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CHARACTERIZATION OF LOCAL AND GLOBAL REGULARITY BY THE
CONTINUOUS WAVELET TRANSFORM, APPLIED TO REAL AND SYNTHETIC
DATA

1 THESIS OVERVIEW

1.1 Overview

The ‘irregular’ points or areas of a signal (1 to N dimensions) carry most of the information in
the data. The objects in an image are outlined by their borders, i.e. the region (usually N-1
dimensional, i.e. a line in a 2D data set, a point in a 1D signal, etc), where the data value
changes abruptly. Getting a description of where the edges or borders of objects are and some
characterization of what type of edge it is, makes us able to separate real objects from noise
and smooth areas with slow-moving changes.

The theory of characterizing function regularity by the decay of the wavelet transform has
become standard wavelet theory since I started this thesis. The number of papers and books on
this theme is enormous, and to mention all or lots of them here is beyond scope. The
bibliography includes some, mostly from the pre 1995 period.

The purpose of this thesis is to present and prove the most important 1-D theorems regarding
the connection between the continuous wavelet transform (CWT) and local and global Hölder
regularity. The starting point was the paper by Mallat and Hwang (39) in the early 1990s. The
work on this thesis has had some long and irregular breaks, due to un-mathematical events, but
the search for related papers, thesis and books has never stopped completely. Many authors
write about these topics, but it seems that the original paper covered most of what is todays
knowledge on the theme. The book by Mallat from 1999 (37) and by Holschneider from 1995
(14) is the most interesting additional contributions that we have found. These will be
presented without proofs. The proofs in the paper by Mallat and Hwang are not completed, so
the main contribution by this thesis is the completion of these proofs in a consistent form,
following the sketched proofs in that paper and in Holschneider, Tchamitchian (15) and Jaffard
(18), (19). A description of the differences and similarities between the theorems in Mallat and
Hwang and in these two other books is also added. In addition, a theorem from Jaffard, Meyer
and Ryan (29), an algorithm for computing pointwise Hölder exponents, is included.

Secondly, the implementation of the WTMM (Wavelet Transform Modulus Maxima)
algorithm in Matlab is done from scratch, except for thecwt function from Matlab’s Wavelet
Toolbox. We are aware of other implementations of similar algorithms, including the WaveLab
toolbox (2), but learning and using such large packages is both time-consuming in it self, and
also makes it hard to understand exactly what is happening. So, making everything our self
makes the result less perfect, but improves the understanding. This algorithm, like ‘all’ other
such algorithms made by others are based, more or less stringent, on the theorems in this
thesis. What is common to them all, is that they find themodulus maxima linesin the CWT
plane, and estimate the decay of the wavelet transform along these lines. We then get an
estimate of the regularity at the points that have a maxima line pointing at them.
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We also want to include the definitions and preliminaries needed to prove the theorems and
explain the theory.

Some work has been done to extract the ground from a ‘scene’ with buildings and vegetation
from laser altimetry data in (57), (58), (59), using wavelet methods.

In Chapter 2, we will present all the mathematical results regarding Hölder regularity from
Mallat and Hwang (39), Holschneider (14) and Mallat (37) and some related results, including
some general theory and lemmas related to the topics. Most of the material here is gathered
from these three sources.

In Chapter 3 we will prove the theorems from Mallat and Hwang (39), based on the more or
less completed proofs there, and in a notation that is consistent with the rest of this thesis.

In Chapter 4, we want to implement an WTMM (Wavelet Transform Modulus Maxima)
algorithm based on following the wavelet transform maxima across scales in all the 1D lines in
each direction of some laser altimetry datasets, to identify and characterize the various
singularities we discover, and then put all these lines together in a location-preserving matrix
with thecharacterized singularities.

In Appendix A, the relevant mathematical preliminaries not included in the text is added.

2 REGULARITY

2.1 Introduction

In this chapter we want to present theorems from the book of Mathias Holschneider (14), the
book of Stephane Mallat (37) and from the paper by Stephane Mallat and Wen Liang Hwang
(38), regarding characterization of singularities by the asymptotic decay of the wavelet
transform. Theorems from this last paper will be proven completely in Chapter 3. The
similarities and differences between the results in Mallat and Hwang (38) from 1992 and the
more recent Mallat (37) from 1999 will be commented, but the results in Holschneider (14)
will only be presented without much comment. The most fundamental theorems will be named
according to the naming and numbering in the book/paper they are found. The mathematical
background, the definitions and the notations not included in the text are found in Appendix A.

Some of the theorems in the paper and the two books are if-and-only-if and some of them have
slightly different conditions in the different directions. The theorems are separated, one part
showing the properties of the wavelet transform of functions with pre-described Hölder
regularity and another part showing consequences of the wavelet transform properties, i.e. a
characterization of the regularity, the Hölder exponent, by the asymptotic decay of the wavelet
transform. The naming convention of a)’s and b)’s for each direction is used.

In Section 2.2, the ‘Continuous Wavelet Transform’ (CWT) section, we define the continuous
wavelet transform and some properties thereof, including theorems regarding necessary and
sufficient conditions on functions to beadmissible, i.e. wavelets.

In Section 2.3, the ‘Hölder Regular Functions’ section, we will analyse properties of functions
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with known Hölder regularity globally and locally, specifically the behavior of the CWT of
such functions.

In Section 2.4, the ‘Oscillating Singularity’ section, oscillating singularities are defined and
discussed.

In Section 2.5, the ‘Global Hölder regularity’ section, sufficient conditions on the CWT for the
function to be Hölder regular globally or on an interval are outlined.

In Section 2.6, the ‘Local Hölder regularity’ section, similar conditions for local, i.e. at a point
x0 ∈ R, are outlined.

Section 2.7, the ‘Pointwise Differentiability’ section, is a presentation of the implication these
results has on the differentiability of functions.

Section 2.8, the ‘Wavelet transform local maxima’ section, shows rather strong results
regarding the maxima lines of|Wψf(s, x)| in the time-frequency plane.

2.2 CWT

The continuous wavelet transform is defined by a convolution, which is a sliding of one
function over another, specific the sliding of the wavelet over the function to be analysed or
transformed. The Fourier transform is the classical ‘frequency transform’ which gives us the
contribution of each frequency to the total signal. It is ‘totally un-localized’ in that a small
change to a small part of the signal gives contribution to the whole transform, hiding the
localizationin the transformed signal. This can partly be fixed by windowing the frequency
atom, i.e. by multiplying with a localized function. In theWindowed Fourier Transformwe use
a fixed window, and thus get partly localized information. In the wavelet transform, we have,
in effect, a window that is dynamically scalable, giving us a much better localization property.

Definition 2.1 (Fourier Transform). We define theFourier-transformf̂ of f as
f̂(ξ) =

∫
R f(t)e−itξ dt.

The Fourier Transform is sometimes defined with a1
2π

or 1√
2π

factor added for symmetry with
the inverse transform or for isometric purposes, and these other definitions might be in use, by
mistake, in some of the calculations in this thesis. Warning given.

A wavelet is a localized function with waves or oscillations, with average zero. It’s a pretty
‘weak’ definition in that there are a lot of wavelets, giving us enormous freedom in selecting
wavelets that suits our problem to be solved. The flexibility also offers challenges to the
understanding of exactly what the analysis of a function shows us. There are many slightly
different definitions of wavelets and of wavelet transforms, each emphasizing different
perspectives of the theory. In the discrete theory, the Hilbert spaceL2(R) is often used with the
many Hilbert space results as tools and with wavelet transforms defined by theL2(R)
innerproduct. Similarly with periodic functions onL2[a, b]or L2([0, 2π)). We will be using the
standard definition for continuous wavelet transform which is the convolution-perspective.

Definition 2.2 (Admissible Wavelets and Wavelet Transform).
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• Cψ = 2π
∫
R

|ψ̂(ξ)|2
|ξ| dξ.

• C+
ψ =

∫∞
0

|ψ̂(ξ)|2
ξ

dξ.

• C−
ψ =

∫ 0

−∞
|ψ̂(ξ)|2
|ξ| dξ.

• If Cψ < ∞, then we say thatψ is admissible, or thatψ satisfiesthe admissibility
condition.

• ψ is a waveletif ψ ∈ L1(R) ∩ L∞(R) andC+
ψ = C−

ψ < ∞.

• The Continuous Wavelet Transform (CWT):

Wψf(s, x) = (f ∗ ψs)(x) =

∫

R
f(u)

1

s
ψ

(
x− u

s

)
du.

For any real functionf , we have theHermittian Symmetrygiven byf̂(−ξ) = f̂(ξ), so for real
wavelets, the conditionC+

ψ = C−
ψ is automatically satisfied.

The CWT has a weak inverse, given by the following lemma:

Lemma 2.3. Givenf ∈ L1(R),

f(x) =
1

Cψ

∫ ∞

0

∫

R
Wψf(s, x)ψs(u− x) du

ds

s
,

where the equality is in a weak sense.

Proof. This is outlined on pages 24 and 25 in Daubechies (9) and Proposition 2.4.1 there.

The admissibility condition onL1(R)-functions implies that the function has average zero,
which justifies the ‘wave’-part of the notion of ‘wavelets’. They are also time-localized or
‘small’, meaning that they areL1(R) and some are also compactly supported, which is the
motivation for the ‘-lets’ part of the name. The mostly used compactly supported wavelets are
the compactly supported spline- and Daubechies-wavelets, including the Haar-wavelet. Other
examples of non compact but highly localized wavelet are the Gaussian family including the
Mexican Hat wavelet. This family consists of derivatives of a Gaussian function.

Lemma 2.4. If ψ is a wavelet then̂ψ(0) =
∫

ψ(x)dx = 0.

Proof. Supposêψ(0) = δ 6= 0. Sinceψ̂(ξ) is continuous by Lemma A.60, there existsε > 0
such that|ψ̂(ξ)| ≥ δ/2 i [0, ε〉. Consequently

Cψ ≥
∫ ε

0

δ/2

ξ
dξ = ∞.
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Lemma 2.5. Letk ∈ N, φ ∈ Ck(R) and suppose thatφ(k) ∈ L2(R) is not identically zero.
Thenψ(x) = φ(k)(x) is admissible.

Proof. Since|ψ̂(ξ)| = |ξ|k|φ̂(ξ)| by induction on A.5 in Lemma A.60, page 90

Cψ = 2π

∫

R
|ψ̂(ξ)|2
|ξ| dξ

= 2π

∫

R
|ξ|2k|φ̂(ξ)|2

|ξ|

= 2π

∫ 1

−1

|ξ|2k−1|φ̂(ξ)|2dξ + 2π

∫

|ξ|>1

|ξ|2k|φ̂(ξ)|2
|ξ| dξ

≤ 2π

(
||φ||2L∞([−1,1]) + ||φ(k)||2

L2(R)

)
< ∞.

Lemma 2.6. The set{f ∈ L2(R) : f is admissible} is dense inL2(R).

Proof. f ∈ L2(R) ⇒ f̂ ∈ L2(R) by Lemma A.61. LetχA be the characteristic function of a
setA and definef̂ε = f̂(ξ)χ{ξ:|ξ|>ε}(ξ). For everyε, fε is admissible. Since
||f ||L2(R) = ||f̂ ||L2(R),

||f − fε||2L2(R)
=

∫ ε

−ε

|f̂(ξ)|2dξ → 0 whenε → 0, (2.1)

so everyL2(R)-function is the limit of a sequence of admissible functions.

This calls for some remarks. We see that any function inL2(R) with any average can be
approximated by a function of zero average that satisfies the admissibility condition. Usually
when we talk about wavelets we think of the Daubechies family, the Meyer family or some
other well localized functions, usually localized somewhere around zero, and with a few
approximately symmetric or anti-symmetric bumps. But from Lemma 2.6 we see that
admissible functions can have aboutanyshape or structure. This is of course not so forL1(R).
As an illustration, let us consider an example:

Example. Letψn : R→ R be defined by:

ψn(x) =





0 for x ∈ (−∞, 0) ∪ [n + 1,∞)
1 for x ∈ [0, 1)
−1/n for x ∈ [1, n + 1),

,

and letχ(a,b)(x) ∈ L2(R) be the characteristic function of(a, b). We have:

χ̂(−1,1)(ξ) = 2
sin(x)

x
= 2 sinc(ξ) and

̂ψs(· − b)(ξ) = e−ibξψ̂(sξ).
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Then

ψ̂n(ξ) = e−iξ/2 sinc(ξ/2)− e−i(n+2
2

)ξ sinc(nξ/2)

= e−iξ(eiξ/2 sinc(ξ/2)− e−inξ/2 sinc(nξ/2),

and

|ψ̂n(ξ)|2
|ξ| < lim

ξ→0

|ψ̂n(ξ)|2
|ξ| < 2n.

So

Cψn = 2π

∫

R
|ψ̂n(ξ)|2
|ξ| dξ (2.2)

= 2π

∫

R
|eiξ/2 sinc(ξ/2)− e−inξ/2 sinc(nξ/2)|2

|ξ| dξ (2.3)

≤ 2π

∫

|ξ|≤1

2n dξ +

∫

|ξ|>1

4

|ξ|3 dξ (2.4)

< ∞. (2.5)

soψn is admissible∀n ∈ N, and

• ∫
R fn(x) dx = 0, ∀n ∈ N,

• fn → χ(a,b), n →∞ and

• ||χ(0,1) − fn||2L2(R)
= 1/n2 → 0, n →∞.

So we have a set of admissible functions that converges to the characteristic function of[0, 1)
in L2(R). That shows that any simple function, which is a finite linear combination of
characteristic functions, is in the closure of the set of admissible functions.

Lemma 2.7. Suppose0 6= ψ ∈ L1(R) ∩ L2(R), ψ̂(0) = 0 and

∫

R
|x|β|ψ(x)|dx < ∞

for someβ > 1/2. Thenψ is admissible.

Proof. This is Lemma 1.1.4 in Louis, Maas, Riedler (31).

Corollary 2.8. Suppose0 6= ψ ∈ L2(R) has compact support. Then

ψ̂(0) = 0 ⇔ ψ is admissible. (2.6)
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Proof. • ⇐: If ψ ∈ L2(R) has compact support, thenψ ∈ L1(R) and the result follows
from Lemma 2.4.

• ⇒: The compact support ofψ gives
∫
R |x|β|ψ(x)|dx < ∞ for all β > 0, so this follows

from Lemma 2.7.

The following lemma is simply a splitting of a functionf in one smooth (Cn(I)) part and a
‘rest’, the irregular part. It’s simply a tool to be used in later sections.

Lemma 2.9. Let I = (a, b) ⊂ R be an interval,s0 > 0, f ∈ L1(I) andψ ∈ Cn(I), for n ∈ N.
Then

f(x) =
1

Cψ

∫ s0

0

∫

R
Wψf(s, u)ψs(u− x) du

ds

s
(2.7)

+
1

Cψ

∫ ∞

s0

∫

R
Wψf(s, u)ψs(u− x) du

ds

s
(2.8)

= fsmall(x) + flarge(x), (2.9)

whereflarge(x) ∈ Cn(I).

Proof. We haveψs(u− x− h)− ψs(u− x) = h
s2 ψ

′(u−x−τ
s

) for someτ ∈ (0, h) by theMean
Value Theorem, so

0 ≤ |flarge(x + h)− flarge(x)| (2.10)

=
1

Cψ

∫ ∞

s0

∫

R
Wψf(s, x)(ψs(u− x− h)− ψs(u− x))du

ds

s

=
1

Cψ

∫ ∞

s0

∫

R
Wψf(s, x)

h

s2
ψ′(

u− x− τ

s
)du

ds

s

≤ h
||f ||L1(I)||ψ||L∞(I)||ψ′||L1(I)

Cψ

∫ ∞

s0

1

s2
ds

= h
||f ||L1(I)||ψ||L∞(I)||ψ′||L1(I)

s0Cψ

= Ch, (2.11)

and the result follows by induction onn.

Example (Commonly used Wavelets).As we have seen, there are an infinite number of
wavelets, but there are a number of classes or families of wavelets that are more used and
studied than others because of their nice properties. We will not be defining or analysing these
families here, only mention and plot (Figure 2.1) some of the most famous and popular ones,
and mention in particular two of the mostly used, namely theHaar waveletand theMexican
Hatwavelet, whom we will be using later in this thesis.
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Figure 2.1 Different wavelet functions

2.3 Hölder Regular Functions

The smoothness of a function at a point or in some interval is a description of how fast it is
changing. Is it continuous? Is it differentiable? Is its derivative continuous etc. The
mathematical description of this is contained in the definition of Hölder regularity. Lipschitz
regularity gives a similar description and is used by some authors, sometimes with a slightly
different definition. TheLipschitz conditionon a function is usually for the function to be
Hölder 1.

First we include some notations.

Definition 2.10 (’Big O’ (O) and ’Small o’ (o)). Letf andg be functions.

• f(x) = O(g(x)), x → x0 ⇔ f(x)/g(x) < C < ∞ for |x− x0| < δ.

• f(x) = o(g(x)), x → x0 ⇔ f(x)/g(x) → 0 for |x− x0| → 0.

’Big O’ and ’Small o’ are notations used to characterize upper bounds of a function by easily
manageable functions whenx → x0. For instance, if the modulus of a functionf is bounded
by a constant times1/|x| whenx → 0, we writef(x) = O(1/x), x → 0.

Definition 2.11 (Fast Decay).A functionψ hasfast decayif

|ψ(x)| = O((1 + |x|m)−1), ∀m ∈ N, x →∞.

This definition shows us that a function has fast decay if it converges to zero whenx →∞
even if it is multiplied by any polynomial.
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Definition 2.12 (Smoothing function).A smoothing functionis a real functionΘ(x) such that

Θ(x) = O

(
1

1 + x2

)
,

and
Θ̂(0) 6= 0.

The typical smoothing function used is a ‘bump’-function, essentially positive, like the
Gaussian or the characteristic function. The convolution of a smoothing function and a
function is typically a smoothed version of the original function, explaining the name.

Definition 2.13 (Hölder regularity). Letn ∈ N , n ≤ α < n + 1. A functionf(x) is Hölderα
at x0 if there exist two constantsA andh0 > 0, and a polynomialPn(x), (typically theTaylor
Polynomialif the function isn times differentiable,) of ordern such that forh < h0,

|f(x0 + h)− Pn(h)| ≤ A|h|α. (2.12)

The supremum of all the valuesα such thatf is Hölderα at x0 is called theHölder regularity
of f at x0. A function issingularat x0 if it is not Hölder1 at x0. A functionf(x) is uniformly
Hölderα over an interval(a, b) if there exists a constantA such that for allx0 ∈ (a, b) there
exists a polynomial of ordern, Pn(x) such that|f(x0 + h)− Pn(h)| ≤ A|h|α for any
x0 + h ∈ 〈a, b〉. If f is a tempered distribution of finite order ,α is a non-integer real number
and[a, b] ⊂ R, then the distributionf(x) is uniformly Hölderα on (a, b) if its primitive is
uniformly Hölderα + 1 on (a, b). A distributionf has anisolated singularity Hölderα at x0 if
f(x) is uniformly Hölderα over an interval(a, b), with x0 ∈ (a, b), andf is uniformly Hölder
1 over any subinterval of(a, b) that does not includex0.

