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Populærvitenskaplig sammendrag 
Utslipp av oljesøl i havet fra skip i internasjonale farvann er et alvorlig miljøproblem. Bevist 
dumping av olje skyldes ofte at skipene ikke tar seg råd og tid til å levere restavfallet i havn. 
Arbeidet presentert i avhandlingen kan føre til bedre overvåking av havområdene med hensyn på 
oljeforurensing. 
 
Satellitter med Synthetic Aperturer Radar (SAR) sensorer blir brukt til observasjon av jorden, 
såkalt fjernmåling. Det kan gjøres SAR opptak uavhengig av vær- og lysforhold. Oljesøl er ofte 
synlig på havoverflata i SAR bilder. SAR egner seg spesielt godt som et kostnadseffektivt verktøy 
for overvåking av oljeforurensing over store havområder. 
 
I tillegg til at havområdene som skal overvåkes er store, kommer det stadig flere SAR satellitter i 
bane rundt jorda. SAR bildene dekker ofte flere tusen kvadrat kilometer. Dette gir gode 
dekningsmuligheter, men også store mengder data som skal analyseres. Ressurskrevende 
manuelle analysemetoder av SAR bildene blir ofte benyttet. En ønsker å automatisere analysen av 
disse bildene. Et operativt system vil kunne redusere analysetiden samt gi en indikasjon på hvilke 
posisjoner som bør prioriteres med hensyn på videre rapportering.   
  
En utfordring er å få automatiske system til å skille mellom faktiske oljesøl og andre fenomener 
som kan forveksles med olje i SAR bildene. Brekke har i sitt doktorgradsarbeid evaluert 
eksisterende metoder, samt utviklet nye metoder for automatisk å finne oljesøl i SAR bilder. 
Avhandlingen konkluderer med at automatiske metoder vil være et godt alternativ eller 
supplement til eksisterende manuelle metoder.  
  
 
 
 
 
 
 
 

FFI-rapport 2007/02391 3  

 



 
  
  
 

Forord 
Denne rapporten inneholder en Dr. gradsavhandling som vil bli forsvart for graden Philosophiae 
Doctor (Ph.D) ved Institutt for informatikk ved det Matematiske og naturvitenskaplige fakultet 
ved Universitetet i Oslo (UIO) 18. januar 2008. 
 
Doktorgradsarbeidet ble utført i perioden 2003 til 2007 ved gruppe for Digital Signalbehandling 
og Bildeanalyse ved Institutt for informatikk ved UIO og ved Forsvarets forskningsinstitutt på 
Kjeller. Mine veiledere har vært 1. amanuensis Anne Solberg (1. veileder) og professor Fritz 
Albregtsen ved Institutt for informatikk og professor Geir Storvik ved Institutt for matematikk 
(alle ved UIO). Avhandlingen ligger innenfor fagområdene fjernmåling og bildeanalyse.  
 
Avhandlingen er en artikkelsamling. Arbeidet består av en innledning samt seks vitenskaplige 
publikasjoner (fire tidskriftartikler, en konferanseartikkel og ett bokkapittel). 
 
Jeg ble tildelt et 3-årig doktorgradsstipend fra Norsk forskningsråd våren 2003 for å gjennomføre 
prosjektet Algorithms for Automatic Detection of Oil Spills in SAR Images (ADOS). I tillegg har 
FFI bidratt med midler for at dette arbeidet skulle la seg gjennomføre.  
 
Avhandlingen vil også bli gitt ut av Unipub forlag. 
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Preface

This thesis is submitted to the Faculty of Mathematics and Natural Science, University of
Oslo (UIO) in partial fulfillment of the requirements for the degree Philosophiae Doctor
(Ph.D).

This thesis consists of an introduction and 6 articles, Paper I - Paper VI. Paper IV has
some overlap with Paper I and Paper II. The content of the articles appear in this thesis
like they appear in the published and submitted versions, but the layout of the articles have
been adapted to the general layout of this thesis. The articles cover topics related to oil spill
detection based on remote sensing.

