FFI RAPPORT

PENETRATION MODELLING WITH
UNCERTAINTY QUANTIFICATION USING
THE WALKER-ANDERSON MODEL

SOLENG Harald H, SVINSAS Eirik

FFI/RAPPORT-2000/05876



FFIBM/766/|130

Approved
Kjeller 15 Jany
) e

[

Director of Research

PENETRATION MODELLING WITH

UNCERTAINTY QUANTIFICATION USING THE
WALKER-ANDERSON MODEL

SOLENG Harald H, SVINSAS Eirik

FFI/RAPPORT-2000/05876

FORSVARETS FORSKNINGSINSTITUTT

Norwegian Defence Research Establishment
P O Box 25, NO-2027 Kjeller, Norway

y 2001
/.j— /// 7 &
Bjdrme Haugstad R -



ISBN 82-464-0491-1

FORSVARETS FORSKNINGSINSTITUTT (FFI) UNCLASSIFIED
Norwegian Defence Research Establishment
P 0 BOX 25 SECURITY CLASSIFICATION OF THIS PAGE
NO-2027 KJELLER, NORWAY (when data entered)
REPORT DOCUMENTATION PAGE
1)  PUBL/REPORT NUMBER 2)  SECURITY CLASSIFICATION 3) NUMBER OF
FFU/R APPORT-2000/05876 UNCLASSIFIED PAGES
1a) PROJECT REFERENCE 2a)  DECLASSIFICATION/DOWNGRADING SCHEDULE 21
FFIBM/766/ 130 -
4) TITLE
PENETRATION MODELLING WITH UNCERTAINTY QUANTIFICATION USING THE WALKER-
ANDERSON MODEL
5) NAMES OF AUTHOR(S) IN FULL (surname first)
SOLENG Harald H, SVINSAS Eirik
6)  DISTRIBUTION STATEMENT
Approved for public release. Distribution unlimited. (Offentlig tilgjengelig)
7)  INDEXING TERMS .
IN ENGLISH: IN NORWEGIAN:
IN NORWEGIAN:
a) Penetration a) Penetrasjon
» Uncertainty vy Usikkerhet
o) Concrete o Betong
d) )
o) )
THESAURUS REFERENCE:
| 8)  ABSTRACT
We perform a detailed critical study of the Walker-Anderson analytical penetration model. It is shown that
the velocity profile assumed by Walker and Anderson has a discontinuity in its first derivative at the elastic-
plastic boundary. Fortunately, for our test data set, this somewhat unphysical feature is shown to be benign
and practically unimportant.
Then the Walker-Anderson model is compared with a rigid penetration model and as expected, the effects of
projectile deformation and erosion are found to be very important. Finally we perform a statistical analysis
of the Walker—Anderson model applied to penetration of concrete with uncertain target data.
9)  DATE AUTHORIZED BY POSITION
Thi nly ™
15 January 2001 B@a Director of Research
0 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
(when data entered)






CONTENTS
1 INTRODUCTION
2 FORMULATION OF THE MODEL
2.1 Conservation of momentum
22 Velocity profile
23 Continuity of u, over projectile-target interface
24 Stress behaviour in the target
25 Deceleration of the tail
2.6 Equations of motion
3 APPLICATION TO CONCRETE PENETRATION
3.1 Model breakdown
3.2 Results of numerical integration
3.2.1 Effect of smoothed velocity profile
322 Comparison with rigid penetration
3.23 Prediction uncertainties from parameter uncertainties
4 CONCLUSION
APPENDIX
A NOTATION
References

Distribution list

Page

10
10
11
11
12

13
13
13
13
15
15

16

18
19
21






PENETRATION MODELLING WITH UNCERTAINTY QUANTIFICATION
USING THE WALKER-ANDERSON MODEL

1 INTRODUCTION

In the field of penetration mechanics, several different analytical models are available.
Depending on the impact velocity and the material properties of the projectile and target,
the projectile may be described as a rigid body, as an elastic-plastic eroding body, or by the
laws of hydrodynamic flow alone. The first case is e.g. relevant in cases where a
conventional shell or missile penetrates a soft target of soil or normal concrete, while the
latter is suited for describing shaped charge penetration. The eroding body formulation will
in most cases be necessary when treating modern high velocity sub-calibre ammunition.