A more general definition of Hölder-like properties are included in the following function
spaces, which are used in Holschneider (14):

Definition 2.14 (Λα, λα, Λα,β
log , λα,β

log ). Letn ∈ N andPn be the polynomial of degree at mostn

that best approximates the functionf in a neighborhood ofx0 (the Taylor Polynomial if f isn
times differentiable) and let

f(x0 + x) = Pn(x) + floc(x).

• f ∈ Λα(x0), n < α ≤ (n + 1) ⇔ floc(x) = O(xα), (x → 0).

• f ∈ λα(x0), n ≤ α < (n + 1) ⇔ floc(x) = o(xα), (x → 0).

• f ∈ Λα,β
log (x0), n < α ≤ (n + 1) ⇔ floc(x) = O(xα logβ x), (x → 0).

• f ∈ λα,β
log (x0), n ≤ α < (n + 1) ⇔ floc(x) = o(xα logβ x), (x → 0).

• Λα(R), λα(R), Λα,β
log (R) andλα,β

log (R) are the spaces where the above estimates hold
uniformly inx.
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Lemma 2.15.Letα < α′, β < β′ andγ > 0. Then

Λα,β
log (R) ⊂ Λα,β′

log (R) ⊂ Λα(R) ⊂ λα,β
log (R) ⊂ λα,β′

log (R) ⊂ λα(R) ⊂ Λα′,γ
log (R).

Lemma 2.16.We have the following results, concerning Hölder regularity:

1. f Hölderα, β ≤ α,⇒ f Hölderβ.

2. f bounded,α ≤ 0⇒ f Hölderα.

3. f continuous,α < 1⇒ f Hölderα.

4. f Hölderα ⇒ F (x) =
∫ x

a
f(u)du Hölder (α + 1).

5. f Hölderα 6∈ Z⇒ f ′ Hölder (α− 1).

Proof. 1. α− β > 0, |h| < 1 ⇒ |h|α−β < 1. So

|f(x + h)− Pn(h)| ≤ A|h|α = A|h|β |h|α−β ≤ A|h|β.

2. |h| < 1, α ≤ 0 ⇒ |h|α ≥ 1. So

|f(x + h)− Pn(h)| = |f(x + h)− f(x)| ≤ |f(x + h)|+ |f(x)| ≤ 2A ≤ 2A|h|α.

3. |h| < 1, α < 1 ⇒ |h|α > |h|. So

|f(x + h)− f(x)| ≤ A|h| ≤ A|h|α.

4. Selectτ ∈ (−h, h) such thatF (x+h)−F (x)
h

= f ′(x + τ). (It exists by theMean Value
Theorem.) Then

|F (x + h)− Pn(h)| = |F (x + h)− F (x)− f(x)h

−
n∑

k=1

1

(k + 1)!
f (k)(x)hk+1|

= |h| |(F (x + h)− F (x)

h

−
n∑

k=0

1

(k + 1)!
f (k)(x)hk)|

= |h|(|f(x + τ)−
n∑

k=0

1

(k + 1)!
f (k)(x)hk)|

= |h|(|f(x + τ)−
n∑

k=0

1

k!
f (k)(x)hk

+
n∑

k=0

1

k!
f (k)(x)hk −

n∑

k=0

1

(k + 1)!
f (k)(x)hk|)

≤ |h| C|h|α + |h| |
n∑

k=0

k

(k + 1)!
f (k)(x)hk)|

≤ |h| C|h|α + |h| C1|h|α
= |h| C2|h|α
= C2|h|(α+1),
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for h small enought, since the polynomials are smooth.

5.

C|h|α ≥ |f(x + h)− Pn(h)|

= |f(x + h)− f(x)−
n∑

k=1

1

k!
f (k)(x)hk

= |h| (|f(x + h)− f(x)

h
−

n−1∑

k=0

1

(k + 1)!
f (k+1)(x)hk|)

= |h| |f ′(x + τ)− P2(h)|

Then

|f ′(x + τ)− P2(h)| ≤ C|h|(α−1),

by the same argument. Theα 6∈ N reservation comes from the case of oscillating
singularities.

To measure regularity of functions, the smoothness, or the ‘narrowness’ in the frequency
domain, of the analysing wavelet is not that important. But to measure Hölder regularity
higher than 1, vanishing moments of the wavelet is crucial.

Definition 2.17 (Vanishing Moments,Mn(Ω) ). A functionψ hasn ∈ N vanishing moments
onΩ ⊂ R if ∫

Ω

xkψ(x) dx = 0 for k = 0, · · · , n.

Mn(Ω) = {f ∈ L1(Ω) : f hasn vanishing moments.}

By the Hölder property (2.12), we approximatef with a polynomialPn(x) in a neighborhood
of x,

f(x0 + h) = Pn(h) + g(h), with |g(h) ≤ A|h|α. (2.13)

If the analysing wavelet hasn vanishing moments, the polynomial partPn(x) of f(x) gives no
contribution toWψf(s, x). So to find the exact Hölder regularityα, whenm− 1 < α < m for
some largem ∈ N, simply use a wavelet with at leastm vanishing moments, and the smooth,
polynomial part off will not affectWψf(s, x).

Theorem 2.18 (Mallat (37) (Theorem 6.2)).Given a waveletψ with fast decay.

ψ ∈ Mn(R) ⇔ ∃θ with fast decay, such thatψ(x) = (−1)n dnθ(x)

dxn
.

Further,

m > n, ψ 6∈ Mm(R) ⇔
∫

R
θ(x) dx 6= 0.
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Proof. This is Theorem 6.2 in Mallat (37) and is proved there.

Corollary 2.19. If ψ ∈ Mn(R) , then

Wψf(s, x) = sn dn

dxn
(f ∗ θinv

s )(x),

whereθinv
s (x) = 1

s
θ(−t

s
).

Proof. This is included in Theorem 6.2 in Mallat (37) and is proved there.

Corollary 2.20. If ψ ∈ Mn(R) then

ψ̂(ξ) = (iξ)nθ̂(ξ).

Proof. This is a simple consequence of the previous lemma and of Lemma A.60.

It is, however, important to know that there exists wavelets withall the moments vanishing, as
described in this next lemma. This is the case for theMeyer Wavelet, introduced by Yves
Meyer: Wavelets and Operators (45).

Lemma 2.21 (Louis et. al (31)(Lemma 1.4.5)).There exists admissibleψ ∈ S(R) such that
∫

R
xkψ(x) dx = 0,∀k ∈ N.

Proof. Choose0 6= φ ∈ C∞0 (R) such thatφ(ξ) = 0 in a neighbourhood ofξ = 0. Then
φ(k)(ξ)|ξ=0 = 0, ∀k ∈ N. Defineψ(x) as the inverse Fourier Transform ofφ(ξ). Then

Cψ =

∫

R
|ψ̂(ξ)|2
|ξ| dξ =

∫

R
|φ(ξ)|2
|ξ| dξ < ∞,

soψ is admissible. Letg(x) = xkψ(x). Then

0 = φ(k)(ξ)|ξ=0 = ψ̂(k)(ξ)|ξ=0

= (−1)kĝ(ξ)|ξ=0

= (−1)k

∫

R
g(x)e−ixξ dx|ξ=0

= (−1)k

∫

R
xkψ(x)e−ixξ dx|ξ=0

= (−1)k

∫

R
xkψ(x) dx.

Now we have established some notations and properties of wavelets, and are ready to examine
some consequences of functions being Hölder regular. The first two theorems are regarding
uniform Hölder regularity and the next two are about pointwise Hölder regularity.
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Theorem 2.22 (Mallat, Hwang (38) (Theorem 3.3 a)).Let0 < α < n ∈ N. Let [a, b] ⊂ R be
an interval and(b− a) > 2ε > 0. Suppose thatψ ∈ Mn(R) is a wavelet and
||xαψ||L1(R) < ∞. If a functionf(x) ∈ L2(R) is uniformly Hölderα over any interval

(a + ε, b− ε), then

|Wψf(s, x)| = O(sα), x ∈ (a + ε, b− ε), s > 0. (2.14)

Proof. This is proved in Chapter 3.

Theorem 2.23 (Mallat (37) (Theorem 6.3 a)).Letψ ∈ Mn(R) haven derivatives having fast
decay. Iff ∈ L2(R) is uniformly Hölderα ≤ n over[a, b] ⊂ R then

|Wψf(s, x)| = O(sα), ∀(s, x) ∈ R+ × [a, b]. (2.15)

Proof. This is half of Theorem 6.3 in Mallat (37) and is proved there.

We see that the differences between Theorem 2.22 and the more recent by Mallat in 2.23 is
that with the stronger condition thatψ haven derivatives having fast decay, instead of
||xαψ||L1(R) < ∞, we get the result on the whole interval,[a, b], and also that the result is

valid for integerα = n ∈ N. Now to the pointwise cases:

Theorem 2.24 (Mallat, Hwang (38) (Theorem 3.4 a)).Letα ≤ n ∈ N. Suppose
ψ ∈ Cn(R) ∩Mn(R) is a wavelet, such that||xαψ||L1(R) < ∞. If a functionf(x) ∈ L2(R) is

Hölderα at x0, then for all pointsx in a neighborhood ofx0 and any scales,

|Wψf(s, x)| = O(sα + |x− x0|α). (2.16)

Proof. This is proved in Chapter 3.

Theorem 2.25 (Mallat (37) (Theorem 6.4 a)).Letψ ∈ Mn(R) haven derivatives having fast
decay. Iff ∈ L2(R) is Hölderα ≤ n at x0 then

|Wψf(s, x)| = O(sα + |x− x0|α), ∀(s, x) ∈ R+ × R.

Proof. This is half of Theorem 6.4 in Mallat (37) and is proved there.

Again, the condition thatψ haven derivatives having fast decay in Theorem 2.25 replaces the
condition||xαψ||L1(R) < ∞ in Theorem 2.22, with the same conclusion, making the first one

the strongest.

As a corollary of this, we get the following ‘algorithm’ for computing the Hölder exponent,
with notationα(f, x0):

Corollary 2.26 (Mallat (37) (Theorem 10.2)).Supposef uniformly Hölderβ and bounded
for someβ, 0 < β < 1. Then, for everyx0 ∈ R, the Hölder exponentα(f, x0) is given by

α(f, x0) = lim
s→0x→x0

inf
log |Wψf(s, x)|

log(s + |x− x0|) (2.17)
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Proof. This is Theorem 10.2 in Mallat (37) and is proved there.

Definition 2.27 (Submultiplicative Function). A functionr : R+ → R+ is called
submultiplicativeif:

• r(x + ε) ≥ r(x), ∀x, ε > 0.

• ∃C > 0 such thatr(t x) ≤ C r(t) r(x), ∀t, x ∈ R+.

A functionr is submultiplicative overR if r(x) andr(−x), x ≥ 0 are submultiplicative.

A submultiplicative function is an increasing function, with a restriction on the asymptotic
increase. For instance, the functionsr(x) = C xα are submultiplicative functions for all
α, C > 0. A functionr(x) being submultiplicative means that the logarithm,
p(x) = log(r(x)) is subadditive.This notation is used by Holschneider (14) as a generalization
of thexα-perspective of Mallat (37), and Mallat and Hwang (38) in Theorem 2.22 and
Theorem 2.24 and in theorems we will be studying in later sections.

Theorem 2.28 (Holschneider (14) (Theorem 2.0.5)).Let r be a submultiplicative function
and letψ ∈ Mn(R) be a wavelet such that||rψ||L1(R) < ∞. Then

• f(x0 + x) = Pn(x) + O(r(|x|)) ⇒Wψf(s, x0 + x) = O(r(x) + r(s)).

• f(x0 + x) = Pn(x) + o(r(|x|)) ⇒Wψf(s, x0 + x) = o(r(x) + r(s)).

Proof. This is Theorem 2.0.5 in Holschneider (14) and is proved there.

Corollary 2.29 (Holschneider (14) (Theorem 2.0.3)).Letψ ∈ Mn(R) be a wavelet and let
|f(x)| ≤ c(1 + |x|α).

• If ||xαψ||L1(R) < ∞, then

– f ∈ Λα(x0) ⇒Wψf(s, x0 + x) = O(sα + |x|α), (s → 0).

– f ∈ λα(x0) ⇒Wψf(s, x0 + x) = o(sα + |x|α), (s → 0).

• If ||xα logβ(x)ψ(x)||L1(R) < ∞, then

– f ∈ Λα,β
log ⇒Wf (s, x0 + x) = O(sα logβ s + |x|α logβ |x|), (s → 0).

– f ∈ λα,β
log ⇒Wf (s, x0 + x) = o(sα logβ s + |x|α logβ |x|), (s → 0).

Proof. This corollary is Theorem 2.0.3 in Holschneider (14) and is proved there.

A slightly different class of functions from the Hölder-classes of functions, or specific the
Hölderα = 1 class is theClass of Zygmund:
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Figure 2.2 Functions in the Zygmund Class does not have cusps

Definition 2.30 (The Class of Zygmund,Λ∗(R), λ∗(R)).

Λ∗(R) = {f ∈ C(R) : |f(x + x0) + f(x− x0)− 2f(x0)| = O(x), x → 0,∀x0 ∈ R}.

λ∗(R) = {f ∈ C(R) : |f(x + x0) + f(x− x0)− 2f(x0)| = o(x), x → 0, ∀x0 ∈ R}.

The functions inΛ∗(R) do not have cusps. The example illustrating this in Holschneider (14)
is the function

f(x) = x log(|x|) ∈ Λ∗(R),

and

f(x) = |x| log(|x|) 6∈ Λ∗(R),

plotted in Figure 2.2.

Theorem 2.31 (Holschneider (14) (Theorem 2.2.2)).Supposeψ ∈ S0(R) (Schwarz class,
page 92) is a wavelet. Then,

• f ∈ Λ∗(R) ⇒Wψf(s, x) = O(s), (s → 0).

• f ∈ λ∗(R) ⇒Wψf(s, x) = o(s), (s → 0).

Proof. This is Theorem 2.2.2 in Holschneider (14) and is proved there.



22

0 500 1000 1500 2000 2500
−1

0

1
Analyse(os.m)

0 500 1000 1500 2000 2500
2

3

4

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

Figure 2.3 A function with oscillating singularity on top. The other plots are a regularity
analysis, the magnitude of the wavelet transform, and two versions of the maxima
lines og this CWT. This is a type of plots that will be used later in this thesis.

2.4 Oscillating Singularities

Oscillating singularities occur when an otherwise (in a neighbourhood) smooth function is
singular at a point due to oscillations that tends to infinity towards that point. That means that
in a neighborhood that does not contain the singular point, the function is smooth, but it
becomes arbitrary fast changing close to the point. We define oscillating singularities by
properties of the wavelet transform, according to the themes in this thesis:

Definition 2.32 (Oscillating Singularities). A functionf(x) has anOscillating singularityat
x0 if there existsα > 0 such thatf is not Hölderα at x0 but the primitiveF (x) =

∫ x

a
f(u) du

is Hölder(α + 1) at x0.

For instance, the function

f(x) = sin(
1

x
)

has an isolated singularityα = 0, atx = 0 and isC∞ elsewhere.

For functions with oscillating singularities we must consider the wavelet transformoutsideThe
Cone of Influence, as in the second term|x−x0|α

| log(|x−x0|)| in (2.21) of Theorem 2.39. The reason for
this is that we don’t have any maxima lines that converges to the singular point, but we have
maxima lines converging tox = 1/(nπ) with

|Wψf(s, x)| ≤ Ans, (α = 1),

whereAn = O(n2) which means that theAns grow to infinity when we get closer to0.
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The maxima of the maxima lines, meaning the points(s, X(s)) on one of the maxima lines
where we have a local maximum of|Wψf(s, x)| in a small 2D neighborhood are located
along, for thesin(1/x)-case, a parabola that is outside the Cone of Influence. A more thorough
discussion of this is found in Section 5.3 on pages 70-78 in Mallat and Hwang (39).

2.5 Global Hölder Regularity

With the Fourier transform, we are able to characterize global Hölder regularity by the decay
of the Fourier transform as shown in Lemma 2.33. We are, however, not able to tell whether
the function is locally more regular.

Lemma 2.33 (Mallat (37) (Theorem 6.1)).A bounded functionf(x) is uniformly Hölderα
overR if it satisfies

∫
R |f̂(ξ)|(1 + |ξ|)α dξ < +∞.

Proof. This is Theorem 6.1 in Mallat (37) and is proved there.

With the wavelet transform, however, we will in the next chapter show that we can find the
Hölder regularity of a given function at a particular pointx0. This section will show some
results regarding characterization of Hölder regularity on regions or neighborhoods inR (or all
of R) by the asymptotic behavior of the wavelet transform when the scale goes to zero.

Theorem 2.34 (Mallat, Hwang (38) (Theorem 3.3 b)).Suppose that0 < α ≤ n ∈ N, α 6∈ N,
ψ ∈ C(R) ∩Mn(R) is a wavelet and||ψ′||L1(R) < ∞. Let [a, b] ⊂ R be an interval. If

|Wψf(s, x)| = O(sα). (2.18)

for anyx ∈ (a + ε, b− ε) ((b− a) > 2ε > 0) and any scales > 0, thenf(x) is uniformly
Hölderα over any such interval(a + ε, b− ε).

Proof. This is half of Theorem 3.3 in Mallat, Hwang (38) and is proved in Chapter 3.

Theorem 2.35 (Mallat (37) (Theorem 6.3 b)).Letψ ∈ Mn(R) haven derivatives having fast
decay. Iff ∈ L2(R), [a, b] ⊂ R, n < α 6∈ N andWψf(s, x) satisfies

|Wψf(s, x)| = O(sα), ∀(s, x) ∈ R+ × [a, b] (2.19)

thenf is uniformly Hölderα on [a + ε, b− ε], ∀ε > 0.

Proof. This is the second part of Theorem 6.3 in Mallat (37) and is proved there.

As for the theorems in the previous section, the main difference between Theorem 2.34 and
Theorem 2.35 is that in the firstψ ∈ C(R) andψ′ ∈ L1(R) whilst in the latter,ψ is supposed
to beCn(R) with n derivatives having fast decay. The important difference between these two
theorems and their counterparts, Theorem 2.22 and Theorem 2.23, is the non-integer demand
onα (α 6∈ N) .
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Theorem 2.36 (Holschneider (14) ( Theorem 2.1.1)).Suppose0 < α < n ∈ N,
ψ ∈ Cn+1(R) is compactly supported and|Wψf(s, x)| is rapidly decreasing for larges. Then,
whena → 0:

• |Wψf(s, x)| = O(sα) ⇒ f ∈ Λα(R)

• |Wψf(s, x)| = o(sα) ⇒ f ∈ λα(R)

• |Wψf(s, x)| = O(sα logβ(s)) ⇒ f ∈ Λα,β
log (R)

• |Wψf(s, x)| = o(sα logβ(s)) ⇒ f ∈ λα,β
log (R)

Proof. This is Theorem 2.1.1 in Holschneider (14) and is proved there.

Theorem 2.37 (Holschneider (14) (Theorem 2.2.3)).Letψ ∈ C2(R) be compactly supported
andWψf(s, x) = 0 for s > 1.

• Wψf(s, x) = O(s) ⇒ f ∈ Λ∗(R).