The study was started during the spring of 2003. In the beginning my working hours
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Establishment (FFI). In 2005 my daughter Linnea was born and I had a break lasting for 8
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Abstract

This thesis is focused on marine oil spill monitoring by Synthetic Aperture Radar (SAR).
A survey of the methodologies and technology applied in the field of oil spill remote sensing
is given. Various space-borne and air-borne sensors are discussed, and results from manual
and automatic analysis approaches of SAR images are compared to results from aircraft
surveillance. One of the papers included in this thesis emphasises on the experience from
the Northern European seas with respect to oil pollution monitoring. Several of the other
papers cover studies of automatic detection and classification algorithms for ENVISAT and
RADARSAT-1 SAR imagery. The main objective of this work was to develop an automatic
algorithm for detection and classification of deliberate operational oil spills.

Applying a supervised statistical classification approach, the algorithm consists of three
main steps: detection of dark spots appearing on the sea surface in SAR images, extraction
of a number of features from each dark spot, then the features make up a feature vector
which is finally input to the classifier. In this thesis, it is shown that basing the classification
decision only on the outcome of the statistical classifier produces too many false alarms, and
therefore an additional step has been suggested. In this additional step, a confidence level
for each dark spot classified as oil spill is estimated. This could be helpful when prioritising
the alarms to be inspected by aerial surveillance.

The dark spot detector is based on adaptive thresholding of the SAR images. Improve-
ments to the thresholding algorithm are suggested for better detection of thin, piecewise
linear dark spots. Spot features are extracted from both the dark spots themselves and
their surroundings. A modified feature vector, including both new and improved features, is
suggested for better description of the dark spots. Taking into consideration the variations
in the extracted features, the feature space is divided into subclasses. Within each subclass,
a classification of the dark spots into either the oil spill class or the look-alike class is per-
formed. It is shown that a statistical classifier with regularized covariance matrices adapted
to each subclass outperforms the simpler solution of a statistical classifier with diagonal co-
variance matrices and C-SVM classifiers. It is also shown that when there is enough data in
the training set and a regularized classifier is applied, the performance of the algorithm is
not very sensitive to using subclasses to divide the feature space.

iii



iv



Publications included in this thesis

I. Journal article (published): C. Brekke and A. H. S. Solberg, Oil spill detection by
satellite remote sensing, Remote Sensing of Environment, March, 2005, vol. 95, no. 1,
pp. 1-13.

II. Journal article (published): A. H. S. Solberg, C. Brekke and P. O. Husøy, Oil Spill
Detection in Radarsat and Envisat SAR Images, IEEE Transactions on Geoscience and
Remote Sensing, March, 2007, vol. 45, no. 3, pp. 746-755.

III. Journal article (submitted): C. Brekke and A. H. S. Solberg, Segmentation and
Feature Extraction for Oil Spill Detection in ENVISAT ASAR Images, International
Journal of Remote Sensing, 2006.

IV. Book chapter (to appear): A. H. S. Solberg and C. Brekke, Oil spill detection in
nothern European waters: approaches and algorithms, Remote Sensing of the European
Seas (Vittorio Barale and Martin Gade (Eds.)), Springer Science and Business Media
B.V., 2007. Invited contribution. Accepted based on review of full paper.

V. Journal article (to appear): C. Brekke and A. H. S. Solberg, Classifiers and Confi-
dence Estimation for Oil Spill Detection in ENVISAT ASAR Images, IEEE Geoscience
and Remote Sensing Letters, vol. 5, no. 1, Januray 2008.

VI. Conference paper (published): C. Brekke, A. Solberg and G. Storvik, Classifying
Oil Spills and Look-alikes in ENVISAT ASAR Images, In proceedings of: ENVISAT
symposium, Montreux, Switzerland, 23-27 April (ESA SP-636, July 2007). Accepted
based on review of extended abstract.

v



vi



Related publications

The following publications are written in the context of the PhD study, but are not
included in full text in this thesis.

VII. Conference paper (published): A. H. S. Solberg and C. Brekke and R. Solberg and
P. O. Husøy, Algorithms for oil spill detection in Radarsat and ENVISAT SAR images,
Proc. IGARSS 20-24 September 2004, Anchorage, Alaska, vol. 7, pp. 4909-4912.

VIII. Conference paper (published): C. Brekke and A. H. S. Solberg, Feature extraction
for oil spill detection based on SAR images, Proc. SCIA 19-20 June 2005, Joensuu,
Finland,H. Kalviainen et al. (Eds.): Lecture Notes in Computer Science, vol. 3540,
pp. 75-84

IX. Conference paper (published): C. Brekke and A. H. S. Solberg, Classification
Methods for Oil Spill Detection in ENVISAT ASAR Images, Proc. SPIE, Image and
Signal Processing for Remote Sensing XII, Lorenzo Bruzzone, Chair/Editor, (Sep. 13-
14, 2006), Stockholm, Sweden, vol. 6365, 636512, 11 pages.

