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Sammendrag

Rapporten omhandler analyse og optimalisering av single-carrier adaptiv kodet modulasjonssyste-

mer med antennediversitet hvor multidimensjonal trellis koder er brukt som komponentkoder.

Både estimerings- og prediksjonsfeil er tatt hensyn til i analysen. For å kunne estimere og pre-

diktere kanalen benyttes det en metode kalt pilot-symol-assistert modulasjon (PSAM). Det betyr at

pilot symboler (overhead informasjon) må sendes, noe som både bruker effekt og reduserer spek-

tral effektivitet (throughput) i systemet. I denne rapporten er både piloteffekten og pilotavstanden

optimalisert slik at systemets spektral effektivitet blir størst mulig, samtidig som at bitfeil raten hol-

des konstant. Resultater viser at effektive og pålitelige adaptive systemer kan oppnås over et stort

variasjonsområde av kanalkvaliteten.

I tillegg til scenarier hvor antennene er ukorrelerte blir korrelasjon mellom antennene tatt i betrakt-

ning i et SIMO (single-input multiple-output) system. Denne gangen er estimeringen antatt som

perfekt mens vi fortsatt har prediksjonsfeil. Først analyseres hvordan romlig korrelasjon påvirker

throughput-raten i et system som opprinnelig er designet for å operere på ukorrelerte antenner. De-

retter blir korrelasjonen tatt med i beregningen når en joint “space-time prediktor” utvikles. Som

forventet er throughput-raten fortsatt lavere enn i det ukorrelerte systemet, men degradasjonen er

blitt redusert. Det vil si at degradasjonen kan bli redusert når romlig korrelasjon blir utnyttet.
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English summary

The focus in this report is to analyze and optimize single-carrier adaptive coded modulation systems

with antenna diversity. Multidimensional trellis codes are used as component codes.

The majority of the analysis is done with both estimation and prediction errors being incorpora-

ted. Both channel estimation and prediction are performed using a pilot-symbol-assisted modu-

lation (PSAM) scheme. Thus, known pilot symbols (overhead information) must be transmitted;

which consumes power and also degrades system spectral efficiency. In this report, both power

consumption and pilot insertion frequency are optimized such that they are kept at necessary values

to maximize system throughput without sacrificing the error rate performance. The results show

that efficient and reliable system performance can be achieved over a wide range of the considered

average channel quality.

Besides the spatially uncorrelated antenna array, the effect of spatial correlation is also considered in

the SIMO case. In this case, only prediction error is considered and channel estimation is assumed

to be perfect. At first, the impact of spatial correlation in a predicted system originally designed to

operate on uncorrelated channels is quantified. Then the correlation is taken into account by using a

joint “space-time predictor”. As expected, the results show that the throughput is still lower than the

uncorrelated system, but the degradation is decreased. Thus, by exploiting the correlation properly,

the degradation can be reduced.
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1 Introduction

There is no doubt that adaptive transmission will be deployed in a larger scale in emerging genera-

tions of wireless communication systems. This is due to the efficient use of the spectrum provided

by the scheme. While adaptive transmission is not a new idea, the topic is considered in the PhD

thesis [1] where some practical issues are taking into account. The thesis exists and is available

in its complete form for those who finds it interesting, but it can be burdensome to read the whole

thesis. Thus, this report is served as an extended abstract of the thesis for those who want to capture

the concept and results without studying the thesis in details. We will not reproduce all the mathe-

matical derivations in this report, since they easily can be found in the thesis. On the other hand,

some of the derivations will be repeated to aid the reading of this report alone.

The report is two-fold. First, we will consider a general spatially uncorrelated multiple-input

multiple-output (MIMO) diversity system. Other systems like single-input single-output (SISO),

single-input multiple-output (SIMO), and multiple-input single-output (MISO) are obtainable from

this model by choosing the correct combination of transmit and receive antennas. General motivati-

ons for adaptive transmissions and for the use of spatial diversity will be summarized in Section 2.

The MIMO diversity system is introduced in Section 3. Furthermore, the transmit powers are defi-

ned in Section 4, followed by the estimation and prediction schemes in Section 5. Section 6 deals

with bit error rate (BER) performance and optimal switching thresholds, whereas average spectral

efficiency (ASE) performance is considered in Section 7. Numerical examples together with discus-

sions of the results are given in Section 8. Then, a spatially correlated SIMO system is considered

in Section 9. Finally, concluding remarks are drawn in Section 10.

2 Adaptive Wireless Communications Using Feedback

The demand for reliable high-rate data communication over wireless channels gives rise to the

need for spectrally efficient transmission schemes. This is due to the fact that bandwidth is scarce,

and both spectrum and power usage are strictly regulated. The basic idea of spectrally efficient

transmission is to transmit many information bits per second per unit bandwidth on the average

while maintaining a certain quality.