Of the three classes above, the elastic-plastic eroding body models are the most involved, as
the elastic-plastic material properties of both projectile and target must be considered on a
physically sound basis. We may here extend the meaning of “plasticity” to include
irreversible deformations of brittle materials as a result of internal microcracking. The
earlier models [1, 2, 3] known from the literature', are mostly extensions of the first
hydrodynamic approaches by Birkhoff et al. [S], with the aim of including the deceleration
of the body together with the rigid-penetrator behaviour during the last phase.

The model of Walker and Anderson [6, 7] is one of the most advanced so far. It makes use
of centerline momentum balance together with assumed velocity fields, and has been shown
to yield good results for penetration of metals and ceramics. In this report, we investigate
the application of the model to concrete and rock targets with uncertainties in the material
data.

In doing so, we start out with a short review in Chapter 2 and point out a discontinuity in
the first derivative of the velocity field over the elastic-plastic boundary in the projectile. A
generalization without this unwanted feature is then proposed.

In Chapter 3, a generic concrete is defined and numerical integration of the equations is
performed. It is found that the generalization described earlier has very little effect, and we
therfore return to the original Walker—Anderson model. It turns out that the transition to
rigid-body motion is not handeled well for this data set, and a rigid penetration model is
therefore introduced “manually”. On comparing with predictions from a simple rigid
penetration model we find, as expected, a large difference in the results.

Finally, the Walker-Anderson model is applied to penetration of concrete targets with
uncertainties in the material data and a statistical analysis is performed. This approach
allows us to predict penetration depth and residual mass of the projectile with quantified
uncertainties in the final answers, an approach rarely seen within this field, and hardly
obtainable when using numerical tools like hydrocodes. Nevertheless, a mathematically
sound treatment of the uncertainties is very important. Assume that you are sitting in a
bunker. Your shield is threatened by a particular weapon at a given distance. The numerical
simulation tool tells you that the penetration depth of this particular weapon would be

54 cm into your protective shield. Would you feel safe behind your 60 cm walls?

1For a recent review of analytical penetration mechanics see Ref. [4]



Neglecting the possibility of repeated hits, it would of course depend on the uncertainty of
the model’s prediction of a 54 cm penetration depth.

The numerical computations needed to carry out an integration of the Walker—Anderson
model are many orders of magnitude smaller than that of a full-fledged hydrocode
simulation. Therefore we can afford to vary the model parametres within their uncertainties
and perform thousands of integrations of the model so as to span the uncertainty space and
give a relieable quantification of the uncertainty of the prediction. If a trusted model
predicted a (54 & 10) cm penetration depth, then I guess you would escape the bunker!

The last Chapter 4 contains a short discussion of the results and concluding remarks.

2 FORMULATION OF THE MODEL

The Walker-Anderson model addresses the problem of a projectile hitting a homogeneous
and isotropic target orthogonally to the impact surface. With these symmetry assumption
the problem is axisymmetric and thus essentially two-dimensional. With simplifying
assumptions it is possible to integrate out both the radial and axial dimension, and hence the
problem is reduced to a set of coupled equations for two point particles representing the
projectile nose and tail.

Due to different nose and tail velocities implied by the model the penetrator deform and
erode during penetration. Thus the Walker—Anderson model should be used only for
penetration with eroding projectiles.

In this section we review the derivation of the Walker—Anderson model.

S
Z
p Zi Z
Figure 2.1: Schematic snapshot of the penetration. The nose and tail velocities are denoted
u and v, respectively. The crater radius R, the radius of plasticity S of the target, and the
extent of plasticity in the projectile s are indicated.



2.1 Conservation of momentum

The situation short after impact is depicted in Fig. 2.1. Let 2 be the position along the axis
of the projectile!, and let time be denoted by t. Using the comma notation for partial
derivatives, the z-component of the Eulerian momentum equation is

p (Uz,t + Z ui“z,i) = Z Ozii, (2.1)
i :

where p, 0;;, and u;, are the density, stress tensor, and velocity field, respectively.

