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VARIATIONAL MULTISCALE TURBULENCE MODELLING IN A HIGH ORDER
SPECTRAL ELEMENT METHOD

1 INTRODUCTION

Large-eddy simulations (LES) provides a physically more appealing framework for
turbulent flow prediction than the more traditional Reynolds-averaged models (RANS). In
the latter the full impact of the ensemble averaged effect of turbulent advection on the mean
flow field has to be modeled. The essence of the LES approach on the other hand is to
directly solve (with a complete time and space resolution) the three-dimensional and
time-dependent motion of the largest turbulent scales. These scales are in general
associated with the most energetic motion of the turbulence field and it is (ideally) only the
least energetic motion that need to be modeled. The concept as such is therefore well suited
to confront the scale complexity and transient behavior inherent to turbulent flows and
offers a more complete representation than RANS models per se.

In traditional LES, large- and small-scale motion are separated by applying a spatial
filtering operation to the Navier-Stokes equations. This results in a set of equations for the
large-scale motion. The residual motion, i.e. turbulent motions on scales that are smaller
than the filter width, appear in these equations as a residual stress term that must be
modeled. There are several conceptual issues in filter-based LES that have to be addressed.
For instance, filtering and spatial differentiation do not in general commute on bounded
domains or for non-uniform grids, and it is not obvious how to prescribe correct boundary
conditions for the filtered velocity at solid walls. Another unwarranted character of
filter-based LES models is that the residual stress model has a tendency to affect the entire
range of the spectrum and not only represent the filtered effect of the unresolved scales near
the spectral cut-off. These issues have been the subject of a considerable amount of
research, and the lesson learned, in general, is that LES works well in cases where the
rate-controlling processes occur at the largest (resolved) scales of motion, or equivalently in
flows where the unresolved scales, and consequently the model, only plays a secondary
dynamical role.

In this paper we consider a different approach to LES, the variational multiscale (VMS)
LES method originally proposed by Hughes et al. [1]. The VMS LES method employs an a
priori scale partitioning in the discretization of the Navier-Stokes equations, instead of
filtering to separate the large- and small-scale motion. The scale partitioning appears to
overcome some of the disadvantages of filter-based LES. First, since there is no filtering, all
issues concerning commutation errors and boundary conditions at solid walls are addressed.
Second, since the scale partitioning is performed during discretization, we develop different
equations representing different ranges of the spectrum. Different modelling assumptions
can then be applied to each range of the spectrum, improving our ability to apply the model



terms where they are needed, and only there.

We implement the VMS LES formulation in a high order spectral element method for the
solution of the Navier-Stokes equations. Spectral element methods offer an attractive
combination of the accuracy of spectral methods and the flexibility of finite element
methods. This provides us with an attractive framework for model development in which
the numerical errors can be controlled, such that the true performance of the model can be
assessed. The first implementations of the variational multiscale LES method [2, 3, 4] used
global spectral methods. These methods naturally employ an orthogonal modal basis, such
that the scale partitioning becomes straightforward. Recently, the method has also been
implemented in the context of other numerical schemes, such as finite element

methods [5, 6] and finite volume methods [7]. Our spectral element code uses an
element-wise discretization with nodal basis functions that contain information on all the
scales. One of the challenges of the present work is therefore to devise a way to separate the
large and the small scales, and to implement the VMS terms. We show that this can be
achieved by an element-by-element transformation into the Legendre modal basis functions.

In the following sections we will discuss the variational multiscale method as a turbulence
modelling tool, and describe the implementation of the method in a spectral element solver
for the incompressible Navier-Stokes equations. Finally we will present computed results,
from both a high-resolution DNS and coarse grid VMS LES for the turbulent flow in a
plane channel at different Reynolds numbers. The computed results show that, even with
simple modelling applied to the small-scale equations, the performance of the methodology
IS promising.

2 THE VARIATIONAL MULTISCALE METHOD

In this section we will discuss the variational multiscale method as a tool for turbulence
modelling. The variational multiscale LES method was introduced by Hughes et al. [1] and
later elaborated by Collis [8]. We will outline the method following Collis, to shed light on
the modelling assumptions employed in the derivation of the model.

The Navier-Stokes equations describing the dynamics of a viscous, incompressible fluid are

V.-u=0, (2.1a)
ou 9
E—FU'VU,I—VZD—FVVU—F]&, (2.1b)
where the independent variables are the velocity, w = (u, v, w), and the pressure, p. The
kinematic viscosity is denoted by v, and f is a body force term. The non-dimensional
parameter that characterizes the flow is the Reynolds number Re = |u|L/v.

For ease of presentation we assume homogeneous Dirichlet boundary conditions for the
velocity, i.e.
u(z)=0 zel.



We can then construct the weak, or variational, formulation by choosing test and trial
functions in the same function space . Note however that in general the test and trial
spaces will differ at the boundary.