One way of realizing such spectrally efficient communication is byadaptive transmission. The

success of such an adaptive transmission scheme is strongly dependent on the knowledge of the

channel at the transmitter. Thus, one challenge is to extract the best possible estimate1 of the channel

1In general, the term estimate of the channel here can be any kind of channel measurements which are used for

adaptation purposes. The predicted/estimated channel gain or channel-signal-to-noise ratio (CSNR) is one possible mea-

surement. Thus, it is noted that, we sometimes only use the term channel estimation or prediction for both estimation and

prediction. Later on, in this report, we will use the channel estimates for decoding and detection while the prediction is

used for system adaptation.
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Figure 2.1: Generic figure of an adaptive coded modulation (ACM) system with multiantenna trans-

mitter and receiver. System adaptation is based on information fed back from the receiver. Channel

estimation and prediction is performed using a PSAM scheme.

at any given time. However, nature is seldom kind when it comes to wireless communications. The

wireless signal, when travelling from a source to a destination, is obstructed by different objects.

These objects can be small or big as e.g. leaves, trees, cars, buildings, and so on. Depending on the

size of these obstacles, the signal may be reflected, scattered, and/or diffracted. Reflection of signals

occurs when the signal is met by obstacles which are comparable in size to the wavelength of the

signal or larger. When the obstructing object is less than the wavelength of the signal, scattering will

occur. Diffraction happens when signal “bends around” obstructing objects with irregular edges [2].

A common result of these three phenomena is that the signal will arrive at the receiver from different

paths and with different delays. The different replica of the signal are then summed constructively or

destructively, causing fluctuation of the signal level such that the signal can be severely attenuated.

This phenomenon is generally known as fading. Besides the restricted spectrum and power usage,

the fading also gives rise to the need of robust and efficient transmission.

In fixed-rate and fixed-power systems, the transmission must be dimensioned relative to the worst

case scenario of the channel—i.e. the system must be designed to perform acceptably in deep fades.

This results in poor performance and inefficient use of spectrum when the channel condition is good.

As opposed to this, spectrally efficient adaptive transmission schemes take the advantage of having

a good channel by sending more bits. The rate is decreased as the channel is getting worse, and

most often goes into idle when the channel is below a certain quality (then the system is said to be

in outage). In order to do so, the system needsfeedbackinformation to assist what the transmitter

should do. In order to perform such adaptations, information about the channel must be available

to the transmitter and can be realized by means of a return channel (feedback channel), as shown in

the generic block diagram in Figure 2.1. Here,nT andnR are the number of transmit and receive

antennas, respectively.

The quality of the feedback information plays an important role in such an adaptive system, since

it is crucial for the system to function properly. Hence, reliable estimators/predictors need to be

developed and employed to reduce the effect of imperfect channel state information (CSI). However,
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another approach to get around this is by more carefully designing the adaptive transmitters and

receivers which account for CSI errors explicitly. This is the choice in this report.

The information about the channel is conveyed by estimating/predicting the channel variations

which can be done using either non-data-aided (NDA) or data-aided (DA) schemes [3]. While NDA

channel tracking schemes perform their task based on previous correctly detected symbols, the DA

scheme is based on training (pilot) symbols known to both transmitter and receiver, and which are

sent regularly along with the information. How often they are transmitted is dependent on the rate

of time-variance of the channel. Comparing to the NDA schemes, the training-based systems must

transmit overhead information which degrades the system’s throughput. However, the channel can

be better tracked with DA methods when the channel is fast varying or undergoes deep fades, during

which the symbols are most likely to be wrongly detected so that NDA channel tracking becomes

unreliable.

2.1 Effects of Space Diversity and Diversity Combining

The key concept of diversity in general is to create a number of more or less independent trans-

mission “paths”, all carrying thesameinformation. In such a scenario, different signal paths may

undergo independent channel fadings, leading to independent fading statistics. Thus, the probability

of having all of them in a deep fade simultaneously is small. Various types of diversity techniques

together with different basic combining schemes are described in [4]. In this report, we will only

consider space (antenna) diversity and, hence, other techniques will not be mentioned.

Diversity combining is different from another popular and important antenna processing technique,

beamforming, where the phase of signals from different antenna elements are adjusted to point a

beam in a desired direction. In the diversity combining technique, the signals are combined to

increase the output signal level without affecting the individual antenna pattern. On the other hand,

the beamforming technique exploits the differential phase between different antennas to modify the

antenna pattern of the whole array. In that way, the whole array will have a single antenna pattern

once they are combined [5]. Beamforming is analyzed in e.g. [6, 7, 8, 9, 10] and is beyond of the

scope of this report.

It is well known that space diversity effectively averages out deep fades and mitigates considerably

the effects of imperfect channel prediction/estimation which, again, helps in improving system per-

formance. This motivates the use of multiple-antenna reception at the receiver. In this case, we have

a SIMO system. In addition, we may use multiple antennas to transmit thesamedata. In combi-

nation with multi reception we then have a MIMO diversity system, where space-time coding must

be used to exploit and to achieve the available spatial diversity at the transmitter [11, 12]. Clearly, a

MISO system is a special case of a MIMO diversity system wherenT > 1 andnR = 1.

FFI-rapport 2007/00346 9



3 The Spatially Uncorrelated MIMO Case

In general, MIMO systems may be divided into two categories: rate maximization schemes and

diversity maximization schemes, also denotedspatial multiplexing(SM) systems andMIMO diver-

sity systems, respectively. SM offers a linear increase in the transmission rate (or capacity) at no

extra bandwidth or power expenditure. This is obtained by transmitting independent data streams

from each transmit antenna, or demultiplexing a single data stream in tonT substreams which sub-

sequently are transmitted from separate transmit antennas. In a rich scattering environment, the

fading gains become uncorrelated. In this case, when knowledge of the channel is available at the

receiver, the composite receive signal can be separated by solving linearly independent equations.