Due to axial symmetry, the equation reduces to
1
P (uz,t + 5&:(“:)2) — Ozz,2 — 20zz,z = 0. (2.2)

Let us now integrate Eq. (2.2) along the axis of symmetry. Let 2, be the position of the tail
of the projectile, and let z; be the interface position. Then u(o0) = 0, u,(2,) = v and
u,(2;) = u, 0,,(2) =0, and 0,,,(0c0) = 0. Assuming that the projectile density p, and the
target density p, can be regarded as constants in the integration, we get

24 o0 1 1 o
pp/ u,;dz + pt/ u, s dz + 5P (u® — v?) — 5Pt u? — 2/ Ozzzd2 = 0. (2.3)
Z; Zi Z

P P
To integrate further we have to specify the velocity profile u, and the shear stress behaviour.

In numerical simulations one is able to “observe” the velocity profile inside both the target
and the projectile. This information was used by Walker and Anderson [6] to write down a
simple expressions for u,. As shown in their Fig. 3 the assumed velocity profile displays a
similarity to that from the numerical simulation except for a discontinuity in the first

e ) L o

Figure 2.2: The Walker-Anderson [6] velocity profile (dashed curve) and the smoothed ve-
locity profile derived in this report. The nose of the projectile is at the origin of the z-
coordinate.

derivative at the boundary of the plastic region of the projectile. By a simple modification of
the velocity profile we can remove this feature and thus make the assumed velocity profile
even more similar to those of numerical simulations.

1A complete list of symbols is given in Appendix A.
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2.2 Velocity profile

Let s denote the extent of the plastic zone in the projectile and let € € [0, 2) be a shape
parametre for the velocity curve so that the velocity profile has a continuous spatial
derivative along the centerline if € > 0. Then we can define the centerline velocity as
v 2p<2<2—8 04
U u+ (u—v)[s(2—¢)]” [2(z—z.-)+ss(-’;3’i)2/€] zi—8<2<z. 24

In the limit ¢ — 0, this expression reduces to the Walker—Anderson profile, cf. Fig. 2.2.
Thus, the projectile moves as a rigid object up to its plastic zone near the nose. At the
boundary of the plastic zone there is a relatively sharp transition to a linearly falling
velocity field. In the limit € — 0, the transition region vanishes.

Thus

/ updz=(2+¢€) " [-(2+e)u(u—v) + (u—v)s +si+ ((2+¢€)L — )] (2.5)
2p
where L is the length of the projectile, i.e. L=u—w.

Let R and S be the crater radius and the plasticity radius of the target. Again based on
results from numerical simulations, Walker and Anderson wrote down the following
expression for the centerline velocity profile of the target [6]

2 2 -1
u, = u((z_fTR);—l)(%;—l) z<2<z+S8S—-R (2.6)
0 z222z+S8S—-R.

In the second term of Eq. (2.3), we need u,; in the target. Assuming a constant crater radius
R, the velocity profile of Eq. (2.6) gives

% _ 2R% 4 R(S-R)., K ,
/z.- u,,tdz—(R+S)2S+ RTS u + u®. 2.7

2.3 Continuity of u, over projectile-target interface

We assume that the velocity profile has a continuous derivative over the projectile-target
interface

ou, Ou,
5z |, =3, o . (2.8)
Using Eqgs. (2.4)—(2.6) and solving for s yields
2 _ P2y _
s R(S? — R?)(v u.)' (2.9)

(2+¢€)S%u
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2.4 Stress behaviour in the target

With the assumption that the target is behaving in a perfectly plastic manner with a constant

flow stress, and that the velocity field is tied together with the flow field for the shear stress,
the last term of Eq. (2.3) evaluates to [6]

./z,, Opzzd2 = —th log% (2.10)

where Y; is the target yield limit. In the derivation of this expression it is assumed that Y; is
constant. However, in general the yield limit of a material varies with its state. Thus there is

a mismatch between reality and the mathematical model. It can be compensated only by

assigning a greater uncertainty to the yield limit or by generalizing the Walker-Anderson
model so as to include a more advanced constitutive model.

2.5 Deceleration of the tail

The tail is decelerated by elastic waves. With the change in particle velocity at the free
surface being twice the particle velocity of the wave,

g,
Av=-2c-2L (2.11)
EP

during the round trip time of the wave. Here c is the speed of sound in the projectile.