U= (u,p) €V
W= (w,q) €V

We take the inner product of W with Eq. (2.1) (written in the compact form N (U) = F) to
obtain the weak Navier-Stokes operator:

comprising the linear Stokes operator

ou
ot
and nonlinear advection represented by the Reynolds projection

LW,U) =(w,—=)— (V- -w,p)+ (Vw,2vV*u) + (1, V - u), (2.3)

R(w, u) = B(w, u,w), (2.4)
where B is the tri-linear term.

B(w,u,v) = (Vw, uv). (2.5)

To take into account the multiscale representation, we write the solution space V as a
disjoint sum N

V=VaoVaV,
in which V and V comprise the large and small scales, respectively, whereas Y contains the
unresolved scales that cannot be represented by the numerical discretization. The scale
partitioning is sketched in Fig. 2.1. Now, by decomposing the test and trial functions in
these spaces

U=U+U+U,
W=W4+W+W,
we can develop exact variational equations governing different scales. Furthermore, by

assuming that the scale partitioning is orthogonal, we obtain the following equations
governing the large, the small, and the unresolved scales:

LW,U) - R(w,u)— (W,F)—R(w,u) - C(w,u,u)

. . RIS (2.6a)
=R(w,u) + C(w,w,u) + C(w,u,u),
LW, U) - R(w,a) — (W, F) —R(u,w) — C(u,u,q) (26b)
= R(w, 4) + Cla, @, 4) + C(w, u, i), '
LW, U) — R(®,7) — C(@,w, ) — C(W, u, 4)
(2.6¢)
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Figure 2.1: Schematic of the turbulent energy spectrum with scale partitioning

where C(w, u, u') = B(w, u,u') + B(w, u’, u) is the cross stress term. We have written
these equations in a form such that all terms that depend on the unresolved scales are
collected in the right-hand sides. It is thus evident that there is an effect of the unresolved
scales on the computable, resolved scales, and it goes without saying that this effect must be
modeled. In the original paper by Hughes et al. [1], the modelling assumptions were not
stated, but the issue was clarified by Collis [8], who showed that essentially the following
assumptions result in a method that is identical to the method proposed by Hughes (which
by then had produced excellent results [2, 3])

e The separation between large and unresolved scales is sufficiently large so that there
is negligible direct dynamic influence from the unresolved scales on the large scales.

e The dynamic impact of the unresolved scales on the small scales are on average
dissipative in nature.

The simple scalar Smagorinsky-type model is in an averaged sense fully consistent with the
last assumption. In order to approximate the temporal behaviour at the cut-off, a more
refined modelling approach would be needed. This is however outside the scope of the
present study.

With these assumptions, the LES model is only applied to the small scale equation, adding
additional dissipation where it is mostly needed. Different implementations of this method
by the Hughes group [2, 3], by Ramakrishnan and Collis [4], and by Jeanmart and
Winckelmans [9] have produced very good results even for wall-bounded channel flows.

We remark here that both assumptions are, or at least should be, open to scrutiny. Firstly,
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although it is plausible that the unresolved scales do not influence the large scales, it is not
necessarily obvious. In fact, a recent analysis by Oberai et al. [10] showed that the energy
transfer from the large and small scales, respectively, to the unresolved scales depends
critically on the discretization method and the function spaces that are used to perform the
scale partitioning. Furthermore, Reynolds number effects or other aspects of the flow
physics may mandate that a more sophisticated model for the large scales must be taken
into account. Secondly, the assumption of a one-way cascade from the small to the
unresolved scales require that flow is properly resolved, such that the cut-off is far out in the
inertial range. This is unfortunately not always the case in LES computations. Such
considerations are, however, outside the scope of the present study. Our objective is to
present an implementation of the VMS LES formulation in the spectral element method.
For this purpose the assumptions employed to date [1, 8] are acceptable. At present, we
merely note in passing that the VMS method presents an excellent framework for improved
modelling to address these issues.

Bearing the above in mind, we can formulate the variational modeled equations. The effect
of the unresolved scales on the large scales, given by the right-hand side of (2.6a), is
neglected according to the first assumption, while the effect of the unresolved scales on the
small scales, given by the right-hand side of (2.6b), is modeled by a Smagorinsky term. The
equation for the unresolved scales is naturally omitted. The resulting set of equations is

, U
LW, U) - R(w,w) — R(W, &) — CEB,H, a 2.7b)
— (W, F) = —(V°w, 2u7 V).

L(W,T) - R(®W, @) — R(@, @) — C(@,d,a) — (W, F) =0, (2.7a)
)

The terms that couple the different scales are evident in (2.7); the small-scale equation has
been supplemented with a dissipative term that accounts for the interactions between the
small and the unresolved scales, whereas large-scale Reynolds and cross stress projection
account for the large-scale influence on the small scales. The large-scale equation contains
a projection of the small-scale Reynolds stress onto the large-scale to account for
interaction between the small and the large scales (i.e. back-scatter).