Thus, the receiver can detect the different data streams, or combine the substreams into the original

stream [13].
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Figure 3.1: ACM system with adaptive PSAM-based channel prediction and estimation. The pre-

dicted channels are used for system adaptation and the estimated channels are used for coherent

detection. The system is operating on a MIMO diversity channel.

The system under consideration is illustrated in Figure 3.1, where all subchannels between any

transmitter-receiver pair are assumed to be mutually independent and Rayleigh distributed, with

Jakes correlation profile.

Table 3.1: Orthogonal designs for STBC used in this chapter. Orthogonal designO1 andO2 corre-

sponds to the regular data stream with no STBC and the Alamouti scheme, respectively.O4 is the

orthogonal design given by in [12, matrix (40)].

Orthogonal design nT Rs S T

O1 1 1 1 1

O2 2 1 2 2

O4 4 3/4 3 4

In order to transmit data from all of the transmit antennas simultaneously, the transmitted data

must be spread both in space and time. For this operation, the space-time block codes can be

used. Moreover, the orthogonal space-time block coding (STBC) is a special STBC technique

designed to achieve simple decoding at the receiver. Orthogonal space-time block codes will be
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Figure 3.2: Example of a frame structure after STBC wherenT = 4, and the orthogonal designO4

in Tab. 3.1 is used. Here,P stands for pilot and◦ denotes that the system does not send anything,

while Ds are data symbols. To reduce the size of the figure we avoid to write out the four last data

symbols, and demonstrate only the smallest frame size.

emoployed in this report and they are listed in Tab. 3.1. These orthogonal designs and some other

orthogonal designs (for both real and complex signals) can be found in [12]. The space-time encoder

mapsS symbols intonT orthogonal sequences of lengthT (given asT = (S/Rs)Ts) whereTs is

still the channel symbol interval andRs is the rate of the employed space-time block code. The

smallest frame size is illustrated in Figure 3.2. Note that the pilot symbols are not space-time block

coded. Thus, the pilot is transmitted once from each antenna (time-multiplexing). While a pilot is

transmitted from one antenna, the other antennas are silent such that each receiver branch can track

the channel between itself and the transmitting antenna. The same pilot scheme is utilized in [14].

Note that making the pilot symbol orthogonal by spreading it with each antenna’s signature code

of lengthnT does not improve the system performance since the channel predictor is found to be

independent of this factor, and the mean and variance of the noise remains unchanged [15]. Also,

the channel is still the same after de-spreading at the receiver.

Another possibility is to transmit sequences of orthogonal pilot symbols from different antennas

(not spreading one symbol). In this case, we will need another predictor/estimator and which,

we believe, is more complex than the Wiener filter in our system. This is due to the correlation

properties which will be more involved since we also have to consider the intersymbol correlation

within one sequence in addition to the correlation between different sequences. Moreover, the

system is using the same amount of time slots also in this case [11].

4 Transmit Powers

On average, each symbol (both data and pilot symbols) is allowed to transmit with a power ofE .

Thus, we needEnT[(Lb − nT)Rs + 1] of power to transmit a whole frame. Now, we take a portion

of that power (denoted byα) and allocate it to the data symbols within that frame; i.e.

Ēd =
αEnT[(Lb − nT)Rs + 1]

nT(Lb − nT)Rs
=

αEL

L− 1
. (4.1)

FFI-rapport 2007/00346 11



The rest of the power is allocated to pilot symbols; i.e.

Epl = (1− α)EL. (4.2)

However, sometimes in ACM systems, the channel is predicted to be so bad that even the strongest

code in the system’s codeset can not guarrantee reliable communication. In this case, it is better not

to send any data information at all. The system is said to be in outage. It means that no data power

is used during the outage period. As a result, the data power can be set to

Ed =
Ēd

probability of not in outage
. (4.3)

5 Channel Estimation and Prediction

Let zd ∈ CnR×1 be the received, noisy, and faded data symbol vector in complex baseband. It can

be written as

zd(k; l) =
√

Ed

nT
H(k; l)s(k; l) + n(k; l), l ∈ [nT, · · · , Lb − 1], (5.1)

where

Lb =
mS

Rs
+ nT =

L− 1
Rs

+ nT (5.2)

is the pilot symbol spacingon a single antenna branchafter STBC [14] andm is a non-zero positive

integer (cf. Figure 3.2 form = 1). Furthermore, letzpl ∈ CnR×1 be the received pilot symbol

vector:

zpl(k; l) =

√
Epl

nT
H(k; l)s(k; l) + n(k; l), l ∈ [0, · · · , nT − 1]. (5.3)

In both equations above, the notationx(k; l) is the compact way of writingx(kLbTs + lTs), H ∈
CnR×nT is the channel gain matrix,s ∈ CnT×1 is the vector of transmit symbols, andn ∈ CnR×1

is the channel additive white Gaussian noise (AWGN). Without knowing the whole channel gain

matrix we consider when power is equally allocated to different transmit antennas. As such,Epl/nT

andEd/nT is the power per pilot and per data symbol transmitted from one antenna, respectively.