• Wψf(s, x) = o(s) ⇒ f ∈ λ∗(R).

Proof. This is Theorem 2.2.3 in Holschneider (14) and is proved there.

Corollary 2.38 (Holschneider (14) (Corollary of Theorem 2.2.3)).Letα < 1. Then,

Λ1(R) ⊂ Λ∗(R) ⊂ Λα(R).

Proof. This is a corollary of Theorem 2.2.3 in Holschneider (14) and is proved there.

2.6 Local Hölder Regularity

We now turn to the more important part of this chapter. We will present some theorems that
gives us a tool for characterizing the pointwise regularity of functions based on the decay of
the wavelet transform when the scale goes to zero.

Theorem 2.39 (Mallat, Hwang (38) (Theorem 3.4 b)).Letf ∈ L2(R) and
ψ(x) ∈ Cn(a, b) ∩Mn(R) be a wavelet with compact support. Let0 < α < n, α 6∈ N. If the
two following conditions hold:

• There existsε > 0 such that for all pointsx in a neighborhood ofx0 and any scales,

|Wψf(s, x)| = O(sε). (2.20)

• For all pointsx in a neighborhood ofx0 and any scales

|Wψf(s, x)| = O

(
sα +

|x− x0|α
| log(|x− x0|)|

)
. (2.21)
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thenf(x) is Hölderα at x0

Proof. This is half of Theorem 3.4 in Mallat, Hwang (38) and is proved in Chapter 3.

Theorem 2.40 (Mallat (37) (Theorem 6.4 b)).Letψ ∈ Mn(R) haven derivatives having fast
decay. Ifn > α 6∈ N and there existsα′ < α such that

|Wψf(s, x)| = O(sα + s(α−α′)|x− x0|α′), ∀(s, x) ∈ R+ × R, (2.22)

thenf is Hölderα at x0.

Proof. This is half of Theorem 6.4 in Mallat (37) and is proved there.

The first condition in Theorem 2.39 shows thatf is uniformly Hölderε (typically ε < α) in a
region containingx0. Theorem 2.40 has a slightly different condition:

|Wψf(s, x)| = O(sα + s(α−α′)|x− x0|α′)

which is supposed to be valid globally and makes it almost an if-and-only-if theorem, together
with Theorem 2.25. The other difference between these two theorems is the compactly
supportedψ in the first as opposed to the fast decay of then derivatives ofψ in the latter. The
second term in (2.21) represents a restriction onWψf(s, x) alsooutsideThe Cone of Influence.

Theorem 2.41 (Holschneider (14) (Theorem 2.3.2)).Let r be a submultiplicative, even
function,n ∈ N and letψ ∈ C(n+1) be compactly supported wavelet. Suppose

1.
∫ 1

0
r(x)x−(n+1) dx < ∞ andr(x) = O(xn), (x → 0).

2.
∫∞

1
r(x)x−(n+2) dx < ∞ andr(x) = O(x−(n+1)), (x →∞).

3. ∃γ > 0 such that|Wψf(s, x)| = O(sγ) for s < 1 uniformly inx.

Then, for(s → 0, x),

• Wψf(s, x0 + x) = O(r(s) + r(x)
log(r(x))

) ⇒ |f(x + x0)− Pn(x)| = O(r(x)).

• Wψf(s, x0 + x) = o(r(s) + r(x)
log(r(x))

) ⇒ |f(x + x0)− Pn(x)| = o(r(x)).

Proof. This is Theorem 2.3.2 in Holschneider (14) and is proved there.

Corollary 2.42 (Holschneider (14) (Corollary 2.3.3)).If

• |Wψf(s, x)| = O(sγ) for someγ > 0.

• |Wψf(s, x0 + x)| = O(sα + xα), (s → 0, x),
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then

|f(x + x0)− f(x0)| = O(xα log(x)), (x → 0).

Proof. This is Corollary 2.3.3 in Holschneider (14) and is proved there.

Theorem 2.43 (Holschneider (14) (Theorem 2.3.1)).Suppose

1. ∃γ > 0 such that|Wψf(s, x)| = O(sγ) for s < 1 uniformly inx.

2. |Wψf(s, x0 + x)| = O(sα) + O( xα

log x
), (s → 0, x),

3. |Wψf(s, x)| is rapidly decreasing for larges.

Then
|f(x + x0)− Pn(x)| = O(xα)

for n < α < n + 1.

Proof. This is Theorem 2.3.1 in Holschneider (14) and is proved there.

2.7 Pointwise Differentiability

This section is included to show how the results concerning Hölder regularity affects the
differentiability of functions, and only Holschneider (14) has these results explicitly as
theorems.

Theorem 2.44 (Holschneider (14) (Theorem 2.1.2)).Let r be a submultiplicative, even
function that satisfies, forn ∈ N,

• ∫ 1

0
r(x)x−(n+1) dx < ∞ andr(x) = O(xn), (x → 0).

• ∫∞
1

r(x)x−(n+2) dx < ∞ andr(x) = O(x−(n+1)), (x →∞).

Supposeψ ∈ C(n+1) has compact support and thatWψf(s, x) = 0 for s > 1.

• If |Wψf(s, x)| = O(r(s)), (s → 0) then

– f ∈ Cn(R),

– |dnf(x+u)
dxn − dnf(x)

dxn | = O(r(x)/xn), (x → 0).

• If |Wψf(s, x)| = o(r(s)), (s → 0) then

– f ∈ Cn(R),

– |dnf(x+u)
dxn − dnf(x)

dxn | = o(r(x)/xn), (x → 0).

Proof. This is Theorem 2.1.2 in Holschneider (14) and is proved there.
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Theorem 2.45 (Holschneider (14) (Theorem 2.4.1)).Suppose the waveletψ ∈ C(n+1) has
compact support and a non-negative monotonic functionr(x) = r(|x|) satisfies the
‘ ‘Condition of Dini”:

∫ 1

0

r(x)

x(n+2)
dx < ∞.

If

1. Wψf(s, x) = 0 for s > 1,

2. Wψf(s, x) = O(sγ) for someγ > 0 and

3. Wψf(s, x + x0) = O(r(s) + r(x)),

then thenth differential quotient off (∆n(x) = ∆(n−1)(f(x−x0)−f(x0)
x

)) exists atx0.
Furthermore, the condition onr is optimal.

Proof. This is Theorem 2.4.1 in Holschneider (14) and is proved there.

Theorem 2.46 (Holschneider (14) (Theorem 2.4.2)).Supposef is a periodic function or
measure,∂tf(x0) exists and the waveletψ ∈ L1(R) ∩Mn−1(R) and(xnψ) ∈ L1(R). If

∫ ∞

−∞
xnψ(x) dx = n! ⇔ (i∂)nψ̂(0) = 2πn!,

then

lim
s→0

Wψf(s, x0)

sn
= ∂n

xf(x0).

Proof. This is Theorem 2.4.2 in Holschneider (14) and is proved there.

2.8 CWT Local Maxima

The continuous wavelet transform is a function of 2 variables, the ‘time’ and the ‘frequency’
variable. We are interested in the set of maxima of the one-dimensional functions we get when
we fix the ‘frequency’ variable. The maxima of the functionsgs(x) = |Wψf(s, x)| are on the
ridgesof the|Wψf(s, x)| surface, whereas thezero-crossingsof the functions
gs(x) = Wψf(s, x) are the delimiting lines between the different such ridges, or the ‘valleys’
between them. Properties ofWψf(s, x) at the zero-crossings or at the ridges has been studied
extensively in (1), (36),(55) and in many other papers.

Definition 2.47 (Maxima, Local Maxima, Modulus Maxima, Local Modulus Maxima).
We say that a wavelet transformWψf(s, x) has amaximum(plural; maximaor one of the
more precise;Local Maxima, Modulus Maximaor Local Modulus Maxima) at (s0, x0) ∈ R2 if
the functiong(x) = |Wψf(s0, x)| has a local maximum atx0, strictly on one of the sides (left
or right).
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Definition 2.48 (The set of maxima of the wavelet transform).Letg(x) = |Wψf(s0, x)|. We
define theset of maximaof the wavelet transformWψf(s, x) by

Max(Wψf(s, x)) = {(s0, x0) ∈ R2 | g(x) has a local maximum atx0}

This next Proposition is used in the proof of Theorem 2.50 by induction onn.

Proposition 2.49 (Mallat, Hwang (38) (Proposition A.1)).Letn ∈ N andψ be a wavelet
that can be writtenψ(x) = dnφ(x)

dxn , whereφ(x) is a continuous function with compact support.
Letf(x) be a function and suppose that for anyε > 0, there exists a constantKε, such that at
all scaless,

∫ b−ε

a+ε

|f ∗ φs(x)| dx ≤ Kε. (2.23)

If |Wψf(s, x)| has no local maxima forx ∈ (a, b) ands < s0, for somes0 > 0, then for any
ε > 0, there exists a constantAε,n such that for anyx ∈ (a + ε, b− ε) ands < s0

|Wψf(s, x)| ≤ Aε,ns
n. (2.24)

Proof. This is Proposition A.1 in the appendix of Mallat and Hwang (38) and is proved in
Chapter 3.

Theorem 2.50 (Mallat, Hwang (38) (Theorem 5.2)).Letn ∈ N andψ ∈ Cn(a, b) ∩Mn(a, b)
be a wavelet with compact support. If there exists a scales0 > 0 such that for all scaless < s0

andx ∈ (a, b), |Wψf(s, x)| has no local maxima, then for anyε > 0 andα < n, f is uniformly
Hölderα on (a + ε, b− ε).
If ψ = dn

dxn Θ(x) whereΘ(x) is asmoothing function, thenf is uniformly Höldern on any such
interval (a + ε, b− ε).

Proof. This is Theorem 5.2 in Mallat and Hwang (38) and is proved in Chapter 3.

Corollary 2.51 (Mallat, Hwang (38) (Corollary of Theorem 5.2)). The closure of the set of
points wheref is not Höldern is included in the closure of the wavelet transform maxima off .

Proof. This is a simple consequence of Theorem 2.50.

We see that given the conditions in Theorem 2.50, all the irregular points (not Hölderα = n)
can be located by following the maxima lines when the scale goes to zero.

Theorem 2.52 (Mallat (37) (Theorem 6.5)).Letn ∈ N, f ∈ L1[a, b] andψ be a compactly
supported wavelet such that

ψ(x) = (−1)n dn

dxn
θ(x) ∈ Cn(R)

where
∫
R θ(x) dx 6= 0. If there existss0 > 0 such that|Wψf(s, x)| has no local maxima for

x ∈ [a, b] ands < s0, thenf is uniformly Höldern on [a + ε, b− ε] for anyε > 0.
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Proof. This is Theorem 6.5 in Mallat (37) and is proved there.

Here we see that the main differences between Theorem 2.50 and the more recent Theorem
2.52 is theψ ∈ Cn(R) condition in the first gives an additional result forα < n as opposed to
the condition thatψ is then-th derivative of a smoothing functionψ(x) = (−1)n dn

dxn θ(x). This
last condition gives us the result forα = n in both theorems.

This next theorem shows us that with strict conditions on the wavelet used, the wavelet
transform modulus maxima lines are indeedlines, i.e. they are connected and they continue all
the way down to the finest scale.

Proposition 2.53 (Mallat (37) (Proposition 6.1)).Let θ be a Gaussian and
ψ(x) = (−1)nθ(n)(x). For anyf ∈ L2(R), the modulus maxima ofWψf(s, x) belong to
connected curves that are never interrupted when the scale decreases.

Proof. This is Proposition 6.1 in Mallat (37) and is proved there.

Theorem 2.54 (Mallat, Hwang (38) (Theorem 5.3)).Letψ ∈ Cn([a, b]) be compactly
supported,Θ(x) a smoothing function such thatψ(x) = dn

dxn Θ(x). Letf be a tempered
distribution whose wavelet transform is well defined over(a, b) and letx0 ∈ (a, b). We suppose
that there exists a scales0 > 0 and a constantC such that forx ∈ (a, b) ands < s0,
Max(Wψf(s, x)) ⊂ Cone(x0, C).

• x1 ∈ (a, b), x1 6= x0 ⇒ f is uniformly Höldern in a neighborhood ofx1.

• α < n non-integer.f is Hölderα at x0 if and only if there exists a constantA such that
at each local maxima(s, x) ∈ Cone(x0, C), we have

|Wψf(s, x)| ≤ Asα. (2.25)

Proof. This is Theorem 5.3 in Mallat, Hwang (38) and is proved in Chapter 3.

So, if all the modulus maxima forx ∈ (a, b) ands < s0 are within the Cone of Influence atx0,
we know that the function is Höldern atx1 6= x0 and we get a characterization of the
regularity atx0 as in Theorem 2.24 and Theorem 2.39 by considering the decay ofWψf(s, x)
only insidethe Cone of Influence.

Theorem 2.55 (Mallat, Hwang (38) (Theorem 5.4)).Letψ ∈ Cn(R) be a wavelet such that
supp(ψ) ⊂ [−K,K] andψ(x) = dn

dxn Θ(x) whereΘ is a strictly positive function on(−K,K).
Letx0 ∈ R andf ∈ L2(R). Suppose:

• There exists an interval(a, b), with x0 ∈ (a, b), and a scales0 > 0 such that the wavelet
transformWψf(s, x) has constant sign fors < s0 andx ∈ (a, b).

• There exists constantsB, ε > 0 such that for all pointsx ∈ (a, b) and any scales,

|Wψf(s, x)| ≤ Bsε. (2.26)
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• Letx = X(s) be a curve such that

(s,X(s)) ∈ Cone(x0, K), ∀s < s0,

with K < C (i.e the curve{(s,X(s)} is in a cone strictly smaller than the Cone of
Influence). Then there exists a constantA such that for any scales < s0, the wavelet
transform satisfies

|Wψf(s,X(s))| ≤ Asγ with 0 ≤ γ ≤ n, (2.27)

Thenf is Hölderα at x0, for anyα < γ.

Proof. This is Theorem 5.4 in Mallat, Hwang (38) and is proved in Chapter 3.

So if Θ is strictly positive on the interior of its support,ψ(x) = dn

dxn Θ(x), |Wψf(s, x)| ≤ Bsε

for someε > 0 onR× (a, b) andWψf(s, x) has constant sign on{s < s0} × (a, b), where
x0 ∈ (a, b), then we can estimateα atx0 by the decay of|Wψf(s, x)| along any curve strictly
inside the Cone of Influence.

We have now presented several theorems, some of them quite similar but with slightly different
conditions and conclusions, regarding necessary or sufficient conditions on the decay of the
wavelet transform across scales and the regularity of a function. The overall conclusion is that
the wavelet transform, with rather weak conditions on the wavelets used, enables us to
characterize pointwise behavior of functions.

3 THE PROOFS

In this chapter we will prove the theorems of Mallat and Hwang (38). All the theorems have
sketched proofs in that paper, or refer to other sources that have more or less complete proofs,
so the work done here is to collect all of them in one consistent form, and to fill in the gaps.
Especially Lemma 3.5 on page 36 has a long proof (22 pages) even though it is rather
elementary. All the special cases that needs to be considered is what makes it that long.

3.1 Hölder Regular Functions

Theorem 3.1 (Mallat, Hwang (Theorem 3.3 a)).Let0 < α ≤ n ∈ N. Let [a, b] ⊂ R be an
interval and(b− a) > 2ε > 0. Suppose thatψ ∈ Mn(R) is a wavelet and||xαψ||L1(R) < ∞.

If a functionf(x) ∈ L2(R) is uniformly Hölderα over any interval(a + ε, b− ε), then

|Wψf(s, x)| = O(sα), x ∈ (a + ε, b− ε), s > 0. (3.1)
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Proof. Let v = x−u
s

. By the definition of the wavelet transform (Definition 2.2),

|Wψf(s, x)| = |
∫

R
f(u)

1

s
ψ

(
x− u

s

)
du|

= |
∫

R
f(u)

1

s
ψ

(
x− u

s

)
du|

−|
∫

R
f(x)

1

s
ψ

(
x− u

s

)
du|

= |
∫

R
(f(u)− f(x))

1

s
ψ

(
x− u

s

)
du|

≤ C

∫

R
|u− x|α 1

s
|ψ

(
x− u

s

)
| du

= C

∫

R
|sv|α 1

s
|ψ(v)|s dv

= C

∫

R
|vαψ(v)| dv sα

= C ||xαψ||L1(R)s
α

= Asα.

Theorem 3.2 (Mallat, Hwang (Theorem 3.4 a)).Letα ≤ n ∈ N. Suppose
ψ ∈ Cn(R) ∩Mn(R) is a wavelet, such that||xαψ||L1(R) < ∞. If a functionf(x) is Hölder

α at x0, then for all pointsx in a neighborhood ofx0 and any scales,

|Wψf(s, x)| = O(sα + |x− x0|α). (3.2)

Proof. By an overall translation, we may assume thatx0 = 0.

|Wψf(s, x)| = |
∫

R
f(u)

1

s
ψ

(
x− u

s

)
du|

= |
∫

R
(f(u)− f(0))

1

s
ψ

(
x− u

s

)
du|

≤
∫

R
C |x|α 1

s
|ψ

(
x− u

s

)
| du

= C

∫

R
|x− sv|α |ψ(v)| dv

≤ C(C1s
α||xαψ||L1(R) + C2|x|α||ψ||L1(R))

= A(sα + |x|α)
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3.2 Global Hölder Regularity

Theorem 3.3 (Mallat,Hwang (3.3 b)).Suppose that0 < α < n ∈ N, α 6∈ N,
ψ ∈ C(R) ∩Mn(R) is a wavelet and||ψ′||L1(R) < ∞. Let [a, b] ⊂ R be an interval. If

|Wψf(s, x)| = O(sα). (3.3)

for anyx ∈ (a + ε, b− ε) ((b− a) > 2ε > 0) and any scales > 0, thenf(x) is uniformly
Hölderα over any such interval(a + ε, b− ε).

Proof. Let 0 < s0 < ∞. By the inversion formula (Lemma 2.3),

f(x) =
1

Cψ

∫ ∞

0

∫

R
Wψf(s, u)ψs(u− x) du

ds

s

=
1

Cψ

∫ s0

0

∫

R
Wψf(s, u)ψs(u− x) du

ds

s

+
1

Cψ

∫ ∞

s0

∫

R
Wψf(s, u)ψs(u− x) du

ds

s

= fsmall(x) + flarge(x),

as in Lemma 2.9.

