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CHARACTERIZATION OF LOCAL AND GLOBAL REGULARITY BY THE
CONTINUOUS WAVELET TRANSFORM, APPLIED TO REAL AND SYNTHETIC
DATA

1 THESIS OVERVIEW

1.1 Overview

The ‘irregular’ points or areas of a signal (1 to N dimensions) carry most of the information in
the data. The objects in an image are outlined by their borders, i.e. the region (usually N-1
dimensional, i.e. aline in a 2D data set, a point in a 1D signal, etc), where the data value
changes abruptly. Getting a description of where the edges or borders of objects are and some
characterization of what type of edge it is, makes us able to separate real objects from noise
and smooth areas with slow-moving changes.

The theory of characterizing function regularity by the decay of the wavelet transform has
become standard wavelet theory since | started this thesis. The number of papers and books on
this theme is enormous, and to mention all or lots of them here is beyond scope. The
bibliography includes some, mostly from the pre 1995 period.

The purpose of this thesis is to present and prove the most important 1-D theorems regarding
the connection between the continuous wavelet transform (CWT) and local and global Holder
regularity. The starting point was the paper by Mallat and Hwang (39) in the early 1990s. The
work on this thesis has had some long and irregular breaks, due to un-mathematical events, but
the search for related papers, thesis and books has never stopped completely. Many authors
write about these topics, but it seems that the original paper covered most of what is todays
knowledge on the theme. The book by Mallat from 1999 (37) and by Holschneider from 1995
(14) is the most interesting additional contributions that we have found. These will be
presented without proofs. The proofs in the paper by Mallat and Hwang are not completed, so
the main contribution by this thesis is the completion of these proofs in a consistent form,
following the sketched proofs in that paper and in Holschneider, Tchamitchian (15) and Jaffard
(18), (19). A description of the differences and similarities between the theorems in Mallat and
Hwang and in these two other books is also added. In addition, a theorem from Jaffard, Meyer
and Ryan (29), an algorithm for computing pointwise Hélder exponents, is included.

Secondly, the implementation of the WTMM (Wavelet Transform Modulus Maxima)

algorithm in Matlab is done from scratch, except for twd function from Matlab’s Wavelet
Toolbox. We are aware of other implementations of similar algorithms, including the WavelLab
toolbox (2), but learning and using such large packages is both time-consuming in it self, and
also makes it hard to understand exactly what is happening. So, making everything our self
makes the result less perfect, but improves the understanding. This algorithm, like ‘all’ other
such algorithms made by others are based, more or less stringent, on the theorems in this
thesis. What is common to them all, is that they findrih@dulus maxima lineis the CWT

plane, and estimate the decay of the wavelet transform along these lines. We then get an
estimate of the regularity at the points that have a maxima line pointing at them.
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We also want to include the definitions and preliminaries needed to prove the theorems and
explain the theory.

Some work has been done to extract the ground from a ‘scene’ with buildings and vegetation
from laser altimetry data in (57), (58), (59), using wavelet methods.

In Chapter 2, we will present all the mathematical results regarding Holder regularity from
Mallat and Hwang (39), Holschneider (14) and Mallat (37) and some related results, including
some general theory and lemmas related to the topics. Most of the material here is gathered
from these three sources.

In Chapter 3 we will prove the theorems from Mallat and Hwang (39), based on the more or
less completed proofs there, and in a notation that is consistent with the rest of this thesis.

In Chapter 4, we want to implement an WTMM (Wavelet Transform Modulus Maxima)
algorithm based on following the wavelet transform maxima across scales in all the 1D lines in
each direction of some laser altimetry datasets, to identify and characterize the various
singularities we discover, and then put all these lines together in a location-preserving matrix
with the characterized singularities

In Appendix A, the relevant mathematical preliminaries not included in the text is added.

2 REGULARITY

2.1 Introduction

In this chapter we want to present theorems from the book of Mathias Holschneider (14), the
book of Stephane Mallat (37) and from the paper by Stephane Mallat and Wen Liang Hwang
(38), regarding characterization of singularities by the asymptotic decay of the wavelet
transform. Theorems from this last paper will be proven completely in Chapter 3. The
similarities and differences between the results in Mallat and Hwang (38) from 1992 and the
more recent Mallat (37) from 1999 will be commented, but the results in Holschneider (14)

will only be presented without much comment. The most fundamental theorems will be named
according to the naming and numbering in the book/paper they are found. The mathematical
background, the definitions and the notations not included in the text are found in Appendix A.

Some of the theorems in the paper and the two books are if-and-only-if and some of them have
slightly different conditions in the different directions. The theorems are separated, one part
showing the properties of the wavelet transform of functions with pre-described Holder
regularity and another part showing consequences of the wavelet transform properties, i.e. a
characterization of the regularity, the Hélder exponent, by the asymptotic decay of the wavelet
transform. The naming convention of a)’s and b)’s for each direction is used.

In Section 2.2, the ‘Continuous Wavelet Transform’ (CWT) section, we define the continuous
wavelet transform and some properties thereof, including theorems regarding necessary and
sufficient conditions on functions to la@missiblei.e. wavelets

In Section 2.3, the ‘Holder Regular Functions’ section, we will analyse properties of functions



9

with known Holder regularity globally and locally, specifically the behavior of the CWT of
such functions.

In Section 2.4, the ‘Oscillating Singularity’ section, oscillating singularities are defined and
discussed.

In Section 2.5, the ‘Global Holder regularity’ section, sufficient conditions on the CWT for the
function to be Holder regular globally or on an interval are outlined.

In Section 2.6, the ‘Local Holder regularity’ section, similar conditions for local, i.e. at a point
1o € R, are outlined.

Section 2.7, the ‘Pointwise Differentiability’ section, is a presentation of the implication these
results has on the differentiability of functions.

Section 2.8, the ‘Wavelet transform local maxima’ section, shows rather strong results
regarding the maxima lines oV, f (s, z)| in the time-frequency plane.

2.2 CWT

The continuous wavelet transform is defined by a convolution, which is a sliding of one
function over another, specific the sliding of the wavelet over the function to be analysed or
transformed. The Fourier transform is the classical ‘frequency transform’ which gives us the
contribution of each frequency to the total signal. It is ‘totally un-localized’ in that a small
change to a small part of the signal gives contribution to the whole transform, hiding the
localizationin the transformed signal. This can partly be fixed by windowing the frequency
atom, i.e. by multiplying with a localized function. In tNéindowed Fourier Transforiwe use

a fixed window, and thus get partly localized information. In the wavelet transform, we have,
in effect, a window that is dynamically scalable, giving us a much better localization property.

Definition 2.1 (Fourier Transform). We define th&ourier-transforny of f as

f(&) = Jr f(t)e ™ dt.

The Fourier Transform is sometimes defined Witﬁ\;a)r \/LQ? factor added for symmetry with
the inverse transform or for isometric purposes, and these other definitions might be in use, by
mistake, in some of the calculations in this thesis. Warning given.

A wavelet is a localized function with waves or oscillations, with average zero. It's a pretty
‘weak’ definition in that there are a lot of wavelets, giving us enormous freedom in selecting
wavelets that suits our problem to be solved. The flexibility also offers challenges to the
understanding of exactly what the analysis of a function shows us. There are many slightly
different definitions of wavelets and of wavelet transforms, each emphasizing different
perspectives of the theory. In the discrete theory, the Hilbert sha@) is often used with the
many Hilbert space results as tools and with wavelet transforms defined by (fRg
innerproduct. Similarly with periodic functions drt|a, bjor L*([0, 27)). We will be using the
standard definition for continuous wavelet transform which is the convolution-perspective.

Definition 2.2 (Admissible Wavelets and Wavelet Transform).
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Cy =27 [ W\(ff' d¢.

Cf = [ OF g,

_ 0
Cw:f—oo |s| d5

If Cy, < oo, then we say that is admissiblgor thaty satisfieghe admissibility
condition

¥ is awaveletif ¢ € L'(R) N L™(R) andC; = C}; < oo.

The Continuous Wavelet Transform (CWT):

Wai(sa) = (£ +0)(a) = [ ) (""”‘“) du.

For any real functiory, we have thédermittian Symmetrgiven byf(—é’) = f({), so for real
wavelets, the conditio(ij = C, is automatically satisfied.

The CWT has a weak inverse, given by the following lemma:

Lemma 2.3. Givenf € L'(R),

/ /Wwfsxz/}su—m)du%

where the equality is in a weak sense.
Proof. This is outlined on pages 24 and 25 in Daubechies (9) and Proposition 2.4.1 there.

The admissibility condition o' (R)-functions implies that the function has average zero,
which justifies the ‘wave’-part of the notion of ‘wavelets’. They are also time-localized or
‘small’, meaning that they argé!(R) and some are also compactly supported, which is the
motivation for the ‘-lets’ part of the name. The mostly used compactly supported wavelets are
the compactly supported spline- and Daubechies-wavelets, including the Haar-wavelet. Other
examples of non compact but highly localized wavelet are the Gaussian family including the
Mexican Hat wavelet. This family consists of derivatives of a Gaussian function.

Lemma 2.4. If ) is a wavelet thery(0) = [ 4 (x

Proof. Sugpos&ﬁ(()) =0 #0. Sincegfz(g) Is continuous by Lemma A.60, there exists 0
such thaty(€)| > /21 [0, ¢). Consequently

5
C, z/o éZdé_
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Lemma 2.5. Letk € N, ¢ € C*(R) and suppose that*¥) ¢ L?(R) is not identically zero.
Theny(z) = ¢ (x) is admissible.

Proof. Since|i)(€)| = |€]¥|4(¢)| by induction on A.5 in Lemma A.60, page 90

7 2

¢y = o / |¢|<§|>| ]
_ / [SREGE
e

_ K1 30V 2 4 9 €191
r [ lebe s + [

dg

= (Hgb”%w([—l,u) + ||¢(k)||2LZ(R)) -

Lemma 2.6. The se{ f € L*(R) : f is admissiblé is dense in.%(R).

Proof. f € L*(R) = f € L*(R) by Lemma A.61. Lefy 4 be the characteristic function of a
setA and definef, = f(f)X{g >} (£). For everye, f. is admissible. Since

12 )—HfHL2( R)"
IF = £y = | 1£(€)Pde — 0whene — o, @)

so everyL?(IR)-function is the limit of a sequence of admissible functions. N

This calls for some remarks. We see that any functioh%fR) with any average can be
approximated by a function of zero average that satisfies the admissibility condition. Usually
when we talk about wavelets we think of the Daubechies family, the Meyer family or some
other well localized functions, usually localized somewhere around zero, and with a few
approximately symmetric or anti-symmetric bumps. But from Lemma 2.6 we see that
admissible functions can have abaumty shape or structure. This is of course not sofoR).

As an illustration, let us consider an example:

Example. Lety,, : R — R be defined by:

0 forz € (—00,0) U [n+ 1, 00)
Pp(z) =4 1 forz €10,1) :
—1/n forze[l,n+1),

and lety . (z) € L*(R) be the characteristic function ¢, b). We have:

sin(x)

o —

X(—1,1)(€) =2

—

Us(- = b)(€) = e ™ah(s€).

= 2sinc(&) and
T
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n+2

Un(€) = e %?sinc(£/2) — e 2 K sine(né/2)
e~ % (e%/? sinc(£/2) — e/ sinc(né /2),

and

[ (OF _ . [P

G A
So
(6]

Cy, = d 2.2
I ST (22
_ 27r/ |e®€/2 sine(£/2) — e~™¢/2 sinc(né /2)|? i (2.3)

R €]

4
2 2n d —d 2.4
: 7r/|gg1 ! ij/|§>1 €17 ¢ 9
< 0. (2.5)

S0, is admissible/n € N, and
° fR fn(l‘) dr = 0, Vn € N,
® fun = X(ap), n — ocoand

i HX(O,I) - anQLQ(R> = 1/712 — 0, n — oo.

So we have a set of admissible functions that converges to the characteristic fun¢tion of
in L2(R). That shows that any simple function, which is a finite linear combination of
characteristic functions, is in the closure of the set of admissible functions.

Lemma 2.7. Suppos® # ¢ € L'(R) N L%(R), ¢)(0) = 0 and
2|1 (2)|de < oo

/R| Bl(a)

for somes > 1/2. Theny is admissible.

Proof. Thisis Lemma 1.1.4 in Louis, Maas, Riedler (31). O

Corollary 2.8. Supposé +# v € L*(R) has compact support. Then

~

(0) = 0 < ¢ is admissible. (2.6)
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Proof. e «:If ¢ € L*(R) has compact support, thenc L'(R) and the result follows
from Lemma 2.4.

e =: The compact support af gives [ |z|°|¢(x)|dz < oo for all > 0, so this follows
from Lemma 2.7.

O

The following lemma is simply a splitting of a functighin one smooth C"(I)) part and a
‘rest’, the irregular part. It's simply a tool to be used in later sections.

Lemma2.9.Let] = (a,b) C R be anintervals, > 0, f € L'(I) andy € C"(I), forn € N.
Then

1 50 — ds
f@) = o [ et an 27)
1 [ — ds
4 C_¢/50 /RV\/wf(s,u)ws(u—x) du? (2.8)
= fsmall(x)+flarge<x)7 (29)

where fi,,4. () € C™(1).

Proof. We havey,(u — z — h) — ¢,(u — z) = %4/(“=2=T) for somer € (0, h) by theMean
Value Theorenso

0 S |flargex+h fla'rge( >| (210)
= / /W¢fsx ws(u—x— h) — ws(u—x))du@

h— u—x— ds
= & | ot GEt—

/ o0
< h||f||L1(I)||¢||L°°(1)||¢||L1(1>/ 1o
CIZ} 0 82
_ h\|f|\L1(I)|W||L°°(I)H¢'HL1(I)
800¢
= Ch, (2.11)
and the result follows by induction on O

Example (Commonly used Wavelets)As we have seen, there are an infinite number of

wavelets, but there are a number of classes or families of wavelets that are more used and
studied than others because of their nice properties. We will not be defining or analysing these
families here, only mention and plot (Figure 2.1) some of the most famous and popular ones,

and mention in particular two of the mostly used, namelyHhar waveleand theMexican
Hatwavelet, whom we will be using later in this thesis.
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Figure 2.1 Different wavelet functions

2.3 Holder Regular Functions

The smoothness of a function at a point or in some interval is a description of how fast it is
changing. Is it continuous? Is it differentiable? Is its derivative continuous etc. The
mathematical description of this is contained in the definition of Hélder regularity. Lipschitz
regularity gives a similar description and is used by some authors, sometimes with a slightly
different definition. TheLipschitz conditioron a function is usually for the function to be
Holder 1.

First we include some notations.

Definition 2.10 ('Big O’ (O) and 'Small 0’ (0)). Let f and g be functions.

e f(z)=0(g(2)), x = z9 < f(z)/g9(x) < C < ocofor |z —xo <9.

o f(z)=0(y(z)), x = x9 & f(x)/g(x) — Ofor |x — xy| — O.

'Big O’ and 'Small 0’ are notations used to characterize upper bounds of a function by easily
manageable functions when— x,. For instance, if the modulus of a functigins bounded
by a constant times/|z| whenz — 0, we write f(z) = O(1/z), x — 0.

Definition 2.11 (Fast Decay).A functiony hasfast decayf

[Y(z)] = O((1+ |z|™ 1), Ym €N, z — oc.

This definition shows us that a function has fast decay if it converges to zeromheno
even if it is multiplied by any polynomial.
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Definition 2.12 (Smoothing function). A smoothing functions a real function9(x) such that

O(z)=0 <1+1:c2)’

6(0) £ 0.

and

The typical smoothing function used is a ‘bump’-function, essentially positive, like the
Gaussian or the characteristic function. The convolution of a smoothing function and a
function is typically a smoothed version of the original function, explaining the name.