Moreover, we assume thatE
[
|sµ(k; l)|2

]
= 1; µ ∈ [1, · · · , nT]; l ∈ [nT, · · · , Lb−1] (data symbols),

and that the pilots have unit magnitude (i.e.,|s(k; l)| = 1 for l ∈ [0, · · · , nT − 1]). Furthermore,

the noise is assumed white in both space and time with zero mean and variance equal toN0. The

elements of the channel gain matrix are assumed to come from a stationary complex Gaussian RP

with zero mean and unit variance.

In what follows, both the estimator and predictor are linear and made optimal in the maximum a pos-

teriori (MAP) sense, where the temporal correlation is also assumed known. Moreover, the branches

are uncorrelated by assumption and we thus can perform estimation and prediction independently

on each of the receive branches.

12 FFI-rapport 2007/00346



5.1 Estimation

Based on the non-causal vector ofKe received pilot symbolszpl;µν(k;µ − 1), corresponding to

the pilot instances of theµ-ν antenna pair and the channel gainshpl;µν = [hµν(k − bKe/2c;µ −
1), · · · , hµν(k + b(Ke−1)/2c;µ−1)]T, anon-causalMAP estimator estimates the fading channel

gain in the set{hµν(k; l)}Lb−1
l=nT

as

he;µν(k; l) = wH
e zpl;µν(k;µ− 1), for µ ∈ [1, · · · , nT], ν ∈ [1, · · · , nR], (5.4)

wherewe is the MAP-optimal estimator obtained by solving normal equations. Here,(·)T and(·)H

denote transpose and complex conjugate transpose, respectively.

Assuming the same pilot is transmitted from all of the transmit antennas and defining the estimation

error asεe;µν(k; l) = hµν(k; l)− hp;µν(k; l), the MMSE of any subchannel can be calculated as

σ2
e;µν(l) = E

[
|εe;µν |2

]
= 1−

Ke∑
κ=1

|uH
κ re|2(1− α)Lγ̄b

(1− α)Lγ̄bλκ + nT
(5.5)

In above equation,{uκ} denotes the eigenvectors of the covariance matrixRe = E
[
hpl;µνhH

pl;µν

]
,

{λκ} are the corresponding eigenvalues, andre is the covariance vector;re = E
[
hpl;µνh

∗
µν(k; l)

]
.

Moreover,γ̄b = E/N0 is the expected channel-signal-to-noise ratio CSNR ononereceive branch.2

5.2 Prediction

We assume that the transmitter adaptation occurs only once per transmission frame ofLb symbols.

Thus, thecausalpredictor usesKp pilot symbols from the past to predict one sample in the set

{hµν(k; l)}Lb−1
l=nT

of the kth frame, which isτ = DLbTs seconds ahead in time. Here,D is the

distance measured in the number of frames.

Let the channel gain vector of one subchannel (corresponding to the pilot instants vectorzpl;µν(k;µ−
1)) used in the prediction behpl;µν = [hµν(k−D;µ−1), · · · , hµν(k−D−Kp+1; µ−1)]T, the cova-

riance matrix and the covariance vector is nowRp = E
[
hpl;µνhH

pl;µν

]
andrp = E

[
hpl;µνh

∗
µν(k; l)

]
,

respectively. Similar to the estimation case, the predicted channel is a linear combination of the

received pilot symbols; denoted byhp;µν(k; l) = wH
p ypl;µν(k;µ− 1). Let εp;µν(k; l) = hµν(k; l)−

hp;µν(k; l) and given the predictorwp—which can be obtained similarly to the estimation case—the

MMSE of the prediction error is

σ2
p;µν(l) = E

[
|εp;µν |2

]
= 1−

Kp∑
κ=1

|uH
κ re|2(1− α)Lγ̄b

(1− α)Lγ̄bλκ + nT
, (5.6)

where{uκ} and{λκ} are now the sets of eigenvectors and eigenvalues ofRp, respectively.

2Which is the sum of all the subchannels’ average CSNR received in one antenna. That is:γ̄b =
∑nT

a=1 γ̄ab =∑nT
a=1 E/(nTN0) = E/N0.

FFI-rapport 2007/00346 13



Due to the assumption of independent branches, both estimation MMSE and prediction MMSE are

the same on all branches. That is,

σ2
e;µν(l) = σ2

e(l), (5.7a)

σ2
p;µν(l) = σ2

p(l) (5.7b)

∀ µ ∈ [1, · · · , nT] andν ∈ [1, · · · , nR].

6 BER Performance and Optimal Switching Thresholds

In this report, the ACM system is using a set of eight 4-dimensional (4-D) trellis codes as component

codes to switch between. The exact BER performance of these codes can not be found, but it can be

approximated by

BER(Mn|γ) =
L∑

`=1

an(`) exp
(
−γ

bn(`)
Mn

)
. (6.1)

Hereγ is the instantaneous CSNR andL is the number of exponential functions which approximate

the simulated BER (we useL = 3). Moreoveran(`) andbn(`) are constellation dependent constants

obtained by first simulating the codes’ BER performance on AWGN channels and then using curve

fitting with the least square method. These constants are given in Tab. 6.1 and the approximation is

illustrated in Figure 6.1 for different constellation sizes. At first sight, the approximation seems to

be quite coarse. However, it is shown in [1] that the ACM performance results of this approximation

are very close to those obtained when the tight approximation of [16] is used.

