
 
FFI-rapport 2007/02190  
 
 
 

  
 

 
 

 

Semantic service discovery in dynamic environments 

Tommy Gagnes 
 

Norwegian Defence Research Establishment (FFI) 

27 September 2007 

 

  



 
  
  
 
 

FFI-rapport 2007/02190 

1085 

 

ISBN 978-82-464-1260-3  

 

Keywords 

Service Discovery 

Web Services 

Semantic Web Services 

Informasjonsforvaltning 

Informasjonsteknologi 

 

 

 

Approved by 

Rolf Rasmussen Project manager 

Vidar S. Andersen Director 

  

  
 
 
 
 

 2 FFI-rapport 2007/02190 

 



 
 
  

 
 

Sammendrag 
Denne rapporten samler tre publiserte artikler innenfor fagområdet “service discovery” i 
dynamiske omgivelser. Samlet gir artiklene en god introduksjon til fagfeltet, samtidig som de 
peker på hva som mangler for å forbedre eksisterende teknologier. 
 
 
 
 
 

FFI-rapport 2007/02190 3  

 



 
  
  
 

English summary 
This report contains three peer-reviewed papers in the area of service discovery in dynamic 
environments. Together, they form a good introduction to the field of service discovery, pointing 
out what is needed to improve current technologies.  
 
 
 
 
 

 4 FFI-rapport 2007/02190 

 



 
 
  

 

Contents 
 

1 Introduction 7 

Appendix A Assessing Dynamic Service Discovery in the Network 
Centric Battlefield 8 

Appendix B A Conceptual Service Discovery Architecture for 
Semantic Web Services in Dynamic Environments 16 

Appendix C Discovering Semantic Web Services in Dynamic 
Environments 27 

 

FFI-rapport 2007/02190 5  

 



 
  
  
 

 
 
 
 
 
 

 6 FFI-rapport 2007/02190 

 



 
 
  

 

1  Introduction 
This report is a collection of three peer-reviewed papers in the area of semantic service discovery. 
The papers have been published at different conferences in the field and build on each other. We 
present them in their original form, in inverse chronological order. We chose to do this because of 
relevancy, and because the articles are overlapping. In other words one should probably start with 
the most recent article, and read the remaining articles only if interested. Below, we briefly 
summarize the papers and the context they were written in. 
 
Assessing Dynamic Service Discovery in the Network Centric Battlefield, published at the IEEE 
Military Communications Conference (MILCOM) 2007. The paper looks at dynamic service 
discovery in the context of Network Centric Warfare, arguing that service description and 
advertisement distribution should be separate issues. Therefore, a layered approach is needed. 
 
A Conceptual Service Discovery Architecture for Semantic Web Services in Dynamic 
Environments, published at the Semantics-enabled Networks and Services (SeNS) Workshop at 
the IEEE International Conference on Data Engineering 2006. The paper presents a conceptual 
architecture for semantic web service discovery in dynamic environments. 
 
Discovering Semantic Web Services in Dynamic Environments, published as a short paper at the 
IEEE European Conference on Web Services (ECOWS) 2005. The paper presents some 
important requirement for dynamic service discovery in dynamic environments.  

FFI-rapport 2007/02190 7  

 



 
  
  
 

Appendix A Assessing Dynamic Service Discovery in the 
Network Centric Battlefield 

 8 FFI-rapport 2007/02190 

 



1-4244-1513-06/07/$25.00 © 2007 IEEE 

 

ASSESSING DYNAMIC SERVICE DISCOVERY IN THE NETWORK CENTRIC BATTLEFIELD   

Tommy Gagnes 
Norwegian Defence Research Establishment (FFI) 

Kjeller, Norway 

ABSTRACT 

In the network centric battlefield it is crucial that partici-
pating services can be discovered and used on an as-
needed basis. Opportunistic service discovery in dynamic 
environments imposes some important requirements on the 
underlying service discovery system. In this paper, we dis-
cuss requirements for dynamic service discovery in the 
network centric battlefield, showing that current technolo-
gies for Web Service discovery are insufficient in this kind 
of environments. We then discuss design aspects of a ser-
vice discovery architecture, advocating an autonomous 
federated registry topology and use of aliveness informa-
tion. Finally, we briefly sketch some of the ingredients of a 
suitable service discovery infrastructure for a network 
centric battlefield.    

INTRODUCTION 

Network centric warfare (NCW) [1] is based on increased 
sharing of information between decision-makers. The 
number of nodes in the network producing information 
will increase as systems and applications on the lower or-
ganizational levels need to become more opened up. As a 
result, the amount of information produced increases, pro-
viding more opportunities for dynamic information ex-
change based on loose coupling and late binding. There are 
several scenarios where opportunistic and rapid discovery 
and usage of application layer services can enhance and 
increase the amount of information accessible to warfight-
ers.  

We envision the concept of a service-oriented architecture 
to become pervasive in the information infrastructure [2]. 
To exploit this fully in dynamic environments like the 
network centric battlefield, service discovery mechanisms 
have to be used to connect producer and consumer nodes 
dynamically. Typically, dynamic selection of relevant ser-
vices from some kind of registry node is needed.  

Dynamic environments, which can be defined as surround-
ings with continuous change, may lead to frequent change 
in both service metadata (service descriptions) and the to-
pology of the nodes that are part of the system. Frequent 
topology change means that both service nodes and regis-

try nodes can come and go. In other words, they are tran-
sient. 

A proper service discovery architecture for such an envi-
ronment would reduce the amount of manual configura-
tion, enable automatic discovery and selection of relevant 
services, and offer a complete and up-to-date picture of the 
services available at the given point in time. Moreover, it 
should be robust in terms of partial failure as well as 
bandwidth efficient, since nodes in dynamic environments 
may have wireless connections with low network capacity. 

In this paper, we assess dynamic service discovery in the 
network centric battlefield along the dimensions of service 
description expressivity, topology, registry network boot-
strapping and maintenance, and maintenance of service 
information in registries. To lay the ground for this, we 
start by identifying key requirements for a discovery infra-
structure deployed in a network centric battlefield. At the 
end, we present some ideas on how to design a generic 
service discovery architecture.  

REQUIREMENTS FOR DYNAMIC SERVICE 
DISCOVERY IN THE NETWORK CENTRIC 

BATTLEFIELD 

While dynamic service discovery may not currently be 
feasible on the lowest level, we see several common re-
quirements for achieving dynamic service discovery at 
both the lower and intermediate levels of the information 
infrastructure. Below, we briefly summarize some high-
level requirements for a discovery infrastructure that can 
be deployed in dynamic environments. This builds on 
work initially presented in [3]: 

• Whether the underlying network is a LAN, WAN 
or a mobile ad hoc network, a unified way to boot-
strap and maintain the service discovery infra-
structure is needed to avoid frequent manual con-
figuration. There should be automatic discovery of 
registry nodes in a coherent and transparent way. 

• The system should allow flexible resource utiliza-
tion, since capacity (memory, CPU, storage) and 
connectivity distribution often are asymmetric. 

                        9



 

Limited clients should be allowed to delegate ser-
vice selection to registry nodes (they may return 
only the best service advertisement) and thereby 
prevent receiving too many responses to queries. 
Especially in wireless environments, it is impor-
tant to use bandwidth efficiently. 

• To ensure discovery of the services available, ro-
bustness and survivability against registry failure 
or disappearance is important. This means that the 
system cannot depend on centralized components 
like a single registry.  

• Moreover, service discovery should work in envi-
ronments disconnected from the Internet (e.g. 
DNS, WWW). Additional artifacts needed by cli-
ents to evaluate or use services (e.g. XML schema, 
ontologies) must be obtained from elsewhere. 
Such functionality could be provided by the dis-
covery service. 

• The discovery infrastructure must provide a fresh 
view of available services. Responses to queries 
should mirror the current state in the service net-
work and should not advertise services that are no 
longer present on the network. 

• The infrastructure should support different kinds 
of service description mechanisms, ranging from 
simple (name, id, URI specifying a pre-agreed 
service type), to rich (e.g. semantic descriptions). 
Thus, both normal Web Services [4] as well as 
Semantic Web Services should be able to use this 
infrastructure. Also, services not relying on Web 
Services standards as their transport should be able 
to use the service discovery infrastructure. This 
could for example be services that broadcast in-
formation via UDP according to some custom 
standard (e.g. Tactical Data Links). 

• Security must also be handled, but is outside the 
scope of this paper. 

The remainder of this paper tries to take these require-
ments into account. 

ASPECTS OF A SERVICE DISCOVERY 
ARCHITECTURE 

In [5], we discussed semantic service discovery in dy-
namic environments along the axes of service description 
expressivity and service discovery infrastructure robust-
ness. Let us take a look at what we think the network cen-
tric battlefield will demand from a service discovery archi-
tecture. We evaluate the most important standardization 
and research efforts as we present the different aspects. 
There is much related work in this area, ranging from cur-

rent Web Service discovery mechanisms to Semantic Web 
Services to peer-to-peer computing. We discuss these top-
ics briefly with respect to our goal, which is to discover 
services in dynamic environments like the network centric 
battlefield. 

Service Description, Querying, and Selection 

There are several aspects of a service which can be de-
scribed, where the most common ones are name, type, op-
erations, parameters (input and output), and attributes (e.g. 
quality of service attributes). Some efforts also allow goals 
and processes to be modeled and described. 

Several efforts to describe services exist, and common to 
all of these is that some level of agreement must exist be-
fore invocation. The simpler ways to describe a service is 
using a string for its name, or an URI for its type, typically 
the case with Web Services, where one would let a URI 
correspond to a given Web Service Description Language 
(WSDL) [4] schema registered with a Universal Descrip-
tion, Discovery and Integration (UDDI) [6] registry. In 
WS-Dynamic Discovery [7], services are also described 
using Unified Resource Identifiers (URIs). Common to 
most of the current Web Service discovery standards is 
that service advertisement expressiveness for these tech-
nologies is not very rich and has no explicit semantics.  