We are however chiefly concerned with the complete resolved solution U=U+ U, not with
the large and small scales per se, and adding the large- and small-scale equations we obtain

(ﬁ, N (D)) + (V@ 207 V*5) = (W, F). (2.8)

We note that in this equation, all the interaction terms between the large and the small
scales are accounted for in the advection operator R, which is part of the first term on the
left-hand side in (2.8). The projected cross and Reynolds stress terms that appear in the
large- and small-scale equations (2.7) are therefore mainly important for analysis and
turbulence modelling, but need not necessarily impact on the implementation of the
method. The variational formulation is hence primarily an analysis tool and a vehicle for
developing the VMS methodology. The essential feature of the method is that the
turbulence modelling should be confined to the small scales. As long as a suitable scale



12

partitioning can be performed on the solution space, the methodology can in principle be
applied to any discretization, as indicated by Hughes et al. [2].

3 IMPLEMENTATION IN THE SPECTRAL ELEMENT METHOD

In this section we describe the implementation of a VMS LES model in a high-order
spectral element method for the solution of the incompressible Navier-Stokes equations.

We will start with a brief discussion of Legendre polynomials and the spectral element basis
functions. These concepts are important, both for the description of the basic numerical
method as well as for the implementation of the variational multiscale framework that
follows. More details about the topics covered in Sections 3.1 and 3.2 can be found in [11].

3.1 Legendre spectral elements

The Legendre polynomials are orthogonal with respect to the unweighted inner product in
the function space L?(—1, 1). The Legendre polynomials are given by the recurrence
relation

L(](.T) = 1,
Ly(@) = =, (3.1)
2k +1 k
Liii(z) = ] xLy(z) — Ty 1Lk,1(3:), k>1,

where Ly (z) is the Legendre polynomial of degree N.

The Gauss-Lobatto-Legendre (GLL) points {gj}j.vzo on A = [—1, 1] are defined as the
extrema of the Nth order Legendre polynomial Ly (z), in addition to the endpoints of A:

So=-16v=1 L\(E)=0,j=1... . N—1&<&<...<En (3.2)

Furthermore, the Gauss-Legendre (GL) points {nj}jy:’ll on A, that are used to represent the
pressure in the spectral element method, are defined implicitly by Ly_(n;) = 0, i.e. as the
zeros of the Legendre polynomials of order (N — 1) [12]. Note that the GL points do not

include the endpoints of A.

The spectral element nodal Gauss-Lobatto-Legendre basis is defined by choosing trial and
test functions to be the corresponding Lagrangian interpolants at the
Gauss-Lobatto-Legendre (GLL) grid points, constructed as N'th order polynomials such
that each function has the property

A function w(z) defined on A can then be represented by the interpolating polynomial:

wp(z) = Zwihi(az), xr €A, (3.4)
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where w; = w(¢;) are the function values at the GLL points. Higher-dimensional trial and
test functions are constructed as tensor products of these one-dimensional functions. Each
velocity component is represented this way on each element, and the global representation
is the sum of the representations on all elements.

A Gauss-Legendre nodal basis for the pressure is constructed in an analogous way, only
taking into account that we use lower-order polynomials in the basis for the pressure to
avoid spurious pressure modes in the solution [13].

3.2 Spectral element Navier-Stokes solver

To solve the Navier-Stokes equations (2.1) we employ an implicit-explicit time splitting in
which we integrate the advective term explicitly, while we treat the diffusive term, the
pressure term, and the divergence equation implicitly. After discretization in time we can
write (2.1) in the form

(af —vVHu" ™ =Vp+g(f,u™ u™ ", . ..), (3.5a)
V-u"t =0, (3.5b)

in which the explicit treatment of the advection term is included in the source term g. In the
actual implementation we use the BDF2 formula for the transient term,

ou  3u! —4u" +unt

— = O(At?

ot 2At +O(AL),
which gives o = 3/2At in (3.5), while we compute the advective contributions according to
the operator-integration-factor (OIF) method [14].

The spatial discretization is based on a spectral element method [13, 15]; the computational
domain is sub-divided into non-overlapping hexahedral cells or elements. Within each
element, a weak representation of (3.5) is discretized by a Galerkin method in which we
choose the test and trial functions from bases of polynomial spaces

uj € Py(x) ® Py(y) ® Py(2), (3.6a)
p" € Py_o(z) ® Py_2(y) ® Py_2(2). (3.6b)

The velocity component variables are defined in the Gauss-Legendre-Lobatto basis
described above, and they are C°-continuous across element boundaries. The pressure
variable is represented in the Gauss-Legendre basis, and is discontinuous across element
boundaries. As we noted above, the unknowns, or dependent variables, in the discrete
formulation are the function values of the velocities in the GLL points, and of the pressure
in the GL points.