• The functionflarge is a smooth function by Lemma 2.9 and consequently Hölderα for
0 < α < 1.
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• Let s < s0 and0 ≤ h ≤ s0.

f(x) = |fsmall(x + h)− fsmall(x)|
=

∣∣∣∣
∫ s0

0

∫

R
{ψs(x + h− u)− ψs(x− u)}Wψf(s, u) du

ds

s

∣∣∣∣

≤
∣∣∣∣
∫ h

0

∫

R
ψs(x + h− u)Wψf(s, u) du

ds

s

∣∣∣∣

+

∣∣∣∣
∫ h

0

∫

R
ψs(x− u)Wψf(s, u) du

ds

s

∣∣∣∣

+

∣∣∣∣
∫ s0

h

∫

R
{ψs(x + h− u)− ψs(x− u)}Wψf(s, u) du

ds

s

∣∣∣∣

≤
∫ h

0

∫

R
|ψs(x + h− u)|Aεs

α du
ds

s

+

∫ h

0

∫

R
|ψs(x− u)|Aεs

α du
ds

s

+

∫ s0

h

∫

R
h

s2

∣∣∣∣ψ′
(

x + τ − u

s

)∣∣∣∣ |Wψf(s, u)| du
ds

s

≤ Aε||ψ||L1(R)

∫ h

0

sα ds

s

+ Aε||ψ||L1(R)

∫ h

0

sα ds

s

+

∫ s0

h

∫

R
h

s2
|ψ′

(
x + τ − u

s

)
|Aεs

α du
ds

s

≤ 2Aε

∫ h

0

sα ds

s

+ Aεh||ψ′||L1(R)

∫ s0

h

sα−1ds

s

≤ Chα,

sinceψs (x + h− u)− ψs (x− u) = h
s2 ψ

′ (x+τ−u
s

)
for a τ ∈ (0, h) by theMean Value

Theorem.

We have proven that

|f(x + h)− f(x)| ≤ Chα, (3.4)

i.e. the function is uniformly Hölderα.

3.3 Local Hölder Regularity

Theorem 3.4 (Mallat,Hwang (Theorem 3.4 b)).Letψ(x) ∈ Cn(a, b) ∩Mn(R) be a wavelet
with compact support. Let0 < α < n, α 6∈ N. A functionf(x) is Hölderα at x0, if the two
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following conditions hold.

• There existsε > 0 such that for all pointsx in a neighborhood ofx0 and any scales,

|Wψf(s, x)| = O(sε). (3.5)

• For all pointsx in a neighborhood ofx0 and any scales

|Wψf(s, x)| = O

(
sα +

|x− x0|α
| log(|x− x0|)|

)
. (3.6)

thenf(x) is Hölderα at x0

Proof. By an overall translation and dilation, we may assume thatx0 = 0 and
supp(ψ) ⊂ [−1/2, 1/2]. Let 0 < h < s0 < 1. We only consider the caseh > 0. h < 0 can be
treated analogously. The inversion formula gives,

f(x) =
1

Cψ

∫ ∞

0

∫

R
Wψf(s, u)ψs(u− x) du

ds

s

=
1

Cψ

∫ s0

0

∫

R
Wψf(s, u)ψs(u− x) du

ds

s

+
1

Cψ

∫ ∞

s0

∫

R
Wψf(s, u)ψs(u− x) du

ds

s

= fsmall(x) + flarge(x).

Again,flarge is smooth, and consequently Hölderα by Lemma 2.16. Define

η(h) = hα/ε. (3.7)

We typically haveα > ε, otherwisef(x) is uniformly Hölderα < ε in the neighborhood ofx0

by (3.5) and Theorem 3.3 and the result would be trivial. For0 < h < 1, we have
0 < η(h) < h. We then have

∆(h) = fsmall(h)− fsmall(0) (3.8)

=

∫ s0

0

∫

R
{ψs(h− x)− ψs(−x)}Wψf(s, x) dx

ds

s
(3.9)

=

∫ η(h)

0

∫

R
ψs(h− x)Wψf(s, x) dx

ds

s
(3.10)

+

∫ h

η(h)

∫

R
ψs(h− x)Wψf(s, x) dx

ds

s
(3.11)

−
∫ h

0

∫

R
ψs(h− x)Wψf(s, x) dx

ds

s
(3.12)

+

∫ s0

h

∫

R
{ψs(h− x)− ψs(−x)}Wψf(s, x) dx

ds

s
(3.13)

We will estimate (3.10) -(3.13) separately.
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(3.10):

|(3.10)| ≤
∫ η(h)

0

∫

R
|ψs(h− x)| |Wψf(s, x)| dx

ds

s

≤
∫ η(h)

0

∫

R
|ψs(h− x)| Asε dx

ds

s

≤
∫ η(h)

0

||ψs||1Asε ds

s

= ||ψs||1A
∫ hα/ε

0

sε−1 ds

= ||ψ||1A [sε]h
α/ε

0

= ||ψ||1Ahα

= C1h
α.

(3.11):

|(3.11)| ≤
∫ h

η(h)

∫

R
|ψs(h− x)| |Wψf(s, x)| dx

ds

s

≤
∫ h

η(h)

∫

R
|ψs(h− x)|B

(
sα +

|x|α
| ln(|x|)|

)
dx

ds

s

= B

∫ h

η(h)

∫

R
|ψs(h− x)|sα dx

ds

s

+ B

∫ h

η(h)

∫

R
|ψs(h− x)| |x|

| ln(|x|)| dx
ds

s

≤ B||ψ||1
∫ h

η(h)

sα ds

s

+ B
|h|α
| ln(h)| ||ψ||1

∫ h

η(h)

ds

s

= B||ψ||1 [sα]hhα/ε

+ B
|h|α
| ln(h)| ||ψ||1 [ln(s)]hhα/ε

= B|ψ||1(hα − h2α/ε)

+ B||ψ||1 |h|α
| ln(h)|(ln(h)− ln(hα/ε))

= B||ψ||1
(

hα − h2α/ε +
hα(1− α/ε) ln(h)

| ln(h)

)

≤ B||ψ||1(1− α/ε + 1)hα

= C2h
α.
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(3.12):

|(3.12)| = |
∫ h

0

∫

R
ψs(h− x)Wψf(s, x) dx

ds

s
|

≤
∫ h

0

∫

R
|ψs(h− x)| |Wψf(s, x)| dx

ds

s

≤ Aε||ψ||1
∫ h

0

sα ds

s

≤ C3h
α,

since this integral runs inside the Cone of Influence and by Theorem 3.3.

(3.13): As in the proof of Theorem 3.3, by the Mean Value Theorem there exists aτ ∈ (0, h),
such that

|(3.13)| = |
∫ s0

h

∫

R
{ψs(h− x)− ψs(−x)}Wψf(s, x) dx

ds

s
|

≤
∫ s0

h

∫

R
| h
s2

ψ′(
τ − x

s
)| |Wψf(s, x)|dx

ds

s

= C4h
α

Thus|∆(h)| ≤ Chα andf is Hölderα atx0

3.4 CWT Local Maxima

The following lemma is a rather simple curve-analysing lemma, but with a long proof, given
all the different cases that needs to be considered. Is is used in the proof of Proposition 3.6.

Lemma 3.5. Let [c, d] ⊂ R, 0 < β < (d−c)
4

andK > 0. Letg ∈ C2([c, d]) be a function which
satisfies

∫ d

c

|g(x)| dx < K. (3.14)

• If
∣∣∣dg(x)

dx

∣∣∣ has no local maxima on(c, d) andx ∈ [c + β, d− β], then

|g(x)| ≤ 2
K

β
= BK,β, (3.15)

and
∣∣∣∣
d g(x)

dx

∣∣∣∣ ≤ 12
K

β2
= CK,β. (3.16)
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• If
∣∣∣d2g(x)

dx2

∣∣∣ has no local maxima on(c, d) andx ∈ [c + β, d− β], then

∣∣∣∣
d2g(x)

dx2

∣∣∣∣ ≤ 120
K

β3
= DK,β. (3.17)

Proof. The proof is elementary, but we have to consider several different cases. The overall
structure for the proof of 3.15 is as follows:

• g′(x) has constant sign:

1. g′(x) > 0 andg(x) > 0:

2. g′(x) > 0 andg(x) < 0:

3. g′(x) > 0 andg(x) changes sign:

4. g′(x) < 0 andg(x) > 0:

5. g′(x) < 0 andg(x) < 0:

6. g′(x) < 0 andg(x) changes sign:

• g′(x) is monotonic and changes sign:

1. g′(x) decreases:

– g(x) is negative:

– g(x) is positive:

– g(x) changes sign:

∗ g(c + β) < 0 andg(d− β) < 0:

∗ g(c + β) < 0 andg(d− β) > 0:

∗ g(c + β) > 0 andg(d− β) < 0:

2. g′(x) increases:

– g(x) is positive:

– g(x) is negative:

– g(x) changes sign:

∗ g(c + β) > 0 andg(d− β) > 0:

∗ g(c + β) > 0 andg(d− β) < 0:

∗ g(c + β) < 0 andg(d− β) > 0:

For a given functiong, |g′(x)|, |g′(x)| and|g′′(x)| are trivially bounded by continuity of the
functions and compactness of the interval. We will prove that the bounds are independent of
the functiong. We will prove (3.15), (3.16) and (3.17) separately.

(3.15): Since|g′(x)| has no local maxima, eitherg′(x) has constant sign or it is monotonic,
and it looks like one of the graphs in Figure 3.1 on page 38. Theng(x) looks like one of
the graphs in Figure 3.2 on page 38.
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Figure 3.1 The possible graphs ofg′(x) when|g′(x)| has no maxima
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Figure 3.2 The possible graphs ogg(x) when|g′(x)| has no maxima.
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• g′(x) has constant sign, as the graphs a)-f) in Figure 3.1:g(x) is monotonic and

|g(x)| ≤ max(|g(c + β)|, |g(d− β)|). (3.18)

From (3.14) we have
∫ c+β

c

|g(x)| dx ≤ K and
∫ d

d−β

|g(x)| dx ≤ K. (3.19)

This implies

|g(x)| ≤ max(|g(c + β)|, |g(d− β)|) ≤ K

β
. (3.20)

To prove (3.20), we must distinguish several cases:

1. g′(x) > 0 andg(x) > 0 as in a) i), Figure 3.2: The second integral in (3.19)
implies that

β|g(d− β)| ≤
∫ d

d−β

|g(x)| dx ≤ K,

for x ∈ [d− β, d], i.e.

|g(d− β)| ≤ K

β
.

We also know that|g(c + β)| ≤ |g(d− β)|.
2. g′(x) > 0 andg(x) < 0 as in a) iii), Figure 3.2: The first integral in (3.19)

implies that

|g(c + β)| ≤ K

β
.

We also know that|g(d− β)| ≤ |g(c + β)|.
3. g′(x) > 0 andg(x) changes sign as in a) ii), Figure 3.2: The first integral in

(3.19) implies that

|g(c + β)| ≤ K

β
.

The second integral in (3.19) implies that

|g(d− β)| ≤ K

β
.

4. g′(x) < 0 andg(x) > 0 as in b) i), Figure 3.2: The first integral in (3.19)
implies that

|g(c + β)| ≤ K

β
.

We also know that|g(d− β)| ≤ |g(d− β)|.
5. g′(x) < 0 andg(x) < 0 as in b) iii), Figure 3.2: The second integral in (3.19)

implies that

|g(d− β)| ≤ K

β
.

We also know that|g(c + β)| ≤ |g(d− β)|.
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6. g′(x) < 0 andg(x) changes sign as in b) ii), Figure 3.2: The first integral in
(3.19) implies that

|g(c + β)| ≤ K

β
.

The second integral in (3.19) implies that

|g(d− β)| ≤ K

β
. (3.21)

From the marks 1 to 6 we get

|g(x)| ≤ max(|g(c + β)|, |g(d− β)|) ≤ K

β
, (3.22)

for x ∈ [c + β, d− β], proving (3.15) wheng′(x) has constant sign.

• g′(x) is monotonic and changes sign as g) and h) in Figure 3.1: The curvature of
g(x) does not change sign.

1. g′(x) decreases. Theng(x) is concave, as c), e) and g) in Figure 3.2.

– g(x) is negative as c) iii), e) iii) and g) iii) in Figure 3.2: Sinceg(x) is
negative and concave,

|g(x)| ≤ max(|g(c + β)|, |g(d− β)|).

Sinceg′(x) is monotonically decreasing, either it is positive on[c, c + β]
or it is negative on[c + β, d]. Sinceg(x) remains negative,β ≤ d−c

4
and

∫ c+β

c

|g(x)| dx ≤ K, and
∫ d

c+β

|g(x)| dx ≤ K,

we get

|g(c + β)| ≤ max

(
K

β
,

K

d− (c + β)

)
=

K

β
. (3.23)

Similarly∫ d−β

c

|g(x)| dx ≤ K, and
∫ d

d−β

|g(x)| dx ≤ K,

and we get

|g(d− β)| ≤ max(
K

((d− β)− c)
,
K

β
) =

K

β
. (3.24)

(3.23) and (3.24) together gives

|g(x)| ≤ max(|g(c + β)|, |g(d− β)|) ≤ K

β
, (3.25)

wheng(x) is negative, concave andg′′(x) changes sign.

– g(x) is positive as c) i), e) i) and g) i) in Figure 3.2: There exists
e ∈ (c + β, d− β) such thatg(x) ≤ g(e),∀x ∈ [c + β, d− β]. Sinceg(x)
is concave, we get

K ≥
∫ d−β

c+β

g(x) dx ≥ g(e)((d− β)− (c + β))

2
.
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Figure 3.3 The concave and convex functions withl1(x) andl2(x)

Sinceβ < d−c
4

, we obtain

|g(x)| ≤ g(e) (3.26)

≤ 2K

(d− β)− (c + β)

≤ 2K

4β − 2β

=
K

β
,

wheng(x) is positive, concave andg′′(x) changes sign.

– g(x) changes sign as c) ii), e) ii) and g) ii) in Figure 3.2:

∗ g(c + β) < 0 andg(d− β) < 0 as c) ii) in Figure 3.2: Sinceg(x) is
concave, it has two zero-crossings at the locationsz0 andz1. For
x ∈ (c + β, z0) ∪ (z1, d− β), g(x) is negative, and

|g(x)| ≤ max(|g(c + β)|, |g(d− β)|). (3.27)

Forx ∈ [c, c + β] andx ∈ [d− β, d] the function is monotonic, and
from the first part of the proof, we have

|g(c + β)| ≤ K

β
and|g(d− β)| ≤ K

β
. (3.28)

Forx ∈ [z0, z1], g(x) ≥ 0 and there existse ∈ [z0, z1] such that
g(x) ≤ g(e) for x ∈ [z0, z1]. Sinceg(x) is concave over[z0, z1] we have

K ≥
∫ z1

z0

g(x) dx ≥ g(e)(z1 − z0)

2
,

which gives

g(e) ≤ 2K

(z1 − z0)
. (3.29)
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To prove thatg(e) is bounded, we start by supposing thatg(e) ≥ K
β

.
Otherwise it is trivially true. Letl0(x) be the line that crossesg(x) at
the points(z0, 0) and(e, g(e)) as a) in Figure 3.3. Then by (3.28),

|l0(c + β)| ≤ |g(c + β)| ≤ K

β
, (3.30)

and by assumption

l0(e) = g(e) ≥ K

β
. (3.31)

From Figure 3.3 we have
(e− z0)

|l0(e)| =
(z0 − (c + β))

|l0(c + β)| . (3.32)

(3.30), (3.31) and (3.32) together gives
(e− z0)

K
β

≥ (e− z0)

|l0(e)|

=
(z0 − (c + β))

|l0(c + β)| (3.33)

≥ (z0 − (c + β))
K
β

,

which gives

e− z0 ≥ z0 − (c + β). (3.34)

Let l1(x) be the line that crossesg(x) at (e, g(e) and(z1, 0). Then by
(3.28)

|l1(d− β)| ≤ |g(d− β)| ≤ K

β
, (3.35)

and by assumption

|l1(e)| = |g(e)| ≥ K

β
. (3.36)

From Figure 3.3 we have
(z1 − e)

|l1(e)| =
((d− β)− z1)

|l1(d− β)| . (3.37)

(3.35), (3.36) and (3.37) together gives

(z1 − e)
K
β

≥ (z1 − e)

|l1(e)| =
((d− β)− z1)

|l1(d− β)| ≥ ((d− β)− z1)
K
β

,

which gives

z1 − e ≥ (d− β)− z1. (3.38)

Adding (3.34) and (3.38) gives

z1 − z0 ≥ (d− β)− (c + β)

2
(3.39)

≥ 2
d− c

4
− β

≥ β.

By inserting (3.40) into (3.29) we get

g(e) ≤ 2K

(z1 − z0)
≤ 2K

β
. (3.40)
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We then obtain, from (3.30) and (3.40),

|g(x)| ≤ |g(e)| ≤ 2K

β
, (3.41)

wheng(x) is as c) ii) in Figure 3.2.

∗ g(c + β) < 0 andg(d− β) > 0 as g) ii) in Figure 3.2: Sinceg(x) is
concave, it has one zero-crossing at the locationz0. Forx ∈ (c + β, z0),
g(x) is negative, and

|g(x)| ≤ |g(c + β)|. (3.42)

Forx ∈ [c, c + β] the function is monotonic, and from the first part of
the proof, we have

|g(c + β)| ≤ K

β
. (3.43)

Forx ∈ [z0, d− β], g(x) ≥ 0 and there existse ∈ [z0, d− β] such that
g(x) ≤ g(e) for x ∈ [z0, d− β]. Sinceg(x) is concave over[z0, d− β]
we have

K ≥
∫ d−β

z0

g(x) dx ≥ g(e)((d− β)− z0)

2
,

which gives

g(e) ≤ 2K

((d− β)− z0)
. (3.44)

To prove thatg(e) is bounded, we start by supposing thatg(e) ≥ K
β

.
Otherwise it is trivially true. Letl0(x) be the line that crossesg(x) at
the points(z0, 0) and(e, g(e)) as b) in Figure 3.3. Then by (3.43),

|l0(c + β)| ≤ |g(c + β)| ≤ K

β
. (3.45)

By assumption

l0(e) = g(e) ≥ K

β
. (3.46)

From b) in Figure 3.3 we have
(e− z0)

|l0(e)| =
(z0 − (c + β))

|l0(c + β)| . (3.47)

(3.45), (3.46) and (3.47) together gives
(e− z0)

K
β

≥ (e− z0)

|l0(e)|

=
(z0 − (c + β))

|l0(c + β)| (3.48)

≥ (z0 − (c + β))
K
β

,

which gives

e− z0 ≥ z0 − (c + β). (3.49)

We also have

(d− β)− e ≥ 0. (3.50)

Adding (3.49) and (3.50) gives

(d− β)− z0 ≥ z0 − (c + β). (3.51)
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Since(d− c) > 4β we have

((d− β)− z0) + (z0 − (c + β)) > 2β. (3.52)

(3.51) and (3.52) implies that

((d− β)− z0) ≥ β. (3.53)

By inserting (3.53) into (3.44) we get

g(e) ≤ 2K

((d− β)− z0)
≤ 2K

β
. (3.54)

We then obtain

|g(x)| ≤ g(e) ≤ 2K

β
, (3.55)

wheng(x) is as g) ii) in Figure 3.2.