X. FFI report (published): C. Brekke, AUTOMATIC DETECTION OF OIL SPILLS
BY SAR IMAGES - Dark Spot Detection and Feature Extraction, FFI/RAPPORT-
2005/00893.

vii



viii



Contents

1 Introduction 1

1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Imaging by the SAR 3

2.1 SAR Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Orbits and Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Scattering Mechanisms 11

3.1 Surface Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Volume Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Range Brightness Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Oil Spill Imaging with SAR 17

4.1 Imaging of Low-backscattering Ocean Features . . . . . . . . . . . . . . . . . 17
4.2 Man-made Pollutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Look-alikes: Dark Structures Resembling Oil Spills . . . . . . . . . . . . . . 18
4.4 SAR Configuration for Oil Spill Detection Services . . . . . . . . . . . . . . . 22

5 Data Material and Area of Study 25

5.1 Selected SAR Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Area of Study and Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Image Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Automatic Analysis 31

6.1 Detection of Dark Spots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Classification Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

ix



x CONTENTS

7 Summary of Publications 33
7.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.4 Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.5 Paper V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.6 Paper VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8 Main Contributions 41

9 Discussion and Directions for Further Research 43

Bibliography 53

10 Paper I: Oil Spill Detection by Satellite Remote Sensing 55
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2 Satellite Sensors for Oil Spill Detection . . . . . . . . . . . . . . . . . . . . . 59
3 Detectability of Oil Spills in SAR Images . . . . . . . . . . . . . . . . . . . . 62
4 Methodology for Oil Spill Detection in SAR Images . . . . . . . . . . . . . . 68
5 Automatic Techniques for Oil Spill Detection in SAR Images . . . . . . . . . 70
6 Conclusion and Suggestions for Further Work . . . . . . . . . . . . . . . . . 75

11 Paper II: Oil Spill Detection in Radarsat and Envisat SAR images 87
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2 SAR Imaging of Oil Spills . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3 The Oil Spill Detection Approach . . . . . . . . . . . . . . . . . . . . . . . . 92
4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

12 Paper III: Segmentation and Feature Extraction for Oil Spill Detection in
ENVISAT ASAR Images 113
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2 The Automatic Oil Spill Detection Algorithm . . . . . . . . . . . . . . . . . 118
3 Performance Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

13 Paper IV: Oil Spill Detection in Northern European Waters: Approaches
and Algorithms 145
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
2 Remote Sensing Sensors for Oil Spill Detection . . . . . . . . . . . . . . . . . 148
3 SAR Imaging of Oil Spills . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4 SAR Oil Spill Detection: Manual vs. Automatic . . . . . . . . . . . . . . . . 151



CONTENTS xi

5 A Benchmark Study of Oil Spill Detection Approaches . . . . . . . . . . . . 153
6 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

14 Paper V: Classifiers and Confidence Estimation for Oil Spill Detection in
ENVISAT ASAR Images 159
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
2 SAR Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
3 Classification Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4 Comparing the Classifiers Performance . . . . . . . . . . . . . . . . . . . . . 169
5 Confidence Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

15 Paper VI: Classifying Oil Spills and Look-alikes in ENVISAT ASAR Im-
ages 175
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
2 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



xii CONTENTS



Chapter 1

Introduction

The focus of this thesis is on marine oil spill monitoring by space-borne Synthetic Aperture
Radar (SAR).

Examples of major pollution accidents with oil tankers are the Prestige (2002) off the
northwest coast of Spain, the Exxon Valdez (1989) in the north-eastern portion of Prince
William Sound in Alaska and the Sea Empress (1996) in the entrance to Milford Haven,
South West Wales. However, the focus of this thesis is not on large tanker accidents, but
rather minor operational discharges, which according to the European Space Agency (ESA)
[14] contribute with 45% of the oil pollution on a global basis (see figure 1.1). The most

Figure 1.1: Sources of oil pollution into the seas. Source: ESA 1998 [14].

common pollution incidents occur during terminal operations when oil is being loaded or
discharged, but a much greater quantity of oil enters the sea from normal tanker operations,
usually associated with the cleaning of cargo residues. Other causes are tank cleaning in
connection with dry docking and non-tanker accidents [49; 50].