The GLL grid corresponding to the Legendre polynomial of degree NV has (/V + 1) points.
Gauss-Lobatto-Legendre quadrature at the (/V 4+ 1) GLL points is exact for polynomials of
degree up to (2N — 1). Hence, the computation of the inner products corresponding to the
diffusive terms in (2.1) are calculated exactly, whereas the evaluation of the non-linear
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advective terms incurs quadrature (aliasing) errors. These errors can be detrimental to the
stability of the method and must be controlled. The most fundamental approach to
de-aliasing is to perform over-integration [16, 17] — that is, to over-sample by a factor 3/2
and calculate the quadrature at this refined grid for the inner products containing non-linear
terms. The overhead involved depends on the amount of the total computational time that is
originally spent on the advection part, but for the channel flow calculations presented here,
over-integration typically leads to an increase of around 20% of computational time.

An alternative, and computationally more efficient approach, is to use polynomial filtering
of the solutions as proposed by Fischer and Mullen [18], where a simple filter operator with
negligible computational cost is applied to the solution at every time-step. The effect in the
spectral space on each element is to transfer a certain fraction (the filter strength) of the
energy on the highest order basis polynomial in each element over to the third-highest order
polynomial [19]. By this operation, the pile-up of energy on the highest order polynomial is
reduced, while the values at the element boundaries are unchanged. Filter strengths as small
as 1-5% can have positive effects on the solution.

For the solution of the discrete system of equations we now introduce the discrete
Helmholtz operator, ;

H = EB + VA,
where A and B are the global three-dimensional stiffness- and mass matrices; the discrete
divergence operator, D; and the discrete gradient operator, G. Appropriate boundary
conditions should be included in these discrete operators. This gives the discrete equations

Hu™' — Gp"*+! = BY, (3.72)
—Du™! =, (3.70)

where the change of sign in the pressure gradient term is caused by an integration by parts
in the construction of the weak form of the problem. This discrete system is solved
efficiently by a second order accurate pressure correction method. If we let () denote an
approximate inverse to the Helmholtz operator, given by a scaled inverse of the diagonal
mass matrix, the pressure correction method can be written

Hu' = Bf + Gp", (3.82)
DQG(p — p") = —Du’ (3.80)
u" = ut + QG (p" —p), (3.8¢c)

where u* is an auxiliary velocity field that does not satisfy the continuity equation,
i.e. Du* # 0.

The discrete Helmholtz operator is symmetric and diagonally dominant, since the mass
matrix of the Legendre discretization is diagonal, and can be efficiently solved by the
conjugate gradient method with a diagonal (Jacobi) preconditioner. Whereas the pressure
operator DQG is easily computed; it is ill-conditioned. The pressure system is solved by
the preconditioned conjugate gradient method, with a multilevel overlapping Schwarz
preconditioner based on linear finite elements [20].
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3.3 Incorporation of VMS LES in the SEM

The implementations of the variational multiscale LES method reported in [2, 3, 4] used
global spectral methods. These methods naturally employ an orthogonal modal basis, such
that the scale partitioning becomes straightforward. Our spectral element code uses on an
element-wise discretization based on the Legendre polynomials. The Legendre polynomials
offer an orthogonal hierarchical basis. Like the majority of the spectral element community,
we do however use a nodal basis constructed from the Lagrangian interpolant functions. In
this case all the basis functions contains information on all the scales and the scale
partitioning is no longer straightforward.

3.3.1 Nodal and modal bases

We have demonstrated above that in the nodal Gauss-Lobatto-Legendre basis a function
w(x) defined on —1 < z < 1 can be represented by a combination of the interpolating
polynomials, as given by (3.4). The coefficients in the sum are the function values at the
grid points.

An alternative, modal, representation is to use an expansion directly in the Legendre
polynomials

N N
w©) =3 e/ L 1), (3.9)

where the unknowns now are the spectral coefficients c;. The factor /2 is used to
normalize the basis. The scaled Legendre polynomials represents a natural orthonormal
basis, in which it is straightforward to perform the scale partitioning. In this setting, it is
natural to associate the low order polynomials with the large scales and the higher order
polynomials with the smaller scales.

The nodal and modal bases are related through the linear transformation
Ke =w, (3.10)
where the entries of the matrix K are given by

27+1
(K)ij = j; L; (&),

and c and w are the vectors of spectral coefficients and GLL nodal function values,
respectively.

Let N = N + N, such that IV is the dimension of the polynomial basis for the large scales
and N is the dimension of the small-scale space. The large-scale part of a nodal function w
can then be written as

w=KTK 'w, (3.11)
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Figure 3.1: Large- and small-scale partitions in the 2-dimensional polynomial wavenumber
space. The chosen partition operators are shown to the right.

where 7' = diag(I5, 05 ) is the operator that annihilates the small-scale components in the
modal basis. For notational convenience, we define the large-scale extraction operator

L=KTK™,
while the corresponding small-scale extraction operator is

S=1-L.

When tensor products of these operators are formed in higher dimensions, the resulting
operators extract the components with large-scale, or small-scale, respectively, components
in all dimensions. The sum of these two operators does not add up to the identity, so we
choose to define the three-dimensional small-scale extraction operator to be

S=1—-(L.®L,®Ly,). (3.12)

This is illustrated in two dimensions in figure 3.1. The resulting small-scale extraction
operator returns functions with small-scale structure in at least one dimension.