∗ g(c + β) > 0 andg(d− β) < 0 as e) ii) in Figure 3.2: Sinceg(x) is
concave, it has one zero-crossing at the locationz1. Forx ∈ (z1, d− β),
g(x) is negative, and

|g(x)| ≤ |g(d− β)|. (3.56)

Forx ∈ [d− β, d] the function is monotonic, and from the first part of
the proof , we have

|g(d− β)| ≤ K

β
. (3.57)

Forx ∈ [(c + β), z1], g(x) ≥ 0 and there existse ∈ [c + β, z1] such that
g(x) ≤ g(e) for x ∈ [(c + β), z1]. Sinceg(x) is concave over
[(c + β), z1] we have

K ≥
∫ z1

c+β

g(x) dx ≥ g(e)(z1 − (c + β))

2
,

which gives

g(e) ≤ 2K

(z1 − (c + β)
. (3.58)

To prove thatg(e) is bounded, we start by supposing thatg(e) ≥ K
β

.
Otherwise it is trivially true. We have that

e− (c + β) ≥ 0. (3.59)

Let l1(x) be the line that crossesg(x) at (e, g(e)) and(z1, 0) as c) in
Figure 3.3. Then by (3.57)

|l1(d− β)| ≤ |g(d− β)| ≤ K

β
, (3.60)

and by assumption

l1(e) = g(e) ≥ K

β
. (3.61)

From c) in Figure 3.3,

(z1 − e)

|l1(e)| =
((d− β)− z1)

|l1(d− β)| . (3.62)
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(3.60), (3.61) and (3.62) together gives
(z1 − e)

K
β

≥ (z1 − e)

|l1(e)|

=
((d− β)− z1)

|l1(d− β)| (3.63)

≥ ((d− β)− z1)
K
β

,

which gives

z1 − e ≥ (d− β)− z1. (3.64)

Adding (3.59) and (3.64) gives

z1 − z0 ≥ (d− β)− (c + β)

2
(3.65)

≥ 2
d− c

4
− β

≥ β.

By inserting (3.66) into (3.58) we get

g(e) ≤ 2K

(z1 − z0)
≤ 2K

β
. (3.66)

We then obtain

|g(x)| ≤ g(e) ≤ 2K

β
, (3.67)

wheng(x) is as e) ii) in Figure 3.2.

From (3.25),(3.27), (3.41), (3.55) and (3.67) we get

|g(x)| ≤ max(|g(c + β)|, g(e), |g(d− β)|) (3.68)

≤ 2
K

β
,

wheng′(x) is decreasing and changes sign.

2. g′(x) increases. Theng(x) is convex as d), f) and h) in Figure 3.2.

– g(x) is positive as d) i), f) i) and h) i) in Figure 3.2:

|g(x)| ≤ max(|g(c + β)|, |g(d− β)|).
Sinceg′(x) is monotonically increasing, either it is negative on[c, c + β]
or it is positive on[c + β, d]. Sinceg(x) remains positive,β ≤ d−c

4
and

∫ c+β

c

|g(x)| dx ≤ K, and
∫ d

c+β

|g(x)| dx ≤ K,

we get

|g(c + β)| ≤ max

(
K

β
,

K

d− (c + β)

)
(3.69)

=
K

β
.

Similarly∫ d−β

c

|g(x)| dx ≤ K, and
∫ d

d−β

|g(x)| dx ≤ K,
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and we get

|g(d− β)| ≤ max(
K

((d− β)− c)
,
K

β
) (3.70)

=
K

β
.

(3.70) and (3.71) together gives

|g(x)| ≤ max(|g(c + β)|, |g(d− β)|) (3.71)

≤ K

β
.

– g(x) is negative as d) iii), f) iii) and h) iii) in Figure 3.2: There exists
e ∈ (c + β, d− β) such that|g(x)| ≤ |g(e)|,∀x ∈ [c + β, d− β]. Since
g(x) is convex, we get

K ≥
∫ d−β

c+β

g(x) dx ≥ g(e)((d− β)− (c + β))

2
.

Sinceβ < d−c
4

, we obtain

|g(x)| ≤ |g(e)| (3.72)

≤ 2K

(d− β)− (c + β)

=
2K

2β

=
K

β
.

– g(x) changes sign as d) ii), f) ii) and h) ii) in Figure 3.2:

∗ g(c + β) > 0 andg(d− β) > 0 as d) ii) in Figure 3.2: Sinceg(x) is
convex, it has two zero-crossings at the locationsz0 andz1. For
x ∈ (c + β, z0) ∪ (z1, d− β), g(x) is positive, and

|g(x)| ≤ max(|g(c + β)|, |g(d− β)|). (3.73)

Forx ∈ [c, c + β] andx ∈ [d− β, d] the function is monotonic, and
from the first part of the proof, we have

|g(c + β)| ≤ K

β
and|g(d− β)| ≤ K

β
. (3.74)

Forx ∈ [z0, z1], g(x) ≤ 0 and there existse ∈ [z0, z1] such that
|g(x)| ≤ |g(e)| for x ∈ [z0, z1]. Sinceg(x) is convex over[z0, z1] we
have

K ≥
∫ z1

z0

|g(x)| dx ≥ |g(e)|(z1 − z0)

2
,

which gives

|g(e)| ≤ 2K

(z1 − z0)
. (3.75)

To prove thatg(e) is bounded, we start by supposing thatg(e) ≥ K
β

.
Otherwise it is trivially true. Letl0(x) be the line that crossesg(x) at
the points(z0, 0) and(e, g(e)). Then, by (3.74),

|l0(c + β)| ≤ |g(c + β)| ≤ K

β
, (3.76)
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and, by assumption,

l0(e) = g(e) ≥ K

β
. (3.77)

Form d) in Figure 3.3 we have
(e− z0)

|l0(e)| =
(z0 − (c + β))

|l0(c + β)| . (3.78)

(3.76), (3.77) and (3.78) together gives
(e− z0)

K
β

≥ (e− z0)

|l0(e)|

=
(z0 − (c + β))

|l0(c + β)| (3.79)

≥ (z0 − (c + β))
K
β

,

which gives

e− z0 ≥ z0 − (c + β). (3.80)

Let l1(x) be the line that crossesg(x) at (e, g(e)) and(z1, 0) as . Then,
by (3.74),

|l1(d− β)| ≤ |g(d− β)| ≤ K

β
, (3.81)

and, by assumption,

l1(e) = g(e) ≥ K

β
. (3.82)

From d) in Figure 3.3 we have
(z1 − e)

|l1(e)| =
((d− β)− z1)

|l1(d− β)| . (3.83)

(3.81), (3.82) and (3.83) together gives
(z1 − e)

K
β

≥ (z1 − e)

|l1(e)|

=
((d− β)− z1)

|l1(d− β)
(3.84)

≥ ((d− β)− z1)
K
β

,

which gives

z1 − e ≥ (d− β)− z1. (3.85)

Adding (3.80) and (3.85) gives

z1 − z0 ≥ (d− β)− (c + β)

2
(3.86)

≥ 2
d− c

4
− β

≥ β.

By inserting (3.87) into (3.75) we get

g(e) ≤ 2K

(z1 − z0)
≤ 2K

β
. (3.87)
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We then obtain

|g(x)| ≤ |g(e)| ≤ 2K

β
, (3.88)

wheng(x) is as d) ii) in Figure 3.2.

∗ g(c + β) > 0 andg(d− β) < 0 as h) ii) in Figure 3.2: Sinceg(x) is
convex, it has one zero-crossing at the locationz0. For
x ∈ (c + β, z0) ∪ (z1, d− β), g(x) is negative, and

|g(x)| ≤ max(|g(c + β)|, |g(d− β)|). (3.89)

Forx ∈ [c, c + β] the function is monotonic, and from the first part of
the proof, we have

|g(c + β)| ≤ K

β
. (3.90)

Forx ∈ [z0, z1], g(x) ≤ 0 and there existse ∈ [z0, d− β] such that
|g(x)| ≤ |g(e)| for x ∈ [z0, d− β]. Sinceg(x) is convex over[z0, d− β]
we have

K ≥
∫ d−β

z0

|g(x)| dx ≥ |g(e)|((d− β)− z0)

2
,

which gives

|g(e)| ≤ 2K

((d− β)− z0)
. (3.91)

To prove thatg(e) is bounded, we start by supposing that|g(e)| ≥ K
β

.
Otherwise it is trivially true. Letl0(x) be the line that crossesg(x) at
the points(z0, 0) and(e, g(e)) as e) in Figure 3.3. Then, from (3.90),

|l0(c + β)| ≤ |g(c + β)| ≤ K

β
, (3.92)

and, by assumption

|l0(e)| = |g(e)| ≥ K

β
(3.93)

and from e) in Figure 3.3,
(e− z0)

|l0(e)| =
(z0 − (c + β))

|l0(c + β)| . (3.94)

(3.92), (3.93) and (3.94) together gives
(e− z0)

K
β

≥ (e− z0)

|l0(e)|

=
(z0 − (c + β))

|l0(c + β)| (3.95)

≥ (z0 − (c + β))
K
β

,

which gives

e− z0 ≥ z0 − (c + β). (3.96)

We also have

(d− β)− e ≥ 0. (3.97)
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Adding (3.96) and (3.97) gives

(d− β)− z0 ≥ (d− β)− (c + β)

2
(3.98)

≥ β.

By inserting (3.99) into (3.91) we get

|g(e)| ≤ 2K

((d− β)− z0)
≤ 2K

β
. (3.99)

We then obtain

|g(x)| ≤ |g(e)| ≤ 2K

β
, (3.100)

wheng(x) is as h) ii) in Figure 3.2.

∗ g(c + β) < 0 andg(d− β) > 0 as f) ii) in Figure 3.2: Sinceg(x) is
convex, it has one zero-crossing at the locationz1. Forx ∈ (z1, d− β),
g(x) is positive, and

|g(x)| ≤ |g(d− β)|. (3.101)

Forx ∈ [d− β, d] the function is monotonic, and from the first part of
the proof, we have

|g(d− β)| ≤ K

β
. (3.102)

Forx ∈ [(c + β), z1], g(x) ≤ 0 and there existse ∈ [(c + β), z1] such
that|g(x)| ≤ |g(e)| for x ∈ [(c + β), z1]. Sinceg(x) is convex over
[(c + β), z1] we have

K ≥
∫ z1

c+β

|g(x)| dx ≥ |g(e)|(z1 − (c + β))

2
,

which gives

g(e) ≤ 2K

(z1 − (c + β))
. (3.103)

To prove thatg(e) is bounded, we start by supposing that|g(e)| ≥ K
β

.
Otherwise it is trivially true.
We have

e− (c + β) ≥ 0. (3.104)

Let l1(x) be the line that crossesg(x) at (e, g(e)) and(z1, 0) as f) in 3.3.
Then, by (3.102),

|l1(d− β)| ≤ |g(d− β)| ≤ K

β
, (3.105)

and, by assumption,

|l1(e)| = |g(e)| ≥ K

β
. (3.106)

From f) in Figure 3.3 we have

(z1 − e)

|l1(e)| =
((d− β)− z1)

|l1(d− β)| . (3.107)
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(3.105), (3.106) and (3.107) together gives
(z1 − e)

K
β

(z1 − e)

|l1(e)|

=
((d− β)− z1)

|l1(d− β)| (3.108)

≥ ((d− β)− z1)
K
β

,

which gives

z1 − e ≥ (d− β)− z1. (3.109)

Adding (3.104) and (3.109) gives

z1 − (c + β) ≥ (d− β)− (c + β)

2
(3.110)

≥ d− c

4
≥ β.

By inserting (3.111) into (3.103) we get

|g(e)| ≤ 2K

(z1 − (c + β))
≤ 2K

β
. (3.111)

From (3.102( and (3.111), we obtain

|g(x)| ≤ |g(e)| ≤ 2K

β
, (3.112)

wheng(x) is as h) ii) in Figure 3.2.

This finishes the proof og (3.15), i.e.

|g(x)| ≤ 2K

β
. (3.113)

(3.16): Since|g′(x)| has no maxima on the interval[c + β/2, d− β/2], we know that
|g′(x)| ≤ max(|g′(c + β)|, |g′(d− β)|) for x ∈ [c + β, d− β].

• Suppose|g′(c + β)| ≥ |g′(d− β)|: Then|g′(x)| is decreasing on[c + β/2, c + β]
andg′(x) does not change sign over this interval. Hence,

|g′(c + β)| ≤ 2

β

∣∣∣∣
∫ c+β

c+β/2

g′(x) dx

∣∣∣∣

=
2

β
|g(c + β)− g(c + β/2)|

≤ 2

β

(
2
K

β
+ 2

K

β/2

)

=
2

β

(
2K + 4K

β

)

=
12K

β2
.
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• Suppose|g′(c + β)| ≤ |g′(d− β)|: Then|g′(x)| is increasing on[d− β, d− β/2]
andg′(x) does not change sign over this interval. Hence,

|g′(d− β)| ≤ 2

β

∣∣∣∣∣
∫ d−β/2

d−β

g′(x) dx

∣∣∣∣∣

=
2

β
|g(d− β/2)− g(d− β)|

≤ 2

β

(
2

K

β/2
+ 2

K

β

)

=
2

β

(
4K + 2K

β

)

= 12
K

β2
.

Hence

|g′(x)| ≤ max(|g′(c + β)|, |g′(d− β)|) ≤ 12
K

β2
, (3.114)

for x ∈ [c + β, d− β].

(3.17): Since|g′′(x)| has no local maxima, eitherg′′(x) has constant sign or it is monotonic,
and its graph looks like one of the graphs in Figure 3.1 on page 38. Then the graph of
g′(x) looks like one of the 24 different graphs in Figure 3.4. In all cases
|g′′(x)| ≤ max(|g′′(c + β)|, |g′′(d− β)|) for x ∈ [c + β, d− β].

• Suppose|g′′(c + β)| ≥ |g′′(d− β)|: Then

|g′′(c + β)| ≤ 2

β

∣∣∣∣
∫ c+β

c+β/2

g′′(x) dx

∣∣∣∣ (3.115)

=
2

β
|g′(c + β)− g′(c + β/2)| .

• Suppose|g′′(c + β)| ≤ |g′′(d− β)|: Then

|g′′(d− β)| ≤ 2

β

∣∣∣∣∣
∫ d−β/2

d−β

g′′(x) dx

∣∣∣∣∣ (3.116)

=
2

β
|g′(d− β/2)− g′(d− β)| .

To find bounds for|g′′(c + β)| and|g′′(d− β)| we will need similar bounds for
|g′(c + β)|, |g′(c + β/2)|, |g′(d− β)| and|g′(d− β/2)|.

• For the graphs in a) and b), iii) in c), i) in d), iii) in e), i) in f), iii) in g) and i) in h)
in Figure 3.4,|g′(x)| has no maxima, and by (3.16),

max(|g′(c + β)|, |g′(d− β)|) ≤ 12
K

β2
. (3.117)
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Figure 3.4 The possible graphs ofg′(x) when|g′′(x)| has no maxima.

• For i) in c), iii) in d), i) in e), iii) in f), i) in g) and iii) in h) in Figure 3.4, we have:

|
∫ d−β

c+β

g′(x) dx| = |g(d− β)− g(c + β)|

≤ 2
K

β
+ 2

K

β

= 4
K

β
,

and

|
∫ d−β

c+β

g′(x) dx| ≥ 1/2|g′(c + β)− g′(d− β)|((d− β)− c + β)

+ ((d− β)− (c + β))|g′(d− β)|
= 1/2|g′(c + β) + g′(d− β)|((d− β)− (c + β)).

This implies that

1/2|g′(c + β) + g′(d− β)|((d− β)− (c + β)) ≤ 4
K

β
,

and

|g′(c + β)|+ |g′(d− β)| ≤ 8
K

β

1

((d− β)− c + β))
(3.118)

≤ 4
K

β2
.
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From (3.118) we have

max(|g′(c + β)|, |g′(d− β)|) ≤ (|g′(c + β)|+ |g′(d− β)|)
≤ 4

K

β2
,

meaning

|g(x)| ≤ 4
K

β2
, (3.119)

• For the graphs ii) in c), ii) in d), ii) in e), ii) in f), ii) in g) and ii) in h) in Figure 3.4,
we have:

|g′(c + β)| ≤ 2

β

∣∣∣∣
∫ c+β

c+β/2

g′(x) dx

∣∣∣∣ (3.120)

=
2

β
|g(c + β)− g(c + β/2)|

≤ 2

β

(
2
K

β
+ 2

K

β/2

)

=
2

β

(
6K

β

)

= 12
K

β2
.

and

|g′(d− β)| ≤ 2

β

∣∣∣∣∣
∫ d−β/2

d−β

g′(x) dx

∣∣∣∣∣ (3.121)

=
2

β
|g(d− β/2)− g(d− β)|

≤ 2

β

(
2

K

β/2
+ 2

K

β

)

=
2

β

(
6K

β

)

= 12
K

β2
.

From (3.117), (3.119), (3.120 and (3.121), we have

|g′′(x)| ≤ 2

β

∣∣∣∣12
K

(β/2)2
− 12

K

β2

∣∣∣∣ (3.122)

≤ 2

β

(
48K + 12K

β2

)

= 120
K

β3

proving (3.17).

We now have proven the upper bounds ong(x), d g
dx

and d2 g
dx2 given in Lemma 3.5 on page

36.
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Proposition 3.6 (Mallat, Hwang (A.1)). Letψ be a wavelet that can be written
ψ(x) = dnφ(x)

dxn , whereφ(x) is a continuous function with compact support. Letf(x) be a
function and suppose that for anyε > 0, there exists a constantKε, such that at all scaless,

∫ b−ε

a+ε

|f ∗ φs(x)| dx ≤ Kε. (3.123)

If |Wψf(s, x)| has no local maxima forx ∈ (a, b) ands < s0, then for anyε > 0, there exists a
constantAε,n such that for anyx ∈ (a + ε, b− ε) ands < s0

|Wψf(s, x)| ≤ Aε,ns
n. (3.124)

Proof. In the following we will suppose thatsupp(f) ⊂ [a, b]. We prove the proposition by
induction onn. Let g(x) = (f ∗ φs)(x).

n = 1: Sinceψ(x) = dφ(x)
dx

,Wψf(s, x) = (f ∗ d
dx

φs)(x) = s d
dx

(f ∗ φs)(x). The hypothesis
supposes that|g′(x)| = 1

s
|Wψf(s, x)| has no maxima on(a, b) and thatg(x) satisfies

(3.14) in Lemma 3.5 on page 36, forc = a + ε/2 andd = b− ε/2. The result of Lemma
3.5, forβ = ε/2 ands < s0, yields

|Wψf(s, x)| ≤ sCε/2 = Aε,1s. (3.125)

n = 2: Sinceψ(x) = d2φ(x)
dx2 , we have that

Wψf(s, x) = s2 d2

dx2
(f ∗ φs)(x) = s2g′′(x). (3.126)

We then apply Lemma 3.5 tog(x) = f ∗ φs(x), β = ε/2, c = a + ε/2 andd = b− ε/2.
Equation (3.17) yields

|Wψf(s, x)| ≤ s2Dε/2 = Aε,2s
2. (3.127)

n = k: Suppose the proposition is valid forn = k ≥ 2

n = k + 1: Let ψ be a wavelet withk + 1 vanishing moments. The waveletψ(x) can be
writtenψ(x) = dχ(x)

dx
where the waveletχ(x) hask vanishing moments. Letdf(x)

dx
be the

derivative off in the sense of distributions. ThenWψf(s, x) = s df
dx
∗ χs(x). Sinceψ has

2 (at least) vanishing moments, we have already proven that|Wψf(s, x)| ≤ Aε,2s
2. By

Theorem 3.3 we know thatf is uniformly Hölderα on (a + ε, b− ε), for α < 2. Then by
Lemma 2.16,df

dx
(x) is uniformly Hölderα for α < 1. Hencedf

dx
(x) is uniformly bounded

on any compact interval[a + ε, b− ε]. Thenh(x) = ( df
dx
∗ φs)(x) satisfies (3.123). By the

induction hypothesis forn = k,

|Wψf(s, x)| = s

∣∣∣∣
df

dx
∗ χs(x)

∣∣∣∣ (3.128)

≤ sA′
ε,ks

k (3.129)

= Aε,ns
n, (3.130)
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which proves the proposition.