Definition 2.13 (Holder regularity). Letn € N, n < a <n + 1. A functionf(x) is Holder«
at z, if there exist two constantd andh, > 0, and a polynomial, (z), (typically theTaylor
Polynomialif the function isn times differentiable,) of ordes such that forh < hy,

|f(xzo + h) — P,(h)| < A|h|®. (2.12)

The supremum of all the valuassuch thatf is Holder« at z is called theHolder regularity
of f atxz,. A function issingularat z, if it is not Holder1 at z,. A functionf(z) is uniformly
Holdera over an interval(a, b) if there exists a constant such that for allzy € (a, b) there
exists a polynomial of ordet, P,(x) such that f(zo + h) — P,,(h)| < Alh|* for any

zo + h € (a,b). If fis atempered distribution of finite ordery,is a non-integer real number
and|a, b] C R, then the distributiory (x) is uniformly Hoéldera on (a, b) if its primitive is
uniformly Holdera + 1 on (a, b). A distributionf has anisolated singularity Holdew at x if
f(z) is uniformly Holdera over an interval(a, b), with zy € (a,b), and f is uniformly Holder
1 over any subinterval dfa, b) that does not include,.

A more general definition of Holder-like properties are included in the following function
spaces, which are used in Holschneider (14):

Definition 2.14 (A“, \°, Afggﬁ, Aﬁ;f). Letn € N and P, be the polynomial of degree at maost

that best approximates the functignn a neighborhood of, (the Taylor Polynomial if f is:
times differentiable) and let

fxo +2) = Po(2) + fioe(2).

e feEAN(zg),n<a<(n+1)e fipe(r) =0(x%), (x —0).
o feX(xg),n<a<(n+1)< filr) =0(x), (x — 0).

o fc Aloé’gﬁ(xo), n<a<n+1)e fielz) =0(@log’ z), (x — 0).

o fe )\félf(xo), n<a<(n+1)e fi(r) =o(zlog’ z), (x — 0).

e A%(R), \*(R), Aﬁ)’gﬂ (R) and )\ﬁ;g (R) are the spaces where the above estimates hold
uniformly inzx.
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Lemma 2.15.Leta < o/, § < " andy > 0. Then
ASP(R) € A% (R) € A%(R) € A*P(R) € A»7'(R) € A%(R) C A%

log log log log log

"(R).
Lemma 2.16. We have the following results, concerning Holder regularity:
1. f Holdera, 8 < a, = f Holder j.
2. fboundedp < 0= f Holder a.
3. fcontinuouspy < 1 = f Holder«.
4. f Holdera = F(z) = [ f(u)du Holder (o + 1).
5. f Holdera ¢ Z = f' Holder (o — 1),
Proof. 1.a—-83>0,|h<1=|h]*P<1. So
|f(z +h) = Pu(h)| < Alh|* = Alh)® |h]*% < AJRJ°.
2. |h| <1, a<0=|h|*>1. So
|f(z+h) = Pu(h)| = |f(z+h) = f(z)| < |f(z+h)|+[f(2)] <24 < 24|
3. |hl <1, a< 1= |h|*> |h|]. SO
|f(z+h) — f(z)] < Alh| < Alh|".

4. Selectr € (—h, h) such that™“H=F) — (4 4 1) (It exists by theMean Value
Theorem) Then

|F(z+h)— P,(h)] = |F(x+h)—F(z)— f(z)h

N
; (k + 1)!f MOL

F(x+h) — F(z)
h

= |hl|

n

1
k+1)!

FE()n")]

= [hl(fz+7) =)

= (S ) = D

k=0

=
1

G @)

n

+3 IO (k M @)

k=0

< |hl ClA]* + |h] IZ FE (@)h")]

k‘+1
|h| Clh|* + |A] Cllh\“

= |h[ Cofh|®

_ 02|h|(a+1)’
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for h small enought, since the polynomials are smooth.

Clp* = |f(z +h) — Pu(h)]

= |fa+h) - Z%f(’“
k=1

flx+ h (r) FOHD

3

= |h[(] ()h"))

k:0

= |h[|f (= + T) — Py(h)|
Then
(x4 7) = Pa(h)| < ClA|7Y,

by the same argument. The¢Z N reservation comes from the case of oscillating
singularities.

O

To measure regularity of functions, the smoothness, or the ‘narrowness’ in the frequency
domain, of the analysing wavelet is not that important. But to measure Hdélder regularity
higher than 1, vanishing moments of the wavelet is crucial.

Definition 2.17 (Vanishing Moments,),,(€2) ). A functiony hasn € N vanishing moments
on{) C Rif

/ka(a:) dr=0fork=0,---,n
Q
M,(Q) = {f € L'(Q) : f hasn vanishing moments.

By the Holder property (2.12), we approximatevith a polynomialP,,(x) in a neighborhood
of z,

J(o + h) = Pu(h) + g(h), with |g(h) < AJR]". (2.13)

If the analysing wavelet hasvanishing moments, the polynomial p&it(x) of f(z) gives no
contribution tow,, f (s, z). So to find the exact Holder regularity whenm — 1 < o < m for
some largen € N, simply use a wavelet with at least vanishing moments, and the smooth,
polynomial part off will not affect W, f (s, z).

Theorem 2.18 (Mallat (37) (Theorem 6.2)).Given a wavelet) with fast decay.
d"0(x)

Y € M,(R) < 360 with fast decay, such that(z) = (—1)" et

Further,
m>n, Y & M,(R) < / ) dx # 0.
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Proof. This is Theorem 6.2 in Mallat (37) and is proved there. O

Corollary 2.19. If ¢ € M, (R) , then

n

Wof(s,2) = "4 (] * 6 (),

wheredi™ (z) = 16(=1).

Proof. This is included in Theorem 6.2 in Mallat (37) and is proved there. O
Corollary 2.20. If ¢ € M, (R) then

D(&) = (i&)"0(¢).

Proof. This is a simple consequence of the previous lemma and of Lemma A.60. O

It is, however, important to know that there exists wavelets waitlthe moments vanishing, as
described in this next lemma. This is the case forNtayer Waveletintroduced by Yves
Meyer: Wavelets and Operators (45).

Lemma 2.21 (Louis et. al (31)(Lemma 1.4.5))There exists admissibte € S(R) such that
/R:Ukw(m) dx = 0,Vk € N.

Proof. Choose) # ¢ € C§°(R) such thaty(£) = 0 in a neighbourhood of = 0. Then
d®)(&)|¢=0 = 0, Vk € N. Definey(z) as the inverse Fourier Transformf¢). Then

D) [2Qlk
Cy = ——d¢ = —d
o= fo ey <
sov is admissible. Ley(x) = z*(z). Then

0=0"(E)le=0 = W&
_ k

]

Now we have established some notations and properties of wavelets, and are ready to examine
some consequences of functions being Holder regular. The first two theorems are regarding
uniform Holder regularity and the next two are about pointwise Holder regularity.
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Theorem 2.22 (Mallat, Hwang (38) (Theorem 3.3 a))Let0 < « < n € N. Let[a,b] C R be
an interval and(b — a) > 2¢ > 0. Suppose thap € M, (R) is a wavelet and
H:cawHLl(R) < oo. If afunctionf(x) € L*(R) is uniformly Holdera over any interval

(a+€b—¢), then
Wy f(s,z)] = O(s%), v € (a+€,b—¢€), s > 0. (2.14)

Proof. This is proved in Chapter 3. O

Theorem 2.23 (Mallat (37) (Theorem 6.3 a))Lety € M, (R) haven derivatives having fast
decay. Iff € L*(R) is uniformly Holdera: < n over[a,b] C R then

Wyt (s,2)] = O(s%), ¥(s,z) € R x [a,b]. (2.15)
Proof. This is half of Theorem 6.3 in Mallat (37) and is proved there. O

We see that the differences between Theorem 2.22 and the more recent by Mallat in 2.23 is
that with the stronger condition thathaven derivatives having fast decay, instead of
||xaw||L1(R> < 0o, We get the result on the whole interval, b], and also that the result is

valid for integera = n € N. Now to the pointwise cases:

Theorem 2.24 (Mallat, Hwang (38) (Theorem 3.4 a))Leta < n € N. Suppose
Y € C"(R) N M, (R) is a wavelet, such thatr%HLl(R) < oo. Ifafunctionf(z) € L*(R) is
Holder « at zq, then for all pointse in a neighborhood o, and any scale,

Wy f(s,2)| = O(s™ + |& — xo*). (2.16)

Proof. This is proved in Chapter 3. m

Theorem 2.25 (Mallat (37) (Theorem 6.4 a))Lety € M, (R) haven derivatives having fast
decay. Iff € L?(R) is Holdera < n at z, then

Wy f(s,x)| = O(s* + |x — zo|®), V(s,z) € RT x R,
Proof. This is half of Theorem 6.4 in Mallat (37) and is proved there. O

Again, the condition that: haven derivatives having fast decay in Theorem 2.25 replaces the
conditioon"‘wHLl(R) < oo in Theorem 2.22, with the same conclusion, making the first one

the strongest.

As a corollary of this, we get the following ‘algorithm’ for computing the Holder exponent,
with notationa( f, xo):

Corollary 2.26 (Mallat (37) (Theorem 10.2)). Supposef uniformly Hélders and bounded
for somes, 0 < 5 < 1. Then, for every, € R, the Holder exponent(f, z¢) is given by

o(fime) = Tim inf 128 Ve/(5:2)]

2.17
s—0z—x0 log(s + |1; — ZE0|) ( )
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Proof. This is Theorem 10.2 in Mallat (37) and is proved there. O

Definition 2.27 (Submultiplicative Function). A functionr : R, — R, is called
submultiplicativeif:

o r(z+¢€) >r(zx), Vr,e > 0.

e JC > Osuchthat-(t x) < C r(t) r(x), Vt,z € R,.
A functionr is submultiplicative oveR if r(z) andr(—z), = > 0 are submultiplicative.

A submultiplicative function is an increasing function, with a restriction on the asymptotic
increase. For instance, the functiotis) = C' 2* are submultiplicative functions for all

a, C" > 0. Afunctionr(z) being submultiplicative means that the logarithm,

p(z) = log(r(x)) is subadditive This notation is used by Holschneider (14) as a generalization
of the z*-perspective of Mallat (37), and Mallat and Hwang (38) in Theorem 2.22 and
Theorem 2.24 and in theorems we will be studying in later sections.

Theorem 2.28 (Holschneider (14) (Theorem 2.0.5))etr be a submultiplicative function
and lety € M, (R) be a wavelet such th@vaLl(R) < 00. Then
o f(xg+z)=DPy(z)+ O(r(|z|) = Wyf(s,z0+ ) = O(r(z) + r(s)).

o f(xo+z)=P,(z)+o(r(|z]) = Wyf(s,z0 +x) = o(r(z) + r(s)).

Proof. This is Theorem 2.0.5 in Holschneider (14) and is proved there. O
Corollary 2.29 (Holschneider (14) (Theorem 2.0.3))Lety € M, (R) be a wavelet and let
|f(@)] < el + |z[|?).

— fe A (o) = Wyf(s,z0 +2) = O(s* + |2]*), (s — 0).

— fe X (z) = Wyf(s,x0+ ) =0(s* + |z|¥), (s = 0).

o If ||z logﬁ(x)gb(x)HLl(R) < o0, then

- fe Aﬁ‘)’g = We(s,x0 + 2) = O(s* log” s + |z|*log” |z]), (s — 0).
- fe /\ﬁ)’gﬁ = Wy(s, 0+ 2) = o(s*log” s + |2|*log” |2|), (s — 0).

Proof. This corollary is Theorem 2.0.3 in Holschneider (14) and is proved there. m

A slightly different class of functions from the Holder-classes of functions, or specific the
Holdera = 1 class is theClass of Zygmund
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Figure 2.2 Functions in the Zygmund Class does not have cusps

Definition 2.30 (The Class of ZygmundA*(R), A*(R)).
ANR)={f e CR):|f(x+z0)+ flx —x9) — 2f(x0)| = O(x),x — 0,Vzy € R}.

NR)={feCR): |f(x+z)+ flz —x0) — 2f(20)| = 0(x), x — 0, Yz, € R}.

The functions inA*(IR) do not have cusps. The example illustrating this in Holschneider (14)
is the function

f(z) =z log(|z]) € A*(R),
and

f(z) = || log(|z]) & A"(R),
plotted in Figure 2.2.

Theorem 2.31 (Holschneider (14) (Theorem 2.2.2)Buppose) € Sy(R) (Schwarz class,
page 92) is a wavelet. Then,

o fe AN (R)= Wyf(s,z) =0(s), (s = 0).

o fe X (R)=Wyf(s,z) =0(s), (s —0).

Proof. This is Theorem 2.2.2 in Holschneider (14) and is proved there. O
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Figure 2.3 A function with oscillating singularity on top. The other plots are a regularity
analysis, the magnitude of the wavelet transform, and two versions of the maxima
lines og this CWT. This is a type of plots that will be used later in this thesis.

2.4 Oscillating Singularities

Oscillating singularities occur when an otherwise (in a neighbourhood) smooth function is
singular at a point due to oscillations that tends to infinity towards that point. That means that
in a neighborhood that does not contain the singular point, the function is smooth, but it
becomes arbitrary fast changing close to the point. We define oscillating singularities by
properties of the wavelet transform, according to the themes in this thesis:

Definition 2.32 (Oscillating Singularities). A functionf(z) has anOsciIIating singularityat
xo If there existsy > 0 such thatf is not Holdera at x, but the primitiveF’(x f f(u
is Holder (a + 1) at xo.

For instance, the function
f(z) =si (1)
= sin(—
xr S T

has an isolated singularity = 0, atz = 0 and isC'* elsewhere.

For functions with oscillating singularities we must consider the wavelet transfaterdeThe
Cone of Influence, as in the second teﬁdg% in (2.21) of Theorem 2.39. The reason for
this is that we don’t have any maxima lines that converges to the singular point, but we have

maxima lines converging to = 1/(nx) with
|W¢f(5,13)‘ < ATLSJ (Oé = 1)7

whereA,, = O(n?) which means that thd,,s grow to infinity when we get closer b
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The maxima of the maxima lines, meaning the po{atsX(s)) on one of the maxima lines

where we have a local maximum p#,, f (s, )| in a small 2D neighborhood are located

along, for thesin(1/z)-case, a parabola that is outside the Cone of Influence. A more thorough
discussion of this is found in Section 5.3 on pages 70-78 in Mallat and Hwang (39).

2.5 Global Holder Regularity

With the Fourier transform, we are able to characterize global Hélder regularity by the decay
of the Fourier transform as shown in Lemma 2.33. We are, however, not able to tell whether
the function is locally more regular.

Lemma 2.33 (Mallat (37) (Theorem 6.1)).A bounded functiorf(z) is uniformly Holdera
overR if it satisfies [ | f(£)|(1 + |£])* d§ < +o0.
Proof. This is Theorem 6.1 in Mallat (37) and is proved there. O

With the wavelet transform, however, we will in the next chapter show that we can find the
Holder regularity of a given function at a particular paigt This section will show some
results regarding characterization of Holder regularity on regions or neighborhoRd®irall
of R) by the asymptotic behavior of the wavelet transform when the scale goes to zero.

Theorem 2.34 (Mallat, Hwang (38) (Theorem 3.3 b))Suppose thadl < a <n € N, a € N,
Y e C(R)N M,(R) is a wavelet and;l|¢/||L1(R) < o0. Let[a,b] C R be aninterval. If

Wy f(s,z)| = O(s"). (2.18)

foranyz € (a +¢,0—¢) ((b—a) > 2¢ > 0) and any scale > 0, thenf(z) is uniformly
Holder o over any such intervala + €,b — ¢).

Proof. This is half of Theorem 3.3 in Mallat, Hwang (38) and is proved in Chapter 3. [
Theorem 2.35 (Mallat (37) (Theorem 6.3 b)) Lety € M, (R) haven derivatives having fast
decay. Iff € L*(R), [a,b] C R, n < a € NandW, f (s, z) satisfies

Wy f(s,2)| = O(s%), ¥(s,z) € R x [a,b] (2.19)
then f is uniformly Holdera onfa + €,b — €], Ve > 0.