A more advanced technology is semantic description, 
which provides a higher level of interoperability crucial to 
enable dynamic linking across organizational boundaries 
and the ability to reason about whether a service can fulfill 
a task. Semantic Web Services thereby allow clients to 
engage newly encountered services, given a shared seman-
tic model, or ontology. By using semantics we can en-
hance service descriptions, reduce ambiguity and enable 
dynamic service usage. There are several efforts in the area 
of Semantic Web Services research, notably OWL-S [8], 
WSMO [9], and SAWSDL [10]. These efforts are mostly 
concerned with describing services, and leave the chal-
lenge of service advertisement distribution to existing Web 
Service standards, specifically UDDI. It is important to 
point out that semantic service advertisements can become 
quite large, compared to for example URI strings.  

Often, registry technologies have their own Registry In-
formation Model, or RIM. Examples of this are the 
ebXML registry/repository [11] information model and the 
UDDI information model. This RIM must be used if one 
wants to exploit such a technology, and may pose restric-
tions on the aspects of a service possible to describe. Fur-
ther, an agreed-upon taxonomy of service types can be 
registered with some of the registry technologies. This al-
lows lookup based on a type hierarchy. In semantics-
enabled registries, inference mechanisms can be used to 

                        10



 

find matches based on a subtype hierarchy (e.g. a Radar is 
a kind of Sensor). 

In our opinion, it is arguable whether this is really neces-
sary. There are many examples of efforts trying to “map” 
their service description efforts to fields in the RIM. The 
drawback of this is that the registry cannot assist in fine-
grained service matching, since it does not know the mean-
ing of the custom fields. 

Querying for a service is most often accomplished by fill-
ing out a partial template for the service wanted, and sub-
mitting this to the registry, which finds service advertise-
ments matching this template. Several filters can be added, 
e.g. limiting the number of results when querying a regis-
try. 

Registry Network Topology 

There are numerous alternative topologies that a registry 
network can be based on, each with their benefits and 
drawbacks. In [5], we discussed topology thoroughly, so 
we only give a brief summery here. There are two pure 
topologies, but in fact, a combination of these seems to us 
to be the best topology for obtaining the properties we 
would like to have in a registry network. Figure 1 below 
shows these topologies. 

Figure 1. Service discovery topologies. 
 

The centralized topology has one node (the registry node) 
with more responsibility than the others, which allows 
simple configuration, easy query response control, and a 
centralized and coherent view of the service network state. 
Its drawbacks are that it is brittle both to random failures 
and targeted attacks and that the load on the single node 
may become high. 

In the decentralized topology, all nodes are equally impor-
tant. This means that all nodes form a decentralized regis-
try together and advertise services and evaluate queries 
themselves. The first advantage of this topology is that the 
registry always reflects the current state of the service 
network. Hence, no stale data will exist in the collective 
registry. The second advantage is that such a topology is 
extremely resilient to both targeted attacks and random 
failure. There are, however, several drawbacks to this to-
pology as well, the first one being that the traffic between 
nodes may create massive overhead. As such, a system 

based on this topology may not scale to a wide-area net-
work with many participants, and it will certainly consume 
a lot of bandwidth for administrative tasks. Further, there 
is little query response control, because all nodes will re-
spond to a query independently of each other. Also, a 
query posed must be propagated to all nodes, again leading 
to heavy bandwidth consumption. 

Fortunately, there is a third class of topologies, namely the 
hybrid topology. As the name indicates, this topology is a 
compromise between the centralized and the decentralized 
topologies. With this approach, some nodes are given more 
responsibility, creating a dynamic hierarchy with a decen-
tralized topology between them. In peer-to-peer terminol-
ogy, such nodes are called super-peers, but we will call 
them registry nodes. There are several variations on this 
scheme, depending on the level of responsibility given to 
the registry nodes, query evaluation capability and storage 
capability.  

In peer-to-peer technologies based on distributed hash ta-
bles, e.g. [12], registry nodes are given as little responsibil-
ity as possible. Such systems are based on storage of 
hashes in the intermediate nodes, and therefore query 
evaluation other than string matching cannot be performed 
at the intermediate nodes. Logically, this makes these sys-
tems more decentralized, since registry nodes are only 
forwarding queries and answers. With peer-to-peer tech-
nology, the support for dynamic changes in connectivity of 
peers is an important advantage as reliance on DNS and 
WWW is not realistic for the environments we target. 
However, decentralized peer-to-peer systems often have 
different assumptions than a service discovery system 
should have. For instance, they may assume that resources 
(e.g. files) are replicated, and therefore exhaustive query-
ing is not needed. This is not the case with service discov-
ery, where each service should be considered unique. 
Some peer-to-peer efforts, like JXTA, are based on generic 
protocols that can carry various advertisements. This fa-
cilitates reuse of the peer-to-peer infrastructure. 

One could view a clustered registry as a hybrid topology 
as well. With this scheme, one registry is replicated on 
several nodes. This means that exactly the same content is 
present at different nodes. An example of a system using 
this principle is UDDI, where either replication between 
registry nodes or a hierarchical model may be used. 

A combination of the two aforementioned hybrid schemes 
is what we have termed federated autonomous registries. 
Here, registry nodes operate autonomously, with inde-
pendent content, giving answers to queries based on more 
advanced service description efforts. Such autonomous 
registries can cooperate between them in a registry net-
work, responding to each others’ queries. This allows 
query evaluations to be performed in registries, providing 

                        11



 

control over the number of query responses received. 
Moreover, this scheme may strike a balance between the 
decentralized and the centralized approach in terms of ro-
bustness, load-balancing, and bandwidth-efficiency. An 
important aspect in this picture is the degree of dynamism 
with which a federation of registries can be formed and 
maintained. This should draw on experiences from peer-to-
peer technology, allowing new registry nodes to join and 
leave the registry network, maintaining connectivity be-
tween the remaining nodes at any time. By assigning cli-
ents to registries in an even distribution, load balancing 
could be obtained as well. To our knowledge, little re-
search has been done in the area of registry cooperation 
strategies, so further research on which schemes work best 
under different conditions is needed. An example of a 
technology that we sort under this subcategory is the 
ebXML registry [11]. This solution supports a nonhierar-
chical multi-registry topology, facilitating federated que-
ries. 

Finally, some interesting research has emerged the last 
years in the complex networks area. Here, properties of 
various network topologies have been studied, but little 
has been done in the area of dynamic wiring of the net-
works. In [13], our view on robustness in decentralized 
systems is confirmed, topology-wise. In [14], several met-
rics are used to indicate survivability of different topolo-
gies. According to the authors, properties such as low 
characteristic path length (average number of hops), good 
clustering (proportion of links between nodes in a 
neighborhood divided by the maximum number of links 
possible), and robustness to random and targeted failure 
are all important for survivability. According to the same 
paper, the characteristic path length should be low for sur-
vivability reasons, with only a few nodes that have long-
range connections. This matches quite well with the hybrid 
topology.  

Registry Network Bootstrapping and Maintenance 

An important question is how to bootstrap and maintain 
the registry network topology. To facilitate this, we will 
consider LANs and WANs separately. 

To find out about present registry nodes, discovery of 
available registries must be carried out. We call this regis-
try discovery. On LANs, registries may be discovered ei-
ther by manually configuring the registry endpoint or by 
clients actively using local-scoped multicast to find avail-
able registry nodes. Also, registry nodes may periodically 
issue local beacon messages, enabling clients to do passive 
registry discovery. For LAN service discovery, WS-
Dynamic Discovery [7] is based on local-scoped multicast. 
A discovery proxy is also specified to reduce the burden 
on the network.  

For WANs, the use of multicast places a too heavy burden 
on the network. Therefore, manual configuration, or seed-
ing, is necessary at some point in time, connecting differ-
ent registries from different LANs into a distributed regis-
try network on the WAN level. Some peer-to-peer systems 
like [12] allow the use of a set of well-known bootstrap-
ping servers, which can point to an appropriate super-peer. 
Both UDDI and the ebXML registry are suited for WAN-
level usage. Notice that Web Service discovery technolo-
gies target different domains, and no relationship between 
them exist. This basically means that one technology must 
be chosen for dynamic LAN discovery and another one to 
reach out on the WAN. This can introduce an unnecessary 
additional round-trip, e.g. if a discovery proxy is used to 
find a UDDI registry. 

Once connected to a registry node that in turn is connected 
to other registry nodes on the WAN, it is possible to use 
what we call registry signaling to provide registry client 
nodes with alternative registry nodes’ addresses. These 
addresses may be used to reconfigure the registry network 
dynamically in the event of failure, thus increasing the sur-
vivability of the registry network. Only peer-to-peer tech-
nologies support this feature as of today. However, exist-
ing peer-to-peer systems seem to have been designed 
mostly for scalability and replicated resources (e.g. files) 
and current research seems more occupied with structured 
and index-based peer-to-peer systems than unstructured 
systems. 

To summarize, creating an architecture that supports 
automatic bootstrapping and registry network maintenance 
will reduce the amount of tedious, manual reconfiguration 
of registry endpoints that otherwise has to be done by us-
ers. 

Maintaining Service Information in Registries 

To ensure that client nodes issuing queries receive as cor-
rect answers to their queries as possible, the service adver-
tisements in the registry nodes should mirror the state in 
the service network as closely as possible. When the to-
pology and availability of services changes rapidly service 
advertisements representing obsolete services need to be 
removed from the system. This is also the case if services 
fail, meaning that we cannot rely on services de-registering 
from the registry themselves.  

A common way to solve this problem is to build aliveness 
information into the architecture. Typically, the provider 
of a service obtains a lease when publishing its service 
description to the registry. From then on, the provider must 
periodically confirm that it is alive. Should a service crash, 
it would not be able to renew its lease, and the service de-
scription would be purged from the registry. Leasing 
mechanisms have been used in Jini [15] and JXTA [12]. 

                        12



 

Lack of such mechanisms is a major problem with today’s 
technologies for Web Service discovery when being de-
ployed in dynamic environments. Neither UDDI nor 
ebXML use leasing, and are dependent on services ac-
tively de-registering themselves. This is of course not pos-
sible in the event of a service provider crash, and is a seri-
ous shortcoming of these technologies. WS-Discovery, 
because of its decentralized nature, does not need an ex-
plicit leasing mechanism when used in decentralized 
mode. However, when used with a discovery proxy the 
same shortcoming applies to WS-Discovery. 