Theorem 3.7 (Mallat, Hwang (Theorem 5.2)).Letn ∈ N andψ ∈ Cn(a, b) ∩Mn(a, b) be a
wavelet with compact support. If there exists a scales0 > 0 such that for all scaless < s0 and
x ∈ (a, b), |Wψf(s, x)| has no local maxima, then for anyε > 0 andα < n, f is uniformly
Hölderα on (a + ε, b− ε).
If ψ = dn

dxn Θ(x) whereΘ(x) is asmoothing function, thenf is uniformly Höldern on any such
interval (a + ε, b− ε).

Proof. ψ(x) = dn

dxn φ(x) ∈ Cn((a, b)). Thenφ(x) ∈ Cn((a, b)) and(f ∗ φs)(x) is continous,
and consequently bounded on[a + ε, b− ε]. So

∫ b−ε

a+ε

|f ∗ φs(x)|dx ≤ Kε, for all s < s0.

Since|Wψf(s, x)| has no maxima we have from Proposition 3.6 that

|Wψf(s, x)| ≤ Aεs
α. (3.131)

α < n: |Wψf(s, x)| ≤ Aεs
α andψ ∈ Cn([a, b]) implies thatf(x) is uniformly Hölderα, from

Theorem 3.3 on page 32.

α = n: ψ(x) = dn

dxn Θ(x), whereΘ(x) is a smooting function. We have that
|Wψf(s, x)| = sn|dnf

dxn ∗Θs(x)| ≤ Aε,ns
n and this implies that

|d
nf

dxn
∗Θs(x)| ≤ Aε,n. (3.132)

SinceΘ(x) is a smoothing function,̂Θ(0) 6= 0, and by Lemma A.51,

∣∣∣∣
dnf

dxn

∣∣∣∣ ≤ Aε,n. (3.133)

Then, by Lemma 2.16,d
nf

dxn is Hölder0, and by the same lemma,f(x) is Höldern.

Corollary 3.8 (Mallat, Hwang (Corollary to Theorem 5.2)). The closure of the set of points
wheref is not Höldern is included in the closure of the wavelet transform maxima off .

Proof. This is a simple consequence of Theorem 3.7

Theorem 3.9 (Mallat, Hwang (Theorem 5.3)).Letψ ∈ Cn([a, b]) be compactly supported,
Θ(x) a smoothing function such thatψ(x) = dn

dxn Θ(x). Letf be a tempered distribution whose
wavelet transform is well defined over(a, b) and letx0 ∈ (a, b). We suppose that there exists a
scales0 > 0 and a constantC such that forx ∈ (a, b) ands < s0,
Max(Wψf(s, x)) ⊂ Cone(x0, C).
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• x1 ∈ (a, b), x1 6= x0 ⇒ f is uniformly Höldern in a neighborhood ofx1.

• α < n non-integer.f is Hölderα at x0 if and only if there exists a constantA such that
at each local maxima(s, x) ∈ Cone(x0, C), we have

|Wψf(s, x)| ≤ Asα. (3.134)

Proof. We prove the two points separately:

• Let x1 ∈ (a, x0). Fors < s0, Max(Wψf(s, x)) ⊂ Cone(x0, C). Hence, forε > 0, such
thata + ε < x0 − ε, there exists asε such that fors < s0 andx ∈ (a + ε/2, x0 − ε/2),
|Wψf(s, x)| has no maxima. By Theorem 2.50,f(x) is uniformly Höldern in
[a + ε, x0 − ε]. With the same argument,f(x) is uniformly Höldern in [x0 + ε, b− ε].

• ⇒: By Theorem 3.2,|Wψf(s, x)| ≤ A(sα + |x− x0|α) ≤ A′sα inside the Cone of
Influence whenf(x) is Hölderα atx0.

⇐: Let x1 ∈ (a, x0) andx2 ∈ (x0, b). Then, from the first part of this proof, we know
thatf(x) is Höldern in neighborhoods ofx1 andx2. By Theorem 3.1, there exists
a s0 > 0 such that forx ∈ (x1, x2),

|Wψf(s, x)| ≤ max
y=x1
y=x2

y∈Cone(x0,C)

(|Wψf(s, y)|))

= max(A1s
n, Asα, A2s

n)

≤ Bsα.

By Theorem 3.3,f(x) is Hölderα.

Theorem 3.10 (Mallat, Hwang (Theorem 5.4)).Letψ ∈ Cn(R) be a wavelet such that
supp(ψ) ⊂ [−K, K] andψ(x) = dn

dxn Θ(x) whereΘ is a strictly positive function on(−K, K).
Letx0 ∈ R andf ∈ L2(R). Suppose:

• There exists an interval(a, b), with x0 ∈ (a, b), and a scales0 > 0 such that the wavelet
transformWψf(s, x) has constant sign fors < s0 andx ∈ (a, b).

• There exists constantsB, ε > 0 such that for all pointsx ∈ (a, b) and any scales,

|Wψf(s, x)| ≤ Bsε. (3.135)

• Letx = X(s) be a curve such that

(s,X(s)) ∈ Cone(x0, K), ∀s < s0,

with K < C (i.e the curve{(s,X(s)} is in a cone strictly smaller than the Cone of
Influence). Then there exists a constantA such that for any scales < s0, the wavelet
transform satisfies

|Wψf(s,X(s))| ≤ Asγ with 0 ≤ γ ≤ n, (3.136)
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Thenf is Hölderα at x0, for anyα < γ.

Proof. In order to apply Theorem 3.4, we want to prove that there exists a scales1 andε > 0
such that ifs < s1 andx ∈ (x0 − ε, x0 + ε),

|Wψf(s, x)| ≤ B(sγ + |x− x0|γ). (3.137)

We prove this by showing separately that there exists two constantsB1 andB2 such that

|Wψf(s, x)| ≤ B1s
γ, (3.138)

when(x, s) is insidethe Cone of Influence ofx0, and

|Wψf(s, x)| ≤ B2|x− x0|γ, (3.139)

when(x, s) is outsidethe Cone of Influence ofx0.
Once (3.137) is proved, Theorem 2.55 is a simple consequence of Theorem 3.4, forα < γ. We
shall suppose that the constant sign ofWψf(s, x) in a neighborhood ofx0 is positive. For
s < s0 and|X(s)− x0| < Cs, we have

Wψf(s, X(s)) ≤ Asγ. (3.140)

We first prove (3.138) and then (3.139) for

ε =
1

4
(K − C)s0

and

s1 =
1

4K
(K − C)s0.

• |Wψf(s, x)| ≤ B1s
γ when(x, s) is in the Cone of Influence:

0 ≤ Wψf(s, x) (3.141)

= (f ∗ ψs)(x)

= (f ∗ dn

dxn
Θs)(x)

= sn(f (n) ∗Θs)(x)

= sn−1

∫

R
f (n)(u)Θ(

x− u

s
) du

= sn−1

∫ x0+2Ks

x0−2Ks

f (n)(u)Θ(
x− u

x
) du.

The derivative off is in the sense of distributions, and is always defined. The last
equality is valid becausesupp

(
Θ(x−u

s
)
) ⊂ [x0 − 2Ks, x0 + 2Ks]. Let

0 < M = maxx∈[−K,K] Θ(x) andx ∈ [−K+C
2

, K+C
2

]
. Then there exists aλ > 0 such

thatΘ(x) > λM . Let s′ = 4Ks
K−C

andu ∈ [x0 − 2Ks, x0 + 2Ks]. Then
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|X(s′)−u|
s′ ≤ C ≤ K+C

2
, and consequentlyΘ

(
X(s′)−u

s′

)
> λM . Since0 ≤ Θ(x−u

s
) ≤ M

and by Lemma A.51,f (n) ≥ 0, in the sense of distributions, we have by (3.141)

Wψf(s, x) ≤ sn−1

∫ x0+2Ks

x0−2Ks

f (n)(u)Θ(
x− u

x
) du.

≤ sn−1

λ

∫ x0+2Ks

x−2Ks

f (n)(u)Θ

(
X(s′)− u

s′

)
du (3.142)

=
1

λ
Wψf(s′, X(s′))

≤ 1

λ
A(s′)γ

=
a(4K)γ

(K − C)γ
sγ

= B1s
γ.

• |Wψf(s, x)| ≤ B2|x− x0|γ when(x, s) is below the Cone of Influence:

0 ≤ Wψf(s, x) (3.143)

= sn−1

∫

R
f (n)(u)Θ

(
x− u

s

)
du

= sn−1

∫ x0+2Ks2

x0−2Ks2

f (n)(u)Θ

(
x− u

s

)
du

sincesupp(Θ
(

x−u
s

)
) ⊂ [x0 − 2Ks2, x0 + 2Ks2] whens2 = |x−x0|

K
≥ s since

|x− x0| ≥ Ks

Defines′2 = 4Ks2

(K−C)
. We then have by (3.143)

Wψf(s, x) ≤ sn−1

∫ x0+2Ks2

x0−2Ks2

f (n)(u)Θ

(
x− u

s

)
du

≤ sn−1

λ

∫ x0+2Ks2

x0−2Ks2

f (n)(u)Θ

(
X(s′2)− u

s′2

)
du (3.144)

=
1

λ
Wψf(s′2, X(s′2))

≤ A(s′2)
γ

= A

(
4Ks2

(K − C)

)γ

=
A4γ

(K − C)γ
|x− x0|γ

= B2|x− x0|γ.

3.142 and 3.144 together gives

|Wψf(s, x)| ≤ B(sγ + |x− x0|γ). (3.145)
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Then, by Theorem 3.4 with (3.137) and (3.135),f(x) is Hölderα atx0 for anyα < γ.

4 WTMM ALGORITHM

4.1 Introduction

In this Chapter we will describe an implementation of a WTMM (Wavelet Transform Modulus
Maxima) algorithm to find edges in data and an approximation of the Hölder regularity at the
edge-points.

Laser altimetry data collected with an oscillating mirror laser scanner on an airplane scans the
ground in a zig-zag pattern along the flight direction. First we rotate the data so that the flight
direction was approximately along the y-coordinate axis. To resample these data to a regular
grid, we use aDelauney Triangulation, linear interpolate on the triangles and resample the
triangulated surface to the regular grid we desire. A grid size of 25 by 25 centimeters was
used. ‘Outliers’, meaning ‘wild values’ might then result in several data points in the
resampled data set, giving the impression that there reallyis a high structure (a tall tree,
chimney or tower etc). We do not expect to create an algorithm that completely and
automatically analysis datasets in this thesis so we leave these topics unanswered.

In a laser altimetry data set along one direction, buildings are characterized by a step-function
when we ‘hit’ the building and an other step function when we ‘leave’ the building, whereas
trees behave more like a peak with relatively few samples with approximately the same height.
The issue of ‘preprocessing’ the data might be important here but we will not go into that.

In Section 4.2 we describe our data set more accurately. In Section 4.3 we will describe the
WTMM algorithm with one line of the data set as example data, and in Section 4.4 we will test
the algorithm on synthetic data with known properties, for example step functions, spikes,
cusps etc. In Section 4.5 a full ’analysis’ of two laser altimetry datasets will be presented.

4.2 Data Description

Our test data set is from the town of Sandvika, outside Oslo, Norway. The ’raw’ data from
Sandvika is a set of 615 000 points organized in columns, where the first column is the
latitude, the second is the longitude and the third is the height of the sampled point. The first
few lines in the Sandvika file are here:

584502.400 6641006.650 119.610
584501.820 6641006.200 119.390
584501.180 6641005.700 119.500
584500.620 6641005.270 119.590
584499.960 6641004.760 119.470
584499.400 6641004.320 119.440

... ... ... ,
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Figure 4.1 Our test signal

where everything is in meters, relative to some coordinate system which we do not worry
about. After a rotation of the dataset of 61.8 degrees, the flight direction was approximately
along the y-axis, so after subtracting the minimum value from the Xs and the Ys, we get a new,
rotated data-set with the origin close to the corner of the data set and all positional values
positive but small, but keeping the relative distances between them. The total area covered by
the data set is approximately 360 meters wide and 1600 meters along the flight distance.

4.3 WTMM Algorithm

To use the mathematical theory we have been studying so far for edge detection, we selected
one (arbitrary) line from the laser altimetry dataset. Then we subtracted a line that intersected
the curve in the first and the last sample, to avoid getting large values of|Wψf(s, x)| at each
end, which would hide some of the features near the start and the end of the data set. The line
is plotted in Figure 4.1.

Theorem 2.54 shows us how to find pointsx0 where the functionf is regular and wherex0 is
surrounded by points wheref is possibly less regular. What we want to do, for edge detection,
is the opposite; to find points wheref is irregular surrounded by points wheref is more
regular. This means that the conditions in Theorem 2.54 not quite are satisfied. And Theorem
2.55, which introduces the curves to calculate the decay of|Wψf(s,X(s))| on, has very
stringent demands onψ and on the behavior ofWψf(s, x), but we still might use the methods
illustrated in these theorems as a tool for edge detection. We decided to use the continuous
wavelet transform, cwt, or more precisely, a linear sampling in both thex ands variables of the
cwt. This is a more directly approach of the theorems presented in this thesis than the use of
the dyadic, discrete wavelet transform, dwt. The various pros and cons of this approach will
not be discussed here. The choice of the waveletψ of course affects|Wψf(s, x)|, but testing
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Figure 4.2 The magnitude of|Wψf(s, x)|

on both the Haar wavelet and the Mexican Hat wavelet, which represents two wavelets with
almost opposite properties (the Haar wavelet being compactly supported and discontinuous
and the Mexican Hat wavelet beingC∞(R) and infinitely supported. See Figure 2.1 on page
14) shows us that the results are similar, though not identical, on a wide range of wavelets. The
Mexican Hat wavelet is the one used in the figures in this section.

To implement this algorithm in Matlab, we use thecwt function of the Matlab Toolbox for
continuous wavelet transform. The intensity and the surface plots of|Wψf(s, x)| are plotted in
Figure 4.2 and Figure 4.3. The maxima lines in|Wψf(s, x)| consists of the point cloud of
maxima of the one dimensional functionsg(x) = |Wψf(s0, x)| we get when we fixs0. To
actually find these lines in datasets, and especially in real and noisy data offers some
challenges. What looks like a nice and easily selectable maximum ofg(x) = |Wψf(s0, x)|,
often consists of many small peaks, when we zoom in to pixel level, as in Figure 4.4.

To find the ’true’ maxima, and since observing that a typical plot ofg(x) = |Wψf(s0, x)|
consists of small bumps resembling second or 4th order polynomials on the intervals between
zero-crossings ofWψf(s0, x) as in Figure 4.5, we approximate by a 4. order polynomial using
the Matlab functionpolyfit. To catch more than two bumps in intervals between zero-crossings,
we would need higher order polynomials.

The set of all the maxima-points, found using the local polynomial approximation on the
intervals between the zero-crossings ofg(x), resembles lines going from coarse scales that
splits into two lines, with a possible gap between the ’splitting point’ and the start of the new
maxima line, making the ’splits’ not into ’Y-s’, but into patterns as in figure 4.7. Figure 4.6
showsall the points found in the polynomial approximation.

Observing that the zero-crossings, which are the red dots plotted together with the yellow
maxima points in Figure 4.8 resembles droplets with a more or less open top and with a
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Figure 4.3 The magnitude surface of|Wψf(s, x)|
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Figure 4.4 Ripples that makes it difficult to find maxima points
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Figure 4.5 Polynomial approximation (of|Wψf(s, x)|+100) between the zero-crossings (red
lines) gives the maxima (green lines).
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Figure 4.6 The point clouds of the maxima.
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Figure 4.7 The splitting of lines.

maxima line and one or more new such droplets inside, might help us understand the structure
of the continuous wavelet transformWψf(s, x0).

Now we have a matrix with all the found ’candidates’ of points belonging to the maxima-lines
of |Wψf(s, x)|. The next thing we want to do is to group these points together in line-objects,
X(s) on which we can calculate the decay of|Wψf(s,X(s))| whens → 0. This grouping of
points into line-objects might cause some challenges. The maxima found are not the exact
’true’ maxima of|Wψf(s, x)|, and exacthowwe go about in this grouping will affect our final
results.

One way to group the points into lines is to start at the coarsest scale (the biggers), and
traverse the maxima-matrix searching indexes representing a maximum. When found,
continue from this point toward finer scales as long as there are maxima points, either directly
down, meaning at the exact samex, or allowing a certain angle or certain gaps in the line.
There probably isn’t any totally fool-proof way of doing this. The maxima points found along
such ’lines’ are marked so that we don’t include any maxima points in several lines. The
resulting line-objects are stored. We have to decide how long a line has to be, relative the scale,
s, where it starts, and how close to the finest scale a line has to reach to be stored as a ’line’. If
a line stops before the finest scale, we also have to decide whichx this line is to be associated
with. This is not handled in a satisfactory way in the current code. According to Proposition
2.53, and given the conditions onψ therein, the maxima lines should never be interrupted, and
they should continue all the way down to the finest scale, but our method of the maxima points
and avoiding points to belong more than one maxima line might cause some difficulties here.
The result of the grouping of points into contiguous line object is shown in Figure 4.9.

After the grouping of maxima points into connected lines, we are able to use the lines
{(s, Xi(s))} for estimating the decay of|Wψf(s,Xi(s))| along these lines, as in Figure 4.10.
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Figure 4.8 Zero-crossings (red points) and maxima lines (yellow points).
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Figure 4.9 Maxima points connected to lines.
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Figure 4.10 A long line in the maxima matrix and|Wψf(s,X(s))|.

The inequality (2.27) of Theorem 2.55 is what gives usα (which is anyα < γ). To estimateα,
we observe that taking logarithms of both sides of|Wψf(s,X(s))| ≤ Asα gives us

log(|Wψf(s,X(s))|) ≤ log A + log(s) α (4.1)

which reads

W (s′) ≤ B + s′ α. (4.2)

Plotting thisW (s′), which is alog-log plot of |Wψf(s, X(s))|, and searching forα, which is
the slope of this 1. order polynomial boundingW (s) is again a matter of difficulties. Since
CWT is undefined ats = 0, and since we operate with a discrete sampling of|Wψf(s, x)|, this
estimation ofα will always be a guess, rather than the exact value. Thelog-log plot of
|Wψf(s,X(s))| blows up the small oscillations ofWψf(s,X(s)) at small scales, as shown in
Figure 4.13. This makes the estimation ofα especially ambiguous when the lineX(s) is short,
consisting only of the small values ofs′ andW (s′). Instead of searching for a line that is
completely above the graph ofW (s′), we want to find an approximation of the slope ofW (s′)
at small scales. This can be done in several ways, each with some advantages and
disadvantages. We ended up using the derivative at the smallest scale of the 2nd degree
polynomial approximating the whole ofW (s′), again using the Matlab functionpolyfit, as in
figure 4.11.