Proof. This is the second part of Theorem 6.3 in Mallat (37) and is proved there. O

As for the theorems in the previous section, the main difference between Theorem 2.34 and
Theorem 2.35 is that in the firgt € C(R) andy’ € L'(R) whilst in the lattery is supposed

to beC"(R) with n derivatives having fast decay. The important difference between these two
theorems and their counterparts, Theorem 2.22 and Theorem 2.23, is the non-integer demand
ona (a ¢ N).
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Theorem 2.36 (Holschneider (14) ( Theorem 2.1.1)Buppos® < o < n € N,
Y € C"*H(R) is compactly supported arjtV,, f (s, z)| is rapidly decreasing for large. Then,
whena — 0:

o Wyf(s,z)| = O(s*) = f € A*(R)
o Wyf(s,x)] =o(s*) = f € A*(R)
o Wyf(s,z)] = O(s*1og”(s)) = f € AL (R)

log

o [Wyf(s.x)| = o(s*log”(s)) = f € iy (R)

log

Proof. This is Theorem 2.1.1 in Holschneider (14) and is proved there. O

Theorem 2.37 (Holschneider (14) (Theorem 2.2.3)Lety € C*(R) be compactly supported
andW, f(s,z) = 0fors > 1.

e Wyf(s,z) =0(s) = f e A*(R).
e Wyf(s,z) =o0(s) = f € M*(R).

Proof. This is Theorem 2.2.3 in Holschneider (14) and is proved there. O

Corollary 2.38 (Holschneider (14) (Corollary of Theorem 2.2.3)).Leta < 1. Then,

A'(R) € A*(R) C A%(R).

Proof. This is a corollary of Theorem 2.2.3 in Holschneider (14) and is proved there. [

2.6 Local Holder Regularity

We now turn to the more important part of this chapter. We will present some theorems that
gives us a tool for characterizing the pointwise regularity of functions based on the decay of
the wavelet transform when the scale goes to zero.

Theorem 2.39 (Mallat, Hwang (38) (Theorem 3.4 b))Let f € L?(R) and
Y(z) € C™(a,b) N M, (R) be a wavelet with compact support. l0et o < n, o € N. If the
two following conditions hold:

e There existg > 0 such that for all points: in a neighborhood of, and any scale,

Wy f(s,2)| = O(s). (2.20)

e For all pointsz in a neighborhood of;, and any scale

5,7)| = 5@ [z = o |” )
Wof(s.a)] =0 (s i), 2.21)



25

thenf(x) is HOldera at g

Proof. This is half of Theorem 3.4 in Mallat, Hwang (38) and is proved in Chapter 3. [J

Theorem 2.40 (Mallat (37) (Theorem 6.4 b)) Lety € M, (R) haven derivatives having fast
decay. Ifn > a ¢ N and there exista’ < « such that

Wy f(s,2)| = O(s* + sz — 2o|), V(s,z) € R x R, (2.22)
then f is Holder o at x.
Proof. This is half of Theorem 6.4 in Mallat (37) and is proved there. O

The first condition in Theorem 2.39 shows ttfas uniformly Holdere (typically e < o) in a
region containing:,. Theorem 2.40 has a slightly different condition:

(W f(s,2)| = O(s* + sz — 2o|*)

which is supposed to be valid globally and makes it almost an if-and-only-if theorem, together
with Theorem 2.25. The other difference between these two theorems is the compactly
supported) in the first as opposed to the fast decay ofthgerivatives ofy in the latter. The
second term in (2.21) represents a restrictiondnf (s, «) alsooutsideThe Cone of Influence.

Theorem 2.41 (Holschneider (14) (Theorem 2.3.2))etr be a submultiplicative, even
function,n € N and letyy € C+Y be compactly supported wavelet. Suppose

1. fol r(z)z~ ") dr < oo andr(z) = O(2"), (z — 0).
2. [r(z)z~ " dr < oo andr(z) = O(z~ "), (z — o).

3. 3y > 0 such thatW, f (s, z)| = O(s?) for s < 1 uniformly inz.
Then, for(s — 0, z),

o Wol(s,20+2) = O(r(s) + prho) = |f(x + a0) — Pu()| = O(r(a)).

o Wif(s, 20+ ) = o(r(s) + ) = | f(a + 20) — Pu()| = o{r(2)).

Proof. This is Theorem 2.3.2 in Holschneider (14) and is proved there. m

Corollary 2.42 (Holschneider (14) (Corollary 2.3.3)).If

e W, f(s,z)| = O(s”) for somey > 0.

o Wyf(s,zo+ )] = O(s* +2%), (s = 0,2),
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then
|f(z +20) — f(x0)| = O(2log(z)), (z — 0).

Proof. This is Corollary 2.3.3 in Holschneider (14) and is proved there.
Theorem 2.43 (Holschneider (14) (Theorem 2.3.1)Suppose

1. 3y > 0 such thatW, f(s,z)| = O(s") for s < 1 uniformly inz.
2. Wy f(s,00 +2)] = O(s*) + O(122), (s — 0,2),

logx

3. [Wy f(s, )| is rapidly decreasing for large.

Then

forn<a<n+1.

Proof. This is Theorem 2.3.1 in Holschneider (14) and is proved there.

2.7 Pointwise Differentiability

This section is included to show how the results concerning Holder regularity affects the
differentiability of functions, and only Holschneider (14) has these results explicitly as

theorems.

Theorem 2.44 (Holschneider (14) (Theorem 2.1.2)).etr be a submultiplicative, even

function that satisfies, far € N,

o fol r(z)z~ ") dr < oo andr(z) = O(2"), (z — 0).

o [Fr(z)z=? dr < co andr(z) = O(z~ "), (z — o).
Suppose) € C™*Y has compact support and thay,, f (s, z) = 0 for s > 1.

o If Wy f(s,z)] =O(r(s)), (s — 0) then

- feC"(R),
- |fletn _ ETD| = O(r(x) /a), (z — 0).

o If Wyf(s,z)|=o0(r(s)), (s — 0) then

- [ € C"(R),
— |Hler) S| = o(p(x) /™), (x — 0).

Proof. This is Theorem 2.1.2 in Holschneider (14) and is proved there.
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Theorem 2.45 (Holschneider (14) (Theorem 2.4.1)Buppose the wavelétc C"*1 has
compact support and a non-negative monotonic funatian = r(|x|) satisfies the
“*Condition of Dini”:

/01 riz) dr < o0.

1. Wy f(s,z) =0fors > 1,
2. Wy f(s,z) = O(s”) for somey > 0 and
3. Wy f(s, x4+ x9) = O(r(s) + r(z)),

then thenth differential quotient of (A" (xz) = A~ (Lz=2)=(0) ) exists at,.
Furthermore, the condition onis optimal.

Proof. This is Theorem 2.4.1 in Holschneider (14) and is proved there. O

Theorem 2.46 (Holschneider (14) (Theorem 2.4.2)Suppos¢ is a periodic function or
measure, f (z,) exists and the wavelet € L'(R) N M,,_;(R) and (z"¢) € L*(R). If

/_ 2™p(x) de = n! < (i0)"p(0) = 27nl,

[e.9]

then W
lim. Wl (s, 20) = 0" f(z0).
s—0 sn
Proof. This is Theorem 2.4.2 in Holschneider (14) and is proved there. O

2.8 CWT Local Maxima

The continuous wavelet transform is a function of 2 variables, the ‘time’ and the ‘frequency’
variable. We are interested in the set of maxima of the one-dimensional functions we get when
we fix the ‘frequency’ variable. The maxima of the functionér) = |W, f(s, z)| are on the
ridgesof the |W,, f (s, z)| surface, whereas tteero-crossingsf the functions

gs(x) = Wy f(s, z) are the delimiting lines between the different such ridges, or the ‘valleys’
between them. Properties b, f (s, =) at the zero-crossings or at the ridges has been studied
extensively in (1), (36),(55) and in many other papers.

Definition 2.47 (Maxima, Local Maxima, Modulus Maxima, Local Modulus Maxima).

We say that a wavelet transforv,, f (s, ) has amaximum(plural; maximaor one of the
more precisel.ocal Maxima Modulus Maximeor Local Modulus Maximiat (sq, 7o) € R if
the functiong(z) = |W,, f(so, z)| has a local maximum at,, strictly on one of the sides (left
or right).
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Definition 2.48 (The set of maxima of the wavelet transform)Letg(z) = |W,, f(s0, z)|. We
define theset of maximaof the wavelet transforiV,, f (s, =) by

Max(W,,f(s,z)) = {(s0,70) € R* | g(x) has a local maximum at, }

This next Proposition is used in the proof of Theorem 2.50 by inductiom. on

Proposition 2.49 (Mallat, Hwang (38) (Proposition A.1)).Letn € N and be a wavelet
that can be written)(z) = <2 whereg(z) is a continuous function with compact support.

dxm !

Let f(x) be a function and suppose that for any 0, there exists a constatif,, such that at
all scaless,

b—e
/ |f* ¢s(x)| do < K. (2.23)

+e

If W, f(s,x)| has no local maxima far € (a,b) ands < s, for somes, > 0, then for any
e > 0, there exists a constam, ,, such that for any: € (a +€,b —¢) ands < sg

Wy f(s,z)| < Acps™. (2.24)

Proof. This is Proposition A.1 in the appendix of Mallat and Hwang (38) and is proved in
Chapter 3. O

Theorem 2.50 (Mallat, Hwang (38) (Theorem 5.2))Letn € Nandvy € C™(a,b) N M,(a,b)
be a wavelet with compact support. If there exists a sgale 0 such that for all scales < s
andz € (a,b), [Wy f(s,x)| has no local maxima, then for amy> 0 anda < n, f is uniformly
Holdera on(a + €,b — ¢).

If ) = %@(w) where©(x) is asmoothing functionthen f is uniformly Héldern on any such
interval (a + €,b — ¢).

Proof. This is Theorem 5.2 in Mallat and Hwang (38) and is proved in Chapter 3. O

Corollary 2.51 (Mallat, Hwang (38) (Corollary of Theorem 5.2)). The closure of the set of
points wheref is not Holdern is included in the closure of the wavelet transform maximg. of

Proof. This is a simple consequence of Theorem 2.50. O

We see that given the conditions in Theorem 2.50, all the irregular points (not Holder)
can be located by following the maxima lines when the scale goes to zero.

Theorem 2.52 (Mallat (37) (Theorem 6.5))Letn € N, f € L'[a, b] and+ be a compactly
supported wavelet such that

n dn n
¥(@) = (~1)"—0(2) € C"(R)
where [ 0(z) dx # 0. If there existsy, > 0 such thafW,, f (s, z)| has no local maxima for
z € [a,b] ands < sg, thenf is uniformly Holdern on [a + €, b — €] for anye > 0.
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Proof. This is Theorem 6.5 in Mallat (37) and is proved there. O

Here we see that the main differences between Theorem 2.50 and the more recent Theorem
2.52 is they € C™(R) condition in the first gives an additional result for< n as opposed to

the condition that) is then-th derivative of a smoothing function(z) = (—1)"-L-6(x). This

last condition gives us the result far= n in both theorems.

This next theorem shows us that with strict conditions on the wavelet used, the wavelet
transform modulus maxima lines are inddiegs i.e. they are connected and they continue all
the way down to the finest scale.

Proposition 2.53 (Mallat (37) (Proposition 6.1)).Letd be a Gaussian and
Y(z) = (—=1)"0"™(z). Forany f € L%(R), the modulus maxima ¥, f (s, v) belong to
connected curves that are never interrupted when the scale decreases.

Proof. This is Proposition 6.1 in Mallat (37) and is proved there. O

Theorem 2.54 (Mallat, Hwang (38) (Theorem 5.3))Lety € C™([a, b]) be compactly
supportedP(z) a smoothing function such thatz) = -£-0(z). Let f be a tempered
distribution whose wavelet transform is well defined dveb) and letz, € (a, b). We suppose
that there exists a scalg > 0 and a constan€' such that forz € (a,b) ands < s,

Max(Wy f(s,x)) C Cone(xg, C).

e 1 € (a,b), x1 # xo = [ is uniformly Holdern in a neighborhood of;.

e a < n non-integer.f is Holder« at x, if and only if there exists a constadtsuch that
at each local maximas, x) € Cone(z,, C'), we have

Wy f(s,z)] < As®. (2.25)
Proof. This is Theorem 5.3 in Mallat, Hwang (38) and is proved in Chapter 3. O

So, if all the modulus maxima far € (a,b) ands < s, are within the Cone of Influence ag,
we know that the function is Holder at x; # x¢, and we get a characterization of the
regularity atr, as in Theorem 2.24 and Theorem 2.39 by considering the deday, ¢fs, x)
only insidethe Cone of Influence.

Theorem 2.55 (Mallat, Hwang (38) (Theorem 5.4))Lety € C™(R) be a wavelet such that
supp(v) C [~ K, K] andy(z) = -4-0(z) where® is a strictly positive function of— K, K).

 dzn

Letzg € Rand f € L*(R). Suppose:

e There exists an intervakh, b), with z, € (a,b), and a scales; > 0 such that the wavelet
transformV,, f (s, ) has constant sign for < s, andz € (a, b).

e There exists constants, ¢ > 0 such that for all points: € (a,b) and any scale,

Wy f(s.2)] < Bs-. (2.26)
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e Letx = X(s) be a curve such that
(s,X(s)) € Cone(xg, K), Vs < so,

with K < C (i.e the curve{(s, X (s)} is in a cone strictly smaller than the Cone of
Influence). Then there exists a constdrguch that for any scale < s, the wavelet
transform satisfies

Wy f(s, X(s))] < As” with0 < v < n, (2.27)

Thenf is Holder« at xq, for anya < ~.
Proof. This is Theorem 5.4 in Mallat, Hwang (38) and is proved in Chapter 3. O

So if © is strictly positive on the interior of its suppott(z) = “£-0(z), [Wy f(s, z)| < Bs
for somee > 0 onR x (a,b) andW,, f(s, x) has constant sign ofy < so} x (a,b), where
zo € (a,b), then we can estimateat z, by the decay ofV,, f (s, z)| along any curve strictly

inside the Cone of Influence.

We have now presented several theorems, some of them quite similar but with slightly different
conditions and conclusions, regarding necessary or sufficient conditions on the decay of the
wavelet transform across scales and the regularity of a function. The overall conclusion is that
the wavelet transform, with rather weak conditions on the wavelets used, enables us to
characterize pointwise behavior of functions.

3 THE PROOFS

In this chapter we will prove the theorems of Mallat and Hwang (38). All the theorems have
sketched proofs in that paper, or refer to other sources that have more or less complete proofs,
so the work done here is to collect all of them in one consistent form, and to fill in the gaps.
Especially Lemma 3.5 on page 36 has a long proof (22 pages) even though it is rather
elementary. All the special cases that needs to be considered is what makes it that long.

3.1 Holder Regular Functions

Theorem 3.1 (Mallat, Hwang (Theorem 3.3 a)).Let0 < o« < n € N. Let[a,b] C R be an
interval and(b — a) > 2¢ > 0. Suppose thap € M, (R) is a wavelet ancﬂ|:c%HL1(R) < 0.

If a functionf(x) € L*(R) is uniformly Holdera over any intervala + ¢,b — ¢), then

Wy f(s,x)] = O(sY), x € (a+¢€,b—¢), s> 0. (3.1)
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Proof. Letv = “—*. By the definition of the wavelet transform (Definition 2.2),

Wof(sal = | [ fie (F50) au
) dul
(=)
= | [ () = ) (“’:”) dul
< c/ - ol |¢< >ydu
= c [ lslr o) do

= C’/R|vaz/1(v)]dv s*

= CHx%PHLl(R)Sa
= As“.

Theorem 3.2 (Mallat, Hwang (Theorem 3.4 a)).Leta < n € N. Suppose
Y € C(R) N M, (R) is a wavelet, such thqitxo‘wllLl(R) < oo. If afunctionf(x) is Holder

« at xg, then for all pointse in a neighborhood of, and any scale,
Wy f(s,2)] = O(s* + |z — x]%). (3.2)

Proof. By an overall translation, we may assume that= 0.

Wfts.al = | [ fte (F50) au
= | [ - sopte (5
< foeurte () 1

= [ o= sl o) do
< 0(013a||95a¢||L1(R) + C2|$|a||¢||L1(R))
= A+ |2])
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3.2 Global Holder Regularity

Theorem 3.3 (Mallat,Hwang (3.3 b)).Suppose thadt < o <n € N, a € N,
Y € C(R) N M,(R) is a wavelet andgl|z//||L1(R) < 0. Let[a,b] C R be aninterval. If

(W f (s, )| = O(s%). (3.3)

foranyz € (a +¢,b—¢) ((b—a) > 2¢ > 0) and any scale > 0, thenf(z) is uniformly
Holder o over any such intervdla + €, b — €).