Space-borne SAR images can be used to screen large ocean areas looking for possible oil
pollution, while aircraft are needed to verify the spill and identify the polluter. The main

1



2 CHAPTER 1. INTRODUCTION

limitation for space-borne optical sensors is the need for daylight and cloud-free scenes.
SAR imaging has the advantage of being independent of solar illumination and is generally
unaffected by cloud cover. However, wind is essential in establishing the surface roughness
necessary for capturing an oceanographic feature like a man-made oil spill.

SEASAT was the first civilian SAR satellite launched in 1978. Since then several nations
have placed SAR satellites in orbit around the earth. The ongoing missions of RADARSAT-1
and ENVISAT, along with currently planned SAR missions (e.g., SENTINEL-1 and
RADARSAT-2), mean that SAR data will be available also for years to come.

The aim of this thesis is to develop algorithms for automatic detection of possible oil
spills observable on the sea surface in SAR images. The main objectives are:

• to develop a segmentation algorithm for dark spots appearing on the sea surface,

• to investigate the classification power of features and select suitable ones for the dif-
ferentiation between possible oil spills and other dark structures,

• to develop a classification algorithm with respect to reducing the number of false alarms
while keeping a high detection rate, and investigate the possibilities of and implement
a procedure for confidence estimation,

• to test and analyse the performance of the various steps of the system with respect to
expert analysis of SAR images and “ground truth” collected by aircraft.

1.1 Thesis Outline

This thesis consists of two parts:

• Part I chapter 2-9:
An introduction to the main principles of SAR is given in chapter 2. Chapter 3 covers
scattering mechanisms and chapter 4 covers imaging of oil pollution and its look-alikes
with SAR. Chapter 5 presents the study area and the data material applied in this
thesis. Chapter 6 gives a short literature survey with respect to automatic pattern
recognition of oil spills. A short summary of the papers included in the second part
is given in chapter 7 and the main contributions are pointed out in chapter 8. Some
comments on the research done and thoughts about future research possibilities are
discussed in chapter 9.

• Part II chapter 10-15:
The second part includes the publications that contain the research contributions of
this thesis.



Chapter 2

Imaging with Synthetic Aperture Radar

Each SAR system has its own configuration in terms of frequency, polarization, resolution,
swath width etc., but the underlying operating concept for each is the same. A detailed
description of the theory for the SAR is beyond the scope of this thesis, but a short intro-
duction to the main principles of SAR is given in the following (kept on a “need to know”
basis when reading this thesis).

2.1 SAR Principles

SAR is a side-looking imaging radar operating from a moving platform. A typically SAR
flown on a satellite has a quite large rectangular antenna of about 10 m × 1 m (e.g. according
to Curlander and McDonough [8], SEASAT had an antenna size of 10.7 m × 2.2 m, ERS-1 10
m × 1.0 m and RADARSAT-1 15 m × 1.6 m). The longest side is aligned with the orbit track
and the radar beam is sent out to the side of the satellite. SAR produces two-dimensional
(2-D) images. One dimension is called the range or across-track, the other dimension is
called the azimuth (or along-track) and is perpendicular to the range (see figure 2.1).

2.1.1 Imaging Geometry of the SAR

Figure 2.1 shows the viewing geometry of the side-looking SAR moving in azimuth direction.
The nadir is directly beneath the platform. The microwave beam is transmitted obliquely
with respect to the direction of flight and illuminates a swath which is offset from nadir.
Radar backscatter values are collected from a footprint area and later processed to form the
SAR image. At all ranges the radar antenna measures the radial line of sight distance (slant
range) between the radar and each target on the surface. The ground range distance is the
true horizontal distance on the ground corresponding to each point measured in slant range.

3



4 CHAPTER 2. IMAGING BY THE SAR

Figure 2.1: The side-looking SAR moving in azimuth direction.

2.1.2 Range Resolution

The resolution of the radar in (ground) range is defined as the minimum range separation of
two objects that can be distinguished as separate by the system. If the arrival time of the
pulse echo from the more distant point is later than the arrival time of the echo from the
nearer point, each point can be distinguished in the time history of the radar echo. Range
is determined by precisely measuring the time from transmission of a pulse to receiving the
echo from a target. Objects that are located at the same distance from the SAR sensor,
for a given azimuth value, will therefore be located at the same position in the SAR image.
Because of this, certain geometrical effects can appear in SAR images. This is of particular
importance for land applications, but of less relevance for ocean feature applications.