In a dynamic registry network, registry coordination and 
signaling is important. We use the term registry signaling 
to describe the exchange of management information that 
is carried out between registries. This could for instance be 
to check aliveness of other registries, to share information 
about other registry nodes in the system, and to send out 
summary information about the advertisements present in 
a registry. Moreover, when bootstrapping a registry net-
work, dynamic assignment of registry node responsibility 
is a challenging problem. 

In [16], the authors investigate different self-healing 
mechanisms (e.g. leasing) in service discovery systems. 
[17] and [18] evaluates service discovery with respect to 
node failures and communication failures. However, the 
authors do not investigate systems that have a dynamic 
hierarchy as in hybrid peer-to-peer systems.  

TOWARDS A COHERENT ARCHITECTURE FOR 
SERVICE ADVERTISEMENT DISTRIBUTION 

Based on the previous sections, we now summarize a few 
key principles that we think should be followed in a ser-
vice discovery system that takes into consideration the dy-
namic nature of a network centric battlefield.  

We assume here that no node in the service network is sta-
ble and define client nodes, service nodes, and registry 
nodes as roles that nodes participating in the application-
level service network could have. This corresponds to the 
three roles of provider, consumer, and registry known from 
the service oriented architecture triangle [19]. It is possible 
for nodes to engage in several roles simultaneously and 
obviously several registry nodes would need to exist for 
robustness reasons. We use the term registry network to 
refer to a dynamic hierarchy of registry nodes. 

Service invocations are performed directly, depending on 
the service description mechanism used. The service dis-
covery architecture is responsible for establishing contact 
between clients and services. It should therefore be possi-
ble to reuse existing Web Services in dynamic environ-
ments by developing a generic service discovery architec-
ture that can be used with different service description 
models.  

Figure 2. A super-peer registry network with five registry 
nodes. 

 

It is our opinion that a system based on autonomous, dy-
namically federated registries is the best solution for wide-
area service discovery. These registry nodes must act as 
super-peers, being able to dynamically connect and dis-
connect to the system and to forward information about 
other registries to its clients in case of failure. A registry 
super-peer is responsible for answering queries based on 
its knowledge and for forwarding queries and answers to 
and from other registries. In addition, the registry must 
cooperate with other registries to maintain the connectivity 
of the registry network.  

We think a registry network topology like in Figure 2 
where registries are self-contained, not just an index, pro-
vides the best balance between robustness and efficiency. 
There are lots of different design choices, e.g. to push or 
pull advertisements between registries, active or passive 
registry discovery, how many registry nodes on each LAN 
and so on. Actually, these could even be made configur-
able on an individual deployment basis. Other configurable 
parameters could be the interval between registry beacons, 
the number of registry nodes to traverse for a query, and 
the advertisement lease period. Some systems today also 
allow registration for notifications about service adver-
tisements of interest.  

Bootstrapping of the registry network can be done either 
manually or automatically. On the LAN level, the latter 
could be done either actively or passively, both by using 
multicast. Once a client has obtained a connection to a lo-
cal registry, it may ask this registry for other (remote) reg-
istries. It should also be possible to do decentralized ser-
vice discovery on the LAN level as a fall-back solution in 
the case of registry failure. Initial bootstrapping between 
registries on different LANs could be done either by pro-
viding some seeding information or through some well-
known servers. 

                        13



 

Letting service advertisements have limited lifetime en-
sures removal of obsolete advertisements. Service nodes 
are responsible for renewing their leases with the registry 
they published the advertisement to. 

It is very likely that several service description and query 
mechanisms will coexist in such a system. A layered ap-
proach, separating the service advertisement and query 
infrastructure from the service description method, will 
facilitate reuse. This way, primitive devices using only a 
lightweight URI-matching service discovery (and not nec-
essarily relying on Web Service technology for their deliv-
ery) can use the same service discovery infrastructure as 
the more heavyweight ones based on semantic service de-
scriptions. Some kind of “next header” field like in the 
Internet Protocol could be present in all registry protocol 
messages, allowing nodes to choose the right handling of 
the service description payload. It also lets nodes quickly 
filter and silently discard messages they cannot understand 
anyway. This may also provide a “hook” for using com-
pression or binary XML versions to reduce the burden on 
the network, a not insignificant issue when it comes to 
XML-based semantic service descriptions, since these 
typically are quite large.  

SOAP

Unicast

Service Description Model

Publishing Querying

Multicast

Registry Information Model

Registry Network Maintenance

Figure 3. A generic service discovery stack. 
 

Additional benefits of separating the distribution architec-
ture from the service description scheme are that it allows 
incremental evolution, support for new service description 
schemes, and promotes reuse. Software libraries for distri-

bution would only need new plug-ins or handlers for new 
models, keeping the same stack underneath. An example 
of the opposite is UDDI, where one must try to “map” the 
service description to the fields that UDDI specifies if an-
other scheme for describing services is to be used. 

We would like to reuse the same generic operations and 
messages, regardless of the payload (based on the service 
description model). We classify such operations and mes-
sages in three categories: registry network maintenance, 
publishing, and querying. Typical registry network main-
tenance operations would be to ask for nearby registries, 
ping a registry, or to obtain a list of other registry nodes 
from a registry. Publishing operations would be to publish 
a service description, to renew a lease, to update or remove 
a service description, and to forward advertisements (in the 
case of a replication-like registry cooperation strategy). 
Querying operations would be to query a registry node and 
receive a result. 

While layered, it is important that the system is coherent, 
meaning that the possibly different parts of the specifica-
tion stack interoperate and relate to each other. An exam-
ple of the opposite is the non-existing coherence between 
WS-Dynamic Discovery and e.g. UDDI. 

Figure 3 depicts an example service discovery stack. 
SOAP would provide the basis for transport and would 
need both unicast and multicast bindings for registry dis-
covery and decentralized LAN service discovery to work. 
Multicast could be based on SOAP-over-UDP [20]. On top 
of SOAP, we have sketched a generic discovery protocol, 
which would correspond to the generic operations men-
tioned above. Some kind of protocol profiling could be 
desirable, since registries typically would have to support 
more such operations than service and client nodes. Exam-
ples of this could be capacity and statistics reports, ex-
changing registry node lists, uploading service taxonomies, 
information model extensions and so on.  

On the top level, we have illustrated the service description 
model, of which there possibly could coexist several, and 
the registry information model. This model would serve as 
the foundation for exchanging information between regis-
try nodes as mentioned above. A service discovery infra-
structure that is independent from the World Wide Web 
should probably also host additional artifacts needed by 
nodes in the system. This could be e.g. ontologies and on-
tology mappings, XML Schema, XML transformations, 
XQuery transformations and so on.  

A unique identification convention, e.g. based on Univer-
sally Unique Identifiers (UUIDs) like in UDDI 3.0 would 
be needed in order to reference published advertisements 
when updating information, renewing leases, and remov-
ing advertisements. Such UUIDs could also be used to cor-

                        14



 

relate query responses received from different registry 
nodes with a registry node’s own results. Furthermore, we 
think that giving queries their unique query ID is a good 
approach to avoid query looping between registry nodes.   

A final observation is that a hybrid topology probably 
maps best to a military organization, making it possible to 
have autonomous registries on each branch of the organi-
zation. This means that a network disconnect between 
branches will not prevent services running on the same 
organizational level from discovering each other. The 
more decentralized topology is also in line with theories in 
[21]. 

From the above discussion, we summarize that the larger 
part of this functionality is in fact not tied to a specific ser-
vice description effort. Also, different deployment strate-
gies should not mandate changing the way one would de-
scribe and query for a service.  

CONCLUSION 

In this article we have claimed that current Web Service 
discovery technologies are not sufficient for opportunistic 
service discovery and usage in dynamic environments like 
the network centric battlefield. Especially aliveness infor-
mation, coherence between LAN and WAN service dis-
covery, and dynamic registry cooperation is lacking. We 
have presented several open issues in the area of dynamic 
cooperating registries, and we have taken an initial step 
towards defining a set of requirements for a coherent ser-
vice discovery architecture for dynamic environments. 
Key requirements are: robustness, registry autonomy, 
aliveness information, and pluggable service description 
models. We also discussed topology, and explained why 
we think a hybrid topology with autonomous, federated 
registries cooperating dynamically is the direction to move 
in. Our hope is that this discussion will trigger further re-
search and possibly some standardization or harmonization 
between existing standards. 

ACKNOWLEDGEMENTS 

Thanks to my colleagues Bjørn Jervell Hansen and Ketil 
Lund at FFI and Nanda Kol at the NATO C3 Agency for 
valuable comments during the preparation of this paper. 

REFERENCES 
 [1]  D. S. Alberts, J. Garstka, and F. P. Stein, Network Centric 

Warfare: Developing and Leveraging Information Supe-
riority CCRP Publications Distribution Center, 1999. 

 [2]  K. Lund, A. Eggen, D. Hadzic, T. Hafsøe, and F. Johnsen, 
"Using Web Services to Realize Service-Oriented Archi-
techture in Military Communication Networks," IEEE 
Communications, 2007. 

 [3]  T. Gagnes and T. Plagemann, "Discovering Semantic 
Web Services in Dynamic Environments," European 
Conference on Web Services (ECOWS), 2005. 

 [4]  F. Curbera, M. Duftler, R. Khalaf, W. Nagy, and N. 
Mukhi, "Unraveling the Web Services Web, An Introduc-
tion to SOAP, WSDL, and UDDI," IEEE Internet Com-
puting, vol. 6, no. 2, pp. 86-93, 2002. 

 [5]  T. Gagnes, T. Plagemann, and E. Munthe-Kaas, "A Con-
ceptual Service Discovery Architecture for Semantic Web 
Services in Dynamic Environments," in ICDEW '06: Pro-
ceedings of the 22nd International Conference on Data 
Engineering Workshops (ICDEW'06) Washington, DC, 
USA: IEEE Computer Society, 2006, p. 74. 