Proof. Let0 < sg < oo. By the inversion formula (Lemma 2.3),

f@) = & | ot itu—o a

S
ds

1 0 _
= C_w/o /waf(s,u)ws(u—x) du?
1 o — ds
+ C_w/so /waf(s,u)ws(u—x) du?
= fsmall(x)+flarge($)7

as in Lemma 2.9.

e The functionfy,, .. is a smooth function by Lemma 2.9 and consequently Haidker
0<a<l.
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e Lets < spand0 < h < sy.

f(ZL‘) = |f8mall(x+h)_fsmall(x>|
0 /R{ws@c ) = e = )W (5,u) du’

IN

h
i /Rws(x +h—uWyf(s,u)

h ds
i /Rws(x —u)Wy f(s,u) du?'

(z+h—u)—s(x —u) Wy f(s,u) du%‘

h
d
< //|wsx+h—u)|As du &
o JR

S

h
+ //]ws(:c—u|As du@
o JR
50 h T+ T ds
/h /]R? (—)‘\Wwfsu)]du?
h
< o __
< Adllp [ 5
o ds

s Al [ 5

/ A@J¢($+T :wAsdu%

ng/‘
0 S
0 qds
+ AehHw/HLlaR)/h S 1?
< Ch“,

sincey, (z + h —u) — ¥, (x — u) = ¢/ (22=4) for aT € (0, h) by theMean Value
Theorem

We have proven that
|f(z+h) — fz)] < Ch, (3.4)

I.e. the function is uniformly Holdet.

3.3 Local Holder Regularity

Theorem 3.4 (Mallat,Hwang (Theorem 3.4 b)).Lety(z) € C"(a,b) N M, (R) be a wavelet
with compact support. Lét < o < n, o ¢ N. A functionf(z) is Holder« at xy, if the two
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following conditions hold.
e There existg > 0 such that for all points: in a neighborhood o, and any scale,
Wy f(s,2)| = O(s). (3.5)

e For all pointsz in a neighborhood of, and any scale

_ o ’x—$0|a
Wy f(s,z)] =0 (s + Tos(lr on|)|) . (3.6)

then f(x) is HOlder«a at z

Proof. By an overall translation and dilation, we may assume that 0 and
supp(¢) C [—1/2,1/2]. Let0 < h < sy < 1. We only consider the cage> 0. h < 0 can be
treated analogously. The inversion formula gives,

f(z) = Ciw/ooo/qubf(s,u)Es(u—x) au

S
ds

1 50 —
= o[ v i
ds

1 & _
o [ et ) an
- fsmall(x) + fla'rge(x>-
Again, fi,-¢e IS smooth, and consequently Holdeby Lemma 2.16. Define
n(h) = he/e. (3.7)

We typically havex > ¢, otherwisef (z) is uniformly Holdera < e in the neighborhood of,
by (3.5) and Theorem 3.3 and the result would be trivial. (Fer h < 1, we have
0 < n(h) < h. We then have

A(h> = fsmall(h) - fsmall(o) (38)
= [ [0 = o Waf ) do 39)
n(h) ds

= /0 /R@/;S(h — )Wy f(s,x) do - (3.10)

h ds
; / ) /R Ualh = 2)Wy (s, 2) di (3.11)

h s

- /0 /Rws(h — )Wy f(s, ) dz d; (3.12)
b [ [ =) = oW i) e & (3.1

We will estimate (3.10) -(3.13) separately.



(3.10):

1(3.10)]

(3.11):

(3.11)]

IN

IN

I IA
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/n(h)/ [Ys(h — )| Wy f(s,x)| dx @

n(h)
/ / |¢S _.T |AS dl‘ -
n(h)

ds
/ 1]l As® —
0 s
ho/e
Hd’s||1A/ s 1 g
0

€ ale
|v[] A g
[l AR
C1he.

' ds
/n(h / |Ys(h — )| [Wyf(s,x)| do =

[, st (s el e

d
B/ / Ws(h—a:)|3“ daj_s
n(h) JR s
' || ds
B/ / [s(h — )| s
n(h) | In(|z])| S
& o ds
Bllllx / g5
n(h) S

A" " ds
+ Bt [

B[4]]1 [s"Tpare
Al
+ Byl e
B\ (h* — h2a/e)
s .
’WHl“ (h )|( n(h) — In(h/¢))

Bl[¢lh ( _ prose B —a/e) ln(h)>

| In(h)
B||[Y|1(1 —a/e + 1)
Cyh”.

ds

S
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(3.12):

h S
(3.12)] = |/0 /Rws(h—x)wwf(s,x) i )
< [ L en—a sts. 0] do

o ds
< adiwlh [ %
S CShaa

since this integral runs inside the Cone of Influence and by Theorem 3.3.

(3.13): As in the proof of Theorem 3.3, by the Mean Value Theorem there exists &), h),
such that

G = | [ [~ oW (s do )

S0 d
< [ Ll (s, )ldz =

= C4h”

Thus|A(h)| < Ch* andf is Holdera atx

3.4 CWT Local Maxima

The following lemma is a rather simple curve-analysing lemma, but with a long proof, given
all the different cases that needs to be considered. Is is used in the proof of Proposition 3.6.

Lemma 3.5. Let[c,d] C R,0 < 3 < “Z andK > 0. Letg € C?([c, d)) be a function which
satisfies

d
[ 1@l o < . 3.1
o If %)} has no local maxima ofr, d) andx € [c + 3,d — 3], then
K

lg(x)] < 23 = Bk, (3.15)
and
d g(x) K
' | <1255 = O (3.16)
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o If ’% has no local maxima ofr, d) andz € [c + ,d — (], then
d*g(x) K
ar | S 1205 = Prs. (3.17)

Proof. The proof is elementary, but we have to consider several different cases. The overall
structure for the proof of 3.15 is as follows:

e ¢'(z) has constant sign:

"(x) > 0 andg(xz) > 0:
'(z) > 0andg(x) < 0:

/

(z) (z)

(z) (z)

(x) > 0 andg(z) changes sign:
() < 0andg(zx) > 0:

(z) (z) <0:

(z) (

g
g
g
g
g (x) < 0andg(x
g

o ok~ w bR

'(z) < 0 andg(x) changes sign:
e ¢'(x) is monotonic and changes sign:

1. ¢’(x) decreases:
— g(z) is negative:
— g(z) is positive:
— g(z) changes sign:
« g(c+ ) <0andg(d — () < 0:
x g(c+ ) <0andg(d— () > 0:
* g(c+ ) >0andg(d— ) < 0:
2. ¢'(x) increases:
— g(z) is positive:
— g(x) is negative:
— g(z) changes sign:
* g(c+ ) > 0andg(d — ) > 0:
* g(c+ ) > 0andg(d — ) < 0:
x g(c+ ) < 0andg(d — ) > 0:

For a given functiory, |¢'(x)|, |¢'(x)| and|g”(x)| are trivially bounded by continuity of the
functions and compactness of the interval. We will prove that the bounds are independent of
the functiong. We will prove (3.15), (3.16) and (3.17) separately.

(3.15): Sincel¢'(x)| has no local maxima, eithef(z) has constant sign or it is monotonic,
and it looks like one of the graphs in Figure 3.1 on page 38. Ttiehlooks like one of
the graphs in Figure 3.2 on page 38.
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c)

d)

0 1 70 1 70 10 1
e) f) 9) h)
1 1 1
0 0 0
-1 -1 -1
0 1 70 1 0 10 1

Figure 3.1 The possible graphs ¢fx) when|¢'(x)| has no maxima
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Figure 3.2 The possible graphs g@z) when|¢'(x)| has no maxima.
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e ¢'(x) has constant sign, as the graphs a)-f) in Figure @.1) is monotonic and

l9(2)| < max(|g(c + B)], lg(d = B)])- (3.18)

From (3.14) we have

c+p3 d
/ @) dz < Kand [ |g(x)| dz < K. (3.19)
c d—p3
This implies
K
lg(x)| < max(|g(c+ B)],|g(d— B)]) < 5 (3.20)

To prove (3.20), we must distinguish several cases:

1. ¢'(x) > 0andg(z) > 0 asin a) i), Figure 3.2: The second integral in (3.19)
implies that

d

Blatd = 0) < [ lo(@)l e < K

forz e [d—p,d, i.e.

lg(d = B)| <

We also know thalg(c + 3)| < |g(d — B)|.

2. ¢'(x) > 0andg(z) < 0 asin a) iii), Figure 3.2: The first integral in (3.19)
implies that

K
lg(c+B)] < I
We also know thatg(d — 3)| < |g(c + 3)].
3. ¢/(z) > 0 andg(x) changes sign as in a) i), Figure 3.2: The first integral in
(3.19) implies that

ww+ﬁng§.

The second integral in (3.19) implies that
K
lg(d = B)] < E
4. ¢'(x) < 0andg(z) > 0 as in b) i), Figure 3.2: The first integral in (3.19)
implies that

mw+ﬁﬂs%.

We also know thatg(d — 5)| < |g(d — ).

5. ¢/(z) < 0 andg(x) < 0 as in b) iii), Figure 3.2: The second integral in (3.19)
implies that

9(d=B) < 5
We also know thalg(c + 8)| < |g(d — B)|.

SSE
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6. ¢'(z) < 0 andg(x) changes sign as in b) ii), Figure 3.2: The first integral in
(3.19) implies that

lg(c+ 8)] < %

The second integral in (3.19) implies that
K
lg(d = B)| < 5 (3.21)

From the marks 1 to 6 we get

19()] < max(lg(c + B). lg(d — B))) < % (3.22)

for x € [c+ ,d — f], proving (3.15) whery/(x) has constant sign.

e ¢'(x) is monotonic and changes sign as g) and h) in Figure 3.1: The curvature of
g(z) does not change sign.

1. ¢’(x) decreases. They{x) is concave, as c), e) and g) in Figure 3.2.
— g(z) is negative as c) iii), e) iii) and g) iii) in Figure 3.2: Singér) is
negative and concave,

l9(2)| < max(|g(c + B)], lg(d = B)])-

Sinceg’(z) is monotonically decreasing, either it is positive o + []
or it is negative oric + 3, d]. Sinceg(x) remains negativej < < and

c+ d
/ lg(x)| de < K, and/ lg(x)| de < K,

we get v

K K K
l9(c + B)| < max (E7 m) = 'k (3.23)
Similarly

d—p d
/ 9(0) de < K, and | |g(2)| de < K.

d—p
and we get
K K K
l9(d = B)| < max(m> E) =5 (3.24)
(3.23) and (3.24) together gives
9ta)] < max(lg(c-+ 5) lgld — B)) < . (3.25)

wheng(x) is negative, concave and(x) changes sign.
— g(z) is positive as c) i), e) i) and g) i) in Figure 3.2: There exists
e € (c+ f,d— B)suchthay(z) < g(e),Vx € [c+ §,d — []. Sinceg(x)
is concave, we get
d—p3 o _
w> [ iy as s =P~ e+ )
c+p8




Figure 3.3

41

a) b) <)
1 1 1
0 0 0
-1 -1 -1
0 0.2 04 06 08 0 0.2 04 06 08 0 02 04 06 08
d) e) f)
1 1 1
0 0 0
-1 -1 -1
0 0.2 04 06 08 0 0.2 04 06 08 0 02 04 06 08

The concave and convex functions With) andly(x)

Sinces < =, we obtain
lg(z)| < gle) (3.26)

2K
(d—B)—(c+p)
2K
<
= 4328
K

6 Y

<

wheng(x) is positive, concave angl'(x) changes sign.

— ¢(z) changes sign as c) ii), e) i) and g) ii) in Figure 3.2:

* g(c+ ) < 0andg(d — ) < 0asc)ii) in Figure 3.2: Since(z) is

concave, it has two zero-crossings at the locatigrendz,. For
x € (c+ B, 20) U(21,d — ), g(x) is negative, and

lg(z)| < max(|g(c+ B)],]9(d — B)]). (3.27)

Forz € [¢,c+ f] andx € [d — (3, d] the function is monotonic, and
from the first part of the proof, we have

9(c + ) < % and|g(d — )] < % (3.28)

Forz € [z, z1], g(x) > 0 and there exists € [z, 21| such that
g(x) < g(e) for z € [z, z1]. Sinceg(x) is concave ovefz, z;] we have

KZ/Zlg(x)dmzw,

20
which gives
2K

g(e) < =)

(3.29)
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To prove thay(e) is bounded, we start by supposing thé&t) > %.
Otherwise it is trivially true. Lety(z) be the line that crossegz) at
the points(zy, 0) and(e, g(e)) as a) in Figure 3.3. Then by (3.28),

e+ B)1 < lg(e+ B)| < 7, (3.30)
and by assumption
ofe) = 9() = - (3.31)
From Figure 3.3 we have
(e—20) _ (20— (c+D))
W@ e+ Bl 82
(3.30), (3.31) and (3.32) together gives
(e — zp) S (e — 20)
5 (e
_ (—(c+p))
= e+ A) (-39
> (20 — (ISJF 5))7
which gives ’
e—2z20> 20— (c+ ). (3.34)

Let/,(z) be the line that crossegx) at (e, g(e) and(z,0). Then by
(3.28)

l(d—B)[ < |g(d —B)| <
and by assumption
(el = lg(e)| = - (3.36)

From Figure 3.3 we have

(z1—¢)  ((d—08)—2)

w| 5

(3.35)

= : 3.37
L@ Ihd—0)] (837
(3.35), (3.36) and (3.37) together gives
(ri—€) _ (1=¢) _ ([@d=B)—2) _ (d=5) =)
5 (el [h(d—=p)] — 5 ’
which gives
z1—e>(d— () — 2. (3.38)
Adding (3.34) and (3.38) gives
d—c
2z 2—— -8
> .
By inserting (3.40) into (3.29) we get
gle) < 2K < % (3.40)

(21 —20) = B
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We then obtain, from (3.30) and (3.40),

l9(@)] < Jg(e)] < % (3.41)

wheng(x) is as c) ii) in Figure 3.2.

g(c+ ) < 0andg(d — 3) > 0as @) ii) in Figure 3.2: Since(x) is
concave, it has one zero-crossing at the locatipriForz € (¢ + 3, zo),
g(x) is negative, and

lg(2)| < lg(c+ B)I. (3.42)
Forx € [¢, ¢ + f] the function is monotonic, and from the first part of
the proof, we have

K
lgc+B)| < 5 (3.43)
Forz € [29,d — f3], g(x) > 0 and there exists € [z, d — ] such that
g(x) < g(e) for z € [29,d — [3]. Sinceg(x) is concave ovefzy, d — []
we have

d—p
K > / g(x) dx >
which goives
<€) < L
P = @B =)
To prove thay(e) is bounded, we start by supposing thé&t) > %.