If a line consists of few points and at small scales, thelog-log approach and the small number
of samples makes the polynomial approximation unstable. What wereally are searching for is
the slope,α of a line that is completely above all the samples whens → 0. Our method gives
strange results, as indicated in Figure 4.12 and Figure 4.13.
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Figure 4.11 Thelog-log plot of |Wψf(s,X(s))| (blue curve) and the 2nd order polynomial
approximation (red parabola) and the derivative with slopeα, representing the
Asα.
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Figure 4.12 A short line in the maxima matrix and|Wψf(s,X(s))|.
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Figure 4.13 Thelog-log plot and theα of a short line

There might be several maxima lines pointing at a particularx0, and we are interested in the
one with the smallestα, sinceα gives us the upper bound of the regularity of the functionf(x)
atx0. Actually, CWT with a complex wavelet might give us theα-regularity at a point both
from the left and from the right by following maxima lines that are to the left and to the right
of the point, which might differ, as explained in Tu, Hwang (56), but that is beyond the scope
here. Following all the stored maxima lines toward finer scales, and storing the minimumα’s
in a vector at the positions of the originalx’s, makes us able to plot the original signalf(x)
together with the Hölder regularity of each point that has a maxima line pointing at it, as in
figure 4.14. Theα’s plotted are actually the plot of(25 (4− α) + 140), showing smallα’s as
tall bars.

4.4 Synthetic Data

To test the resultingα values, we need to analyse synthetic data with known regularity at the
points of interests. We know that a continuous function is Hölderα for α < 1, and that a cusp
is the limiting case, i.e. it is continuous but it is not Hölderα = 1. The functions
f(x) = A |x|α for 0 < α < 1 are Hölderα which follows trivially from the definition of
Hölder regularity, as does the functionf(x) = 1− |x|α for 0 < α < 1 andx ∈ [−1, 1]. Since
our data is discretely sampled, strictly speaking we do not know whether the original signal is
C∞(R) or discontinuous at any point, but the best we get is what itlooks likeat the finest scale
we have at our disposal. In this section we will be analysing several interesting synthetic cases,
and see whatα-s our WTMM-algorithm gives us.

In the following, we present some examples of synthetic signals with particularly interesting
properties. The first example represents an abrupt change in the level of a function, a ‘step’,
plotted in Figure 4.15 and Figure 4.16. TheAnalysis Plotsof all these examples consists of 5
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Figure 4.14 Signal (Red curve) and Hölder regularity ((25 (4− α) + 140) blue bars)

parts:

1. The signal.

2. Theα-values.

3. |Wψf(s, x)| as grey-level.

4. All the maxima points.

5. The maxima lines found by grouping of maxima points.

The next example is two such steps, which could represent a building, plotted in Figure 4.17
and Figure 4.18.

The third example is a ‘spike’. A spike which is a sudden ‘wild value’, which could be a tree,
but which also could be an outlier, plotted in Figure 4.19 and Figure 4.20.

Then, in the next two examples, we have cusps with known non-integerα-regularity, which
would be the ultimate test of our algorithm for finding theseα-s. The result is plotted in Figure
4.21 and Figure 4.22 and in Figure 4.23 and Figure 4.24.

4.5 The Sandvika Data Set

Running the algorithm described in the previous sections on all the lines and all the columns in
the Sandvika data set in Figure 4.25 gives the results in Figure 4.26.

The histogram with 100 equally spaced containers of the alpha values of all the rows is showed
in Figure 4.28, and the same for all the columns is showed in Figure 4.27. The valueα = 0 is
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Figure 4.15 |Wψf(s, x)| of a step function
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Figure 4.16 The analysis of the step function
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Figure 4.17 |Wψf(s, x)| of a box function
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Figure 4.18 The analysis of the box function
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Figure 4.19 |Wψf(s, x)| of a spike function
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Figure 4.20 The analysis of the spike function
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Figure 4.21 |Wψf(s, x)| of a cusp (α = 0.25) function
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Figure 4.22 The analysis of the cusp (α = 0.25) function
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Figure 4.23 |Wψf(s, x)| of a cusp (α = 0.75) function
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Figure 4.24 The analysis of the cusp (α = 0.75) function
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Figure 4.25 The Sandvika data set with two different scalings
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Figure 4.26 All the alpha values found along maxima lines in the rows, the columns and
either in the dataset
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Figure 4.27 All the alpha values found along maxima lines in all the columns

used for an initial value of all the points, and is therefore (probably!) all the points withno
maxima line pointing at them

We see that the alpha values range over a wide interval, including negative values, which
shows that our algorithm does not work completely.

4.6 Conclusions

The example functions with known Hölder regularity in Section 4.4 shows us that our
algorithm has some weaknesses. The most serious such is probably the process of finding and
gathering the maxima points of the functiong(x) = |Wψf(s0, x)| for all x0 into contiguous
line objects. Failing in finding all thetruemaxima lines and ‘following’ them all the way down
to the right scale and position(s0, x0) or by making ‘false’ maxima lines will make the
algorithm produce strange results. Also the process of approximating the slope of thelog− log
curve ofg(s) = |Wψf(s,X(s))| when the curve consists of few points, or if it is oscillating,
offers some challenges. This is particularly so if we have made some wrong choices for the
maxima lines.

5 THESIS SUMMARY

We have seen that mathematically, the CWT with surprisingly weak conditions onψ gives us a
tool for approximatingα-regularity locally and globally. But the discretization of CWT (and of
the data to be analysed) for computer application offers some challenges. For a more thorough
analysis of 2D data, similar results should be studied with 2 dimensional CWT, or possibly the
2 dimensional dyadic discrete wavelet transform. Also, the theorems studied here only
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Figure 4.28 All the alpha values found along maxima lines in all the rows

considers theregularity, but in real datasets the noise will usually make the signal very
‘un-regular’ even though the noise ‘structures’ are very small compared to the real objects or
structures in the data.

Also theamplitudeof the wavelet transform should be considered. For instance, a paved road
with width 3 meters and height 10 centimeters would give us the same results as a building
with the same width but with height 10 meters, o nly that the house will have 100 times larger
|Wψf(s, x)|. But theα-values here will be the same.

Furthermore, thescaleat which the maxima lines occur or have some sort of maxima or center
shows us the extent of the structure, which normally would be very interesting information to
analyse further, since we for instance normally would want to separate a matchbox from a
large building...

Different kinds of thresholding, which means altering the value ofWψf(s, x) according to
some rule, for instance zeroing outWψf(s0, x0) where|Wψf(s0, x0)| is smaller than some
threshold orsoft thresholdingwhich means that we just reduce the values instead of zeroing it,
is also a useful tool in analysis of data. Also stopping at a scale larger than the smallest scale
“filters out” the high frequency contribution, which often is noise or structures to small for our
interest.
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APPENDIX

A PRELIMINARIES

A.1 Introduction

In this appendix, we want to include all the background material needed in the thesis not
included in the text. This is also the place to find general definitions and notations etc. Most of
the material is from Folland (11), Pedersen (51), from Richards, Youn (52) or from either of
the three major sources in the rest of the thesis: Mallat, Hwang (39), Holschneider (14) and
Mallat (37).

A.2 Integration Theory

Definition A.1 (The Power SetP(Rn)).

P(Rn) = {A|A ⊂ Rn}.

Definition A.2 (σ-algebra). A (set-)σ-algebrain a non-empty setX is a familyA ⊂ P(X)
which is closed under countable unions and compliments.

Definition A.3 (The σ-algebra generated byE). LetE ⊂ P(X) be a subset. The smallest
σ-algebra which containsE is theσ-algebrageneratedbyE , and is writtenM(E).

Definition A.4 (Borel σ-algebra). Theσ-algebra generated by the open
(or equivalently by the closed) subsets ofX is called theBorelσ-algebraonX and is denoted
BX .

Lemma A.5. If f : X → Y is a function andN ⊂ P(Y ) is aσ-algebra onY , then
M = {f−1(E) : E ∈ N} is aσ-algebra onX.

Proof. This is obvious, sincef−1 : P(Y ) → P(X) commutes with unions, intersections and
complements.

Definition A.6 (Measure, Measurable space, Measure space).A measureon (X,M) is a
functionµ : M→ R+ = [0,∞) ⊂ R such that

• µ(Ø) = 0,

• {Ej}∞j=1 disjoint inM⇒ µ(∪∞j=1Ej) =
∑∞

j=1 µ(Ej).

A measurable space, (X,M), is a setX equipped with aσ-algebraM.
A measurable space(X,M) with a measureµ is called ameasure space.

Definition A.7 (Null-set, Complete measure).A null-setis a measurable setX, where
µ(X) = 0. A measure whose domain contains all subsets of null-sets is calledcomplete.
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Theorem A.8. Suppose(X,M, µ) is a measure space. LetN be the set of null-sets inM, i.e.
N = {N ∈M|µ(N) = 0}. DefineM = {E ∪ F |E ∈M andF ⊂ N for someN ∈ N}.
ThenM is aσ-algebra, and there is a unique extensionµ of µ to a complete measure onM. µ

is called thecompletionof µ.

Proof. SinceM andN are closed under countable unions, so isM. If E ∪ F ∈M where
F ⊂ N ∈ N , we can assume thatE ∩N = Ø (otherwise, replaceF,N by F\E, N\E). Then
E ∪ F = (E ∪N) ∩ (N c ∪ F ), so(E ∪ F )c = (E ∪N)c ∪ (N\F ). But (E ∪N)c ∈M and
N\F ⊂ N , so that(E ∪ F )c ∈M. ThusM is aσ-algebra.

If (E ∪ F ) ∈M (F ⊂ N ∈ N ), setµ(E ∪ F ) = µ(E). This is well defined, since if
(E1 ∪ F1) = (E2 ∪ F2) (Fj ⊂ Nj ∈ N ), thenE1 ⊂ E2 ∪N2 and so
µ(E1) ≤ µ(E2) + µ(N2) = µ(E2), and likewiseµ(E2) ≤ µ(E1). It is easily verified thatµ is a
complete measure onM, and thatµ is the only measure onM which extendsµ.

Definition A.9 (Borel measure).The measure generated by each of the following:

• E1 = {(a, b) : a < b},
• E2 = {[a, b] : a < b},
• E3 = {(a, b] : a < b},
• E4 = {[a, b) : a < b},
• E5 = {(a,∞) : a ∈ R},
• E6 = {(−∞, b) : b ∈ R},
• E7 = {[a,∞) : a ∈ R},
• E8 = {(−∞, b] : b ∈ R}.

is called theBorel measure, and is denotedBR.

Definition A.10 (Lebesgue and Lebesgue-Stieltjes measure).
If F : R→ R is an increasing, right continuous function (i.e.F (a) = limx→a F (x), ∀a ∈ R),
then the completion of the measureµF defined onBR byµ((a, b]) = F (b)− F (a) is called the
Lebesque-Stieltjes measureassociated toF . The complete measure associated toF (x) = x is
called theLebesgue measureonR and is denotedm. The domain ofm is denotedL.

Definition A.11 (Measurable functions). If (X,M) and(Y,N ) are measurable spaces, a
mappingf : X → Y is called(M,N )-measurable, (or justmeasurable) if f−1(E) ∈M for
all E ∈ N .

Definition A.12 (Lebesgue measurable function).A function
f : R→ R is calledLebesgue measurableif it is (L,BR)-measurable.

Proposition A.13. If N is aσ-algebra generated byE , thenf : X → Y is
(M,N )-measurable if and only iff−1(E) ∈M for all E ∈ E .
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Proof. The "if" part follows from the fact that{E ⊂ Y : f−1(E) ∈M} is aσ-algebra which
containsE , and therefore containsN .
The "only if" implication is trivial.

Corollary A.14. Letf : X → R be a function, where(X,M) is a measurable space. The
following are equivalent:

• f is (M,BR)-measurable,

• f−1((a,∞)) ∈M, ∀a ∈ R,

• f−1([a,∞)) ∈M, ∀a ∈ R,

• f−1((−∞, a)) ∈M, ∀a ∈ R,

• f−1(−∞, a])) ∈M, ∀a ∈ R.

Proof. This follows trivially from the definition of the Borelσ-algebra.

Definition A.15 (Characteristic- and Simple functions).Thecharacteristic functionχA(x)
of a setA is defined

χA(x) =

{
1 for x ∈ A,

0 for x 6∈ A

A simple functionis a finite linear combination of characteristic functions of sets inM,
f(x) =

∑N
n=0 anχEn(x).

Theorem A.16. Let (X,M) be a measurable space. Iff : X → (0,∞] is measurable, there
is a sequence{φn} of simple functions such that0 ≤ φ1 ≤ φ2 ≤ · · · ≤ f , φn → f pointwise
andφn → f uniformly on any set on whichf is bounded.

Proof. We prove this by constructing the sequenceφn.
Let n ∈ N, and0 ≤ k ≤ (22n − 1). Define

Ek
n = f−1( (

k

2n
,
k + 1

2n
]),

and

Fn = f−1( (2n,∞]).

Define

φn(x) =

(22n−1)∑

k=0

k

2n
χEk

n
(x) + 2nχFn(x).

Thenφn ≤ φn+1 for all n, and0 ≤ f − φn ≤ 2−n on the set wheref(x) ≤ 2n.
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Definition A.17 (Lebesgue integral).Lets(x) =
∑n

i=1 ciχEi
(x) be a simple function, where

{Ei}N
i=0 is a partition of a measurable setE, with measureµ. Define

IE(s) =
∑n

i=1 ciµ(E ∩ Ei). We then define theLebesgue integralof a measurable positive
functionf over the setE as

∫

E

f dµ = sup
0≤s≤f

IE(s).

Theorem A.18 (Monotone convergence theorem).If {fn} : X → [0,∞] are measurable,
0 ≤ fn ≤ fn+1 andfn → f , then

∫
f dν = lim

n→∞

∫
fndν.

Proof. {∫ fn dν} is monotone, so the limit does exist (possibly∞).∫
fn ≤

∫
f ⇒ lim

∫
fn ≤

∫
f . Let 0 < α < 1 and let0 ≤ φ ≤ f be a simple function. Define

En = {x ∈ E| fn(x) ≥ αφ(x)}. ThenEn ⊂ En+1 → E and

∫

E

fn ≥
∫

En

fn ≥ α

∫

En

φ −→
n→∞

α

∫

E

φ−→
α→1

∫

E

φ −→
sup(φ| φ simple)

∫

E

f.

Lemma A.19 (Fatou’s lemma).If {fn} is measurable and0 ≤ fn(x) ≤ ∞, ∀x, then

∫
(lim inf fn) ≤ lim inf

∫
fn.

Proof.
∫

inf fn ≤ inf
∫

fn. By the Monotone Convergence theorem:∫
(lim inf fn) = lim

∫
(inf fn) ≤ lim inf

∫
fn

If we have a function which is complex or real and negative we define

f+
R (x) = max(Re(f), 0),

f−R (x) = max(−Re(f), 0),

f+
I (x) = max(Im(f), 0),

f−I (x) = max(−Im(f), 0).

All of these are positive, real-valued functions and

f(x) = f+
R (x)− f−R (x) + i

(
f+

I (x)− f−I (x)
)
.
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A.3 General Theory

Definition A.20 (Convolution). Theconvolutionf ∗ g of two functionsf, g ∈ L2(R) is
defined by

f ∗ g(x) =

∫

R
f(u)g(x− u)du. (A.1)

Definition A.21 (Involution, Dilation and Translation). Letf(x) andψ(x) be functions.
Then

• Theinvolutionf inv of f is defined by

f inv(x) = f(−x) (A.2)

• fs(x) denotes thedilationof f(x) by the factors:

fs(x) =
1

s
f(x/s). (A.3)

Then||f ||L1(R) = ||fs||L1(R) and||f ||L2(R) =
√

s||fs||L2(R).

• ψa,b(x) denotes thedilation and translationof ψ by the factorsa andb;

ψa,b(x) =
1√
|a|ψ

(
x− b

a

)
(A.4)

Then||fa,b||L2(R) = ||f ||L2(R) and||fa,b||L1(R) =
√
|a|||f ||L1(R).

For wavelets with compact support, the Cone of Influence is important, because it gives the
cone in the time-frequency plane of the continuous wavelet transform, pointing atx0 which
influences the wavelet transform atx0.

Definition A.22 (The Cone of Influence).We define theCone of Influenceof a pointx0, for a
constantC by

Cone(x0, C) = {(s, x) ∈ R2 | |x− x0| ≤ Cs}.

A.4 Vector Spaces

Definition A.23 (Abelian group). AnAbelian group(G, +) is a setG with a binary operation
+ (a, b ∈ G ⇒ a + b ∈ G) onG, such that the following are satisfied:

• The binary operation is associative and commutative.
(a + (b + c) = (a + b) + c anda + b = b + a, ∀a, b, c ∈ G)
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• There exist an elemente ∈ G (an identity) such thate + x = x, ∀x ∈ G

• ∀a ∈ G, ∃a′ ∈ G, such thata + a′ = e. (an inverse)

Definition A.24 (Vector space, Vectors, Span, Basis).A real (or complex)vector spaceis an
Abelian groupV , with addition as the binary operation and an operation of scalar
multiplication of each element inV with each element inR (or C), such that for alla, b ∈ R
(or C) and allα, β ∈ V :

• aα ∈ V

• a(bα) = (ab)α

• (a + b)α = (aα) + (bα)

• a(α + β) = (aα) + (aβ)

• 1α = α

The elements ofV are calledvectors. If {an}n∈F ⊂ V for an index setF , we define thespanof
{an}n∈F , Span({an}), as

Span({an}) =

{
a | a =

∑
n∈F

cnan, for some{cn}n∈F ⊂ R (or C )

}
.

A basisfor V is such a set{an}n∈F ⊂ V , such thatV = Span({an}n∈F ), and the set{cn}n∈F

is unique for eacha ∈ V .

Definition A.25 (Norm, Normed Vector space).A normon a vector spaceV is a function
‖ · ‖ : V → [0,∞) such that, for allx, y ∈ V andλ ∈ R (or C),

• ||x + y‖ ≤ ‖x‖+ ‖y‖

• ‖λx‖ = |λ| ‖x‖

• ‖x‖ = 0 ⇔ x = 0 (an identity element ofV )

A vectorspace with a norm is called anormed vector space.

Definition A.26 (The Lp-spaces).LetX be a measure space withσ-algebraM and measure
µ and let0 < p < ∞. Define the equivalence relation∼ by

f ∼ g ⇔
∫

X

|f − g|p dµ = 0.

Let ||f ||p =
(∫

X
|f |p dµ

)1/p
, where

∫
is the Lebesgue integral. Then

Lp(X,M, µ) = Lp(X) = {f : X → C| f is measurable and||f ||p < ∞}/ ∼ .
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Definition A.27 (Cauchy sequence, Complete vector space).A sequence{xn}n∈N in a
vector spaceV is called aCauchy sequenceif ‖xn − xm‖ → 0 whenn,m →∞. A
vectorspaceV , where every Cauchy sequence converges to a point inV is called acomplete
vector space.

Definition A.28 (Banach Spaces).A normed vector space, which is complete with respect to
the norm is called aBanach space.

TheLp(R)-spaces, forp ≥ 1, are Banach spaces, with the norm given by

‖f‖p =

(∫
|f(x)|p dx

)(1/p)

.