 [6]  OASIS, "UDDI Version 3.0.2," 2004. 
 [7]  Microsoft Corporation Inc., "Web Services Dynamic Dis-

covery (WS-Discovery)," 2007. 
 [8]  OWL-S Coalition, "OWL-S: Semantic Markup for Web 

Services, W3C Member Submission," 2004. 
 [9]  D. Fensel, "The Web Service Modeling Framework 

WSMF," Electronic Commerce: Research and Applica-
tions, vol. 1, pp. 113-137, 2002. 

 [10]  K. Verma and A. Sheth, "Semantically Annotating a Web 
Service," IEEE Internet Computing, 2007. 

 [11]  OASIS, "ebXML Registry Services and Protocols," 2005. 
 [12]  L. Gong, "JXTA: A Network Programming Environ-

ment," IEEE Internet Computing, no. 3 2001. 
 [13]  R. Albert and H. &. B. A.-L. Jeong, "Error and attack 

tolerance of complex networks," Nature, vol. 406, p. 378, 
2000. 

 [14]  H. P. Thadakamaila, U. N. Raghavan, and S. Kumara, 
"Survivability of multiagent-based supply networks: a 
topological perspective," Intelligent Systems, IEEE, vol. 
19, no. 5, pp. 24-31, 2004. 

 [15]  J. Waldo, "The Jini Architecture for Network Centric 
Computing," Communications of the ACM, vol. 42, no. 7 
1999. 

 [16]  C. Dabrowski, "Understanding Self-healing in Service 
Discovery Systems," Proceedings of the First ACM Sig-
Soft Workshop on Self-healing Systems (WOSS '02), 2002. 

 [17]  C. Dabrowski and K. Mills, "Performance of Service-
Discovery Architectures in Response to Node Failures," 
the Proceedings of the International Conference on Soft-
ware Engineering Research and Practice, pp. 23-26, 
2003. 

 [18]  C. Dabrowski, "Understanding consistency maintenance 
in service discovery architectures during communication 
failure," Proceedings of the third international workshop 
on Software and performance, pp. 168-178, 2002. 

 [19]  M. N. Huhns, "Service-oriented computing: Key concepts 
and principles," IEEE Internet Computing, vol. 9, no. 1, 
pp. 75-81, 2005. 

 [20]  M. Gudgin, H. Combs, J. Justice, G. Kakivaya, D. 
Lindsey, D. Orchard, A. Regnier, J. Schlimmer, S. Simp-
son, and H. Tamura, "SOAP-over-UDP," September, 
2004. 

 [21]  D. S. Alberts and R. E. Hayes, Power to the edge: com-
mand, control in the information age CCRP Publication 
Series, 2003. 

 
 

                        15



 
  
  
 

Appendix B A Conceptual Service Discovery Architecture for 
Semantic Web Services in Dynamic 
Environments 

 16 FFI-rapport 2007/02190 

 



A Conceptual Service Discovery Architecture for Semantic Web Services in 
Dynamic Environments 

 
Tommy Gagnes, Thomas Plagemann, and Ellen Munthe-Kaas 

University of Oslo, Department of Informatics 
{tommyg, plageman, ellenmk}@ifi.uio.no  

 
 

Abstract 
 
Web Services technology is being used for increasingly 

different environments than it was designed for. To 
facilitate discovery of Web Services in dynamic 
environments, both service description and distribution of 
descriptions must be improved. Several research efforts 
target semantic description of services. However, 
Semantic Web Service discovery in peer-to-peer-like, 
dynamic environments where services and registries are 
transient cannot be based on current mechanisms for 
distribution of Web Service descriptions. Based on a set 
of generic requirements, we introduce a conceptual 
architecture that aims to solve many of the problems 
related to Semantic Web Service discovery in dynamic 
environments. The architecture is based on a distributed 
multi-registry topology and aliveness information. We 
present several research problems we have identified 
during our initial work on this architecture. 

 

1. Introduction 
 
Web Services technology is being used for tasks 

increasingly different from the ones initially targeted. As 
Web Services technology moves into more peer-to-peer-
like, dynamic environments where nodes come and go, 
discovery of services becomes a bigger challenge than in 
the original environments initially targeted by Web 
Service description and discovery technologies. If Web 
Services are to be used in dynamic environments, there is 
a need for dynamic discovery of services, which in turn 
demands two things: richer descriptions of services and 
better distribution mechanisms for these descriptions.  

A significant contribution in this respect is the research 
on Semantic Web Services, where services are described 
semantically. Semantic Web Services allow clients to 
engage newly encountered services, given a shared 
semantic model, or ontology. By using semantics, we can 
significantly enhance service descriptions, reducing 
ambiguity and enabling dynamic service usage.  

For distribution of service descriptions, however, most 
of the Semantic Web Services efforts build on today’s 
mechanisms for Web Service discovery, such as UDDI 
[1]. We argue that these mechanisms are not particularly 

well suited for distributing semantic service 
advertisements in dynamic environments. Our position is 
that Semantic Web Service descriptions introduce such 
possibilities in dynamic environments that they deserve a 
better service advertisement distribution architecture.  

By dynamic environments we mean surroundings with 
continuous change. This may lead to frequent changes in 
both service descriptions and topology. Frequent 
topology change means that both services and registries 
can come and go. In other words, they are transient. An 
example of a dynamic environment could be a crisis 
management scenario where members from several 
agencies, potentially at different locations, have to 
cooperate in order to run an operation as efficiently as 
possible. These members carry with them various devices 
that spontaneously form a network where application 
layer services are offered. Assembly of emergency 
response teams must often happen very rapidly, and their 
different applications are not always designed to work 
together. To facilitate information sharing in an ad hoc 
way, upper-level ontologies and service taxonomies could 
be standardized, facilitating semantic service descriptions, 
and thereby precise selection of relevant services for 
information exchange. A proper service discovery 
architecture for such an environment would reduce the 
amount of manual configuration, enable automatic 
discovery and selection of relevant services, and offer a 
complete and up-to-date picture of the services available 
at the given point in time. Moreover, it should be robust 
in terms of partial failure and bandwidth efficient, as 
nodes in dynamic environments may have wireless 
connections with low network capacity. 

Our research interest lies in developing a service 
advertisement distribution architecture that supports the 
possibilities introduced by semantic service descriptions 
in dynamic environments, such as the environment 
described in the example above. Our goal is to make it 
possible to reuse already implemented Web Services in 
dynamic environments by developing a generic service 
discovery architecture. Therefore, service invocations are 
performed directly, depending on the service description 
mechanism used. The service discovery architecture is 
responsible for establishing contact between clients and 
services.  

                        17



This paper presents preliminary work on a conceptual 
multi-registry service discovery architecture that supports 
discovery of Semantic Web Service descriptions in 
dynamic environments. In the next section, we summarize 
some general requirements for such architectures. These 
requirements were initially presented in [2]. Building on 
this work, the rest of the paper proceeds as follows: 
Section 3 briefly discusses different topologies with 
respect to service discovery in dynamic environments. In 
Section 4, we introduce our conceptual architecture and 
the research problems we have identified during our work 
on this architecture. Section 5 briefly discusses related 
work, before a conclusion is given in Section 6. 

 

2. Semantic Web Service Discovery in 
Dynamic Environments – General 
Requirements 

 
Designing a service advertisement distribution 

infrastructure that supports the possibilities introduced by 
Semantic Web Service descriptions in dynamic 
environments raises several research questions. In [2] we 
presented several general requirements, which we 
summarize here:  

To avoid frequent manual configuration, there should 
be automatic discovery of registries on LANs and WANs 
wherever possible. To enable a client to find out about all 
available services, service discovery should be possible in 
a coherent and transparent way on LANs and WANs. The 
responses to queries should mirror the current state in the 
service network and should not return obsolete service 
descriptions that represent services that are no longer 
present on the network.  

Since services can be quite complex, service selection 
based on semantic descriptions is necessary to find the 
best-suited services for given tasks. This means that it can 
become more costly to evaluate queries, since reasoning 
about service descriptions may be necessary. Richer 
expressivity also allows more detailed service 
descriptions, which in turn may demand more frequent 
service advertisement updates (for example the coverage 
area of a given service) than simple service descriptions. 

Also, new functionality such as mediation between 
different vocabularies may introduce additional queries or 
hints by the discovery service. This could be the case 
when an interesting service is found, but an additional 
translation or mediation service may be needed to use it.  

Moreover, service discovery should work in 
environments disconnected from the Internet. In some 
cases, additional ontologies may be needed by clients for 
them to be able to evaluate and use services. Such 
functionality could be provided by the discovery service. 

To enable discovery of available services in dynamic 
environments, robustness against registry and service 

failure or disappearance is important. Additionally, in 
wireless environments, it is important to minimize 
resource (e.g. bandwidth) usage and to prevent receiving 
too many responses to queries. Semantic service 
advertisements can become quite large, compared to the 
use of for example URI strings. 

To our knowledge, no coherent infrastructure for Web 
Service discovery exists that supports all of these 
requirements. In the next section, we discuss different 
properties of various topologies with respect to service 
discovery. 

 

3. Service Discovery Topology and Dynamic 
Environments 

 
At the top level, we can categorize different service 

discovery topologies into three basic topologies, namely 
(completely) decentralized, distributed, and centralized, 
shown in Figure 1. The centralized topology has one node 
with more responsibility than the others, whereas in the 
decentralized topology, all nodes are equally important. 
The distributed topology is a compromise between the 
centralized and the decentralized, where a group of nodes 
has more responsibility than the others.  

 

 
 

Figure 1. Decentralized (a), centralized (b), and 
distributed (c) topologies. 

 
3.1. Decentralized Topology 

 
There are several reasons why a decentralized 

approach is attractive for service discovery. For instance, 
most decentralized systems are based on service provider 
nodes hosting their own service advertisements. This 
means that updates to these advertisements will be 
immediate, and that there is no need to republish and 
propagate any new service metadata. Further, the 
available service advertisements correspond directly to 
the state in the service network. This means that if a 
service provider node goes down, its service will no 
longer be advertised. Decentralized systems are also 
robust against failure and attacks, since they have no 
weak points that can bring the whole system down if they 
disappear.  