Otherwise it is trivially true. Lety(x) be the line that crossegz) at
the points(zy, 0) and(e, g(e)) as b) in Figure 3.3. Then by (3.43),

g(e)((d — ) — z)
5 :

(3.44)

afe+ B)] < lgle+ B < - (3.45)
By assumption
() = gle) > %. (3.46)

From b) in Figure 3.3 we have

(e—2) (Zo—(CJrﬁ))_

= 3.47
L@ Jho(c+ B (347
(3.45), (3.46) and (3.47) together gives
(e — 2p) - (e — zp)
B = ()]
_ (—(ctP)
= et d) 349
> (20 — (IS‘?' 5))’
which gives ’
e—2z0> 20— (c+ ). (3.49)
We also have
(d—pB)—e>0. (3.50)

Adding (3.49) and (3.50) gives
(d—pB)—20> 20— (c+ ). (3.51)
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Since(d — ¢) > 4 we have

((d—=8) = 20) + (20 — (¢ + B)) > 28. (3.52)
(3.51) and (3.52) implies that
((d=8) = 20) > B. (3.53)
By inserting (3.53) into (3.44) we get

2K 2K
gle) < =0 =) < 5 (3.54)
We then obtain
l9(x)] < gle) < % (3.55)

wheng(x) is as @) ii) in Figure 3.2.

g(c+ B) > 0andg(d — 3) < 0 as e) i) in Figure 3.2: Sinceg(x) is
concave, it has one zero-crossing at the locatiofrorx € (21,d — ),
g(x) is negative, and

l9(x)| < lg(d — B)I. (3.56)

Forz € [d — 3, d] the function is monotonic, and from the first part of
the proof , we have

K
lg(d —B)| < 5 (3.57)

Forz € [(c+ ), z1], g(xz) > 0 and there exists € [c + (3, 1] such that
g(x) < g(e) forz € [(c+ (), z1]. Sinceg(zx) is concave over
[(c+ B), z1] we have

K> /Z1 g(z) da > ge)(z1 = (c+ 5))

+8 2 ’
which gives
2K
g(e) < = (1 B) (3.58)

To prove thay(e) is bounded, we start by supposing thé&t) > %.
Otherwise it is trivially true. We have that

e—(c+p)>0. (3.59)
Let/,(z) be the line that crossegx) at (e, g(e)) and(z;,0) as c) in
Figure 3.3. Then by (3.57)

h(d = )| < lg(d - ) < ., (3.60)
and by assumption
he) =g(e) = 5
From c) in Figure 3.3,
(z21—¢) _((d=F)—=)

|11 (e)] li(d — B)]

(3.61)

(3.62)
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(3.60), (3.61) and (3.62) together gives
(21 —€) > (21 —e)
B = (o)
((d=B) = =)

@D (369
> ((d — i) - 21)7
B
which gives
2 —e>(d—[0)— 2. (3.64)
Adding (3.59) and (3.64) gives
d—c
> 2—— -5
> S
By inserting (3.66) into (3.58) we get
2K 2K
90 < 5 < (3.66)
We then obtain
o)l < sle) < 5 (3.67)
wheng(z) is as e) ii) in Figure 3.2.
From (3.25),(3.27), (3.41), (3.55) and (3.67) we get
l9(x)] < max(|g(c+ )|, g(e),g(d — B)]) (3.68)
< o
- p

wheng'(z) is decreasing and changes sign.
2. ¢'(z) increases. Theg(z) is convex as d), f) and h) in Figure 3.2.
— g(x) is positive as d) i), f) i) and h) i) in Figure 3.2:
l9(2)| < max(|g(c+ B)|,|g(d — 3))).

Sinceg’(x) is monotonically increasing, either it is negative|on: + (]
or it is positive onc + 3, d]. Sinceg(x) remains positive < <= and

c+ d
/ MMMSKJM/IWMMSK

we get v
K K
lg(c+B)] < max <E,m> (3.69)
_ K
= 5
Similarly

d—p d
[ etde < i and [ gl dr < .
c d—p3
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and we get
K K
lg(d=pB)| < max(m’ﬁ) (3.70)
_ K
7
(3.70) and (3.71) together gives
l9(x)] < max(|g(c+ B)|, |g(d—B)I) (3.71)
< B
- p

— g(z) is negative as d) iii), f) i) and h) iii) in Figure 3.2: There exists
e € (c+ (3,d— ) suchthatg(z)| < |g(e)],Vz € [c+ 3,d — []. Since
g(x) is convex, we get

d—p

p L 0= 5) — e+ B))

> / y g(x) dr > 5

Sinces < 4=, we obtain

lg(x)] < |g(e)] (3.72)
2K

(d—B) = (c+P)

2K

28

K

E.
— g(x) changes sign as d) ii), f) ii) and h) ii) in Figure 3.2:
x g(c+ B) > 0andg(d — ) > 0 as d) ii) in Figure 3.2: Since(z) is
convex, it has two zero-crossings at the locatignandz;. For
x € (c+ B, 20) U(21,d — B), g(x) is positive, and
|g(x)| < max([g(c + B)],[g(d = B))). (3.73)

Forz € [c,c+ ] andz € [d — (3, d] the function is monotonic, and
from the first part of the proof, we have

gle+ 8)] < % and|g(d - 8)] < % (3.74)

<

Forx € [z, z1], g(x) < 0 and there exists € [z, ;| such that
lg(z)| < |g(e)| for z € [z, 21]. Sinceg(x) is convex ovelz, z;| we
have

K> [ lgta)]ar > MM Z20)
which gives

2K
90 < ooy

To prove thay(e) is bounded, we start by supposing thét) > £
Otherwise it is trivially true. Let;(z) be the line that crossegz
the points(zy, 0) and(e, g(e)). Then, by (3.74),

llo(c+ 8)] < lg(c+ )| < % (3.76)

9
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and, by assumption,

(e) = gle) > % (3.77)

Form d) in Figure 3.3 we have
(e—z) (20— (c+p))
[lo(e)] lo(c+B)
(3.76), (3.77) and (3.78) together gives
(e — 20) > (e — 20)
B = (o)
20— (c+
(20 — (¢ +9))

K Y

B

(3.78)

>

which gives
e—z9> 20— (c+ ). (3.80)

Let/,(x) be the line that crossegx) at (e, g(e)) and(z;,0) as . Then,
by (3.74),

h(d =) < lg(d - 9) < . (3.81)
and, by assumption,
h(e) = g(e) = 7 (3.82)
From d) in Figure 3.3 we have
(z21—e)  ((d=8)—=)
= : 3.83
L@ L@ D) (69)
(3.81), (3.82) and (3.83) together gives
(21 —e) > (21 —¢)
B = (o)
~ ((d=B) —=)
T (584
> (- @ - 21)7
8
which gives
2 —e>(d—[0)— 2. (3.85)
Adding (3.80) and (3.85) gives
d—c
2 2—— -8
> B
By inserting (3.87) into (3.75) we get
gle) < 28 < % (3.87)

(21 —20) = B
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We then obtain
2K

lg(z)] < |g(e)] < 5 (3.88)
wheng(x) is as d) i) in Figure 3.2.

g(c+ ) > 0andg(d — 3) < 0 as h) ii) in Figure 3.2: Since(x) is
convey, it has one zero-crossing at the locatignFor

x € (c+fB,20) U (21,d — ), g(x) is negative, and

|g(2)| < max(|g(c + B)], |g(d — B)]). (3.89)

Forzx € [c, ¢ + ] the function is monotonic, and from the first part of
the proof, we have

K
lg(c+B) < 5 (3.90)
Forz € [z, z1], g(x) < 0 and there exists € [z, d — (5] such that
lg(x)| < |g(e)| for z € [z9,d — (3]. Sinceg(z) is convex ovelzy, d — []
we have

d-p e — — 20
i | (o) do > 19N =0) — =)

2 b
which gives
2K
< — 3.91
To prove thay(e) is bounded, we start by supposing thgk)| > %.

Otherwise it is trivially true. Lety(z) be the line that crossegz) at
the points(zy, 0) and(e, g(e)) as €) in Figure 3.3. Then, from (3.90),

e+ B)| < lgle+ B)I < (3.92)
and, by assumption
lo(e)] = [g(e)] = % (3.93)
and from e) in Figure 3.3,
(e —2) _ (20— (c+p))
o@ oAl (559
(3.92), (3.93) and (3.94) together gives
(e — 20) S (e — 2p)
B = (o)l
_ (= (c+p))
= b+ 9 (5:59)
> (20 — (;Jr 5))7
B
which gives
e—z29> 20— (c+ ). (3.96)

We also have
(d—06)—e>0. (3.97)
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Adding (3.96) and (3.97) gives
(d—pP)—(c+5)

(d=0)—2 > 5 (3.98)
> f.
By inserting (3.99) into (3.91) we get
2K 2K
lg(e)] < CEE) < 5 (3.99)
We then obtain
K
9(a)| < lg(e)] < 5 (3.100)

wheng(x) is as h) ii) in Figure 3.2.

g(c+ B) < 0andg(d — 3) > 0 as f) ii) in Figure 3.2: Since(z) is
convey, it has one zero-crossing at the locatignForz € (z;,d — f3),
g(z) is positive, and

l9(x)] < [g(d — B)]- (3.101)

Forz € [d — 3, d] the function is monotonic, and from the first part of
the proof, we have

K
lg(d — B)| < 5 (3.102)
Forz € [(c+ f3), 1], g(x) < 0 and there exists € [(c + [3), z1] such
that|g(z)| < |g(e)| for x € [(c + B), z1]. Sinceg(x) is convex over

[(c+ B), z1] we have

K > /Z1 lg(z)| dz > lg9(e)l(z1 — (C+ﬁ))7

+0 2
which gives
2K

To prove thay/(e) is bounded, we start by supposing thak)| > %.
Otherwise it is trivially true.
We have

e—(c+p)>0. (3.104)

Let /(=) be the line that crossesz) at (e, g(e)) and(z;,0) as f) in 3.3.
Then, by (3.102),

uld = )| < lg(d - ) < . (3.105)
and, by assumption,

K
li(e)] = [g(e)] > 5 (3.106)

From f) in Figure 3.3 we have
(z1—e) (d=P)—=)
|1 (e)] lLi(d—=B)|

(3.107)
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(3.105), (3.106) and (3.107) together gives

(z21—¢) (21— ¢)
E = h(e)]

((d—=p)—=)
|l (d = B)|
((d—p)— =)

K Y

B

>

which gives

zn—e>(d—0)— 2.

Adding (3.104) and (3.109) gives

(d—p)—(c+p)
2

7 —(c+pB) >
d—c
4
G.
By inserting (3.111) into (3.103) we get
‘ (e)’ < L < %
PN e ) = B
From (3.102( and (3.111), we obtain

muﬂsmwns%§,

wheng(x) is as h) ii) in Figure 3.2.

(AVARAY,

This finishes the proof og (3.15), i.e.

mwﬂs%g

(3.16): Sincel|¢'(x)| has no maxima on the interval+ 3/2,d — 3/2], we know that

|9'(z)| < max(|g'(c + B)|,|g'(d = B)|) forz € [c + §,d — 3].

e Supposeq’(c+ )| > |¢'(d — B)|: Then|¢'(x)| is decreasing oft + 3/2, c + 3]

and¢’(x) does not change sign over this interval. Hence,

l9'(c + B)]

2
< =

g

_ %W@+@—ﬂ@+ﬁﬂﬂ

2 K K
s 5(25”5—/2)
2(2K+4K)
3 g
12K

g

c+p
/ g (x) dx

+5/2

(3.108)

(3.109)

(3.110)

(3.111)

(3.112)

(3.113)
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e Supposey’(c+ 5)| < |¢'(d — B)]: Thenl|g'(x)| is increasing ond — 3,d — (/2]
andg’(z) does not change sign over this interval. Hence,

d—B/2
/ g'(x) dx
d

-8

9'(d = B)| <

g9(d = 3/2) = g(d = B)]

( B/2 _)
(4K+2K)

Qn\: QIMQIM | o

Hence

1¢/(@)] < max(lg'(c + B)].|¢'(d— B)]) < 12%, (3.114)

forxz € [c+ p,d - 3.

(3.17): Sincel|¢”(z)| has no local maxima, eithef (x) has constant sign or it is monotonic,
and its graph looks like one of the graphs in Figure 3.1 on page 38. Then the graph of
¢'(z) looks like one of the 24 different graphs in Figure 3.4. In all cases
|g"(x)] < max(|g"(c + B)],|g"(d = B)]) forz € [c+ §,d — {].

e Supposdy”(c+ B)| = |¢(d — B)|: Then

2| [o+h
lg"(c+B) < - g"(x) dx (3.115)
c+5/2
= 16+ 8) =g+ B/
e Supposey”(c+ B)| < |g"(d — B)|: Then
" z diﬁ/Q "
lg"(d—pB)] < 5 /d_ﬁ g"(x) dx (3.116)

- §|g'<d—ﬁ/2> _dd—B).

To find bounds foltg” (¢ + 3)| and|g”(d — 3)| we will need similar bounds for

g'(c+ B)I: 19'(c+ 8/2)1, |g'(d — B)| and|g'(d — 5/2)].

e For the graphs in a) and b), iii) in ¢), i) in d), iii) in €), i) in f), iii) in g) and i) in h)
in Figure 3.4, ¢'(x)| has no maxima, and by (3.16),
K

max(|g'(c+ B)|,1g'(d - B)]) < 125 (3.117)
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1

Figure 3.4 The possible graphs gfx) when|g”(z)| has no maxima.

e Fori)inc),iii)ind),i)ine), iii) inf), i) in g) and iii) in h) in Figure 3.4, we have:

d—p3
| g'(x) dz| =
c+3

QQ\
—
&
U
8
v

I+

This implies that

1/2|g'(c+ B) + ¢'(d

and

lg'(c+B) +1g'(d—-P)] < 8

“BN(d—B) - (c+B) <4,

g(d =) — g(c+ 5)|

PR
R
L
67

1/2lg'(c + B) = ¢'(d = B)|((d = B) = c + )
((d=B3) = (c+P)lg'(d - B)|

1/2|g'(c+ B) + ¢'(d = B)|((d = B) = (¢ + ).

B
K 1
B ((d=p)—c+P))
K
< 4—.

(3.118)
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From (3.118) we have

max(|g'(c + B)|,[g'(d = B)) < (Ig'(c+B)|+1g'(d—B)|)
K

4@,

IA

meaning
K
l9(2)l < 475,
e For the graphs ii) in c), ii) in d), ii) in e), ii) in f), ii) in g) and ii) in h) in Figure 3.4,
we have:

lg'(c+B)| <

(3.119)

(3.120)

lg(c+ B) — g(c+ 5/2)]

I DI DN DN

and

lg'(d—p)| < (3.121)

iy
@

_l’_

DO
=| =
~—

s CER e N SRl VR
NEN

-
=|
\_/[\3

I

—

(\]
=

From (3.117), (3.119), (3.120 and (3.121), we have

K
— 12

‘ B2 T2
3 (48K+12K)
3 32

K
= 120@

proving (3.17).

lg"(z)| < (3.122)

<

We now have proven the upper boundsgon), fl—g and% given in Lemma 3.5 on page
36.
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Proposition 3.6 (Mallat, Hwang (A.1)). Let be a wavelet that can be written
P(x) = dd¢n , Wwhereg(z) is a continuous function with compact support. lfét) be a
function and suppose that for aay> 0, there exists a constari,, such that at all scales,

b—e
/ f % d(a)] da < K.. (3.123)
a-+te

If W, f(s,x)| has no local maxima far € (a,b) ands < sy, then for any > 0, there exists a
constantA. ,, such that for any: € (a +€,b — €) ands < s

Wy f(s,2)] < Acps™ (3.124)

Proof. In the following we will suppose thatipp(f) C [a, b]. We prove the proposition by
induction onn. Letg(z) = (f * ¢5)(x).

n=1: Sincey(z) = L& W, f(s,2) = (f % Lo,)(x) = sL(f * ¢,)(x). The hypothesis
supposes thay'(z)| = 1|W, f(s, z)| has no maxima o(u b) and thaty(x) satisfies
(3.14) in Lemma 3.5 on page 36, for= a + ¢/2 andd = b — ¢/2. The result of Lemma
3.5, for = ¢/2 ands < s, yields

Wy f(s,2)] < 5Ccpa = Acrs. (3.125)

n = 2: Sincey(z) = 42, we have that

2

Wyf(s,z) =s dd ——(f*¢s)(x) = s2g"(x). (3.126)

We then apply Lemma 3.5i(z) = f x ¢s(x), 5 =¢€¢/2,c=a+¢/2andd = b — ¢/2.
Equation (3.17) yields

|W¢f(8,$)| < S2D6/2 = Ae,252‘ (3127)

n = k: Suppose the proposition is valid far= k£ > 2

n=k+1: Lety bea Wavelet withk + 1 vanishing moments. The wavelétz) can be
written(z) = X2 where the wavele (x) hask vanishing moments Lt pe the
derivative off in the sense of distributions. Thét, f(s,z) = s % xs(x). Sincey has
2 (at least) vanishing moments, we have already provedW@yf(s z)| < Ac28%. By
Theorem 3.3 we know thgtis uniformly Holdera on (a + €,b — ¢€), for a < 2. Then by
Lemma 2.16 L () is uniformly Héldera for o < 1. Hencedf( ) is uniformly bounded
on any compact intervdk + ¢, b — ¢]. Thenh(z) = (£ x ¢,)(z) satisfies (3.123). By the
induction hypothesis for = k,

Wy f(s,z)| = s (3.128)

< sALs (3.129)
= Acns”, (3.130)
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which proves the proposition. ]

Theorem 3.7 (Mallat, Hwang (Theorem 5.2)).Letn € N andy € C"(a,b) N M,(a,b) be a
wavelet with compact support. If there exists a segle- 0 such that for all scales < s, and
z € (a,b), Wy f(s, )| has no local maxima, then for amy> 0 anda < n, f is uniformly
Holdera on(a +€,b — ¢).