3.3.2 Propertiesof the large-small partition

The large-scale extraction operator corresponds to a sharp cut-off in the Legendre modal
space. To illustrate the effect in Fourier space of this large-small partitioning, we represent

the function
12

f(z) = Z cos(kx) (3.13)
k=0
on a spectral element grid on [0, 27| with 6 elements and 7 grid points in each element.
Higher wave-numbers can not be represented accurately on this particular grid. We extract
the large- and small-scale partitions using N = 4 of the 7 modes (57%) on each element as
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Figure 3.2: Fourier representation of a sharp cut-off in Legendre modal space.

the large-scale space. The two resulting functions are sampled on a 54-point regular grid,
and their Fourier spectra are plotted in figure 3.2.

The main point illustrated by figure 3.2 is that although the scale partitioning in the
Legendre space is done as a sharp cut-off, the Fourier spectra of the two partitions are much
smoother. The reason for this is that each the original cosine terms is represented by a
combination of local Legendre modes on each element. We also note that the gradual
growth in the small-scale spectrum starts around the cut-off percentage, so the impact of the
small-scale extraction is weaker than for a straightforward Fourier representation.

In a more general case with variable element size and/or polynomial order, it may be
possible to vary the cut-off point in the local Legendre space to keep the corresponding
“average wavelength” approximately constant throughout the whole domain.

3.3.3 Implementation of the model term

We now turn our attention to the implementation of the variational multiscale model term
(V*w, 2vrVeu) from (2.8). Note that the turbulent eddy viscosity v is not a material
property of the fluid, but a property of the flow field and as such varies through the flow
domain.

It is instructive to first consider the one-dimensional case with a constant eddy viscosity.
Furthermore, for ease of exposition, we only consider a single element. In this case, the
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weak form of the model term above is

ow Ou

= (3.14)

Using the small-scale extraction operator defined above, we have

W) =D > Sugtth (), (3.15)
W'(x) =Y Spihy(). (3.16)

Spih;;(gr)smquthm(gr)pr
N
smqquh (&), (&)

N N N
= 5 > > St Apm

N
=3 (STAS)ut = STASu

i
o
i
o
Ji
o
~s

(3.17)

q
= (I — L)' Aq,
where the final line is in the form we generalize to higher dimensions. It is easily seen from
the second-to-last line that (3.17) represents a symmetric operator acting on w.
The corresponding term in three dimensions is
(Vw,Vi;) = (B ® BY ® A") — (L7 @ L' @ L'")(B* @ BY @ A")) 4,
+(BP®A@B") — (LT o LY ® L'")(B* ® AY ® B"))u;  (3.18)
+ (4@ BY®@ B*) — (L' @ LY" ® L'")(A* ® BY ® BY)) 4,
for each component ;.

Taking into account that the eddy viscosity, vr(z, y), is not constant but rather a function
that varies in space, will distort the tensor product structure of (3.18). Following the
procedure for discretization of terms with variable coefficients described in [11], we can



19

write
(Vw,2vr(z,y,2)Vi,) =2 (IF@ 1Y @ D)V (I* @ IY ® D) u;
—2 (LT V" @ (DL V(I ® IY ® D*) 1,
+2 (FD"@I")V(I"® DY@ I") 1
-2 (L@ (D'LY)" @ L")V (I* ® DY @ I") u;
+2 (DT RIYQI")V(D*®IY Q")
—2 (DL @ Lo L)V (D* @ IY® 1Y) U,

(3.19)

In this equation, D denotes the GLL derivation matrix in each direction. Furthermore, the
values of the eddy viscosity are lumped with the GLL integration weights in the diagonal
matrix V' with the entries v/} p* p¥ p7, in which rst are the grid point indices and V' is
ordered to be consistent with the ordering of the element grid points.

We are now finally ready to consider the model term in the form given in (2.8). Since the
product of a symmetric and an anti-symmetric tensor is zero, we find that we only need to
to compute the inner product

(Vw,2vpViu) = <8_w v 8ui> + <8_w v %> : (3.20)

s VT , VT
aIL‘j 81‘]' 81‘]- 81‘@

In tensor product form, the VMS small-scale dissipation term for the component of the
momentum equation becomes

(v{l}v7 2VT('§C7 Y, Z)Vﬂl)

=2{(IFerre D7) - (LT e L' @ (D"L*)T)} V ( Jz ® IV ® D*) Uy
+{(FeDeI") - (LT o ( DyLy ® L*")} V (I* @ DY ® I*) @ (3.21)
+{(DTeolreI") - (D°L*)" ® LyT ® L)}V (Dz @I I*)u '
+{(IFeD""eI") - (L3T®(DyLy ® L*T)} V(I @ 1Y @ D*) Uy
+{(DTereI")- (DL TV o L'}V (I* @ IY© D)

and we obtain similar expressions for the other two components. The couplings between the
velocity components, introduced by the second term of (3.20), are handled by including the
cross terms in the explicit part of the time splitting, leaving the Helmholtz problem for the
velocity components uncoupled.