There are, however, several problems related to the 
decentralized approach as well: One problem is that a 

                        18



query must be propagated to all nodes, typically through 
broadcast. Then, all provider nodes must evaluate the 
query independently of each other before they return their 
responses to the querying node. Therefore, the 
decentralized approach can lead to high bandwidth 
consumption in the system. It also increases the load on 
all provider nodes because they have to do processing 
every time a query is received. This becomes an even 
greater problem when richer, semantic descriptions are 
used. Because device capabilities are often different, not 
all nodes may be able to evaluate queries on semantic 
service descriptions. This is different from the peer-to-
peer world, where simpler (string- or hash-based) 
advertisements are used. A decentralized topology 
therefore cannot be used in all cases.  

Services, and the real-world resources they represent, 
should be considered unique. Again, this is different from 
peer-to-peer systems, where several identical files could 
be replicated across the system. Therefore, in a service 
discovery system, all available advertisements should be 
queried in a deterministic way, not in a random way that 
does not guarantee discovery of available advertisements. 
Random querying is often used in peer-to-peer systems. 

Another effect of using a decentralized approach is 
that there is no central point where the total number of 
responses to a query can be controlled. This lack of query 
response control can at worst, if a query is too broad, lead 
to “response implosion” at the querying node, meaning 
that the client is bombarded with responses from 
potentially all provider nodes in the service network. This 
certainly increases network load, especially as service 
descriptions become larger. It also increases the 
processing load on the querying client, because now it 
must evaluate all the received responses itself, to make a 
final selection between the candidate service descriptions 
it has received. Of course, the number of responses from 
each node can be limited, but still, query response control 
is very coarse-grained. The total cost in terms of 
processing and network capacity therefore is high with 
this topology. 

 
3.2. Centralized Topology 

 
A centralized topology is probably the most efficient 

in terms of configuration, because clients only have to 
maintain the location of one registry. Also, since there is 
only one centralized location with a complete view of the 
service network state, query response control is not a 
problem.  

To maintain an up-to-date view of the service network 
in a centralized registry, removal of old advertisements 
should be done, since we have to deal with dynamic 
conditions where services may disappear abruptly. Should 
the number of service advertisements grow very large, 
storage may be a constraint as well, since one node must 

host all advertisements. Further, by delegating service 
selection to the central registry, query evaluation may 
only have to be carried out once. The opportunity to allow 
service selection support in registries is important to 
relieve constrained clients. 

However, a completely centralized solution has 
problems related to robustness, since we now have a 
single point of failure. Also, processing load could be 
high on the central node, since all query evaluation must 
be performed on a single node. Moreover, with the 
centralized approach bandwidth must be shared between 
all querying clients, potentially leading to a bottleneck 
situation. This must, however, be compared with a greater 
total load on the network generated by the decentralized 
topology, which can be critical for networks with 
broadcast media. 

 
3.3. Distributed Topology 

 
As mentioned, a distributed topology is a compromise 

between the decentralized and the centralized approach. It 
is based on a group of intermediate nodes that form a 
centralized network of nodes that have more 
responsibility than the rest. Potentially, this can strike a 
balance between the two “pure” topologies discussed 
above. Finding the right combination of different 
properties may enable query response control, robustness, 
load balancing, and bandwidth-efficiency, and therefore 
may offer support for dynamic environments. Various 
systems with a distributed topology place different 
degrees of responsibility at the intermediate nodes, 
depending on properties such as query evaluation 
capability and storage capability. In the peer-to-peer 
world, intermediate nodes are often termed super-peers, 
and systems relying on a distributed topology are called 
hybrid peer-to-peer systems.  

We have identified three subcategories of distributed 
topologies: clusters, distributed hash tables, and multi-
registries. Clusters are basically one registry replicated on 
several nodes. This means that the same content is present 
at different nodes. An example of this is UDDI. Super-
peer distributed hash tables are used in several peer-to-
peer systems, like in [3]. Such systems are based on 
storage of hashes in the intermediate nodes, and therefore, 
semantic query evaluation cannot be performed at the 
intermediate nodes in such systems. Logically, this makes 
these systems more decentralized. The multi-registry 
topology is based on autonomous registries with 
independent content. They can cooperate, but to our 
knowledge, little research has been done in the area of 
registry cooperation strategies. Examples of technologies 
that we sort under this subcategory are the CORBA 
Trading Object Service [4] and the ebXML registry [5]. 
In the next section, we present our conceptual architecture 
for semantic service discovery in dynamic environments. 

                        19



4. A Conceptual Architecture for Semantic 
Service Discovery in Dynamic Environments 

 
Since neither a completely centralized solution nor a 

completely decentralized solution is feasible for our 
purposes, we propose a distributed multi-registry service 
discovery architecture for distribution of semantic service 
descriptions. The conceptual architecture is a compromise 
of the different properties presented in the previous 
section, potentially making it possible to deploy a 
coherent, bandwidth-efficient, and robust service 
discovery infrastructure for both LANs and WANs. The 
architecture is based on the assumption that there will be 
an inherent difference in device capability and network 
capacity. Making a multi-registry system appear 
externally as one centralized registry and keeping registry 
content relevant are the core problems of our research. In 
a dynamic environment, this means that we have to 
address several new requirements, such as those in 
Section 2, compared to today’s solutions. To give a more 
in-depth view of our conceptual architecture, we now 
present the various aspects that constitute it. We start by 
describing the different roles in the architecture. 

 
4.1. Roles  

 
Our system basically consists of three different roles, 

namely client nodes, service nodes, and registry nodes. 
This matches the three roles known from the service-
oriented architecture triangle of provider, consumer, and 
registry [6]. It is possible for nodes to engage in several 
roles simultaneously. We will describe the roles and their 
responsibilities below. 

A registry node, labeled with an R in Figure 2, is a 
registry capable of collaborating in a dynamic way with 
other registry nodes. A registry node can operate 
autonomously since it stores advertisements and is 
capable of evaluating queries. In addition, it is 
responsible for cleaning up advertisements representing 
obsolete services. Since services can be transient in 
dynamic environments, service advertisements will need 
to include aliveness information. This information allows 
service advertisements to be deleted after a certain period, 
should their providers not be able to renew their 
advertisement lease. Typically, one or more registry 
nodes will be present on each LAN, enabling local 
service discovery. Connecting local registries from 
different LANs makes service discovery on the WAN 
level possible. We call the network formed by connecting 
several registry nodes a registry network. For robustness 
and network capacity reasons, we need “thick” registries 
that contain all the information in the service 
advertisements, not just pointers to where the 
advertisements are. As device capabilities can be 

different, we argue that the most capable nodes should 
play the roles as registry nodes.  

Service nodes, labeled with an S in Figure 2, are the 
providers of services. They are responsible for obtaining 
a connection to the registry network to be able to publish 
the service description of the services it hosts. As 
mentioned, periodic messages indicating that services are 
still alive will be important in dynamic environments. 
Service nodes are responsible for sending such messages. 
Also, advertisement content, such as coverage area 
information, could change frequently in dynamic 
environments. Republishing of updated service 
advertisements is therefore likely to occur more 
frequently than with simpler service description 
mechanisms. Again, the service node is responsible for 
such republishing. Finally, should the registry node 
disappear, the service node must try to find another 
connection point to the registry network and publish its 
advertisement there.  

S

C

R

R

R

R

R

R

R

 
 

Figure 2. The different roles in the service 
discovery architecture, with registries forming a 
registry network. 

 
A client node, labeled with a C in Figure 2, is one that 

wants to discover a service that can fulfill its needs. To do 
this, it first has to discover whether there are any registry 
nodes available. When a client has obtained a connection 
to the registry network, it can issue a query. Based on the 
response it gets, it may invoke the service directly, 
according to the service description mechanism used. 

                        20



4.2. Service Description and Selection 
 
For automated service selection in dynamic 

environments to be possible, semantic service 
descriptions are necessary. Our goal is to build a generic, 
layered architecture that can be used with different 
registry information models and languages. It should also 
be possible to use different query evaluation or 
matchmaking strategies, as well as registry cooperation 
strategies. This is different from for example UDDI, 
where the registry information model is closely tied to the 
message formats used to carry service advertisements. We 
aim to standardize interfaces vertically, to allow different 
registry implementations to register with our distribution 
system, thereby reusing the distribution system for 
different service description efforts, WSDL [7] being one 
example of this. It is even possible to describe services 
using different service description languages and to 
publish these.  

 
4.3. Service Composition, Mediation and 
Translation 

 
To reduce the load on limited devices, service 

selection, mediator selection, composition and reasoning 
support in registries may be needed. This will need 
protocol support from the service discovery architecture. 
It is a topic of further research to see whether it is feasible 
to design these protocols in a generic way, allowing reuse 
of the protocols with different service description 
languages. 

 
4.4. Service Discovery Topology 

 
By service discovery topology we mean the 

topological structure of the service discovery system. To 
cover all possible uses of a service discovery architecture, 
we differentiate between LAN service discovery and 
WAN service discovery. By LAN service discovery we 
mean discovering available services on a LAN level. As 
we elaborate below, LAN service discovery should 
ideally be centralized or distributed, but may also be 
performed in a decentralized way. 

To enable remote service discovery between different 
LANs, a WAN level registry network system is needed. 
The registry topology should be distributed, but not 
completely decentralized, so that clients can connect to 
other registry nodes in the case of a registry node failure. 
As discussed in Section 3, this also allows the use of a 
query response control mechanism, which is not possible 
in completely decentralized systems.  
 

4.5. Registry Discovery 
 
An important question is how to bootstrap and 

maintain the registry network topology. To facilitate this, 
we advocate a coherent architecture for both LANs and 
WANs, using the best mechanisms available for these two 
different cases in an integrated way.  

To find out about present registry nodes, discovery of 
available registries must be carried out. We call this 
registry discovery. Registries may be discovered either by 
manually configuring the registry endpoint or by clients 
actively using local-scoped multicast to find available 
registry nodes on LANs. Also, registry nodes could issue 
local beacon messages, enabling clients to do passive 
registry discovery.  