If ) = jm—"n (x) where©(z) is asmoothing functionthenf is uniformly Hélder on any such
interval (a + ¢,b — €).

Proof. ¢(z) = L-¢(z) € C"((a,b)). Theng(z) € C™((a, b)) and(f * ¢,)(x) is continous,
and consequently bounded @+ ¢,b — €. So

b—e
/ |f * ¢s(x)|dx < K, forall s < s.

+e€
Since|W, f (s, )| has no maxima we have from Proposition 3.6 that
Wy f(s,7)| < Acs™. (3.131)

a<n: Wyf(s,x)| < As® andy € C™([a, b)) implies thatf () is uniformly Holdera, from
Theorem 3.3 on page 32.

a=n: ¢¥(z) = £-0(z), whereO(z) is a smooting function. We have that

Wy f(s,2)] = s"| 2L« O4(z)| < Ac,s" and this implies that

dn

— <A, 3.132
g * Os(@)| < Acn ( )

Since©(z) is a smoothing functior®(0) # 0, and by Lemma A.51,

dr f

dz™

< A (3.133)

Then, by Lemma 2.1632—,{ is Holder0, and by the same lemm@(z) is Holdern.

]

Corollary 3.8 (Mallat, Hwang (Corollary to Theorem 5.2)). The closure of the set of points
wheref is not Holdern is included in the closure of the wavelet transform maximg. of

Proof. This is a simple consequence of Theorem 3.7 O

Theorem 3.9 (Mallat, Hwang (Theorem 5.3)).Lety € C™([a, b]) be compactly supported,
©(z) a smoothing function such thatz) = £-0(z). Let f be a tempered distribution whose
wavelet transform is well defined over, b) and letz, € (a,b). We suppose that there exists a
scales, > 0 and a constant’ such that forr € (a,b) ands < s,

Max(Wy f(s,x)) C Cone(zg, C).
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e 11 € (a,b), r1 # xo = fis uniformly Holdern in a neighborhood of;.

e o < n nhon-integer.f is Holdera at x if and only if there exists a constadtsuch that
at each local maximas, x) € Cone(z,, C'), we have

Wy f(s, )] < As®. (3.134)
Proof. We prove the two points separately:

o Letz; € (a, ). Fors < so, Max(W, f (s, x)) C Cone(z, C). Hence, fore > 0, such
thata + € < =g — ¢, there exists &, such that fors < sp andz € (a + €/2, x5 — €/2),
\Wy f (s, )| has no maxima. By Theorem 2.50(x) is uniformly Holderr in
l[a + €, 29 — €]. With the same argumenf(z) is uniformly Holdern in [z + €,b — €].

e =: By Theorem 3.2)W, f(s,z)| < A(s* + |z — x0|*) < A’s* inside the Cone of
Influence whery (z) is Holdera at .
<: Letx; € (a,x0) andxs € (z0,b). Then, from the first part of this proof, we know

that f(x) is Holdern in neighborhoods aof; andx,. By Theorem 3.1, there exists
asg > 0 such that forr € (x4, z5),

Wy f(s,x)] < max (Wyf(s,y)]))

y=13
y€Cone(zo,C)

= max(A;s", As®, Ays™)

< Bs*.

By Theorem 3.3f(x) is Holdera.

]

Theorem 3.10 (Mallat, Hwang (Theorem 5.4)).Lety € C™(R) be a wavelet such that
supp(¢) C [~ K, K] andy(z) = £-0(z) where® is a strictly positive function ofi-K, K).
Letzy € Rand f € L*(R). Suppose:

e There exists an intervah, b), with zo € (a,b), and a scales, > 0 such that the wavelet
transformW,, f (s, x) has constant sign for < so andx € (a, b).

e There exists constants, ¢ > 0 such that for all points: € (a,b) and any scale,

Wy f(s,2)] < Bs®. (3.135)
e Letz = X(s) be a curve such that

(s,X(s)) € Cone(xg, K), Vs < so,

with K < C (i.e the curve{(s, X (s)} is in a cone strictly smaller than the Cone of
Influence). Then there exists a constarguch that for any scale < s, the wavelet
transform satisfies

Wy f(s,X(s))] < As”with0 < v < n, (3.136)
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Thenf is Holder« at xq, for anya < ~.

Proof. In order to apply Theorem 3.4, we want to prove that there exists a scafede > 0
such that ifs < s; andx € (z¢ — €, xo + €),

Wof(s,2)] < B(s” + |z — xo|"). (3.137)
We prove this by showing separately that there exists two constrdaad B, such that

Wy f(s,2)| < Bis”, (3.138)
when(z, s) is insidethe Cone of Influence aof,, and

(Wa f(s,2)] < Balz — 20, (3.139)
when(z, s) is outsidethe Cone of Influence of,.

Once (3.137) is proved, Theorem 2.55 is a simple consequence of Theorem 3.4; forWe
shall suppose that the constant sign/gf f (s, z) in a neighborhood af, is positive. For

s < spand| X (s) —xo| < Cs, we have

Wy f(s, X(s)) < As™. (3.140)

We first prove (3.138) and then (3.139) for

1
€ = Z(K—C)So
and
e
81—4K S0-

e W, f(s,z)| < Bys” when(z, s) is in the Cone of Influence:

0 < Wyf(s,x) (3.141)
(f * 1) ()

dn
= s"(f™*0,)(x)

r—Uu

= gt ™) (4 U
1" we 1 a

_ /zoJrQKs f(n)(u)e)(x . u) "

ro—2Ks x

The derivative off is in the sense of distributions, and is always defined. The last
equality is valid becauseipp (O(2%)) C [zo — 2Ks,z0 + 2K s]. Let

0 < M = max,e|_xx O(z) andz € [—EF< EXC] Then there exists & > 0 such

that®(z) > AM. Lets' = 255 andu € [zy — 2K's, 7o + 2K s]. Then
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X&)l < ¢ < K+C and consequentl (—) > AM. Since0 < O(£=4%) < M
and by Lemma A.51f(” > 0, in the sense of distributions, we have by (3.141)

zo+2Ks -
Wof(s.2) < y%l/’+ (w6 du.

0—2K$ T

s"Al /”“*m F™u)e (M) du (3.142)

/
_2Ks S

IN

= W X(S))

(.
< XA(S)
a(4K)7

= "7 47

(K —C)
= BlSﬁ{.

o Wy f(s,z)| < Bs|x — x0|” when(z, s) is below the Cone of Influence:

= / o (x — u) du
ro+2Ks2
s /x'o—QKsz f (U)@< s ) du

sincesupp(© (254)) C [zo — 2K 55, 79 + 2K so) whens, = 2222 > s since
|r — x| > Ks

Defines), = (;*fisg). We then have by (3.143)

ro+2K s2
Wy f(s,z) < Sn_I/ - ™ (u)e <ZB—U) du

0—2Kso

51 /“”K” F™ ()0 (M) du (3.144)

/\ 0—2Kso
1
WS (52, X(s3))
A(sy)?

4K82 v
AQK—cQ
A4

(K —C)

= B2|[L‘ — I0|7.

0 < Wyf(s,z) (3.143)

IN

IA

|z — x0|”

3.142 and 3.144 together gives

Wy f(s,2)] < B(s™ + |z — x0]7). (3.145)
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Then, by Theorem 3.4 with (3.137) and (3.13p(z) is Holder« atxz, for anya < .

4 WTMM ALGORITHM

4.1 Introduction

In this Chapter we will describe an implementation of a WTMM (Wavelet Transform Modulus
Maxima) algorithm to find edges in data and an approximation of the Holder regularity at the
edge-points.

Laser altimetry data collected with an oscillating mirror laser scanner on an airplane scans the
ground in a zig-zag pattern along the flight direction. First we rotate the data so that the flight
direction was approximately along the y-coordinate axis. To resample these data to a regular
grid, we use ®elauney Triangulationlinear interpolate on the triangles and resample the
triangulated surface to the regular grid we desire. A grid size of 25 by 25 centimeters was
used. ‘Outliers’, meaning ‘wild values’ might then result in several data points in the
resampled data set, giving the impression that there risadiyigh structure (a tall tree,

chimney or tower etc). We do not expect to create an algorithm that completely and
automatically analysis datasets in this thesis so we leave these topics unanswered.

In a laser altimetry data set along one direction, buildings are characterized by a step-function
when we ‘hit’ the building and an other step function when we ‘leave’ the building, whereas
trees behave more like a peak with relatively few samples with approximately the same height.
The issue of ‘preprocessing’ the data might be important here but we will not go into that.

In Section 4.2 we describe our data set more accurately. In Section 4.3 we will describe the
WTMM algorithm with one line of the data set as example data, and in Section 4.4 we will test
the algorithm on synthetic data with known properties, for example step functions, spikes,
cusps etc. In Section 4.5 a full 'analysis’ of two laser altimetry datasets will be presented.

4.2 Data Description

Our test data set is from the town of Sandvika, outside Oslo, Norway. The 'raw’ data from
Sandvika is a set of 615 000 points organized in columns, where the first column is the
latitude, the second is the longitude and the third is the height of the sampled point. The first
few lines in the Sandvika file are here:

584502.400
584501.820
584501.180
584500.620
584499.960
584499.400

6641006.650
6641006.200
6641005.700
6641005.270
6641004.760
6641004.320

119.610
119.390
119.500
119.590
119.470
119.440
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Figure 4.1 Our test signal

where everything is in meters, relative to some coordinate system which we do not worry
about. After a rotation of the dataset of 61.8 degrees, the flight direction was approximately
along the y-axis, so after subtracting the minimum value from the Xs and the Ys, we get a new,
rotated data-set with the origin close to the corner of the data set and all positional values
positive but small, but keeping the relative distances between them. The total area covered by
the data set is approximately 360 meters wide and 1600 meters along the flight distance.

4.3 WTMM Algorithm

To use the mathematical theory we have been studying so far for edge detection, we selected

one (arbitrary) line from the laser altimetry dataset. Then we subtracted a line that intersected

the curve in the first and the last sample, to avoid getting large value@®,of (s, z)| at each

end, which would hide some of the features near the start and the end of the data set. The line
is plotted in Figure 4.1.

Theorem 2.54 shows us how to find pointswhere the functiory is regular and where, is
surrounded by points whergis possibly less regular. What we want to do, for edge detection,
is the opposite; to find points whefeis irregular surrounded by points whefes more

regular. This means that the conditions in Theorem 2.54 not quite are satisfied. And Theorem
2.55, which introduces the curves to calculate the decabff (s, X (s))| on, has very

stringent demands on and on the behavior ofV,, f (s, ), but we still might use the methods
illustrated in these theorems as a tool for edge detection. We decided to use the continuous
wavelet transform, cwt, or more precisely, a linear sampling in both ted s variables of the
cwt. This is a more directly approach of the theorems presented in this thesis than the use of
the dyadic, discrete wavelet transform, dwt. The various pros and cons of this approach will
not be discussed here. The choice of the wavglet course affect$V,, f (s, x)|, but testing
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Figure 4.2 The magnitude 0¥, f (s, )|

on both the Haar wavelet and the Mexican Hat wavelet, which represents two wavelets with
almost opposite properties (the Haar wavelet being compactly supported and discontinuous
and the Mexican Hat wavelet beid¢?°(R) and infinitely supported. See Figure 2.1 on page

14) shows us that the results are similar, though not identical, on a wide range of wavelets. The
Mexican Hat wavelet is the one used in the figures in this section.

To implement this algorithm in Matlab, we use thwt function of the Matlab Toolbox for
continuous wavelet transform. The intensity and the surface pldid/pf (s, z)| are plotted in
Figure 4.2 and Figure 4.3. The maxima linegiiti, f (s, )| consists of the point cloud of
maxima of the one dimensional functiognse) = W, f(so, )| we get when we fix,. To
actually find these lines in datasets, and especially in real and noisy data offers some
challenges. What looks like a nice and easily selectable maximurxot= WV, f(so, z)],
often consists of many small peaks, when we zoom in to pixel level, as in Figure 4.4.

To find the 'true’ maxima, and since observing that a typical pla(af) = WV, f(so, z)|

consists of small bumps resembling second or 4th order polynomials on the intervals between
zero-crossings ofV,, f (s, ) as in Figure 4.5, we approximate by a 4. order polynomial using
the Matlab functiorpolyfit To catch more than two bumps in intervals between zero-crossings,
we would need higher order polynomials.

The set of all the maxima-points, found using the local polynomial approximation on the
intervals between the zero-crossingg 0f), resembles lines going from coarse scales that
splits into two lines, with a possible gap between the 'splitting point’ and the start of the new
maxima line, making the 'splits’ not into "Y-s’, but into patterns as in figure 4.7. Figure 4.6
showsall the points found in the polynomial approximation.

Observing that the zero-crossings, which are the red dots plotted together with the yellow
maxima points in Figure 4.8 resembles droplets with a more or less open top and with a
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Figure 4.3 The magnitude surface|o¥, f (s, z)|
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Figure 4.4 Ripples that makes it difficult to find maxima points
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Figure 4.5 Polynomial approximation (0fV,, f (s, )| +100) between the zero-crossings (red
lines) gives the maxima (green lines).
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Figure 4.6 The point clouds of the maxima.
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Figure 4.7 The splitting of lines.

maxima line and one or more new such droplets inside, might help us understand the structure
of the continuous wavelet transfor, f (s, zo).

Now we have a matrix with all the found 'candidates’ of points belonging to the maxima-lines
of Wy f(s, x)|. The next thing we want to do is to group these points together in line-objects,
X (s) on which we can calculate the decay|@¥, f (s, X (s))| whens — 0. This grouping of
points into line-objects might cause some challenges. The maxima found are not the exact
‘true’ maxima of| W, f (s, z)|, and exachowwe go about in this grouping will affect our final
results.

One way to group the points into lines is to start at the coarsest scale (the bigged

traverse the maxima-matrix searching indexes representing a maximum. When found,
continue from this point toward finer scales as long as there are maxima points, either directly
down, meaning at the exact sameor allowing a certain angle or certain gaps in the line.

There probably isn't any totally fool-proof way of doing this. The maxima points found along
such ’lines’ are marked so that we don’t include any maxima points in several lines. The
resulting line-objects are stored. We have to decide how long a line has to be, relative the scale,
s, where it starts, and how close to the finest scale a line has to reach to be stored as a’'line’. If
a line stops before the finest scale, we also have to decide wiifdh line is to be associated

with. This is not handled in a satisfactory way in the current code. According to Proposition
2.53, and given the conditions @ntherein, the maxima lines should never be interrupted, and
they should continue all the way down to the finest scale, but our method of the maxima points
and avoiding points to belong more than one maxima line might cause some difficulties here.
The result of the grouping of points into contiguous line object is shown in Figure 4.9.

After the grouping of maxima points into connected lines, we are able to use the lines
{(s, Xi(s))} for estimating the decay oW, f (s, X;(s))| along these lines, as in Figure 4.10.
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Figure 4.8 Zero-crossings (red points) and maxima lines (yellow points).
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Figure 4.9 Maxima points connected to lines.
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Figure 4.10 A long line in the maxima matrix afd/, f (s, X (s))|.

The inequality (2.27) of Theorem 2.55 is what giveswu@vhich is anya < 7). To estimatey,
we observe that taking logarithms of both side$)6f, (s, X (s))| < As“ gives us

log((Wy f(s, X(s))]) < log A+ log(s) « (4.1)
which reads
W(s') < B+5s a. (4.2)

Plotting thistV(s"), which is alog-log plot of [W,, f (s, X (s))|, and searching fow, which is
the slope of this 1. order polynomial boundifig(s) is again a matter of difficulties. Since
CWT is undefined at = 0, and since we operate with a discrete sampling/8f f (s, )|, this
estimation ofo will always be a guess, rather than the exact value.ldgéog plot of

(W, f(s, X (s))| blows up the small oscillations o, f (s, X (s)) at small scales, as shown in
Figure 4.13. This makes the estimatiormoéspecially ambiguous when the ligs) is short,
consisting only of the small values efandi¥ (s’). Instead of searching for a line that is
completely above the graph @f (s’), we want to find an approximation of the slopel®fs’)
at small scales. This can be done in several ways, each with some advantages and
disadvantages. We ended up using the derivative at the smallest scale of the 2nd degree
polynomial approximating the whole &F (s'), again using the Matlab functiguolyfit, as in
figure 4.11.