The ground range resolution is defined as

Rground_range =
c

2Bsinθ
(2.1)
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where c is the speed of light, B = 1
τ

is the pulse bandwidth, τ is the pulse duration and θ is
the incidence angle (see figure 3.3). Finer ground range resolution can be achieved by using
a shorter pulse length. However, this can only be done within certain engineering design
restrictions. Therefore, the radar system range resolution relies instead on the type of pulse
coding and the way in which the return from each pulse is processed [8].

All radar systems like e.g. SLAR or SAR resolve targets in the range dimension in the
same way, but it is the ability of SAR to produce relatively fine azimuth resolution (in the
dimension parallel to the line of flight) that differentiates it from other radars.

2.1.3 Azimuth Resolution

The beam width defines the azimuth resolution. As the beam fans out with increasing
distance from the radar the spatial resolution decreases. In addition to the range, the beam
width depends on the antenna length. To obtain fine azimuth resolution, a physically long
antenna in the along-track dimension is needed to focus the transmitted and received energy
into a sharp beam. Antenna lengths of several hundred meters are often required. However,
the key principle satellite SAR is to utilize the forward motion of the platform to synthesize
a long antenna. As the SAR moves forward, a series of pulses is transmitted and received
such that any given target on the surface is illuminated many times. The space-borne SAR
then collects the data while flying and processes the data as if it came from a physically
long antenna. This means that as the sensor moves along the satellite track, echoes are
recorded coherently (the radar signal is recorded as a function of time) and combined in a
processor to synthesize a much longer antenna (or aperture) than the physical one present.
The distance the spacecraft flies while it records the reflected radar pulses from the target
is known as the synthetic aperture. This is illustrated in figure 2.2. A target at far range
will be illuminated for a longer period (due to the wider beam) of time than a target at near
range. The expanding beamwidth, combined with the increased time the target is within
the beam as ground range increases, balance each other. Therefore, the resolution remains
constant across the entire swath.

A narrow synthetic beam width results from the relatively long synthetic aperture, which
yields finer resolution than is possible from a smaller physical antenna. The resolution in
the azimuth dimension is generally limited by:

La/2 (2.2)

This simply states that the best possible azimuth resolution for a SAR system that can
be achieved with a physical antenna of length La (azimuth dimension) is half the antenna
length. This also states that improved resolution comes from smaller antennas [8].
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Figure 2.2: As a target first enters the radar beam, the backscattered echoes from each
transmitted pulse begin to be recorded. As the platform continues to move forward, all
echoes from the target for each pulse are recorded during the entire time that the target is
within the beam. The point at which the target leaves the view of the radar beam determines
the length of the synthesized antenna.

2.1.4 Microwaves and Polarization

The two primary factors influencing the transmission characteristics of the signals from any
given radar system are the wavelength and the polarization of the energy pulse used [25].

The SAR transmits pulses of electromagnetic (EM) energy in the microwave range (wave-
length: 1mm-1m) of the EM spectrum. Table 2.1 lists some of the wavelength bands.
RADARSAT-1 and ENVISAT ASAR are examples of C-band SAR. According to Lillesand

Table 2.1: Radar bands. (Adapted from [25]).

Band Wavelength λ (cm) Frequency (GHz)

X 2.4-3.75 12.5-8.0

C 3.75-7.5 8.0-4.0

L 15-30 2.0-1.0

P 30-100 1.0-0.3

et al. [25], the wavelength of a radar signal determines the extent to which it is attenu-
ated and/or dispersed by the atmosphere. Serious atmospheric effects on radar signals are
restricted to the shorter wavelengths (less than about 4 cm). Even at these wavelengths,
under most operating conditions the atmosphere only slightly attenuates the signal.

Polarization refers to the orientation of the electric field. SAR is an active sensor, and in
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contrast to passive sensors it transmits a signal and measures the reflected wave. Most SARs
are designed to transmit microwave radiation either horizontally polarized (H) or vertically
polarized (V). Similarly, the antenna receives either the horizontally or vertically polarized
backscattered energy, and some radars can receive both. Thus, we have four polarization
combinations: HH - (like-polarized) for horizontal transmit and horizontal receive, VV -
(like-polarized) for vertical transmit and vertical receive, HV - (cross-polarized) for horizontal
transmit and vertical receive and VH - (cross-polarized) for vertical transmit and horizontal
receive. Since various objects modify the polarization of the energy they reflect to varying
degrees, the mode of signal polarization influences how the objects look in the resulting
imagery.