Table 6.1: The code-dependent constants{an(`)}3
`=1 and {bn(`)}3

`=1 for the example 4-D trellis

codes.

n an(1) bn(1) an(2) bn(2) an(3) bn(3)

1 233.8034 12.4335 -280.8712 11.4405 51.3394 8.6131

2 210.6415 8.4208 -242.0657 7.9916 34.3732 6.0432

3 246.0565 7.7677 -334.6900 8.1130 89.4924 9.1087

4 99.7887 7.7426 -160.6040 8.3843 61.5091 9.4667

5 78.0083 7.0135 -100.8414 7.4793 23.4319 9.0714

6 86.2181 7.3704 -96.0270 7.6780 10.3583 10.3191

7 87.6912 7.0471 -94.5020 7.2852 7.3344 10.1898

8 89.3099 7.2848 -95.6889 7.4987 6.8972 10.4428

Based on the matrix of the estimated channel gainsHe, the signal is space-time combined and

decoded at the receiver [11]. Although the result of the space-time combining scheme is different

14 FFI-rapport 2007/00346
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Figure 6.1: BER performance of trellis codes on AWGN channels for differentM -QAM constellati-

ons. The solid lines denote the approximations, while the stars represent the simulated values.

from the traditional MRC, the resulting effective CSNR is still the same. The difference of these

two combining techniques is a complex conjugation of the noise which appears in the space-time

combining scheme. This conjugation does not play any role when we take the absolute value;

which is exactly what we do when we calculate the CSNR. Thus, the total CSNR still can be found

by using the MRC approach, which is the sum of the subchannels’ CSNR. Hence, the BER of (6.1)

now becomes

BER(Mn| {he;µν}) =
L∑

`=1

an(`) exp
(
−An(`)Ed‖He‖2

F

)
, (6.2)

whereAn(`) = bn(`)/[nTMn(N0 + gEdσ
2
e(l))] and‖·‖F is the Frobenious norm.

With the assumption that the subchannels are independent, the overall conditional PDF of the set

{|he;µν |} given the set{hp;µν} is a product of the conditional PDF of each subbranch. That is

fhe|hp

(
{|he;µν |}

∣∣ {hp;µν}
)

=
nT∏
µ=1

nR∏
ν=1

fhe;µ|hp;µ

(
|he;µν |

∣∣hp;µν

)
.

Each subchannel is Rician distributed with the Rice factorK = |hp;µν(k; l)|2/σ2
he;µν |hp;µν

. Invoking

FFI-rapport 2007/00346 15



the assumption in (5.7), the Rician factor of each subchannel simplifies toK = |hp;µν(k; l)|2/σ2
he|hp

where, by assumption,σ2
he;µν |hp;µν

= σ2
p − σ2

e = σ2
he|hp

∀µ, ν.

The BER conditioned on the set of predicted channels is obtained by averaging (6.2) over the product

of the Rician PDFs:

BER
(
Mn

∣∣ {hp;µν}
)

=
∫ ∞

0
· · ·

∫ ∞

0︸ ︷︷ ︸
nTnR−fold

BER
(
Mn

∣∣ {|he;µν |}
)

× fhe|hp

(
{|he;µν |}

∣∣ {hp;µν}
)
d|he;1,1| · · · d|he;nT,nR |

=
L∑

`=1

an(`)dn(`)nTnR exp
(
−An(`)dn(`)Ed‖Hp‖2

F

)
, (6.3)

after some straightforward integrations (with the help of [17, Eq. (6.633-4)]) where, for notational

brevity,dn(`) = 1/(An(`)Edσ
2
he|hp

+ 1).

Let Hp = H − Ξp be the matrix containing the predicted channels and letΞp be the matrix of the

corresponding prediction errors with the elements[Ξp]νµ = εp;µν . The total predicted CSNR per

symbol can be written as

γ̂ =
Ēd‖Hp‖2

F

nTN0
=

γ̄bĒd‖Hp‖2
F

nTE
. (6.4)

Solving it with respect to‖Hp‖2
F and inserting the solution into (6.3) gives

BER(Mn|γ̂) =
L∑

`=1

an(`)dn(`)nTnR exp
(
− γ̂An(`)dn(`)nTEEd

γ̄bĒd

)
, (6.5)

and the optimal switching thresholds{γ̂}N
n=1 are subsequently found by solving BER(Mn|γ̂) =

BER0. Obviously, a numerical approach must be use to find the solutions.

From (6.4) the average predicted CSNR is

¯̂γ =
ĒdE

[
‖Hp‖2

F

]
nTN0

=
rγ̄bnTnR

nT
(6.6)

wherer = Ēd(1 − σ2
p)/E , and the total predicted CSNR follows the gamma distribution with the

mean given in (6.6) [14, 18]. That is:̂γ ∼ G (nTnR, rγ̄b/nT).