If a line consists of few points and at small scales,lthelog approach and the small number
of samples makes the polynomial approximation unstable. Whataly are searching for is
the slopeq of a line that is completely above all the samples when 0. Our method gives
strange results, as indicated in Figure 4.12 and Figure 4.13.
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Figure 4.11 Thdog-log plot of [W,, f(s, X (s))| (blue curve) and the 2nd order polynomial
approximation (red parabola) and the derivative with slepeepresenting the
As®,
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Figure 4.12 A short line in the maxima matrix apd,, f (s, X (s))].
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Figure 4.13 Theog-log plot and thex of a short line

There might be several maxima lines pointing at a partictjaand we are interested in the

one with the smallest, sincea gives us the upper bound of the regularity of the functf¢n)
atz,. Actually, CWT with a complex wavelet might give us theregularity at a point both

from the left and from the right by following maxima lines that are to the left and to the right
of the point, which might differ, as explained in Tu, Hwang (56), but that is beyond the scope
here. Following all the stored maxima lines toward finer scales, and storing the miniraum

in a vector at the positions of the origines, makes us able to plot the original sigrfdl)
together with the Holder regularity of each point that has a maxima line pointing at it, as in
figure 4.14. Thev's plotted are actually the plot @25 (4 — a) + 140), showing smalh’s as

tall bars.

4.4 Synthetic Data

To test the resulting: values, we need to analyse synthetic data with known regularity at the
points of interests. We know that a continuous function is Hold&ar o < 1, and that a cusp

is the limiting case, i.e. it is continuous but it is not Holdet= 1. The functions

f(z) = A |z|*for 0 < a < 1 are Holdera which follows trivially from the definition of

Holder regularity, as does the functigiiz) = 1 — |z|* for 0 < a < 1 andz € [—1, 1]. Since

our data is discretely sampled, strictly speaking we do not know whether the original signal is
C*(R) or discontinuous at any point, but the best we get is wHabks likeat the finest scale

we have at our disposal. In this section we will be analysing several interesting synthetic cases,
and see what-s our WTMM-algorithm gives us.

In the following, we present some examples of synthetic signals with particularly interesting
properties. The first example represents an abrupt change in the level of a function, a ‘step’,
plotted in Figure 4.15 and Figure 4.16. TAralysis Plotf all these examples consists of 5
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Figure 4.14 Signal (Red curve) and Holder regularit@f (4 — o) + 140) blue bars)
parts:

. The signal.

. Thea-values.

1
2
3. [Wyf(s,z)| as grey-level.
4. All the maxima points.

5

. The maxima lines found by grouping of maxima points.
The next example is two such steps, which could represent a building, plotted in Figure 4.17
and Figure 4.18.

The third example is a ‘spike’. A spike which is a sudden ‘wild value’, which could be a tree,
but which also could be an outlier, plotted in Figure 4.19 and Figure 4.20.

Then, in the next two examples, we have cusps with known non-integegularity, which
would be the ultimate test of our algorithm for finding these. The result is plotted in Figure
4.21 and Figure 4.22 and in Figure 4.23 and Figure 4.24.

4.5 The Sandvika Data Set
Running the algorithm described in the previous sections on all the lines and all the columns in
the Sandvika data set in Figure 4.25 gives the results in Figure 4.26.

The histogram with 100 equally spaced containers of the alpha values of all the rows is showed
in Figure 4.28, and the same for all the columns is showed in Figure 4.27. Thewalukis



Figure 4.15 |W, f(s,z)| of a step function
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Figure 4.17 |W, f(s,z)| of a box function
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Figure 4.18 The analysis of the box function
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Figure 4.19 W, f(s, )| of a spike function
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Figure 4.21 W, f(s,z)| of a cusp ¢ = 0.25) function
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Figure 4.22 The analysis of the cusp € 0.25) function
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Figure 4.23 |W, f(s,x)| of a cusp & = 0.75) function
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Figure 4.24 The analysis of the cusp € 0.75) function
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Figure 4.25 The Sandvika data set with two different scalings
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Figure 4.26 All the alpha values found along maxima lines in the rows, the columns and
either in the dataset
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Figure 4.27 All the alpha values found along maxima lines in all the columns

used for an initial value of all the points, and is therefore (probably!) all the pointsnweith
maxima line pointing at them

We see that the alpha values range over a wide interval, including negative values, which
shows that our algorithm does not work completely.

4.6 Conclusions

The example functions with known Hoélder regularity in Section 4.4 shows us that our

algorithm has some weaknesses. The most serious such is probably the process of finding and
gathering the maxima points of the functigfx) = |W,, f(so, z)| for all z, into contiguous

line objects. Failing in finding all theue maxima lines and ‘following’ them all the way down

to the right scale and positidr,, o) or by making ‘false’ maxima lines will make the

algorithm produce strange results. Also the process of approximating the slopd®f thieg

curve ofg(s) = W, f(s, X(s))| when the curve consists of few points, or if it is oscillating,

offers some challenges. This is particularly so if we have made some wrong choices for the
maxima lines.

5 THESIS SUMMARY

We have seen that mathematically, the CWT with surprisingly weak conditiogisgires us a

tool for approximatingy-regularity locally and globally. But the discretization of CWT (and of

the data to be analysed) for computer application offers some challenges. For a more thorough
analysis of 2D data, similar results should be studied with 2 dimensional CWT, or possibly the
2 dimensional dyadic discrete wavelet transform. Also, the theorems studied here only
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Figure 4.28 All the alpha values found along maxima lines in all the rows

considers theegularity, but in real datasets the noise will usually make the signal very
‘un-regular’ even though the noise ‘structures’ are very small compared to the real objects or
structures in the data.

Also theamplitudeof the wavelet transform should be considered. For instance, a paved road
with width 3 meters and height 10 centimeters would give us the same results as a building
with the same width but with height 10 meters, o nly that the house will have 100 times larger
(W f (s, z)|. But thea-values here will be the same.

Furthermore, thecaleat which the maxima lines occur or have some sort of maxima or center
shows us the extent of the structure, which normally would be very interesting information to
analyse further, since we for instance normally would want to separate a matchbox from a
large building...

Different kinds of thresholding, which means altering the valu®\bff (s, ) according to

some rule, for instance zeroing adt,, f (so, xo) Where|W,, f(so, zo)| is smaller than some
threshold orsoft thresholdingvhich means that we just reduce the values instead of zeroing it,
is also a useful tool in analysis of data. Also stopping at a scale larger than the smallest scale
“filters out” the high frequency contribution, which often is noise or structures to small for our
interest.
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APPENDIX
A PRELIMINARIES

A.1 Introduction

In this appendix, we want to include all the background material needed in the thesis not
included in the text. This is also the place to find general definitions and notations etc. Most of
the material is from Folland (11), Pedersen (51), from Richards, Youn (52) or from either of
the three major sources in the rest of the thesis: Mallat, Hwang (39), Holschneider (14) and
Mallat (37).

A.2 Integration Theory

Definition A.1 (The Power SetP(R")).
P(R") = {A]A Cc R"}.

Definition A.2 (o-algebra). A (set-)o-algebrain a non-empty seX is a family.A C P(X)
which is closed under countable unions and compliments.

Definition A.3 (The o-algebra generated by€). LetE C P(X) be a subset. The smallest
o-algebra which containg is thes-algebrageneratedoy £, and is writtenM (E).

Definition A.4 (Borel o-algebra). Theo-algebra generated by the open
(or equivalently by the closed) subsets'ofs called theBorel o-algebraon X and is denoted
Bx.

LemmaA5. If f: X — Y isafunctionandV C P(Y) is ac-algebra onY’, then
M={f"YE): E e N}isao-algebra onX.

Proof. This is obvious, sincg~! : P(Y) — P(X) commutes with unions, intersections and
complements. O

Definition A.6 (Measure, Measurable space, Measure spaceh measuren (X, M) is a
functiony : M — R, = [0,00) C R such that

o (D) =0,
o {E;}32, disjointin M = pu(U, Ej) = Z;‘;l w(E;).
A measurable spaceX, M), is a setX equipped with ar-algebra M.
A measurable spadeX, M) with a measurg: is called ameasure space

Definition A.7 (Null-set, Complete measure) A null-setis a measurable seX’, where
(X)) = 0. A measure whose domain contains all subsets of null-sets is caltadlete
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Theorem A.8. Suppos€ X, M, 1) is a measure space. LAf be the set of null-sets iM1, i.e.
N ={N € M|u(N) = 0}. DefineM = {EU F|E € MandF C N for someN € N}.
ThenM is ac-algebra, and there is a unique extensi@of ;. to a complete measure owl. 1
is called thecompletionof .

Proof. SinceM andA are closed under countable unions, safs If E U F € M where

F C N € N, we can assume th&t N N = @ (otherwise, replacé, N by F\E, N\FE). Then
FEUF=(EUN)N(N°UF),so(EUF)*=(FUN)°U(N\F).But(FUN)*e M and
N\F C N,sothatE U F)¢ € M. ThusM is ac-algebra.

If (EUF)e M (FC N ecN),seti(EUF) = pu(E). This is well defined, since if

(B UF)) = (EyUFR,) (F; C Nj € N), thenE, C E, U N, and so

p(Ey) < u(Es) + p(Ne) = p(Es), and likewiseu(Es) < u(Er). Itis easily verified thafi is a
complete measure oh, and thatz is the only measure an which extends.. O

Definition A.9 (Borel measure). The measure generated by each of the following:
e & ={(a,b):a<b},

o & ={[a,b] : a < b},
e & ={(a,b]:a<b},

&y ={[a,b) : a < b},

°
AN
I

(a,00) : a € R},
o & = {(—o0,b) : b e R},
o & ={[a,0) :a € R},

o & = {(—o0,b]: b e R}.

is called theBorel measureand is denotedBR.

Definition A.10 (Lebesgue and Lebesgue-Stieltjes measure).

If F: R — R is an increasing, right continuous function (i.E(a) = lim,_, F'(x),Va € R),
then the completion of the measurg defined o3 by 1i((a,b]) = F'(b) — F(a) is called the
Lebesque-Stieltjies measwassociated td”. The complete measure associated{a) = x is
called theLebesgue measumn R and is denoteadr. The domain ofn is denotedC.

Definition A.11 (Measurable functions). If (X, M) and (Y, N') are measurable spaces, a
mappingf : X — Y is called(M, N')-measurablg(or justmeasurablgif f~!(E) € M for
al EeN.

Definition A.12 (Lebesgue measurable function)A function
f:R — Ris calledLebesgue measuralifét is (£, Bp)-measurable.

Proposition A.13. If N is ac-algebra generated b§, thenf : X — Y is
(M, N)-measurable if and only if ' (E) € M forall E € £.
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Proof. The "if" part follows from the factthafF C Y : f~'(E) € M} is ac-algebra which
containsg, and therefore contain§.
The "only if" implication is trivial. O

Corollary A.14. Let f : X — R be a function, wheréX, M) is a measurable space. The
following are equivalent:

o fis(M,Bp)-measurable,
e f((a,00)) € M,Va € R,
e [7'([a,00)) € M, Va € R,
o f1((~00,a)) € M,Va € R,

o f7l(—00,d])) € M,Va € R.

Proof. This follows trivially from the definition of the Boret-algebra. O

Definition A.15 (Characteristic- and Simple functions). Thecharacteristic functiomn 4 (z)
of a setA is defined

(z) = 1 forxe A,
XA =0 forzg A

A simple functionis a finite linear combination of characteristic functions of setdifh

f@) = 0l X, ().

Theorem A.16. Let (X, M) be a measurable space. fif: X — (0, o] is measurable, there
is a sequencégo,, } of simple functions such that< ¢; < ¢, < --- < f, ¢, — f pointwise
and¢,, — f uniformly on any set on whicfiis bounded.

Proof. We prove this by constructing the sequenge
Letn € N,and0 < k < (22" — 1). Define

1,k k+1
BE = (G D),

and

F = f7( (2", 00)).

Define
(227-1) L

Theng,, < ¢, forall n, and0 < f — ¢, < 27" on the set wherg(z) < 2. ]
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Definition A.17 (Lebesgue integral).Lets(z) = ., cixr,(x) be a simple function, where
{E;}Y, is a partition of a measurable sét, with measure.. Define

Ip(s) =Y, c;u(E N E;). We then define thieebesgue integralf a measurable positive
function f over the setr as

/fdM: sup Ig(s).
B

0<s<f

Theorem A.18 (Monotone convergence theorem)f {f,,} : X — [0, cc] are measurable,
0< fu < fuy1 andf, — f, then

/f dv = lim [ f,dv.

n—oo

Proof. { [ f. dv} is monotone, so the limit does exist (possibdy).
[f<[f=1lm[f, <[f Let0<a<1landletd < ¢ < f be asimple function. Define
E,={z € E| f.(x) > a¢(x)}. ThenE, C E,,; — E and

/Ef” - Enf” 2a/nng:OQ/EQSE/EQbSUP(@Qmple/Ef'

0
Lemma A.19 (Fatou’s lemma).If {f,.} is measurable and < f,(z) < oo, Vz, then
/(lim inf f,,) < lim inf/fn.
Proof. [inf f, <inf [ f,. By the Monotone Convergence theorem:
J(liminf f,,) = lim [(inf f,) < liminf [ f, O

If we have a function which is complex or real and negative we define
fr (z) = max(Re(f),0),

[z (x) = max(—Re(f),0),
fi (x) = max(Im(f),0),
fr () = max(—Im(f),0).

All of these are positive, real-valued functions and

f@) = fi(@) = fr@) +i(ff (@) = fr (2)).
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A.3 General Theory

Definition A.20 (Convolution). Theconvolutionf x g of two functionsf, g € L*(R) is
defined by

£ g(a) = /Rﬂu)g(:v—u)du- (A1)

Definition A.21 (Involution, Dilation and Translation). Let f(x) andv(x) be functions.
Then

e Theinvolution f™ of f is defined by

fim(w) = () (a2
e f.(z) denotes thelilation of f(z) by the factors:

fula) = (e fs). (a3

Then||f]| gy = Ilfull 1) @ndlIfll o) = V3l 2(m)-

e )*%(z) denotes thelilation and translatioof ) by the factors: andb;

Po4(z) = jww & (A4)

Theana,bHLQ(R) — ||f||L2(R) and||f“’b||L1(R) = \/HHfHLl(R)

For wavelets with compact support, the Cone of Influence is important, because it gives the
cone in the time-frequency plane of the continuous wavelet transform, pointipgndtich
influences the wavelet transformaat

Definition A.22 (The Cone of Influence).We define th€one of Influencef a pointz, for a
constantC' by
Cone(zg, C) = {(s,7) € R? | |z — x0| < Cs}.

A.4 Vector Spaces

Definition A.23 (Abelian group). AnAbelian group(G, +) is a setG with a binary operation
+ (a,b € G = a+be G)ond, such that the following are satisfied:

e The binary operation is associative and commutative.
(@a+(b+c)=(a+b)+canda+b=0b+a, Va,b,c € G)
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e There exist an elemente G (anidentity) such thate + = =z, Vo € G
e Va € G, dd’ € G, such thatu + o’ = e. (aninversg

Definition A.24 (Vector space, Vectors, Span, BasisA real (or complexyector spacés an
Abelian groupV/, with addition as the binary operation and an operation of scalar
multiplication of each element ii with each element iR (or C), such that for alla, b € R
(orC)andalla, g e V:

ac €V

e a(ba) = (ab)a
e (a+b)a=(ax)+ (ba)
o a(a+ ) = (axr) + (af)

e la=«

The elements df are calledvectors If {a, },cr C V for an index set’, we define thepanof
{an}ner, Span({a,}), as

Span({a,}) = {a |la= chan, for some{c, },er C R (or C )} :

nekF

A basisfor V' is such a sefa,, } ,cr C V, such thatl” = Span({a, }.cr), and the sefc, },.cr
is unique for eacln € V.

