teams
gained valuable technical experience within each of the technological focus areas.

One lesson learned is that this kind of work demands lots of resources. Specifications
development within leading edge technology areas is hard to get right first time. Errors and
inconsistencies will be identified at implementation time, generating extra workload.

In the context of CWID it should be noted that interoperability testing requires partners in
other nations. Experimental systems with newly developed interfaces will either have to ensure
that parallel work is done in other nations – like we did, bringing our own partners – or make
information exchange go through established national interfaces.

The SecSOA results from CWID 2006 give good examples of how SOA using Web Services
may be a suitable technology for systems that are to support NBD. Military resources are made
available as services, accessible from the network. Services are described by metadata that is
published on the network. The results achieved clearly indicate that SOA is a good foundation
for the future Information Infrastructure (INI). SOA has the potential of overcoming the
limitations of current “stove-piped” solutions.

An example of achieved interoperability may be the fact that the SecSOA experiment was able
to integrate two test-partners external to the IST-061 group, namely Spain and NC3A. They
came in late in the process, chose to implement selected parts of the specifications and were
able to interoperate with the rest of the group during CWID.

In the security area, SecSOA has initiated important work. End-to-end security at the object
level is an important contribution to existing security regimes. It is an interesting future
solution with a great potential, given adequate security policy and management procedures.

Our final conclusion must be that the experiment was a valuable experience for the
participants, and the technologies look promising. We recommend the research work on these
topics to be pursued.

 39

References

[1] Apache Axis (2006): http://ws.apache.org/axis

[2] ebXML Registry (2006): http://www.oasis-open.org/committees/regrep/

[3] Haakseth R, Hadzic D, Lund K, Eggen A, Rasmussen R E (2006): Experiences from
implementing dynamic and secure Web Services, Proceedings of the 2006 International
Command and Control Research and Technology Symposium, Cambridge UK, 2006

[4] Multilateral Interoperability Programme (MIP): http://www.mip-site.org

[5] NATO Network Enabled Capability Feasibility Study, Volume 2

[6] NATO RTO IST-061: The NATO RTO/IST-061 Secure SOA Demonstrator
Specification for CWID 2006, version 1.0 issued March 17, 2006 (may be accessed by
contacting the participants of the group, may also be published as a future FFI/Notat)

[7] OASIS UDDI Version 3 Specification (2006):
http://www.oasis-open.org/specs/index.php#uddiv3

[8] OASIS Using WSDL in a UDDI Registry, Version 2.0.2, Technical Note (2004).
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-
20040631.htm

[9] OASIS Web Services Notification (WSN) Task Committee: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsn

[10] Rasmussen R, Eggen A, Hadzic D, Haakseth R, Lund K, Rose K (2006): Experiment
Documentation: ”Secure SOA supporting NEC” – NATO CWID 2006, FFI/NOTAT-
2006/02539, ugradert (to be published)

[11] Rasmussen R E, Eggen A and Haakseth R(2006): An architecture for experimenting with
secure and dynamic Web Services, Proceedings of the 2006 Command and Control
Research and Technology Symposium, San Diego, USA, 2006.

[12] Safelayer: http://www.safelayer.com/

[13] Systinet: http://www.systinet.com/

[14] Web Services Dynamic Discovery (WS-Discovery) (2006):
http://msdn.microsoft.com/ws/2004/10/ws-discovery/

[15] WS-BaseNotification 1.2 OASIS Standard: http://docs.oasis-open.org/wsn/2004/06/wsn-
WS-BaseNotification-1.2-draft-03.pdf

[16] WS-Security: SOAP Message Security: http://www.oasis-
open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

[17] WS-Topics 1.2 OASIS Standard: http://docs.oasis-open.org/wsn/2004/06/wsn-WS-
Topics-1.2-draft-01.pdf