The average BER is defined as the ratio between the number of bits received in error, and the number

of bits transmitted in total:

BER =
∑N

n=1 BER(Mn) ·RSTBC
n∑N

n=1 Pn ·RSTBC
n

, (6.7)

whereRSTBC
n is the spectral efficiency (SE) of thenth constellation after STBC (to be derived in
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Section 7),

BER(Mn) =
∫ γ̂n+1

γ̂n

BER(Mn|γ̂)fγ̂(γ̂)dγ̂

=
L∑

`=1

an(`)
(

dn(`)Ēd

rdn(`)An(`)EEd + Ēd

)nTnR

×
{

Γ
(

nTnR, nTγ̂n
rdn(`)An(`)EEd + Ēd

rγ̄bĒd

)
− Γ

(
nTnR, nTγ̂n+1

rdn(`)An(`)EEd + Ēd

rγ̄bĒd

) }
, (6.8)

andPn is the probability that̂γ ∈ [γ̂n, γ̂n+1〉:

Pn =
∫ γ̂n+1

γ̂n

fγ̂(γ̂)dγ̂ = Γ
(

nTnR,
nTγ̂n

rγ̄b

)
− Γ

(
nTnR,

nTγ̂n+1

rγ̄b

)
. (6.9)

Here,Γ(a, x) = Γ(a, x)/Γ(a) is the normalized incomplete gamma function.

7 Optimization of ASE

The SE of thenth constellation used by a 4-D trellis code with a PSAM scheme isRn = (1 −
1/L)(log2(Mn) − 1/2). After STBC using the orthogonal designs in Tab. 3.1, the effective SE

becomes

RSTBC
n

(a)
=

(
log2(Mn)− 1

2

)
Lb − nT

Lb
Rs

=
(

log2(Mn)− 1
2

)
(L− 1)Rs

L− 1 + nTRs
. (7.1)

The term outside of the parenthesis in the equality marked with(a) corresponds to the fact that if the

frame lengthLb is equal tonT, then no data information is transmitted. Thus, the SE must be zero.

Using orthogonal STBC, there is a rate penalty for complex signals whennT > 2. That explains the

rateRs in the above expressions. The second equality is obtained by usingLb = (L− 1)/Rs + nT

(introduced in Eq. (5.2)).

Hence, the overall ASE is given by

ASE =
N∑

n=1

RSTBC
n · Pn. (7.2)

Before invoking the optimization algorithm to do the maximization, the following choices are made.

It is obvious that the variance of thepredictionerror is largest when predicting the last symbol in

a frame (l = Lb − 1). As a result, prediction of the symbol located at the end of the frame based

on the pilots transmitted from, e.g., the fourth antenna is slightly more accurate than it would be

if based on pilots from the first antenna (cf. Figure 3.2). On the other hand, the variance of the
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estimationerror is almost the same for alll, if the order of the estimator isKe ≥ 20 [19]. Thus, we

use theestimationerror varianceσ2
e = σ2

e;µν(Lb − 1), and the conservative choice of theprediction

error varianceσ2
p = σ2

p;1ν(Lb − 1)—note the subscript index—when finding the optimal switching

thresholds{γ̂n}N
n=1, as well as in the further optimization process.

When using Nyquist sampling,L must be less thanLmax = b1/(2fdTs)c [20] wherefd is the

maximum Doppler shift. Thus, forL ∈ [2, · · · , Lmax] we have the following optimization problem:

max
α

ASE

subject to0 < α < 1. (7.3)

Clearly, numerical optimization must be used in this case. For this purpose we have used the func-

tion fminbnd in MATLAB .

After solving (7.3) for all the possibleL values, the maximum ASE is found by searching over all

L in order to find theα and theL values which simultaneously maximize ASE.

8 Numerical Example and Discussion

At this point, we consider an example ACM system which has a set ofN = 8 QAM signal constel-

lations of sizes{Mn} = {4, 8, 16, 32, 64, 128, 256, 512} to switch between. These constellations

are used to code and decode eight 4-dimensional trellis codes [16]. We assume that the expected

subchannel CSNR is the same for all the branches. The carrier frequency isfc = 2 GHz and the

length of a channel symbol isTs = 5 µs—corresponding to a channel bandwidth of 200 kHz using

Nyquist sampling. With the mobile velocityv = 30 m/s and the given carrier frequency, the Dopp-

ler frequency isfd = 200 Hz. We require the system to tolerate a BER0 = 10−5, and we choose the

order of the estimator and predictor to beKe = 20 andKp = 250, respectively. This choice ofKp

leads to a suboptimal but satisfactory predictor [21].

The system delay considered isτ = DLbTs = 1 ms (corresponding to the normalized delayfdτ =
0.2). Applying (5.2) the following results are obtained:

• nT = 1: L = Lb ∈ {2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200}.

• nT = 2: Lb ∈ {4, 8, 10, 20, 40, 50, 100, 200}.

Thus,L ∈ {3, 7, 9, 19, 39, 49, 99, 199}.

• nT = 4: Lb ∈ {8, 20, 40, 100, 200}.

Thus,L ∈ {4, 13, 28, 73, 148}.

It is noted that when bothnT = 1 andnR = 1, the analysis in this chapter reduces to the SISO case.

The uncorrelated SIMO system is obtained ifnT = 1 andnR > 1. Furthermore, whennT > 1 and

nR = 1 we have a MISO system.
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Figure 8.1: Left panel: Optimal fraction of power allocated to pilot symbols (i.e.1 − α) when

the pilot periodL is optimal.Right panel: Optimum pilot spacingL when the power is optimally

allocated between pilot and data symbols. Both figures are generated for different combinations of

transmit and receive antennas.