Definition A.25 (Norm, Normed Vector space).A normon a vector spacé’ is a function
|-l : V— [0, 00) such that, for allz,y € V and X € R (or C),

o [l +yll < [l=[l + [yl
o [[Azfl = [Al [l
e ||z|| = 0 & 2 = 0 (an identity element df’)

A vectorspace with a norm is called@rmed vector space

Definition A.26 (The LP-spaces).Let X be a measure space withalgebra M and measure
w1 and letd < p < co. Define the equivalence relation by

f~g<:>/\f—g!pdu=o.
X

Let||f]l, = ([ [fIP d,u)l/p, where [ is the Lebesgue integral. Then

IP(X, M, ) =LP(X)={f: X — C| fis measurable anfi f||, < oo}/ ~ .
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Definition A.27 (Cauchy sequence, Complete vector space).sequencgz, }, in a
vector spacé’ is called aCauchy sequend€||z, — x,,|| — 0 whenn,m — oco. A
vectorspacé’/, where every Cauchy sequence converges to a pointigncalled acomplete
vector space

Definition A.28 (Banach Spaces)A normed vector space, which is complete with respect to
the norm is called &8anach space

The LP(R)-spaces, fop > 1, are Banach spaces, with the norm given by

11, = ([ 176 dx)(l/p) .

Definition A.29 (Inner product, Inner product space). Let X be a complex vector space. An
inner producon X isamap(-,-) : X x X — C, (z,y) — (z,y) such that:

e (ax +by,z) =alxr,z) + by, z) forall x,y, 2 € X anda,b € C.
d <I7y> = <y7 x>7 vl‘7:y 6 X'

e (r,x) >0, Vxr e X, z#0.

Every inner product defines a norm given|hyj| = (x, z)!/2. A complex vector space with an
inner product and a norm defined by the inner product is callethaer product space

Definition A.30 (Orthogonal/Orthonormal vectors/set). We say that two vectors y € X
are orthogonalf (x,y) = 0. This is denoted L y. If, in addition (x, z) = (y,y) = 1 we say
that z andy are orthonormal If {z, },ca satisfiesy # § = (z,,z3) = 0 and

(Ta, o) =1, Ya, p € Athen{z,} is anorthonormal set

Lemma A.31 (The Schwarz inequality).Let X be a innerproduct space, with y € X and
a € C. Then

o |Gzl <llzll [yl

o [(zu)l =zl lyll & = = ay.

Proof.

e Lety # 0and) = ¢ ﬁg

z,
[y
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Then

0 < lz =yl
= (x—A\y,x — \y)
= (z,2) — (2, 2y) — Ay, 2) + Ay, y
= (z,2) = Ma,y) — M, y) + [\ (y.y

~

~

~ s _@x A (2, y)|?
= @0 SR e T @) e ey
g ol@n @)
= el =25 T e
— ||x||2_|<xvy>’2
P

2
Hence—'ﬂfj{@ < |||

e Equality holds in the previous calculations if and only:if= \y.

]

Definition A.32 (Hilbert Spaces). A complex vector space with an inner product, which is
complete with respect to the notie|| = \/(x, =) is called aHilbert space

LtoR is a Hilbert space, with the innerproduct given by

ugwa/ﬂmgxdx

R™ andC" are also a Hilbert spaces, with the usual inner products.

Lemma A.33 (The parallelogram law). Let x, y be two elements in a Hilbert spaéé Then

|z + ylI* + |z — yl” = 2(/]z]]* + [|y][*).
Proof.

lz+yll* + llz —ylI* = (@+yz+y)+{@—yz-y)
(lll* + 2Re(z, y) + [lyll*) +
(ll* = 2Re(w, y) + llyll*)

2 ([l + llyll*) -

O

Theorem A.34 (The Pythagorean theorem)Let’H be a Hilbert space. I{z;}?, C H is an
orthogonal set, then

HZ%H2 ZHS@II2
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Proof.

1>l = (O Y w) = >y = (s w) = > [l

2,] %

Theorem A.35 (Bessel's ineqality) Let H be a Hilbert space.
If {n.}aca C H is a orthonormal set, then

Dl ua) P <z

acA

Proof. It suffices to show the inequality for affiyite /' C A. Then, by the Pythagorean
Theorem,

0 < o= (ud)l

aclF

< [lef2 - 2Re < Z<x,ua>ua> 1Y (@ tadual?

aceF a€EF

= lzl® =2l ua) P+ Y ey ua)

acl acF

= Jal® =) e, ua)

acl
L]

Definition A.36 (Orthonormal Basis). An orthonormal sefu, }.c4 in a Hilbert spaceH, is
called anorthonormal basifor H if the following equivalent properties are satisfied,;

e (Completeness) Ifr, u,) = 0, Va, thenz = 0,
e (Parseval's equation)z|* = >, [(z,ua)|?,Vz € V,

o Vo e H,x =) (2, us)uq, Where the sum has only countably many nonzero terms,
and converges in norm to, no matter how these terms are ordered.

Definition A.37 (Dual basis, Biorthogonal bases)Given a basiqu, }.c4 in a Hilbert space
H. Aset{i,}aca C His adual basiof {u,}aca, if

- f =
(st =00 -9 ={ o e

{ta }aca @nd{a, }aeca together is called diorthogonal basifor H.

Theorem A.38. If {uq }aca and{a, }aca are dual bases in a Hilbert spadg, then,Va € H,
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Proof. O

Definition A.39 (Frames, Tight frames). A set{u, }.c4 in a Hilbert spacel is called a
frameif, for given0 < A < B < o0,

Allgl* <Y~ [ua, 9)* < Bllgll?,

acA
forall g € H. If A= B, {us}aca is called atight frame

Lemma A.40 (Dominated Convergence Theorem)Let{ f,,} € L'(R) such that

e f, — f almosteverywhere.

e Jg € L'(R) suchthatf,| < g, Vn € N.
Thenf € LY(R) and [ f =lim [ f,.

Proof. By taking real and imaginary parts it suffices to assume thaind f are real valued.
We have thay + f,, > 0 andg — f,, > 0 almost everywhere. By Fatou’s lemma

/f+/g§1iminf/(g+fn)Z/g+liminf/fn,

and

[o- [ 1 <timint [tg- )= [g—timsup [ 1.

Hence

iimsup [ f,< [ 1< [ 1

Lemma A.41 (The Fubini-Tonelli theorem). f : R* — R. Defineg(y) = [ f(z,y) dx, and
hz) = [ f(z,y) dy

]

o Let0 < f(x,y). Supposg(y) = [ f(x,y) dx is measurabl&/y € R and
h(z) = [ f(z,y) dy is measurabl&z € R. Then

[ [ rawdeay= [ [ s ay e

o If f € L'(R?), g,h € L'(R) then

| [t@mdzdy= [ [ s dy e

Proof. The proof is on page 65 in Folland (11). ]
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Lemma A.42. Leta,b > 0and0 < A < 1. Then
a*d ™ < Aa+ (1 — \)b.
Proof. If b = 0 the result is obvious; otherwise, settihg- a/b, we need to show that
tA < Mt + (1 — ) with equality if and only ift = 1. But by elementary calculus} — Mt is

strictly increasing fot < 1 and strictly decreasing f@r> 1, so its maximum value, namely
1 — A, occur att = 1. O

Theorem A.43 (Hdlder’s ineqality). Let1 < p < oo, i + é = 1. Then

1 glly < [[f1lp lgllg-
Hence, iff € LP(X)g € LX), thenfg € L' (X).

Proof. Letting
f(=)
1f1lp
in the lemma above, we get

[f@)g(@)| _ _[f(@)” lg(@)*
Ifllollglly = 2 S 1fIPdu g [ 1gledp

Integrating both sides yields

q
1

,and)\ = —,
p

p’b _ ‘g(:v)
”qu

-

1 1
Ifol 1,1
Ifllpllglle = P q
O
Theorem A.44 (Minkowski’s ineqality). Letl < p < oo andf,g € L(X). Then
1f 4+ gl < 11l + llgllp-
Proof. The proof is on page 175 in Folland (11). m

A.5 Distribution theory

Definition A.45 (C>(2) and C°(Q2)). .
d" :

C>(Q) = {f|d—f(:z;) exists foralln € N}.
J;n

CrQ) ={feC>)|..}.
Definition A.46 (Test Functions).Let{2 C R" be non-empty.

D(Q) = C5°(Q) = {f € () : supp(f) compac}.
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Definition A.47 (The Schwarz-class).
SER") = {f € C®(R") : |[x|'|D(x)| < 0o¥k €N, a = (au,..., )}

Definition A.48 (Distribution). A distributionor generalized functiors a linear mapping
Ty =< f,->:D(Q) — R, ¢ — (f,¢), which is continuous in the following senseslf — ¢
in D(R), then< f, ¢, >—< f, ¢ >. The set of all distributions is calle®’(£2).

Definition A.49 (Convergence in the Sense of Distributions)Let {7, } _n be distributions.
We say thatl,, — T if < T,,, ¢ >—< T, ¢ > for all test functions.

Definition A.50. Let S andT be distributionsg € C>°(C) anda € C. Then we define the
following new distributions:

e SHT: <S+T p>=<S,0>+<T,¢ >.

e al" <adl,p>=a<T,¢ >.

o LT < T ¢p>=—<T,¢ >.

o Df: < D% ¢ >= (—1)l°l < f, D >.

o T(az): < T(ax),¢ >= o < T, d(x/a) >.

e T'(x—a) <T(r—a),¢>=<T,p(x+a)>.

o g(x)T(x): < g(x)T(x), ¢ >=<T,g(x)p(x) >, whereg is any test function.

Lemma A.51. Suppos®(z) > 0, Vz € R, supp(©) C (a,b), f distribution and
(f *Os)(z) >0, Vs. Thenf(z) > 0in the sense of distributions.

Definition A.52 (Tempered distribution). Atempered distributias a linear mapping
(f,)): S(R™) — R, ¢ — (f,¢), which is continuous in the following senseylf — ¢ in
S(R™), then(f, ¢,) — (f, ). The set of all tempered distributions is denof(R).

Definition A.53 (Approximative identity on a set A). Anapproximative identityn a setA
is a family of functiong¢,,}, 7 C C(A) such that:

. ngbn(x) dr =1,Vn € N,

o [\ |on(z)| dz =1 (= ¢n(x) > 0 almost everywheie

o flw\>5 mod (A) |pn(z)| dx — 0 forall § > 0 whenn — oc.

Example (Approximative identity of classC*(R)).

eV x>0 n ©) 1/a .
Leth(z) = { 0 s <0. Then L h(z) = b (z) = Plle=1/+ whereP,(z) is a
polynomial of degreén — 1), proven easily by induction am. Now, defines(z) = h(1 — 2?).
Letg, (z) = %, and¢, (z) = ng (nz). Then{,}, _ is a set of approximative

R xT i

identities of clasg”>°(R), andsupp(¢,,) C [—1/n,1/n].
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Example (The delta function). TheDelta Functions a distribution (not a function), and is
defined a9 (z) = lim, ., af(az), wheref(z) is a approximative identity.
We have< §(z — a), ¢ >=< 6, ¢(x + a) >= ¢(a).

Definition A.54 (Convolution of Distribution and Test Function). Let7 be a distribution
and¢ a test function. We defing x ¢)(z) =< T'(y), ¢(x — y) >=<T(x — y), ¢(y) >.

There probably is no sensible definition of convolution of two arbitrary distributions.

Lemma A.55. LetT be a distribution andb a test function. We then have:

e T x ¢ is atest function.
e If supp(7T') C [—a,a] andsupp(¢) C [—b, b], then

supp(T' * ¢) C [—(a+b),a + b].

e If 7" have compact support, then
T'(x) = ¢ (z) * T(x), and
T(x—a)=06(xr—a)xT(x).

Theorem A.56. Every distribution?” is the limit in the distribution sense of a sequence
(¢n) C C*=. If T has compact support, thém,,) will be test functions.

Lemma A.57 (The¢(z)/z lemma). Letp(z) € C*°(R) such thatp(0) = 0. Then
¢(x)/x € C*(R).

A.6 Fourier Transforms

The Fourier transform is the classical 'frequency transform’ which gives us the 'contribution’

of each frequency to the total signal. It is 'totally un-localized’ in that a small change to a
small part of the signal gives contribution to the whole transform.

Definition A.58 (Fourier Transform). We define th&ourier-transforny of f as
f&) = Jr f(t)e ™ dt.

Definition A.59 (Weak derivative). f € L'(R) has aweak derivative

g€ L'(R) < [Ro)o(y) dy =~ Jr f(y)¢'(y) dy, V6 € C3(R).

The motivation for this definition comes from the theory of distributions, anthtagration by
Parts

Lemma A.60. Let f € L'(R).

1. Inversion formula:f(z) = (f)"(z) = [ f()e*™* d.

2. f(z) = & [p F(€)e” d¢ almost everywhere.
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w

. Parseval's identity:(f, g) = <f,g>.

4. The Convolution Theorenf « g = f4.

ol

. A COP(R) — C°(R) is surjective.

AfOI < SR 1 @) do = (11l 1 ().

(o2}

7. f(€) is continuous ofR.
8. f has a weak derivative € L'(R) = §(¢) = i& f(€).
9.
yf(y) € L*(R) = f differentiable, andf’(¢) = —i(yf(y)): (A.5)

10. ¢ € C([a,b]), f € L([a,b]) = g(z) = (f * ¥s(x)) € L!([a,b]).
LemmaA61. f € LA(R) = f € L2(R).

Lemma A.62 (Heisenberg’s unequality).A function cannot be both band- and time-limited.

Proof. If fis band limited, thery is the restriction tdR of an entire analytic function. If is
time limited as well, therf = 0. O

Lemma A.63 (Shannon’s theorem).Let f € L*(R) be band limited,

A

supp(f) C [~ 7). Thenf(z) = X, 7, f(n)2ale=m),

Proof. f(§) = 3,.N < f, S5 > ™™™, where

tn =< [, g >= = [T f(&)e dé = & [ f(§)em dE = = f(n).
We then have:

1 £ iz
f@:=7§@ﬂw5%

) 5
T J—n

neN

1 /” (2-n)e
= _ch e s de
27TneN o

_ Zf(n)w.

= m(x —n)

]

~

Definition A.64 (Nyquist sampling density). Whensupp(f) C [—Q, Q] C R, the sampling
partition of R determined by the sample poifts3 } is called theNyquist sampling density
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A.7 Function Spaces

Definition A.65 (R, R", Z, C, C", N, H).

The real numbersR = {z : x real}.

The integers Z = {n : n integer}.

The Complex numbersC = {z : = Complex.

The natural numbersN = {n € Z : n > 0}.

The Euclidean spacest € N, C", R",n € N.

The Half Plane H = {(b,a) € R* : a > 0}.

Definition A.66 (Differentiable Functions, C"((2)).
Letn e N, 0<n<oocandQ2 e C"

k

Cr Q) ={f:Q—C: %f(x) = f®(2)) exists fork € N, 0 < k < n}.

Definition A.67 (The LP-spaces).Let X be a measure space withalgebra M and measure
pand letd < p < co. Define the equivalence relation by

f~g<:>/|f—gwpdu=o.
X

Let|| ], = (/| fI7 du) """ Then

IP(X, M, pu) = LP(X) ={f: X — C| f is measurable anfl f||, < oo}/ ~.
Definition A.68 (The Schwarz-class or “Tempered Functions’).

S(R™) = {f € C°(R") : |x|*|D*¢(x)| < 00, VE €N, a = (ay,...,am)}.

S(R) = {f € S(R) : supp(f) compac}.

Definition A.69 (Test function). Let{2 be a non-empty set iR". A functionf defined orf? is
called atest functionif f € C*°(£2), and f is compactly supported. The set of test functions is
denotedD(Q2) = C5°(Q).

Definition A.70 (Distributions). A distributionor generalized functiors a linear mapping
Ty =<f,->D(Q) =R, ¢ — (f,¢), which is continuous in the following senseslf — ¢
in D(2), then< f, ¢, >—< f, ¢ >. The set of all distributions is calle®’(£2).

Definition A.71 (Local W"-regularity at z(). Letr be a monotonic, non-negative,
submultiplicative function which satisfieér) = O(1 + 22)?/? for somey > 0. Suppose
Y € Sp(R) is admissible ¢, < 00).

W (o) = {f : Wy f(a, b+ x0)| = O(r(a) + (b)), (a,0— 0)}.
Theorem A.72 (Holschneider (2.5.2)) W™ (z) in definition A.71 is independent ¢f
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