The waves propagate between the elastic-plastic interface and the tail of the projectile.
Consider such a wave starting from the elastic-plastic interface near the nose of the
projectile at time ¢;. At the time ¢, the wave is reflected off the projectile tail before
returning to the elastic-plastic interface at ¢;. See the space-time diagram of Fig. 2.3 for a
geometric picture of the world line of this wave as seen in the rest frame of the tail. When
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Figure 2.3: Space-time diagram showing the wave propagation (dotted lines), and the motion
of the elastic-plastic interface of the projectile as seen in the rest frame of the tail.
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the wave starts at the time ¢;, the distance between the elastic-plastic interface and the tail is
L — s. When the wave reflects at the tail at ¢, = ¢; + At,, it has travelled this distance

cAty =L —s.

At t; =t, + At, the wave returns to the elastic-plastic interface. It has then travelled the
return distance

At
cAty=L-s+ | (L-3)dt.
0

The return distance is shorter due to the effect of erosion L and a change in the extent of the
plastic zone $. By definition the round trip time is given by At = At; + At,. Hence,

At
cAt =2(L —s) + (L — 3)dt.
0

Taylor-expanding the integral on the right-hand-side to first order in At and solving for At,
we get the first-order expression

Af — 2(L—s)

_ e\ ¢ 2
= o Tow) 2.12)

where we have used the kinematical relation L = u — v.

Dividing Av Eq. (2.11) by At and using that o, = Y, and E, = p,c?, we find

e = Av _ Yc—u+v+3)
At cpp (L — s)

This is the deceleration of the tail induced by an elastic wave. Walker and Anderson

identify ¥ = lima;—,0 awave as the acceleration induced by a continuum of waves. Following
Walker and Anderson, the equation for the tail deceleration becomes

+ O(A#?). (2.13)

b=_Y,,(c—u+v+s). 2.14)

cpp(L—3)

2.6 Egquations of motion

Before writing down the equations of motion, we define the density of the projectile relative
to the target density and the yield velocities of the target and the projectile by:

1/2 1/2

Q=2 T,= (@) , and T,= <Z€> . (2.15)
Pt Pt Pp

Then, substituting the results of Eqgs. (2.5), (2.7), and (2.10) into Eq. (2.3), we get

. [20s  2R(S-R)\ 4R ., , 14, S
u_{2+e+ S+R } { (R+8)28 w3 Tilos ﬁ)

du—v), _2[2+e)L- s]i:]}

(2.16)

2 (u—v)? -
* [(“ ) 2+¢ 2+¢
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where s is given by Eq. (2.9). Using the yield velocity T, the equation for v becomes

1)=—T—’2’(c—u+v+é). 2.17)
c(L-s)

Again, § is found from Eq. (2.9). By pure kinematics L and # are given by

L=u—-v and z=u. (2.18)

With the assumption that of constant target plasticity radius, i.e. S = 0, the system of

Egs. (2.16)—~(2.18) is a complete set of equations. By substituting d/dt — u(z)d/dz, and
taking the variables to be function of penetration depth z instead of time ¢, the equations of
motion can be rewritten as equations in z. This is better both from a numerical point of
view and in practice, since one generally has a better intuition about penetration depths than
penetration times. This is the approach taken in the Mathematica code [8] used in this

paper.

3 APPLICATION TO CONCRETE PENETRATION

We have applied the modified Walker-Anderson model to eroding long rod penetration of
concrete. Admittedly concrete is a brittle medium, and thus using a plastic material model
is a bold simplification.

3.1 Model breakdown

Right after impact the projectile nose decelerates much faster than the tail. According to
Equation (2.9) the projectile developes a plastic region when v > u. The projectile nose is
decelerated by direct contact with the target and the tail is decelerated by elastic waves
travelling down the projectile. For low density targets, it turns out that the
Walker—Anderson model predicts that the tail is decelerated more than the nose which
implies that after some time v = u and s = 0. At this time the model breaks down.
Whenever this happens, the evolution is continued using a rigid penetration model.

At this point we would like to remark that the criterium for transition to rigid penetration
should be investigated further. Perhaps this transition should happen sometime before the
Walker—Anderson model breaks down.

3.2 Results of numerical integration

As a test bed we have chosen the case of a projectile hitting a concrete wall. The relevant
physical parametres are specified in Table 3.1. Using these data we have integrated the
Walker—Anderson equations numerically.