How power is optimally allocated to pilot symbols and how the optimal pilot symbol spacingL is

distributed with the average CSNR can be read from Figure 8.1. The amount of power allocated to

data symbols is also easily read from that figure. Clearly, the pilot periodL increases with increasing

CSNR and it increases faster with higher diversity order. Moreover, it is apparent that, in most of

the CSNR region, necessary pilot power decreases with increasing average CSNR—i.e. more power

should be put on data symbols when the average CSNR is increased. The more antennas there are—

either on the transmitter side or on the receiver side, or on both sides—the less power is allocated

to pilot symbols. This is also to be expected since the antennas in this particular system are used to

increase the diversity order, i.e. to stabilize the channel.

For the same diversity order (the productnT×nR), most of the power is left for data symbols in the

SIMO case. Having highertransmitdiversity, the pilot poweron each antennais reduced when the

average total transmit powerE is fixed. Thus, if the pilots are to “survive” after the transmission over

the individual channels, moretotal power must be assigned on them. That is the case fornT = 4

FFI-rapport 2007/00346 19



5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9

Expected CSNR per receive branch [dB]

Av
er

ag
e 

sp
ec

tra
l e

ffi
cie

nc
y 

[b
its

/s
/H

z]

nR = 1

nR = 2

nR = 4

nT = 1
nT = 2
nT = 4

Figure 8.2: Average spectral efficiency for different combinations of transmit and receive antennas

(nT × nR): (1× 1), (1× 2), (1× 4), (2× 1), (2× 2), (2× 4), and (4× 1), respectively. The curves

are generated when both power distribution between pilot and data symbol and pilot spacing are

optimal.

in the left panel of Figure 8.1. Seeing this together with the ASE performance in Figure 8.2, from

an ASE point of view the SIMO solution is clearly preferred to other combinations of transmit and

receive antennas yielding thesame diversity order.

In [14], the ASE was always reduced when having two transmit antennas compared to when only

one transmit antenna is employed. In contrast to this, Figure 8.2 shows that the ASE is increased

by going from 1 transmit antenna to 2 transmit antennas, as long as the pilot spacing and the power

distribution are optimal. In general, when using STBC, the channel capacity is reduced, except

when the rate of the employed space-time block code is one and the channel is rank one [22]. In

our example, only the orthogonal designO2 for nT = 2 has rate one (no STBC is necessary for

nT = 1). Optimization of the system with 2 transmit antennas also gives a larger pilot spacing and

a lower pilot power. As a result, in this case, the ASE becomes higher compared to the system with

only one transmit antenna. This result agrees well with [23].
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Figure 8.3: Comparison of ASE when both power allocation and pilot spacing are optimal (left

panel) with optimal pilot spacing and equal power allocation (right panel).

For comparison purposes, we include two plots of ASE corresponding to 1) optimal power and

optimal pilot period, and 2) equal power allocation and optimal pilot period. They are depicted on

the left and right panel of Figure 8.3, respectively. Also, here, the gain by having optimalL andα

(optimal power distribution) is larger. The gain is up to approximately 0.5 bits/s/Hz.

When we have 4 transmit antennas, the employed space-time block code only has rate 3/4; hence,

some symbols must be transmitted several times, and the throughput is significantly reduced due to

that loss. When performing channel estimation and prediction using PSAM in a MIMO diversity

system withnT transmit antennas, the overall number of pilot symbols to be transmitted isnT times

the number of pilot symbols that are needed in the non-MIMO case [11] (either by using orthogonal

pilot symbols, or the pilots must be transmitted one at a time from each antenna). Moreover, using

the pilot transmission scheme in this paper (or spreading one pilot symbol as in [15]) the system is

losingnT(nT − 1) symbol intervals where data symbols could be transmitted such that the system

performance could be increased.

TheBER performance is shown in Figure 8.4. As observed, our requirement of BER0 = 10−5 is
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Figure 8.4: Average BER when the power and the pilot spacing are optimal for different combina-

tions of transmit and receive antennas.

always satisfied since we require theinstantaneousBER of the system to be always below BER0.

On the other hand, the curves are unnecessarily far below the requirement. To reduce that gap,

we can modify the constraint in such a way that theaverageBER (instead of the instantaneous

BER) must be lower than BER0. In that way, the throughput increases and the system becomes less

sensitive to the time delay, as [24] concluded. Optimization of switching thresholds with respect

to average BER constraint is also analyzed in [25], [26, Chap. 12]]. Figure 8.4 also confirms the

fact that orthogonal STBC gives full spatial diversity order (the productnT × nR) by looking at the

slope of theBER curves at high CSNR.

9 Impact of Spatial Correlation

In order to have uncorrelated subchannels, the receive antennas must be spaced at least half a wave-

length apart [2]. However, from an experimental point of view, about 10–20 wavelengths separation

between the antenna elements is sometimes required to provide sufficient spatial decorrelation at the
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outdoor base station [27]. Similarly, sufficient spatial decorrelation between the receive antennas at

the MS or between the antennas of an indoor BS is obtained by separating the antennas by quarter

of a wavelength [27].

Due to physical size limitations, the antennas might however be spaced quite close to each other.