Definition A.29 (Inner product, Inner product space). LetX be a complex vector space. An
inner productonX is a map〈·, ·〉 : X ×X → C, (x, y) 7→ 〈x, y〉 such that:

• 〈ax + by, z〉 = a〈x, z〉+ b〈y, z〉 for all x, y, z ∈ X anda, b ∈ C.

• 〈x, y〉 = 〈y, x〉, ∀x, y ∈ X.

• 〈x, x〉 > 0, ∀x ∈ X, x 6= 0.

Every inner product defines a norm given by‖x‖ = 〈x, x〉1/2. A complex vector space with an
inner product and a norm defined by the inner product is called aninner product space.

Definition A.30 (Orthogonal/Orthonormal vectors/set). We say that two vectorsx, y ∈ X

areorthogonalif 〈x, y〉 = 0. This is denotedx ⊥ y. If, in addition〈x, x〉 = 〈y, y〉 = 1 we say
thatx andy areorthonormal. If {xα}α∈Λ satisfiesα 6= β ⇒ 〈xα, xβ〉 = 0 and
〈xα, xα〉 = 1, ∀α, β ∈ Λ then{xα} is anorthonormal set.

Lemma A.31 (The Schwarz inequality).LetX be a innerproduct space, withx, y ∈ X and
a ∈ C. Then

• |〈x, y〉| ≤ ||x|| ||y||

• |〈x, y〉| = ||x|| ||y|| ⇔ x = ay.

Proof.

• Let y 6= 0 andλ = 〈x,y〉
||y||2 .
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Then

0 ≤ ||x− λy||2
= 〈x− λy, x− λy〉
= 〈x, x〉 − 〈x, λy〉 − 〈λy, x〉+ |λ|2〈y, y〉
= 〈x, x〉 − λ〈x, y〉 − λ〈x, y〉+ |λ|2〈y, y〉

= 〈x, x〉 − 〈x, y〉
||y||2 〈x, y〉 − 〈x, y〉

||y||2 〈x, y〉+
|〈x, y〉|2
||y||4 〈y, y〉

= ||x||2 − 2
|〈x, y〉|2
||y||2 +

|〈x, y〉|2
||y||2

= ||x||2 − |〈x, y〉|2
||y||2 .

Hence|〈x,y〉|2
||y||2 ≤ ||x||2.

• Equality holds in the previous calculations if and only ifx = λy.

Definition A.32 (Hilbert Spaces).A complex vector space with an inner product, which is
complete with respect to the norm||x|| =

√
〈x, x〉 is called aHilbert space.

LtoR is a Hilbert space, with the innerproduct given by

〈f, g〉 =

∫
f(x) g(x) dx.

Rn andCn are also a Hilbert spaces, with the usual inner products.

Lemma A.33 (The parallelogram law). Letx, y be two elements in a Hilbert spaceH. Then

||x + y||2 + ||x− y||2 = 2(||x||2 + ||y||2).

Proof.

‖x + y‖2 + ‖x− y‖2 = 〈x + y, x + y〉+ 〈x− y, x− y〉
=

(‖x‖2 + 2<e〈x, y〉+ ‖y‖2
)

+(‖x‖2 − 2<e〈x, y〉+ ‖y‖2
)

= 2
(‖x‖2 + ‖y‖2

)
.

Theorem A.34 (The Pythagorean theorem).LetH be a Hilbert space. If{xi}n
i=0 ⊂ H is an

orthogonal set, then

||
n∑

i=1

xi||2 =
n∑

i=1

||xi||2.
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Proof.

||
∑

xi||2 =
〈∑

xi,
∑

xi

〉
=

∑
i,j

〈xi, xj〉 =
∑

i

〈xi, xi〉 =
∑

||xi||2.

Theorem A.35 (Bessel’s ineqality).LetH be a Hilbert space.
If {nα}α∈A ⊂ H is a orthonormal set, then

∑
α∈A

|〈x, uα〉|2 ≤ ||x||2.

Proof. It suffices to show the inequality for anyfiniteF ⊂ A. Then, by the Pythagorean
Theorem,

0 ≤ ‖x−
∑
α∈F

〈x, uα〉‖2

≤ ‖x‖2 − 2<e

〈
x,

∑
α∈F

〈x, uα〉uα

〉
+ ‖

∑
α∈F

〈x, uα〉uα‖2

= ‖x‖2 − 2
∑
α∈F

|〈x, uα〉|2 +
∑
a∈F

|〈x, uα〉|2

= ‖x‖2 −
∑
α∈F

|〈x, uα〉|2

Definition A.36 (Orthonormal Basis). An orthonormal set{uα}α∈A in a Hilbert spaceH, is
called anorthonormal basisfor H if the following equivalent properties are satisfied;

• (Completeness) If〈x, uα〉 = 0, ∀α, thenx = 0,

• (Parseval’s equation)‖x‖2 =
∑

α∈A |〈x, uα〉|2,∀x ∈ V ,

• ∀x ∈ H, x =
∑

α∈A〈x, uα〉uα, where the sum has only countably many nonzero terms,
and converges in norm tox, no matter how these terms are ordered.

Definition A.37 (Dual basis, Biorthogonal bases).Given a basis{uα}α∈A in a Hilbert space
H. A set{ũα}α∈A ⊂ H is a dual basisof {uα}α∈A, if

〈uα, ũβ〉 = δ(α− β) =

{
1 for α = β,

0 for α 6= β
.

{uα}α∈A and{ũα}α∈A together is called abiorthogonal basisfor H.

Theorem A.38. If {uα}α∈A and{ũα}α∈A are dual bases in a Hilbert spaceH, then,∀a ∈ H,

a =
∑
α∈A

〈a, uα〉ũα =
∑
α∈A

〈a, ũα〉uα.
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Proof.

Definition A.39 (Frames, Tight frames). A set{uα}α∈A in a Hilbert spaceH is called a
frameif, for given0 < A ≤ B < ∞,

A‖g‖2 ≤
∑
α∈A

|〈uα, g〉|2 ≤ B‖g‖2,

for all g ∈ H. If A = B, {uα}α∈A is called atight frame.

Lemma A.40 (Dominated Convergence Theorem).Let{fn} ⊂ L1(R) such that

• fn → f almost everywhere.

• ∃g ∈ L1(R) such that|fn| ≤ g, ∀n ∈ N.

Thenf ∈ L1(R) and
∫

f = lim
∫

fn.

Proof. By taking real and imaginary parts it suffices to assume thatfn andf are real valued.
We have thatg + fn ≥ 0 andg − fn ≥ 0 almost everywhere. By Fatou’s lemma
∫

f +

∫
g ≤ lim inf

∫
(g + fn) =

∫
g + lim inf

∫
fn,

and
∫

g −
∫

f ≤ lim inf

∫
(g − fn) =

∫
g − lim sup

∫
fn.

Hence

lim sup

∫
fn ≤

∫
f ≤

∫
fn.

Lemma A.41 (The Fubini-Tonelli theorem). f : R2 → R. Defineg(y) =
∫

f(x, y) dx, and
h(x) =

∫
f(x, y) dy

• Let0 ≤ f(x, y). Supposeg(y) =
∫

f(x, y) dx is measurable∀y ∈ R and
h(x) =

∫
f(x, y) dy is measurable∀x ∈ R. Then

∫ ∫
f(x, y) dx dy =

∫ ∫
f(x, y) dy dx.

• If f ∈ L1(R2), g, h ∈ L1(R) then
∫ ∫

f(x, y) dx dy =

∫ ∫
f(x, y) dy dx.

Proof. The proof is on page 65 in Folland (11).
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Lemma A.42. Leta, b ≥ 0 and0 < λ < 1. Then

aλb(1−λ) ≤ λa + (1− λ)b.

Proof. If b = 0 the result is obvious; otherwise, settingt = a/b, we need to show that
tλ ≤ λt + (1− λ) with equality if and only ift = 1. But by elementary calculus,tλ − λt is
strictly increasing fort < 1 and strictly decreasing fort > 1, so its maximum value, namely
1− λ, occur att = 1.

Theorem A.43 (Hölder’s ineqality). Let1 < p < ∞, 1
p

+ 1
q

= 1. Then

‖fg‖1 ≤ ‖f‖p ‖g‖q.

Hence, iff ∈ Lp(X)g ∈ Lq(X), thenfg ∈ L1(X).

Proof. Letting

a =

∣∣∣∣
f(x)

‖f‖p

∣∣∣∣
p

, b =

∣∣∣∣
g(x)

‖g‖q

∣∣∣∣
q

, andλ =
1

p
,

in the lemma above, we get

|f(x)g(x)|
‖f‖p‖g‖p

≤ |f(x)|p
p
∫ |f |pdµ

+
|g(x)|q

q
∫ |g|qdµ

.

Integrating both sides yields

‖fg‖1

‖f‖p‖g‖q

≤ 1

p
+

1

q
= 1.

Theorem A.44 (Minkowski’s ineqality). Let1 ≤ p < ∞ andf, g ∈ Lp(X). Then

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. The proof is on page 175 in Folland (11).

A.5 Distribution theory

Definition A.45 (C∞(Ω) and C∞
↓ (Ω)). .

C∞(Ω) = {f | dn

dxn
f(x) exists foralln ∈ N}.

C∞
↓ (Ω) = {f ∈ C∞(Ω)| ...}.

Definition A.46 (Test Functions).LetΩ ⊂ Rn be non-empty.

D(Ω) = C∞
0 (Ω) = {f ∈ C∞(Ω) : supp(f) compact}.
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Definition A.47 (The Schwarz-class).

S(Rn) = {f ∈ C∞(Rn) : |x|k|Dαφ(x)| < ∞∀k ∈ N, α = (α1, . . . , αm)}.

Definition A.48 (Distribution). A distributionor generalized functionis a linear mapping
Tf =< f, · >: D(Ω) → R, φ 7→ (f, φ), which is continuous in the following sense: Ifφn → φ

in D(Ω), then< f, φn >→< f, φ >. The set of all distributions is calledD′(Ω).

Definition A.49 (Convergence in the Sense of Distributions).Let{Tn}n∈N be distributions.
We say thatTn → T if < Tn, φ >→< T, φ > for all test functionsφ.

Definition A.50. LetS andT be distributions,g ∈ C∞(C) anda ∈ C. Then we define the
following new distributions:

• S + T : < S + T, φ >=< S, φ > + < T, φ >.

• aT : < aT, φ >= a < T, φ >.

• ∂
∂x

T : < T ′, φ >= − < T, φ′ >.

• Dαf : < Dα, φ >= (−1)|α| < f,Dαφ >.

• T (ax): < T (ax), φ >= 1
|a| < T, φ(x/a) >.

• T (x− a): < T (x− a), φ >=< T, φ(x + a) >.

• g(x)T (x): < g(x)T (x), φ >=< T, g(x)φ(x) >, whereφ is any test function.

Lemma A.51. SupposeΘ(x) ≥ 0, ∀x ∈ R, supp(Θ) ⊂ (a, b), f distribution and
(f ∗Θs)(x) ≥ 0, ∀s. Thenf(x) ≥ 0 in the sense of distributions.

Definition A.52 (Tempered distribution). A tempered distributionis a linear mapping
(f, ·) : S(Rm) → R, φ 7→ (f, φ), which is continuous in the following sense: Ifφn → φ in
S(Rm), then(f, φn) → (f, φ). The set of all tempered distributions is denotedS ′(R).

Definition A.53 (Approximative identity on a setA). Anapproximative identityon a setA
is a family of functions{φn}n∈Z ⊂ C(A) such that:

• ∫
A

φn(x) dx = 1, ∀n ∈ N,

• ∫
A
|φn(x)| dx = 1 (⇒ φn(x) ≥ 0 almost everywhere),

• ∫
|x|>δ mod (A)

|φn(x)| dx → 0 for all δ > 0 whenn →∞.

Example (Approximative identity of classC∞(R)).

Leth(x) =

{
e−1/x , x > 0
0 , x ≤ 0.

Then dn

dxn h(x) = h(n)(x) = Pn(x)
t2n e−1/x, wherePn(x) is a

polynomial of degree(n− 1), proven easily by induction onn. Now, defineφ(x) = h(1− x2).
Letφ1(x) = φ(x)∫

R|φ(x)| dx
, andφn(x) = nφ1(nx). Then{φn}n∈N is a set of approximative

identities of classC∞(R), andsupp(φn) ⊂ [−1/n, 1/n].
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Example (The delta function). TheDelta Functionis a distribution (not a function), and is
defined asδ(x) = lima→∞ af(ax), wheref(x) is a approximative identity.
We have< δ(x− a), φ >=< δ, φ(x + a) >= φ(a).

Definition A.54 (Convolution of Distribution and Test Function). LetT be a distribution
andφ a test function. We define(T ∗ φ)(x) =< T (y), φ(x− y) >=< T (x− y), φ(y) >.

There probably is no sensible definition of convolution of two arbitrary distributions.

Lemma A.55. LetT be a distribution andφ a test function. We then have:

• T ∗ φ is a test function.

• If supp(T ) ⊂ [−a, a] andsupp(φ) ⊂ [−b, b], then

supp(T ∗ φ) ⊂ [−(a + b), a + b].

• If T have compact support, then

T ′(x) = δ′(x) ∗ T (x), and

T (x− a) = δ(x− a) ∗ T (x).

Theorem A.56. Every distributionT is the limit in the distribution sense of a sequence
(φn) ⊂ C∞. If T has compact support, then(φn) will be test functions.

Lemma A.57 (Theφ(x)/x lemma). Letφ(x) ∈ C∞(R) such thatφ(0) = 0. Then
φ(x)/x ∈ C∞(R).

A.6 Fourier Transforms

The Fourier transform is the classical ’frequency transform’ which gives us the ’contribution’
of each frequency to the total signal. It is ’totally un-localized’ in that a small change to a
small part of the signal gives contribution to the whole transform.

Definition A.58 (Fourier Transform). We define theFourier-transformf̂ of f as
f̂(ξ) =

∫
R f(t)e−itξ dt.

Definition A.59 (Weak derivative). f ∈ L1(R) has aweak derivative
g ∈ L1(R) ⇔ ∫

R g(y)φ(y) dy = − ∫
R f(y)φ′(y) dy, ∀φ ∈ C1

0(R).

The motivation for this definition comes from the theory of distributions, and byIntegration by
Parts.

Lemma A.60. Letf ∈ L1(R).

1. Inversion formula:f(x) = (f̂)∧(x) =
∫

f̂(γ)e2πiγx dγ.

2. f(x) = 1
2π

∫
R f̂(ξ)eiξx dξ almost everywhere.
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3. Parseval’s identity:〈f, g〉 =
〈
f̂ , ĝ

〉
.

4. The Convolution Theorem:̂f ∗ g = f̂ ĝ.

5. ∧ : C∞
↓ (R) → C∞

↓ (R) is surjective.

6. |f̂(ξ)| ≤ ∫
R |f(x)| dx = ||f ||L1(R).

7. f̂(ξ) is continuous onR.

8. f has a weak derivativeg ∈ L1(R) ⇒ ĝ(ξ) = iξf̂(ξ).

9.

yf(y) ∈ L1(R) ⇒ f̂ differentiable, andf̂ ′(ξ) = −i(yf(y))̂. (A.5)

10. ψ ∈ C([a, b]), f ∈ L1([a, b]) ⇒ g(x) = (f ∗ ψs(x)) ∈ L1([a, b]).

Lemma A.61. f ∈ L2(R) ⇒ f̂ ∈ L2(R).

Lemma A.62 (Heisenberg’s unequality).A function cannot be both band- and time-limited.

Proof. If f is band limited, thenf is the restriction toR of an entire analytic function. Iff is
time limited as well, thenf ≡ 0.

Lemma A.63 (Shannon’s theorem).Letf ∈ L2(R) be band limited,
supp(f̂) ⊂ [−π, π]. Thenf(x) =

∑
n∈Z f(n) sin((x−n)π)

π(x−n)
.

Proof. f̂(ξ) =
∑

n∈N < f, e−inx√
2π

> e−inξ, where

cn =< f, e−inx√
2π

>= 1
2π

∫ π

−π
f̂(ξ)einξ dξ = 1

2π

∫
R f̂(ξ)einξ dξ = 1√

2π
f(n).

We then have:

f(x) =
1√
2π

∫

R
f̂(ξ)eixξ dξ

=
1√
2π

∫ π

−π


∑

n∈N
cne

−inξ


 eixξ dξ

=
1√
2π

∑

n∈N
cn

∫ π

−π

ei(x−n)ξ dξ

=
∑

n∈N
f(n)

sin(π(x− n))

π(x− n)
.

Definition A.64 (Nyquist sampling density).Whensupp(f̂) ⊂ [−Ω, Ω] ⊂ R, the sampling
partition ofR determined by the sample points{n π

Ω
} is called theNyquist sampling density.
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A.7 Function Spaces

Definition A.65 (R, Rn, Z, C, Cn, N,H).

• The real numbers :R = {x : x real}.
• The integers :Z = {n : n integer}.
• The Complex numbers :C = {z : z Complex}.
• The natural numbers :N = {n ∈ Z : n > 0}.
• The Euclidean spaces :n ∈ N, Cn, Rn, n ∈ N.

• The Half Plane :H = {(b, a) ∈ R2 : a > 0}.
Definition A.66 (Differentiable Functions,Cn(Ω)).
Letn ∈ N, 0 ≤ n ≤ ∞ andΩ ∈ Cn

Cn(Ω) = {f : Ω → C :
dk

dxk
f(x) = f (k)(x)) exists fork ∈ N, 0 ≤ k ≤ n}.

Definition A.67 (The Lp-spaces).LetX be a measure space withσ-algebraM and measure
µ and let0 < p < ∞. Define the equivalence relation∼ by

f ∼ g ⇔
∫

X

|f − g|p dµ = 0.

Let ||f ||p =
(∫

X
|f |p dµ

)1/p
. Then

Lp(X,M, µ) = Lp(X) = {f : X → C| f is measurable and||f ||p < ∞}/ ∼ .

Definition A.68 (The Schwarz-class or ‘Tempered Functions’).

S(Rn) = {f ∈ C∞(Rn) : |x|k|Dαφ(x)| < ∞, ∀k ∈ N, α = (α1, . . . , αm)}.
S0(R) = {f ∈ S(R) : supp(f) compact}.
Definition A.69 (Test function). LetΩ be a non-empty set inRn. A functionf defined onΩ is
called atest functionif f ∈ C∞(Ω), andf is compactly supported. The set of test functions is
denotedD(Ω) = C∞

0 (Ω).

Definition A.70 (Distributions). A distributionor generalized functionis a linear mapping
Tf =< f, · >: D(Ω) → R, φ 7→ (f, φ), which is continuous in the following sense: Ifφn → φ

in D(Ω), then< f, φn >→< f, φ >. The set of all distributions is calledD′(Ω).

Definition A.71 (Local W r-regularity at x0). Let r be a monotonic, non-negative,
submultiplicative function which satisfiesr(x) = O(1 + x2)γ/2 for someγ > 0. Suppose
ψ ∈ S0(R) is admissible (Cψ < ∞).

W r(x0) = {f : Wψf(a, b + x0)| = O(r(a) + r(b)), (a, b → 0)}.
Theorem A.72 (Holschneider (2.5.2)).W r(x0) in definition A.71 is independent ofψ.
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