3.2.1 Effect of smoothed velocity profile

Integration of the equations of motion for the expectation values of the input data leads to
the results plotted in Figs. 3.1-3.2. The dotted curves correspond to the original
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Table 3.1: Parametres.

Projectile Target
Density 17.5 g/em?® | Density (2.5+0.05) g/em®
Yield limit 1.65 GPa | Target yield limit (400. 4 40.) MPa
Initial length 16. cm Plasticity radius  (100. £ 25.) mm
Impact velocity ~ 1400. m/s Crater radius (17.4+£3.) mm
Young’'s modulus  165. GPa
Sound velocity 3071. m/s

Walker—Anderson model, and the red curves correspond to the modified model derived in
this report with € = 1.0.

u v
1400 1400
1200f, 1200
1000) e 1000
sgoof T - 800 N
‘h\'-\ “
600 600
400 R 400
200 200
z z
0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

Figure 3.1: Nose and tail velocities [m/s] as functions of depth [m]. The red curve is the new
model.

L s
0.16}., e
~ 0.005{ / =

0.14 \\ |
0.12 N 0.004

“‘! |I

h
0.1 [ $3] 0.3 Q.4 z 0003 e
k- 7 2 N
0.08 0.002/
0.06 Ry U
S 0.001

0.04 L
0.02 7 0.1 0.2 0.3 0.4 z

Figure 3.2: Projectile length [m] and plasticity extension [m] as functions of penetration
depth [m]. The red curve is the new model.

The largest difference occurs for the size of the extent of plasticity in the projectile. In the
new model it is up to 33% larger than in the original model. For the penetration depth and
the projectile residue the changes are less than 1%. This corroborates the belief that the
predictions of the Walker—Anderson model are independent of the details of the velocity
profile. This is of course a very appealing property of the model.
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carried out the integrations of the Walker—Anderson model. The resulting estimates for the
cumulative distribution functions (cdf) P are shown in Fig. 3.4. The cdf is the integral of
the probability density function p. Hence, it is a monotonic function P of its argument z
with function values P(z) spanning the interval [0, 1]. The value P(a) is the probability that
z < a. Look at the cdf for the penetration depth. Since P(0.4) is small, there is a small
probability for penetration depths smaller than 0.4 m. On the other hand, the mean value
0.493 m represents the penetration depth for which there is a fifty-fifty probability of
getting a value larger or smaller. In Table 3.2 the results are given as numbers with error

Table 3.2: Penetration results.

Penetration depth (0.493 £+ 0.145) m
Projectile residue | (0.0271 + 0.0143) m

bars corresponding to one standard deviation.

In order to find the sensitivity of penetration depth to small variations in the input
parametres, we have computed the relative change in penetration depth under a small
change in each of the input parametres. The resulting response in penetration depth are

Table 3.3: Responses in penetration depth and relative uncertainties of each parametre.

Parametre response | uncertainty
Target density 42.3% 2.0%
Target yield limit 97.0% 10.0%
Extent of plasticity | 52.8% 25.0%
Crater radius 59.4% 17.6%

shown in Table 3.3.

The meaning of the numbers of the response column are as follows. Suppose the target
density is changed by 5%. Then the penetration depth is changed by 42.3/100 x 5%. We
say that the penetration depth has a 42.3% response to changes in the target density. The
target yield limit is the most important parametre.

The entries in the column labelled “uncertainty” in Table 3.3 are the relative uncertainties of
each input parametre. Hence, in our test case the relative uncertainty of the yield limit is
much larger than that of the target density. Therefore, in this case, the most significant
reduction in the prediction uncertainty can be obtained by a more precise determination of
the target’s yield limit.

4 CONCLUSION

The Walker—Anderson model has been examined with a critical eye on all assumptions. An
unphysical discontinuity in the first derivative of the assumed velocity field has been
identified and rectified. However, in the test case studied in this paper, this discontinuity had
but a neglible effect on the results.
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3.2.2 Comparison with rigid penetration

It is also of interest to compare the results of the Walker—-Anderson model with a pure rigid
penetration model. Plots for nose and tail velocities are depicted in Fig. 3.3. Here there is a

u v
1400} 1400f, __

1200} : 1200 S,

1000 1000

800 Ny 1 800
600 600
400 by ™ 400

200 ' : 200
\

H z U z
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Figure 3.3: Nose and tail velocities [m/s] as functions of depth [m]. The red curve is the
rigid penetration model.

striking difference between the two models. In fact, in this case the penetration depth
increases almost by a factor of 2 when going from the Walker—Anderson model to a rigid
penetration model.