SAR wavelengths and polarization combinations with respect to oil spill detection on the
sea surface will be discussed in chapter 3 and 4.

2.2 Orbits and Coverage

Remote sensing satellites are often placed in polar sun synchronous orbits. A satellite in
a polar orbit passes above or nearly above both poles of the planet on each revolution. It
therefore has an inclination of (or very close to) 90◦ to the equator. A satellite in a polar sun
synchronous orbit will pass over a given latitude at the same time every day (different for
ascending and descending passes). A sun synchronous orbit also makes it possible to operate
at a constant angle between the satellite solar panels and the sun. This is why many radar
satellites are put in sun synchronous orbits.

RADARSAT-1 is operating in an orbit 798 km above the Earth, circling from pole to
pole in a sun-synchronous orbit with an inclination of 98.6◦. One orbit takes 100.7 minutes
and the satellite has a 24 day repeat cycle [47]. ENVISAT carries 9 instruments, including
the ASAR. ENVISAT also has a sun-synchronous orbit at an altitude of 800 km with an
inclination of 98◦. One orbit takes 101 minutes and ENVISAT has a 35 day repeat cycle [48].
Figure 2.3 and figure 2.4 show the number of images available for the North Sea in July 2004
for ENVISAT and RADARSAT-1.

Since orbit track spacing varies with latitude, the density of observations and the revisit
rate are significantly greater at high latitude than at the equator. Coverage is also affected
by the different swath widths. Current SAR systems are able to operate in different modes
with different coverage and spatial resolution. Generally, high resolution modes cover smaller
areas.

One method for increasing swath width is to use so-called ScanSAR imaging, where a
swath widening (in range) can be achieved by the use of an antenna beam, which is electron-
ically steerable in elevation. (The scene extension in azimuth is in principal only determined
by the length of the observation period). Radar images are created by sequentially synthe-
sizing images from the different beam positions. The area imaged by the different beams
form sub-swaths. The principle of ScanSAR is to share radar operational time between two
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or more separate sub swaths in such a way that full image coverage is obtained for each.
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Figure 2.3: Coverage for RADARSAT-1 ScanSAR Narrow (300 km wide footprint) for the
North Sea in July 2004 for one repeat cycle (1 July-24 July). It is assumed that all possible
images are available (which is not usually the case in practice). Source: [43].
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Figure 2.4: The number of images available for the North Sea in July 2004 for ENVISAT
ASAR Wide Swath Mode (WSM) (400 km wide footprint). It is assumed that all possible
images are available (which is not usually the case in practice). Source: [43].



Chapter 3

Scattering Mechanisms

In SAR imaging, there are several important factors that decide how strong a signal is
reflected back from the target area. These factors can be divided into satellite system
factors:

• the radar beam incidence angle

• the radar wavelength

• the polarization of the radar

and ground surface factors:

• the roughness of the surface

• the geometrical structure of the surface

• the dielectric properties of the surface

• the wind speed

• the angle between the radar beam and the wind

The intention of this chapter is to provide an overview of target scattering mechanisms
as a fundament for the discussion of oil spill detection in the following chapters of this thesis.

3.1 Surface Scattering

For flat terrain, the local reflection angle is the same as the incidence angle as shown in
figure 3.1 a). Most of the incident energy will be reflected away from the sensor, resulting in
a very low return signal. Rough surfaces will scatter incidence energy in all directions and

11
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Figure 3.1: Scattering mechanisms. a) Reflection off a smooth surface. b) Scattering off a
rough surface. (Adapted from [3]).

return a significant portion of the incident energy back to the antenna. This is illustrated in
figure 3.1 b).

On the ocean surface it is the waves that make the surface rough. Whether the surface
is perceived rough or not, depends on the wavelength of the SAR.