As seen from (3.21), the calculation of the VMS LES model terms requires several
additional operations. The increase in total computational work will vary with the size and
complexity of the simulation, but for the cases considered in this paper the increase is in the
range 20-40%, with the smallest relative increase for the largest simulations. To put these
numbers into perspective, we note that the total computational complexity of the spectral
element method is O(K3N*), so increasing the polynomial order (V — 1) from 6 to 7 gives
a 70% increase in computational time, about the same as increasing the number of elements
in each dimension (K') from 5 to 6 would give.
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3.3.4 Smagorinsky model

The eddy viscosity vr(x, t) is chosen in [1] as a Smagorinsky-type function:

vr = (C4A)?|V*al, (3.22)
or alternatively

vr = (C5A)?Viul. (3.23)
The former was labeled “small-small” in [2], while the latter was labeled “large-small”.

As the purpose of the model term is to approximate the effect of the unresolved scales on
the small scales, it is argued in [1] that (3.22) is more consistent with the physical basis of
the method, whereas (3.23) appears to be a computationally attractive alternative. The
results in [2, 3] show that good results are obtained with both methods. However, in terms
of the spectral element implementation, the “large-small” form is not a computational
simplification. A more attractive form is instead the “full-small” term

vr = (C5A)?|Viul, (3.24)

in which the scale extraction operators are avoided completely.

The sum |V*u| can be written out as

LERED 3 ol EEonON ) (3.25)
N 2 o1 =1 a.ij 8:& . .
The constant C is set to 0.1, following [2, 3], while A" is calculated for each element as the
geometric average of the mean grid spacing in each direction.

4 COMPUTATIONAL RESULTS

4.1 Channel flow

The plane turbulent channel flow is one of the simplest cases of an inhomogeneous
turbulence field, and this configuration has therefore been extensively used to assess the
performance of turbulence models. The fully developed, statistically stationary, plane
channel flow is an equilibrium flow, because there is a global balance between the rate of
production of turbulent kinetic energy and the rate of viscous dissipation.

The fluid domain is bounded by two infinitely large parallel solid walls, and the flow is
driven by a constant mean pressure gradient in the stream-wise direction along the walls.
The boundary conditions are no-slip at the solid walls, and periodicity is imposed in the
streamwise (x) and spanwise (z) directions, respectively. The wall-normal direction is thus
y, and the channel half-height is denoted h.
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The instantaneous flow field is three-dimensional and time dependent, the ensemble (or
time) averaged flow field is however unidirectional. If we let (-) denote the ensemble
average, we therefore have U = (u) = [U(y), 0, 0].

The friction velocity, u., is defined by

, dU

Uu Ey‘d—y

, (4.1)

wall

and this is used in the definition of the relevant Reynolds number for plane channel flow:
Re, = u.h/v.

Integrating the ensemble averaged Navier-Stokes equations in the wall-normal direction
yields

dP dU ,
_ _ 4.2
where the pressure gradient is a constant, related to the Reynolds number by
ap T
— = ) 4,
(dx) s Rer (43)

Hence, the sum of the viscous (udU/dy) and turbulent (—p(u'v’)) stresses must vary
linearly across the channel. The turbulent stress contribution dominates across the channel
except very close to the wall where viscous stress dominates. This region is usually referred
to as the viscous sub-layer and its thickness decreases with increasing Reynolds numbers.

We consider three different Reynolds numbers: Re, = 180, 550, 950, and the VMS LES
computations are compared with reference solutions obtained from direct numerical
simulations.

4.2 Direct numerical simulations at Re, = 180

As a first step towards our ultimate goal, to implement and evaluate the variational
multiscale LES method in a high order spectral element flow solver, we performed a Direct
Numerical Simulation to verify the code. To this end, we considered fully developed
channel flow at Re, = 180, which corresponds to the well-known benchmark simulations
reported by Kim et al. [24]. We performed the actual comparison of the results with the
updated data set reported by Moser et al. [21] who used a fully spectral Fourier/Chebyshev
method with 128 x 129 x 128 grid points.

The simulation was carried out on a computational domain that approximately corresponds
to the one used by the reference solutions [21, 24], see Table 4.1 for details. Across the
channel we used 16 non-uniformly distributed elements with 8 nodal points in each
element. In the streamwise and spanwise directions we used 16 x 16 uniformly distributed
elements with 8 x 8 nodal points per element. Thus, the total number of nodal points
amounts to 112 x 113 x 112 in the streamwise, wall-normal, and spanwise directions,
respectively. The solution was advanced in time with a time-step corresponding to 0.18
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Present Moser del Alamo del Alamo