This implies that there exists some correlation between these antennas. Insufficient scattering

around the base station also leads to correlated branches [13]. In such a system, spatial correlation

is playing an important role when analyzing the system performance, since it is well known that

correlation degrades performance [28]. However, this degradation can be reduced if the correlation

is exploited properly.

In this section, we consider a SIMO system and we assume that the channel estimation is perfect

and that branches are identically distributed but spatially correlated. The correlation between two

antennas reduces exponentially with the distance between them. Only numerical results are given

here, whereas the analysis can be carried out similarly to the spatially uncorrelated case and the

analytical expressions can be found in the thesis. Of course, there are differences in the analysis, but

the main difference here compared to the previous sections is the fact that the PDF of the combined

CSNR is no longer a gamma distribution. However, in order to model the joint PDF of true and

predicted CSNRs we approximate the marginal PDFs to be a gamma distribution with the two

first moments equal to the exact PDF. We also assume that the space-time correlation function

is separable, meaning that it can be represented as a product of spatial and temporal correlation

functions.

We see from Figure 9.1 that ASE is reduced with increased spatial correlation between the antennas.

This is in principle expected, since the advantages of having antenna diversity become smaller with

larger spatial correlation. It should be noted that the subchannels are predicted independently of

each other where the spatial correlation is not taken into account. This is clearly not optimal, but

it gives the expected performance when the spatial correlation is not known or not exploited. The

exploitation of the spatial correaltion is considered next.
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Figure 9.1: ASE as a function of subchannel CSNR for optimalL and optimal power allocation.

The correlation between the subchannels is decreasing with the distance between them (exponential

correlation model) and is equal toρs = 0, 0.2, and 0.7, respectively.
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Figure 9.2: Average spectral efficiency as a function of expected CSNR on one branch for diffe-

rent combinations of number of antennas and spatial correlations. It is also plotted for when the

subchannels are predicted independently forρs = 0.7.

In Figure 9.2, we assume that the spatial correlation is known so that it can be taken into account.

Thus, a “space-time predictor” is needed and must be derived. It is clear that the loss in ASE due

to spatial correlation is reduced when all subchannels arejointly predicted. The gain is larger when

there are many antennas available to combine. However, and as expected, the ASE is still smaller

than the uncorrelated case.
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Figure 9.3: Outage probability depicted for optimalL and optimal power allocation. It is plot-

ted as a function of average CSNR on each branch and different combinations of transmit-receive

antennas.

Shown in Figure 9.3 are the curves for outage probability for differentnT×nR combinations. For a

fixed radiated power constraint—which is the case for the analysis in this report—clearly, the SIMO

system gives lower outage probability. Thus, it is preferable to the MISO system with the same

diversity ordernT × nR. This conclusion was also drawn from an ASE point of view in Figure 8.2,

since the ASE is considerably larger in a SIMO system compared to a MISO system for the same

productnT×nR. In the uncorrelated branches system and with the same diversity order, probability

of outage suffers a 3-dB loss for each doubling of the number of transmit antenna. This performance

penalty will disappear if we double the transmit power with the doubling of the number of transmit

antennas [11].

Moreover, spatial correlation gives rise to degradation of diversity gain. As shown in Figure 9.3 the

curves for correlated receive antennas in a1 × 4 system reduce gradually to the1 × 1 system with

increasingρs. Note that, as with the ASE performance, it will never coincide with the1×1 scenario

due to the array gain.
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10 Concluding Remarks

We have analyzed and optimized an ACM system operating on a spatial diversity channel. Both the

spatially uncorrelated and correlated cases were considered. For the uncorrelated MIMO diversity

case, the throughput in terms of ASE, when the transmitter is equipped with 2 antennas, outperforms

the same system with only one transmit antenna. This is due to the diversity gain and to the fact

that the employed orthogonal design for STBC has full rate (rate 1). This result is in contrast to

what was obtained in [14] which is due to the optimization of pilot period and power performed in

the present work. Having more than 2 transmit antennas gives even higher diversity order, but the

overall rate is reduced due to the rate loss of the employed space-time block code.

In conclusion, for a fixed productnT×nR (the same diversity order), the ASE is still always highest

for nT = 1. This indicates that when ACM is used, it is best to exploit spatial diversity by means

of multiple receive antennas. In this case, even with high mobile terminal speeds, the system is,

on the average, using the same constellation a reasonably long time before switching to another

constellation (cf. [29, Tab. I]).

For the correlated SIMO case, the analyis is done based on separability of the space-time correlation

function, i.e. representing it as a product of spatial and temporal correlation functions. Furthermore,

the combined instantaneous and predicted CSNRs are approximated as gamma distributed RVs with

the two first moments equal to the exact PDF.

First, we consider a suboptimal prediction procedure where the fact that the branches are correlated

is not taken into account. In other words, it is the case where we use the system originally designed

for spatially uncorrelated branches in a correlated one. We then predict the branches jointly where

the spatial correlation is incorporated. In general, the throughput in terms of ASE is reduced due

to the reduced diversity gain when spatial correlation increases. After applying the new space-time

predictor it is observed that ASE is still lower than in the uncorrelated case, but the negative impact

of spatial correlation on the ASE is substantially reduced. Thus, the spatial correlation should be

exploited to achieve higher spectral effienciies.
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