3.1.1 Bragg Resonance Model

The ocean surface is known to contain a spectrum of waves from short ripples of a few
millimetres to waves hundreds of meters long. However, it is generally accepted that the
dominating mechanism at work to support the backscattering is a type of Bragg resonance.
The particular application of the Bragg resonance model to the ocean surface, which is a
complex summation of a wide spectrum of different wavelengths, requires the assumption
that the Bragg mechanism is able to select just those waves that are in resonance. In terms
of the ocean wavelength, λw, this means that:

λw =
nλr

2sinθ
, n = 1, 2, ... (3.1)

defines the wavelength of the Bragg-selected waves. θ is the incidence angle and λr is the
radar wavelength. (The dominant return will be for the wavelength where n = 1 [8]).
Note that to be selected by the resonance, the Bragg waves need to propagate toward or
away from the look direction of the radar antenna. Equation 3.1 implies that the surface
waves which influences the radar backscatter are those of comparable wavelength to the
microwaves. It is the short gravity and capillary-gravity waves to which the radar responds
directly. The Bragg condition also implies, for a given SAR, that the resonant surface waves
will be shorter at more oblique incidence angles. This also relates to the general observation
that the backscatter for a given sea state decreases with increasing incidence angle [36]
(the backscattered radar power is proportional to the spectral energy density of the Bragg
waves and the spectral distribution decays at shorter wavelength), as will be discussed in
section 3.3.
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For RADARSAT-1 and ENVISAT ASAR with C-band frequency, a radar wavelength of
5.7 cm and incidence angles in the range of 20◦ − 50◦ will this model give Bragg resonant
sea wavelengths λw in the range of 8.3-3.7cm.

In Equation 3.1, the Bragg resonant wave has its crest at right angles to the range
direction. For surface waves with crests at an angle φ to the radar look direction we get:

λ
′

w = λwsinφ (3.2)

where λ
′

w is the wavelength of the surface waves propagating at angle φ to the radar look
direction. An illustration is given in figure 3.2. The resonant surface wavelengths will increase
when φ increases.

Figure 3.2: Crests at an angle φ to the look direction of the SAR.

3.2 Volume Scattering

Bragg models are most frequently used for describing scattering from the sea surface. Due
to the large dielectric constant of water (ǫ = 80 [12]), the scattering mechanism is exclusively
surface scattering. Target areas that can be characterized by Bragg scatter are essentially
special examples of the general scattering problem, which is significantly more complex.
Thus, scattering from natural terrain and vegetation is generally a combination of surface
scattering and volume scattering. Volume scattering results from dielectric discontinuities
within the media [8]. Volume scattering will not be treated further in this thesis.

3.3 Range Brightness Variation

The radar incidence angle is defined relative to the vertical plane, and is thus smaller at
near range compared to far range. Figure 3.3 gives an illustration. SAR images tend to
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Figure 3.3: The viewing geometry of the SAR. θA = incidence angle (angle between the
radar beam and the normal to the Earth’s surface at a particular point of interest) and θB

= look angle (angle at which the radar “looks” at the surface, relative to the vertical).

become darker with increasing range. Backscatter is related to the local incident angle (i.e.
as the local incident angle increases, backscatter decreases), which is in turn related to the
distance in the range direction. Backscatter is also related to wind speed. This is illustrated
in figure 3.4, where a plot based on the CMOD-model [26] is presented. To some degree,
mathematical models can be used to compensate for this effect [25].

Figure 3.5 is an ENVISAT ASAR image (no correction with respect to the incidence
angle variations is done) with a difference in incidence angle from near to far range of about
16.9◦ − 41.6◦.

3.4 Speckle

The resolution cell of any SAR is large with respect to a wavelength of the radar system [8].
Many individual scatter will contribute to the radar echo coming from a particular resolution
cell. Coherent processing of the scattered signals generates SAR images, and this gives the
scenes a speckled appearance. Speckle produces a seemingly random pattern of brighter and
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Figure 3.4: Backscattering, σ0, from the sea estimated for different wind speeds, upwind,
C-band and VV polarization. Source: FFI.

darker pixels in SAR images, giving a grainy appearance or speckle [25]. Speckle noise is
multiplicative in nature, which means that the noise level increases with the average intensity.
This is also apparent in the plot in figure 3.5

There are several ways to reduce the amount of speckle and thereby make the SAR
image more interpretable. One solution is to subdivide the synthetic aperture and process
independent images - or looks, from the SAR raw data. By averaging these uncorrelated
looks (look averaging), the standard deviation will be reduced and hence smooth the image
appearance. The signal-to-noise (S/N) ratio will also increase, but at the cost of poorer
spatial resolution in the azimuth direction. Multi-look processing is normally done at the
SAR processing facility.