For WANs, the use of multicast places a too heavy 
burden on the network. Therefore, manual configuration, 
or seeding, is necessary at some point in time, connecting 
different registries from different LANs into a distributed 
registry network on the WAN level, as shown in Figure 4. 
However, once connected to a registry node that in turn is 
connected to other registry nodes on the WAN, it is 
possible to use what we call registry signalling to provide 
the client node with alternative registry nodes’ addresses. 
These addresses may be used in the event of failure, and 
may help reduce the amount of tedious, manual 
reconfiguration of registry endpoints. Actually, registry 
nodes can use this mechanism between them as well, 
allowing them to respond to dynamic changes in the 
registry network topology.  

 
4.6. Registry Support  

 
As mentioned, we cannot rely on WWW and DNS 

availability in dynamic environments, since disconnection 
from the Internet may sometimes be the case. Hence, 
regular XML Schema and ontology import mechanisms 
may have to be bypassed. To remove dependency on 
Internet availability, a repository for ontologies and XML 
Schemas is needed. Our registry network could fill this 
role, meaning that our architecture would need additional 
functionality and protocols. 

 
4.7. Service Advertisement Publishing and 
Discovery 

 
We will now look at how distribution of service 

advertisements can be done in our architecture. The 
challenge is to do this in a coherent way on LANs and 
WANs. We base our architecture on publishing service 
advertisements to registry nodes and keeping the 
advertisements close to the service nodes, letting queries 
pull them towards the interested clients.  

                        21



For LANs, the normal mode is having one or more 
registry nodes on each LAN, and letting the other nodes 
use these registry nodes for advertisement and discovery. 
This is shown in the left part of Figure 3, and means that 
we advocate centralized or distributed topologies on the 
LAN level. The reasons for this are the properties of the 
topologies discussed in Section 3. Compared to broadcast 
or multicast, using unicast communication towards one or 
more central points to query for services can save a 
significant amount of total bandwidth. This is because it 
allows centralized control of the number of responses to 
queries. There will, however, be an additional cost of 
publishing and updating advertisements, compared to the 
decentralized approach. A registry on the LAN may or 
may not be connected to other registries inside or outside 
the local network.  

 

 
 

Figure 3. Two modes of LAN service discovery. 
Centralized/distributed with one/more registries, 
and decentralized without any registry. 

 
In dynamic environments, registries may disappear 

abruptly, meaning that we could end up without any 
available registry nodes. Without a registry, a service 
node offering a service and a client node looking for 
services of that kind will not be able to find out about 
each other, even though they are located close to each 
other on the same local network. If no registry is 
available, using decentralized LAN service discovery 
could ensure that local services still can be discovered. 
This is shown in the right part of Figure 3. The use of a 
decentralized discovery is a fallback solution to allow 
local service discovery in the case where no registry 
nodes are present, which can occur in dynamic 
environments. We base such a mechanism on locally 
scoped multicast, where queries and possibly 
advertisements are multicasted on the local network. This 
is not bandwidth efficient, but it should make it possible 
to find out about available services on the LAN in all 
cases. Interestingly, decentralized service discovery is the 
same mechanism as the one used for registry discovery on 
LANs, which we described above. 

At the WAN level, the preferred way to announce and 
discover services on a wide area scope in our system will 
be to find a connection point to the registry network. This 
is done through the mechanisms for registry discovery 
described above. By connecting to the registry network, it 
is possible to transparently query all other registries on 

the WAN, which gives a complete overview of the 
service network. This is shown in Figure 4. In the case 
where no information about other registry nodes on the 
WAN can be obtained, it is not possible to perform WAN 
discovery.   

 

Registry
Network

S

C

LAN

LAN LAN

LAN

R

R

R

R

 
 

Figure 4. Connecting service discovery 
mechanisms from different LANs into a WAN 
registry network for service discovery. 

 
We have identified several research problems from 

working on this architecture. The architecture is based on 
the idea that if a registry is available on the LAN, all 
publishing and querying on the WAN level goes through 
this registry. In the case where there are two or more 
registry nodes locally, this may lead to redundant queries 
being forwarded on the registry network. In other words, 
a registry node should take into account the existence of 
other registry nodes locally. There must be some 
coordination between local nodes so that, at any time, 
only one node (or a predefined number of nodes) acts as 
the gateway to the WAN-level registry network. This can 
be based on the idea that if two registries can discover 
each other through multicast, they are on the same 
network segment. Of course, this only works when LAN 
multicast is available. Strategies for forwarding 
advertisements or queries are part of the subject registry 
cooperation, which is discussed below. 

 
4.8. Service Reconfiguration and Advertisement 
Removal 

 
We have mentioned that the service advertisements in 

the multi-registry should mirror the state in the service 
network as well as possible. This can be hard in dynamic 
environments, where the topology changes rapidly. To do 
this, we need to remove service advertisements 
representing obsolete services from the system. This is 
also the case if services fail, meaning that we cannot rely 

                        22



on services deregistering from the registry themselves. 
Instead, some kind of leasing mechanism must be 
incorporated into the architecture. Such a mechanism is 
based on periodic confirmation of service availability and 
has been used in Jini [8] and JXTA [3]. Lack of such 
mechanisms is a major problem with today’s technologies 
for Web Service discovery when being deployed in 
dynamic environments. To prevent non-existent services 
from being discovered, aliveness information should be 
used to delete old service advertisements from the 
registry. While this is a responsibility of each registry 
node, the service nodes will be responsible for renewing 
their leases with their associated registry node at regular 
intervals. 

 
4.9. Registry Cooperation 

 
As already touched upon, there are several unsolved 

research problems in the area of registry cooperation on 
the WAN level. We split them in two broad categories: 
forwarding and coordination. While closely related, 
forwarding deals with sharing information between 
registries, while coordination deals with principles for 
configuring and managing the registry network 
dynamically. The key role of the registry network is to 
forward queries and advertisements between registry 
nodes on different LANs. Several different strategies for 
doing this can be used, including increasing the reach of a 
query gradually in several rounds, random walks, or 
broadcasting in the registry network. This has been 
researched in the area of peer-to-peer computing. Loop 
avoidance must also be taken care of. Flexible query and 
advertisement forwarding between registries is another 
goal of our research. Is it possible to design generic 
protocols that can carry various payloads, described by 
different ontologies and registry information models? 

Registry coordination and signalling is important in 
dynamic environments. As mentioned earlier, we use the 
term registry signalling to describe the exchange of 
management information that is carried out between 
registries. This could for instance be to check aliveness of 
other registries, to share information about other registry 
nodes in the system, and to send out summary 
information about the advertisements present in a registry. 
Moreover, when bootstrapping a registry network, 
dynamic assignment of registry node responsibility is a 
challenging problem. Some nodes may be more willing to 
take on the role as a registry node than other nodes. To 
prevent all nodes from taking on the registry node role, a 
policy may have to be used for negotiating who will be 
assigned such a role. Such a policy could for instance 
include something like “try to maintain three registries on 
each LAN.” Since we target dynamic environments, such 
negotiation may happen on a regular basis, depending on 
changes in the registry network state. 

4.10. Service Discovery Protocols 
 
We now describe the architectural components in the 

registry discovery system. These are illustrated in Figure 
5. As we want to build on existing efforts, we 
differentiate between basic, already existing Web Service 
messaging protocols and our own discovery protocols. 

 

B
as

ic
 W

eb
 S

er
vi

ce
s 

Pr
ot

oc
ol

s
R

eg
is

tr
y 

In
fr

as
tr

uc
tu

re
C

om
po

ne
nt

s
Pl

ug
ga

bl
e

C
om

po
ne

nt
s

D
is

co
ve

ry
 P

ro
to

co
ls

 
 

Figure 5. The components of our service 
discovery architecture. 

 
The Basic Web Service protocols are SOAP and Web 

Service messaging protocols (WS-Notification [9], WS-
Addressing [10]), as well as bindings to different 
transport protocols (HTTP, UDP etc.). We will use these 
existing protocols as bearers of our own discovery 
protocols. This enables reuse of protocol implementations 
and a level of interoperability at the transport and 
messaging levels. 

Moving further up our stack, we find our initial 
attempt to make generic protocols that carry service 
advertisements and queries. Also, the protocols for 
bootstrapping the registry network are located here. By 
making the advertisement and query protocols generic, 
our goal is to allow the use of different registry 

                        23



information models and service description ontologies in 
the case of Semantic Web Services. By offering this 
generic architecture, it should be possible to develop and 
improve the service advertisement distribution system 
separately from various service description efforts and to 
facilitate reuse instead of having to develop a distribution 
system along with each new service description effort. 

The two first building blocks of the discovery 
protocols are the propagation protocols for LANs and 
WANs. They deal with transport of service 
advertisements and queries, registry discovery and inter-
registry cooperation messages. The LAN version uses 
multicast, whereas the WAN version uses the registry 
network.  

Clients of the service discovery system will first need 
to use the registry discovery protocol. Discovery of 
registries is done via registry advertisements (passive 
registry discovery) and queries for available registries 
(active registry discovery), which are the responsibilities 
of this building block. It uses the propagation protocols 
for transport.  

The advertising building block is the protocol for 
advertising services. It has a flexible payload, since it 
must be able to carry various service description formats. 
A mechanism for dealing with aliveness information must 
be included here. The same goes for the querying 
component, which should be as generic as possible. It 
mainly uses the WAN propagation mechanism, but can 
use LAN propagation for decentralized service discovery 
using multicast on the LAN. For WAN service discovery, 
there must be some way to limit the reach of queries in 
the messages used here.  

The inter-registry cooperation building block must 
provide mechanisms for the problems introduced when 
discussing registry cooperation above, and is responsible 
for tying the registry network together. 

 
4.11. Registry Infrastructure Components and 
Pluggable Components 

 
Moving higher up the stack in Figure 5, Registry 

Infrastructure Components are responsible for 
implementing the discovery protocols. Handling 
advertisements and queries therefore are natural tasks. 
The actual query evaluation and storage of advertisements 
is dispatched to the pluggable components at the level 
above. We envision standardized interfaces, preferably 
Web Service interfaces for registering plug-ins and 
receiving notifications. Another important task that must 
be handled on this level is removal of expired 
advertisements. 