This result should hardly come as a surprise. Yet, the importance of projectile erosion
should be strongly emphasized. It plays a crucial role when computing projectile
penetration depths. Making the wrong assumptions on this point have devastating
consequences for the accuracy of the predictions.

3.2.3 Prediction uncertainties from parameter uncertainties
In the rest of this report we assume that the Walker—Anderson model is a good model for
our penetration problem.

Even when the modelling framework is fixed there are uncertainties in many material
parametres.

o

o
(=]
o

0.2 0.4 0.6 0.8 1 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Figure 3.4: Plots of the estimated cumulative distribution functions (cdf’s) for the penetra-
tion depth [m] and projectile residues [m].

Assuming that the target parametres have normally distributed uncertainties, we have run
10000 simulations where we have drawn material properties from these distributions and
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The effect of uncertainties in the input parametres has been studied and (in the test case) the
largest contribution has been found to be the target’s yield limit. As mentioned in Section
2.4 the simplistic modelling of the yield limit leaves room for improvement of the model.
One step in this direction has been taken by Walker and Anderson who have generalized
their model to include the Drucker—Prager constitutive model [7].

Within the framework of the Walker~Anderson model or any other semi-analytical model, it
is possible to perform a large number of numerical integrations and thus to draw enough
samples from the input data distributions to give reliable estimates of the prediction
uncertainties. For most practical purposes knowledge about the uncertainty of a prediction
is almost as important as the prediction itself. In this report we have carried out such a
statistical analysis based on 10000 simulations with stochastic input parametres.

However, it should be stressed that more work is needed both theoretically and
experimentally before these methods can be made sufficiently reliable to be used as a
design tool. In particular, one ought to work out a better criterium for transition to rigid
penetration. In the present work a breakdown of the Walker—Anderson model signals this
transition. We also think that the model merits a better experimental backing. Hence, it
would be valuable to have a large data set with penetration results for a variety of targets
and penetrators with careful measurements of material data with estimates of the
uncertainties of all available data.
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APPENDIX

A NOTATION

E, Youngs’s modulus of projectile
L  projectile length

O  order of

R crater radius

S  radius of plastic flow in target
Y, projectile yield limit

Y, target yield limit

Yy yield limit at zero pressure

yield limit on plateau

awave Wave induced acceleration
¢  speed of sound in projectile

~l

r  spherical radius

s  extent of plastic flow in projectile
t  time

t;  starting time of elastic wave

t,  reflection time of elastic wave

ty  return time of wave

u  interface (penetration) velocity
ur  velocity component in k-direction
v projectile (tail) velocity
z  axial coordinate
z;  axial position of projectile/target interface (nose position)
z;— left limit of nose position
zi+  right limit of nose position
2,  axial position of projectile tail
At  wave round-trip travelling time
At; wave travelling time to reflection
At, wave return trip travelling time
T, yield velocity of projectile
T, yield velocity of target
Q  relative density p,/p:
€  dimensionless shape parametre for the velocity profile
p  density
p,  projectile density
p:  target density
o, projectile flow stress
o;j  stress tensor
0, partial derivative operator /0,
A;, partial derivative: 0yA; = 0A:0,
A time derivative of A
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Farnborough

Hampshire GU140LX

UK

| EMI

1 Werner Riedel
Ecker Strasse 4
79104 Freiburg
Germany
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ANTALL | EKSNR

TIL

FFI-Bibl

Adm direktgr/stabssjef
FFIE

FFISYS

FFIBM

FFIN

Bjarne Haugstad, FFIBM
Eirik Svinsds, FFIBM
Harald H Soleng, FFIBM
Jan Arild Teland, FFIBM
Henrik Sjg!, FFIBM
John F Moxnes, FFIBM
Ove Dullum, FFIBM
Svein E Martinussen, FFIBM
FFI-veven

FFI-K1

Retningslinjer for fordeling og forsendelse er gitt i Oraklet, Bind |, Bestemmelser om publikasjoner

for Forsvarets forskningsinstitutt, pkt 2 og 5. Benytt ny side om nadvendig.