DNS etal. & Jiménez et al.
Re, nom. 180 180 550 950
Re, act. 178.83 178.13 546.75 934
L, 8 47 8 8
L, 2 2 2 2
L, 4 %7? 47 3T
N, 112 128 1536 3072
Ny 113 129 257 385
N, 112 128 1536 2304
AxT mean | 12.9 17.7 9.0 8.9
Ay™ min 0.10 0.054 0.041 0.032
Ayt max 8.6 4.4 6.7 7.8
AzT mean 6.4 5.9 4.5 4.5
Elements 163 - - -
Pol. order 7 - - -

Table 4.1: Grid parameters for the present DNS and the reference simulations by Moser et
al. [21] and by del Alamo et al. [22, 23]. Grid spacing in wall units are calculated from the

nominal Re..
Coarse-24 Coarse-36 Coarse-42 Coarse-60

Re, nom. 180 180 550 950
L, 8 8 8 8
L, 2 2 2 2
L, 4 4 4 4
N, 24 36 42 60
N, 25 37 43 61
N, 24 36 42 60
Az mean 40.0 60.0 104.8 126.7
Ay™ min 2.0 4.5 4.6 3.9
Ayt max 21.1 29.8 57.4 68.8
Az mean 20.0 30.0 52.4 63.3
Elements 43 63 73 103
Pol. order 6 6 6 6

Table 4.2: Grid parameters for the VMS LES runs. Grid spacing in wall units are calculated

from the nominal Re..
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Figure 4.1: Details of the point and element distribution in the wall-normal direction for the
grids listed in Tables 4.1 and 4.2. The longer bars show element boundaries for the spectral
element grids.

viscous time-units (v/u?2), and with 50% polynomial filtering [18] on each time-step. The
simulation was initiated by a flow field obtained from an existing plane channel flow
solution obtained by a finite-volume code. The flow then evolved approximately 54
flow-through times before a fully developed state was achieved. The results presented here
was obtained by collecting statistics over approx. 20 flow-through times. The flow statistics
are averaged over the homogeneous — streamwise and spanwise — directions. Homogeneity
in a specific direction implies that any correlation of a fluctuating quantities remains
invariant under translation in that direction.

421 Results

The actual computed Reynolds number is Re, = 178.83, i.e. within 0.7% of the prescribed
value and well within what can be expected. Moser et al. [21] reported Re, = 178.13. The
results presented in Figs. 4.2-4.5 compare in all aspects very well with the benchmark data,
thus establishing solid confidence in the numerical method. The slight deviations reported
herein is well within what should be expected, and even closer correspondence could have
been obtained by simply collecting statistics for a longer period of time. This was, however,
not considered to be necessary.

As background for the VMS LES results presented below, we also include results from a
simulation on the grid “Coarse-36" (see Table 4.2 for grid properties). This simulation
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Figure 4.2: Re, = 180: Variation of the mean velocity across half the channel in viscous
units, compared with the reference solution of Moser et al. [21].
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Figure 4.3: Re, = 180: Variation of mean viscous shear and the turbulent shear stress
across half the channel, compared with the reference solution of Moser et al. [21].
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Figure 4.4: Re, = 180: Variation of streamwise (u), spanwise (v’), and wall-normal (w")
root-mean-square velocity fluctuations across half the channel, compared with the reference
solution of Moser et al. [21].
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Figure 4.5: Re, = 180: Variation of the root-mean-square pressure fluctuations across half
the channel, compared with the reference solution of Moser et al. [21].
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contains no turbulence modelling, but 2% polynomial filtering [18] is employed. Except for
the pressure correlations in Fig. 4.5, the results are so good that modelling is not expected to
improve them. This shows that the spectral element method gives high accuracy even for
relatively coarse grids, but it also indicates that plane channel flow is not the most
challenging test case. The availability of quality reference data makes it attractive as a
starting case, we must however keep in mind that the grids for the model tests have to be
sufficiently coarse and not turn into a “quasi-DNS” e.g. near the walls.

4.3 VMS LES results

Lots of combinations of the scale partitioning parameter and the Smagorinsky forms were
tested for Re, = 180, and the best choice was used for additional simulations at Re, = 550
and Re, = 950.

The spectral element grid for Re, = 180 was chosen as the “Coarse-24" grid described in
Table 4.2. The element interfaces in the wall-normal direction were given by a coarse
Gauss-Lobatto-Chebyshev grid, as recommended in [25]. The scale partitioning cut-off
mode was kept constant for all elements, even though the element size varied in the
wall-normal direction.

In order to get a real test of the modelling, the grid had to be much coarser than what would
give reasonably good results without a model. Spectral element grids for the higher
Reynolds numbers were constructed such that the first element interface in the wall-normal
direction is placed at approximately the same value of y* for all the cases, see the
illustrations in Fig. 4.1. To reduce the number of parameters, the polynomial degree was
fixed for all the VMS LES runs; only the number of elements was changed.

43.1 Simulationsat Re, = 180

The grid parameters for this case are given in the column “Coarse-24" in Table 4.2.