The pluggable components in the architecture are 
specific to the service description language and 
information models used. Examples of service description 
efforts can be found in Section 5. Different matchmaking 

algorithms and service taxonomy evaluation components 
are registered as listeners to the registry infrastructure 
components on the level below. 

It is subject to further research to explore what is 
possible in this area. For instance, algorithms for 
topology management and negotiation or mediation 
algorithms could be plugged in, given that it is feasible to 
design a generic interface to the lower level. 

 

5. Related Work 
 
There is much related work in this area, ranging from 

current Web Service discovery mechanisms to Semantic 
Web Services to peer-to-peer computing. We discuss 
these topics briefly with respect to our goal, which is to 
discover Semantic Web Services in dynamic 
environments. 

We can split existing technologies for Web Service 
discovery into LAN discovery and WAN discovery 
(WAN registries can be used on LANs as well). For 
WAN discovery, both UDDI [1]  and the ebXML [5] 
registry  make it possible to use multiple registries or to 
let a registry consist of several nodes, which can help 
achieve robustness and scalability. In UDDI, either 
replication between registry nodes or a hierarchical model 
may be used. The ebXML solution supports a non-
hierarchical multi-registry topology, facilitating federated 
queries. Both technologies are likely to support semantic 
search to some degree in the future. For LAN service 
discovery, WS-Dynamic Discovery [11] is based on 
local-scoped multicast, which is similar to the LAN part 
of our service discovery architecture. A Discovery Proxy 
is also specified to reduce the burden on the network. 
WS-Dynamic Discovery facilitates registry discovery and 
local service discovery based on URI matching. However, 
current technologies target different domains, and no 
relationship between them exists. This basically means 
that one technology must be chosen for dynamic LAN 
discovery and another one to reach out on the WAN. This 
can introduce an unnecessary additional round-trip, e.g. if 
a Discovery Proxy is used to find a UDDI registry. 
Further, the service advertisement expressiveness for 
these technologies is not very rich and has no support for 
semantics. Yet another problem with using these 
technologies is that if a service goes down unexpectedly, 
its advertisement will stay in the registry because there is 
no aliveness information in a UDDI or ebXML registry 
and the Discovery Proxy of WS-Dynamic Discovery. As 
such, they are not very well suited for dynamic 
environments. 

There are several efforts in the area of Semantic Web 
Services research, especially OWL-S [12], FLOWS [13], 
WSMO [14], WSDF [15] and WSDL-S [16]. Rich, 
semantic descriptions of services are important to 

                        24



facilitate automated service discovery in dynamic 
environments, but leave the challenge of service 
advertisement distribution to the existing Web Service 
standards, specifically UDDI. 

The peer-to-peer research community has developed a 
host of different schemes for distributing resource 
advertisements in a distributed way. Some of the efforts, 
like JXTA [3], are based on generic protocols that can 
carry various advertisements. Structured systems (based 
on e.g. distributed hash tables) do not support semantic 
query evaluation at intermediate nodes. On the other 
hand, our notion of a registry network has many 
similarities with unstructured hybrid peer-to-peer 
architectures, where registry nodes are similar to super-
peers. Especially the support for dynamic changes in 
connectivity of peers is an advantage, as reliance on DNS 
and WWW is not realistic for the environments we target. 
There are, however, several important differences 
between peer-to-peer systems and our registry network. 
One difference between peer-to-peer-systems and 
Semantic Web Service discovery is that the number of 
advertisements will be lower than in peer-to-peer-
systems. Also, reasoning about Semantic Web Services 
may be too complex for certain clients, which demands 
service selection support at the registries.  

A few research efforts have looked at some of the 
requirements identified in Section 2. In [17], the Gnutella 
overlay network is used to advertise semantic service 
descriptions. However, there are problems related to 
query response control, bandwidth usage, and registry 
discovery. In [18], Universal Plug and Play (UPnP) is 
used to carry semantic service descriptions. However, 
UPnP only works on a single LAN. Further, in [19], the 
registries for publication are divided according to service 
advertisement content, which is not acceptable in 
dynamic environments where registries may fail. In [20], 
a peer-to-peer infrastructure for Semantic Web Services 
based on a hypercube scheme is presented. GridWine [21] 
is an overlay network built on top of a distributed hash 
table. Both distributed hash tables and hypercubes are 
vulnerable to a high churn rate, which is typically the case 
in dynamic environments. Finally, [22] presents a super-
peer based solution that has no aliveness information and 
no LAN discovery. 
 

6. Conclusion and Further Work 
 
To conclude, current Web Service discovery 

mechanisms do not support our requirements well 
enough. The opportunities enabled by semantic service 
descriptions in dynamic environments deserve a better 
infrastructure for service advertisement distribution. Our 
hypothesis is that a coherent and robust multi-registry 
system for Semantic Web Service discovery on both 

LANs and WANs can help overcome these problems. In 
the future, we plan to implement an infrastructure based 
on the conceptual architecture described in this paper. To 
learn more about different strategies, experimentation 
with different parameters will be important. 

 

7. Acknowledgements 
 
This work was sponsored by the Norwegian Defence 

Research Establishment (FFI). 
 

8. References 
 
[1]  OASIS. UDDI Version 3.0.2. Clement, L., Hately, A., von 

Riegen, C., and Rogers, T.  Oct. 2004.  
[2]  Gagnes, T., Plagemann, T., and Munthe-Kaas, E., 

"Discovering Semantic Web Services in Dynamic 
Environments," European Conference on Web Services 
(ECOWS), 2005. 

[3]  Gong, L., "JXTA: A Network Programming Environment," 
IEEE Internet Computing, vol. 5, no. 3, May/June 2001. 

[4]  Object Management Group. Trading Object Service 
Specification, version 1.0.  2000.  

[5]  OASIS. ebXML Registry Services and Protocols Version 
3.0. Fuger, S., Najmi, F., and Stojanovic, N.  May 2005.  

[6]  Huhns, M. N. and Singh, M. P., "Service-oriented 
computing: Key concepts and principles," IEEE Internet 
Computing, vol. 9, no. 1, pp. 75-81, 2005. 

[7]  Christensen, E., Curbera, F., Meredith, G., and 
Weerawarana, S. Web Services Description Language 
(WSDL) 1.1, W3C Note.  Mar. 2001.  

[8]  Waldo, J., "The Jini Architecture for Network Centric 
Computing," Communications of the ACM, vol. 42, no. 7, 
July 1999. 

[9]  OASIS. Web Services Base Notification 1.3 (WS-
BaseNotification). Graham, S., Hull, D., and Murray, B.  
July 2005.  

[10]  W3C. Web Services Addressing, W3C Member 
Submission. Box, D. and Curbera, F.  Aug. 2004.  

[11]  Microsoft Corporation Inc. Web Services Dynamic 
Discovery (WS-Discovery).  Oct. 2004.  

[12]  OWL-S Coalition. OWL-S: Semantic Markup for Web 
Services, W3C Member Submission.  2004.  

[13]  Grüninger, M., Hull, R., and McIlraith, S. A., "A First-
Order Ontology for Semantic Web Services," W3C 
Workshop on Frameworks for Semantics in Web Services, 
2005. 

[14]  Fensel, D. and Bussler, C., "The Web Service Modeling 
Framework WSMF," Electronic Commerce: Research and 
Applications, vol. 1 pp. 113-137, 2002. 

[15]  Eberhardt, A., "Ad-hoc Invocation of Semantic Web 
Services," Proceedings of the IEEE International 
Conference on Web Services (ICWS), 2004. 

[16]  Akkiraju, R., Farell, J., Miller, J. A., Nagarajan, N., Sheth, 
A., and Verma, K., "Web Service Semantics - WSDL-S," 
W3C Workshop on Frameworks for Semantics in Web 
Services, 2005. 

 

                        25



[17]  Paoalucci, M., Sycara, K., Nishimura, T., and Srinivasan, 
N., "Using DAML-S for P2P Discovery," Proceedings 
International Conference on Web Services, 2004. 

[18]  Masuoka, R., Labrou, Y., Parsia, B., and Sirin, E., 
"Ontology-Enabled Pervasive Computing Applications," 
IEEE Intelligent Systems, vol. 18, no. 5, pp. 68-72, 
September/October 2003. 

[19]  Verma, K., Sivashanmugam, K., Sheth, A., and Patil, A., 
"METEOR-S WSDI: A Scalable P2P Infrastructure of 
Registries for Semantic Publication and Discovery of Web 
Services," Journal of Information Technology and 
Management, 2004. 

 
 
 
 

[20]  Schlosser, M., Sintek, M., Decker, S., and Nejdl, W., "A 
Scalable and Ontology-Based P2P Infrastructure for 
Semantic Web Services," Proceedings of the International 
Conference on Peer-to-Peer Computing, 2002. 

[21]  Aberer, K., Cudré-Mauroux, P., Hauswirth, M., and Van 
Pelt, T., "GridVine: Building Internet-Scale Semantic 
Overlay Networks," Proceedings of the International 
Semantic Web Conference, 2004. 

[22]  Thaden, U., Siberski, W., and Nejdl, W., "A Semantic Web 
based Peer-to-Peer Service Registry Network," Technical 
Report, Learning Lab Lower Saxony, 2003. 

 
 

 
 

 

                        26



 
 
  

 

Appendix C Discovering Semantic Web Services in Dynamic 
Environments 

 

FFI-rapport 2007/02190 27  

 



Discovering Semantic Web Services in Dynamic 
Environments1

Tommy Gagnes, Thomas Plagemann, and Ellen Munthe-Kaas 

University of Oslo, Department of Informatics,  
P.O. Box 1080 Blindern, 0316 Oslo, Norway 

{Tommyg, Plageman, Ellenmk}@Ifi.uio.no

Abstract. Web Services are rapidly taking over many of the tasks previously 
solved by using traditional middleware, also in more peer-to-peer-like, dynamic 
environments where services and registries are transient. With the advent of 
Semantic Web Services, rich service description is possible, facilitating dy-
namic discovery of services. However, our position is that current technologies 
for Web Service discovery are not sufficient as an infrastructure for Semantic 
Web Service discovery in such dynamic environments. We explain this by ana-
lyzing general requirements for Semantic Web Service discovery in dynamic 
environments and the shortcomings of recent research results with respect to 
these requirements. We give a brief overview of our ideas on how to fulfill 
these requirements and outline work towards an architecture for semantic web 
service discovery in dynamic environments.  

1   Introduction 

Web Services discovery mechanisms were initially designed for classical Internet 
environments where the network topology and availability of hosts is relatively static. 
However, as Web Services technology is applied in more dynamic environments, 
discovery of web services becomes more challenging. Such environments have sig-
nificantly different characteristics than the original environment Web Services dis-
covery mechanisms were designed to operate in. By discovery of Semantic Web 
Services in dynamic environments we mean finding available Web Services in sur-
roundings with continuous change in service descriptions and topology, which also 
means that services and registries can be transient. This means that the architecture 
for service advertisement distribution must be based on a new set of requirements.  

Consider a crisis management scenario, where members from different agencies 
carry with them networked devices that run different applications and services that 
support them in doing their tasks. Shared upper-level ontologies for information ex-
change and service taxonomies have been standardized. Ideally, all participants work-
ing in the geographical area of the crisis, as well as people working elsewhere, should 
be able to cooperate by providing and discovering services to exchange information 
in an ad-hoc way. In such a scenario, it is critical that all relevant services can be 

                                                           
1 This work was sponsored by the Norwegian Defence Research Establishment (FFI). 

                        28



discovered, and that a precise selection can be made among available services. This is 
a typical example of a dynamic environment where Semantic Web Services could be 
used for automatic selection of services. However, we argue that today’s solutions for 
discovering available semantic web service descriptions, building largely on current 
Web Services discovery mechanisms, are not satisfactory in this respect. Our research 
interest can therefore be formulated as follows: In a dynamic environment where 
services and possibly registries are transient, how can we facilitate opportunistic, 
automated discovery of available and relevant Web Services in a coherent way?  

2   Requirements for Semantic Service Discovery in Dynamic 
Environments 

Below, we present the most important general requirements imposed on a system for 
discovery of semantic web service descriptions in dynamic environments. 
1. To minimize continuous manual configuration, there should be automatic registry 

discovery on LANs and WANs. Dynamic configuration of a registry network as 
well as different registry cooperation strategies should be possible.  

2. Query responses should mirror the current state in the service network. This can be 
hard in dynamic environments, where topology changes rapidly. Service discovery 
should be possible in a coherent and transparent way on LANs and WANs.  

3. To enable discovery of available services in dynamic environments, robustness 
against registry and service failure or disappearance is important. This means that a 
centralized solution will not suffice, and that old service advertisements should be 
removed to prevent discovery of obsolete services. 

4. To find the best-suited services for given tasks, selection of the best services 
among many others, based on semantic descriptions, should be possible. 

5. In wireless environments, it is important to minimize resource (e.g. bandwidth) 
usage and to prevent receiving too many responses to queries. This can happen if 
we have a completely decentralized solution, where potentially all nodes can an-
swer queries independently of each other. To relieve constrained clients, the 
opportunity to allow service selection support in registries is important. 

6. Service discovery should work in environments disconnected from the Internet. 
Dependency on DNS and World Wide Web should be avoided. 

In the following section, we will examine recent research and standardization efforts 
to see how they support our list of general requirements. 

3   Critical Review of Recent Research and Standardization Efforts  

We can split existing technologies for Web Service discovery into LAN discovery 
and WAN discovery (WAN registries can be used on LANs as well). For WAN dis-
covery, both UDDI [1] and the ebXML registry [2] support finding services by name, 
type, binding, and according to a taxonomy. It is possible to use multiple registries or 
to let a registry consist of several nodes, which can help achieve robustness and scal-

                        29



ability. In UDDI, either replication between registry nodes or a hierarchical model 
may be used. The ebXML solution supports a non-hierarchical multi-registry topol-
ogy, facilitating federated queries. Both technologies are likely to support semantic 
search in the future. For LAN service discovery, WS-Dynamic Discovery [3] is based 
on local-scoped multicast. A Discovery Proxy is also specified to reduce the burden 
on the network. WS-Dynamic Discovery facilitates registry discovery and local ser-
vice discovery based on URI matching. 

However, current technologies target different domains, and no relationship be-
tween them exists. This can introduce an unnecessary additional round-trip, e.g., if a 
Discovery Proxy is used to find a UDDI registry. Further, the service advertisement 
expressiveness for these technologies is not very rich and has no support for seman-
tics. Yet another problem with using these technologies is that if a service goes down 
unexpectedly, its advertisement will stay in the registry because there is no aliveness 
information in a UDDI or ebXML registry and the Discovery Proxy of WS-Dynamic 
Discovery. As such, they are not very well suited for dynamic environments.  

There are several efforts in the area of Semantic Web Services research, especially 
OWL-S [4], FLOWS [5], WSMO [6], and WSDL-S [7]. Rich, semantic descriptions 
of services are important to facilitate automated service discovery in dynamic envi-
ronments, but leave the challenge of service advertisement distribution to the existing 
web service standards, specifically UDDI.  

A few research efforts have looked at some of the requirements identified in Sec-
tion 2. In [8], the Gnutella overlay network is used to advertise semantic service de-
scriptions. However, there are problems related to query response control, bandwidth 
usage, and registry discovery. In [9], Universal Plug and Play (UPnP) is used to carry 
semantic service descriptions. However, UPnP only works on a single LAN. Further, 
in [10], the registries for publication are divided according to service advertisement 
content, which is not acceptable in dynamic environments where registries may fail. 
In [11], a peer-to-peer infrastructure based on a hypercube scheme is presented. 
Hypercubes are vulnerable to a high churn rate. Finally, [12] presents a super-peer 
based solution that has no aliveness information and no LAN discovery. To conclude, 
current Web Service discovery mechanisms do not support our requirements well 
enough. The opportunities that semantic description of services gives us in dynamic 
environments demands a better infrastructure for service advertisement discovery. 

4   A Coherent, Multi-Registry Semantic Web Service Discovery 
Architecture  

Our research interest lies in developing a multi-registry service discovery architecture 
suited for semantic web service discovery in dynamic environments. The architecture 
will strive to address the requirements identified in Section 2. Its key elements are:  
1. For automated service selection, semantic service descriptions are necessary. 
2. To remove dependency on Internet availability, a repository for ontologies and 

XML Schemas is needed. 

                        30



3. To help limited devices select services that are semantically described, mediation, 
composition and reasoning support in registries may be needed. 

4. To avoid manual configuration of service and registry locations, the use of local-
scoped multicast for local LAN service and registry discovery should be possible.  

5. To enable remote service discovery between different LANs, a WAN level registry 
network system is needed. If no registry is available, fallback to decentralized 
LAN service discovery could ensure that local services still can be discovered.  

6. To prevent non-existent services from being discovered, aliveness information 
should be used to delete old service advertisements from the registry.  

7. The registry topology should be distributed, but not completely decentralized, so 
that clients can connect to other registry nodes in the case of a registry node fail-
ure. This also allows the use of a query response control mechanism, which is not 
possible in completely decentralized systems. Registry cooperation can enable the 
use of a single connection point to the service discovery system.  

8. We aim to build a layered architecture that can be used with different registry 
information models, languages, registry cooperation and matchmaking strategies. 

We are currently refining this architecture. In the future, we plan to implement an 
infrastructure based on the architecture, and to experiment with different parameters.  

References 

1.  Clement, L., Hately, A., von Riegen, C., and Rogers, T. (eds.): UDDI Version 3.0.2, 
OASIS (2004) 

2.  Fuger, S., Najmi, F., and Stojanovic, N. (eds.): ebXML Registry Services and Protocols 
Version 3.0, OASIS (2005) 

3.  Microsoft Corporation Inc.: Web Services Dynamic Discovery (WS-Discovery) (2004) 
4.  OWL-S Coalition: OWL-S: Semantic Markup for Web Services, W3C Member Submis-

sion (2004)  
5.  Grüninger, M., Hull, R., McIlraith, S. A.: A First-Order Ontology for Semantic Web Ser-

vices, W3C Workshop on Frameworks for Semantics in Web Services (2005) 
6.  Fensel, D., Bussler, C.: The Web Service Modeling Framework WSMF, Electronic Com-

merce: Research and Applications vol. 1 (2002) 113-137 
7.  Akkiraju, R., Farell, J., Miller, J. A., Nagarajan, N., Sheth, A., Verma, K.: Web Service 

Semantics - WSDL-S, W3C Workshop on Frameworks for Semantics in Web Services 
(2005) 

8.  Paoalucci, M., Sycara, K., Nishimura, T., Srinivasan, N.: Using DAML-S for P2P Discov-
ery, Proceedings International Conference on Web Services (2004) 

9.  Masuoka, R., Labrou, Y., Parsia, B., Sirin, E.: Ontology-Enabled Pervasive Computing 
Applications, IEEE Intelligent Systems vol. 18, issue 5 (2003) 68-72 

10.  Verma, K., Sivashanmugam, K., Sheth, A., Patil, A.: METEOR-S WSDI: A Scalable P2P 
Infrastructure of Registries for Semantic Publication and Discovery of Web Services, Jour-
nal of Information Technology and Management (2004) 

11.  Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: A Scalable and Ontology-Based P2P 
Infrastructure for Semantic Web Services, Proceedings of the International Conference on 
Peer-to-Peer Computing (2002) 

12.  Thaden, U., Siberski, W., Nejdl, W.: A Semantic Web based Peer-to-Peer Service Registry 
Network, Technical Report, Learning Lab Lower Saxony (2003) 

                        31


	 
	1   Introduction
	Appendix A  Assessing Dynamic Service Discovery in the Network Centric Battlefield
	Appendix B         A Conceptual Service Discovery Architecture for Semantic Web Services in Dynamic Environments
	Appendix C            Discovering Semantic Web Services in Dynamic Environments