Without a model, both over-integration and polynomial filtering (2%) was necessary to keep
the simulation stable at this resolution. With the VMS model term, either method was
sufficient. It was found that polynomial filtering did reduce rather than improve the quality
of the results. To obtain the presented VMS results we therefore employed only
over-integration in the simulations.

Beside using the different forms of the Smagorinsky term (3.22)—(3.24), the scale
partitioning was varied in the simulations. With a local grid of 7 grid points in each
direction on each element, we have used N = 4 and N = 5 for the large-scale extraction
described in Section 3.3.1. These values correspond to 57% and 71% of the
one-dimensional spectrum, respectively. In three dimensions, the resulting large-scale
spaces consist of 19% and 35% of the modes, respectively.

Varying the scale partitioning had a strong influence on the results, and N = 5 was found to
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Figure 4.8: Re, = 180: Variation of the mean velocity across half the channel in viscous
units, compared with the reference solution of Moser et al. [21].

be the best choice, as seen from Figs. 4.6 and 4.7. The rest of the results shown here are
obtained with N = 5.

The different forms of the Smagorinsky term gave very similar results for Re, = 180. The
results are presented in Figs. 4.8-4.11. The results from “large-small” form (3.23) were
almost indistinguishable from the “full-small”” (3.24) results, and are not included in the
figures.

As shown in Section 4.2.1, simulations on the “Coarse-36"-grid gave good results without
modelling for this case. Results from simulations without modelling on an intermediate grid
with 303 grid points were comparable to the VMS results from the 243-grid shown here, but
at a 40% higher computational cost.

4.3.2 Simulationsat Re, = 550

The grid parameters for this case are given in the column “Coarse-42” in Table 4.2.

The scale partitioning parameter of N = 5, which was found to be the best choice for
Re, = 180, was also used for this case. Again, the “full-small” and “large-small”
Smagorinsky forms produced very similar results, so the latter are not shown. The results
are presented in Figs. 4.12-4.14.
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Figure 4.9: Re, = 180: Variation of mean viscous shear and the turbulent shear stress
across half the channel, compared with the reference solution of Moser et al. [21].
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Figure 4.10: Re, = 180: Variation of streamwise (u'), spanwise (w’), and wall-normal (v")
root-mean-square velocity fluctuations across half the channel, compared with the reference
solution of Moser et al. [21].
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Figure 4.11: Re, = 180: Variation of the root-mean-square pressure fluctuations across half
the channel, compared with the reference solution of Moser et al. [21].
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Figure 4.12: Re, = 550: Variation of the mean velocity across half the channel in viscous
units, compared with the reference solution of del Alamo and Jiménez [22].
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Figure 4.13: Re, = 550: Variation of mean viscous shear and the turbulent shear stress
across half the channel, compared with the reference solution of del Alamo and Jiménez [22].
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Figure 4.14: Re, = 550: Variation of streamwise (u'), spanwise (w’), and wall-normal (v")
root-mean-square velocity fluctuations across half the channel, compared with the reference
solution of del Alamo and Jiménez [22].
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Figure 4.15: Re, = 950: Variation of the mean velocity across half the channel in viscous
units, compared with the reference solution of del Alamo et al. [23].

4.3.3 Simulationsat Re, = 950

The grid parameters for this case are given in the column “Coarse-60” in Table 4.2.

In this case we have only run the “full-small” Smagorinsky form, and the scale partitioning
parameter is still N = 5. The reference simulation is described in [23], and the reference
data are downloaded from the site given in [22]. Our results are presented in

Figs. 4.15-4.17.

4.4 Comments on the results

The VMS LES results show clear improvement from the results without a model, in
particular for the higher Reynolds numbers. The plane channel flow at Re, = 180 does not
seem to provide sufficient challenges for the testing of turbulence models, as it is too easy to
resolve the main features without any modelling at all. The VMS LES results are not
compared with alternative turbulence models, as the intentions of this study was mainly to
lay the foundations for the incorporation of VMS LES in a spectral element method.
Therefore only the simplest Smagorinsky eddy viscosity was used in the model terms in the
small-scale equations.
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Figure 4.16: Re, = 950: Variation of mean viscous shear and the turbulent shear stress
across half the channel, compared with the reference solution of del Alamo et al. [23].
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Figure 4.17: Re, = 950: Variation of streamwise (u'), spanwise (w’), and wall-normal (v")
root-mean-square velocity fluctuations across half the channel, compared with the reference
solution of del Alamo et al. [23].
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5 CONCLUSIONS

The Variational Multiscale Large Eddy Simulation method has been implemented within
the framework of a spectral element method. The presented scale partitioning method was
shown to produce a gradual introduction of the small-scale model terms. This is intuitively
favourable to a sharp cut-off at a given point in the spectral space. The computational
overhead for the method was 20-40% for the applications considered here. This must be
considered to be reasonably low, as even small increases in the spatial resolution of the
spectral element method are more computationally demanding. Good results have been
obtained for plane channel flows up to Re, = 950, even for grid densities as low as 0.06%
of the reference simulation grid density, and using the simplest possible small-scale
dissipation model.
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