Another way of smoothing the speckle noise is to do some kind of post-processing on the
SAR image itself. A smoothing technique often applied in image processing is convolution
(e.g., simple mean filters). More sophisticated filters are adaptive in the sense that they take
into account the speckle statistics by using the mean and variance of the SAR image pixel
values within a local region. The advantage with adaptive filters is that they can smooth a
lot in large homogeneous regions, while inhomogeneous areas and edges are preserved.

A detailed discussion about the difference between various speckle filters is beyond the
scope of this thesis. Generally the choice of speckle filter type is governed by the nature of the
application, requirements on the processing time and the SAR image product involved [46].
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Figure 3.5: Top: ENVISAT ASAR WSM image from 28th of January 2005. Original data
c©ESA/KSAT. From right to left: near to far range. Dimensions: 5596 × 5359. Bottom:
Range profile at the white line (row 200).



Chapter 4

Oil Spill Imaging with Synthetic

Aperture Radar

A wide range of ocean surface phenomena have been imaged with SAR. In addition to oil
spills, several phenomena may dampen out the Bragg waves sensed by the SAR. When these
waves are dampened, very little of the emitted signal will return to the SAR. A dark area
will therefore appear in the SAR image.

4.1 Imaging of Low-backscattering Ocean Features

Both atmospheric processes that affect surface wind conditions (and thus the generation and
modulation of Bragg waves (discussed in section 3.1.1)) and oceanic processes that directly
modulate the Bragg wave spectrum, produce signatures imaged by SAR [6].

In general, lower wind speeds generate fewer Bragg waves. This produces a smoother
ocean surface that appears in the SAR imagery as a dark area. Below a low wind speed
threshold, little of the radar energy will be scattered back toward the SAR, and features
depending on the modulation of Bragg waves to be imaged will not be visible in the image.

As discussed in section 3.3, the sea surface backscatter decreases rapidly with increasing
radar incidence angle. Success in detecting low-backscatter ocean features may well depend
on where the features lie within a swath. The wider the swath, the larger the contrast
between near and far range.

The wind direction relative to the plane of the incident radar wave also affects the
backscattering in a scene. A crosswind (wind blowing perpendicular to the range direc-
tion) produces lower backscattering than an upwind or downwind (wind blowing along the
range direction) (see also section 3.1.1).

17
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4.2 Man-made Pollutants

Man-made biogenic slicks are produced by the discharge of organic matter resulting from
human activities such as fish processing, while man-made mineral slicks are typically caused
by accidental spills or the illegal dumping of petroleum products.

According to Espedal [13], man-made pollutants could be:

I. Oil spills. Oil spills from ships may be due to accidents, and operational cleaning of
tanks often occurs. Oil spills from oil installations may occur as a result of technical
failure or operational errors.

II. Produced water from oilrigs. This is water coming from the reservoir together with the
oil. It is cleaned before being released into the sea, but it will still contain some traces
of chemicals and oil.

III. Water-based or oil-based drilling mud. This is used when drilling wells. After being
reused several times, the oil-based mud is brought ashore for treatment, but the water
based mud is released into the sea and may give a slick signature in the SAR image.

IV. Drain water. The platform drain water consists among other things of rainwater. It is
collected through an open drain system and most of it is separated from possible oil
contamination.

According to Robinson [36], an important consideration to acknowledge is that within
the constraint of present technology and knowledge, there is no way of determining from
SAR data alone what is the cause of a surface slick observed in a SAR image (see however a
discussion of full polarimetry in chapter 9). However, as this thesis shows, based on expert
knowledge of SAR image analysis and statistical methods applied to the problem, we can
estimate the confidence of a slick in a SAR image being an actual oil spill or not.

4.3 Look-alikes: Dark Structures Resembling Oil Spills

The following are examples of natural phenomena that can create oil spill look-alikes ap-
pearing in SAR imagery [6; 13]:

• Natural biogenic surfactants/natural film: Natural biogenic slicks are produced
by plankton and fish substances normally released into the environment. Surfactants
accumulate in convergent zones by internal waves and current/eddy fields, but are
mixed into the upper ocean and rapidly disperse and disappear under windy condi-
tions. Fresh-water run-off containing biogenic material can also cause natural slicks.
Figure 4.1(a) shows an example of natural film.
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(a) Occurrences of natural film. (b) Internal waves.

Figure 4.1: Parts of an ENVISAT WSM Image from 22nd of September 2005. Original data
c©ESA/KSAT.
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• Natural mineral surfactants: Natural mineral slicks are the result of ocean-bottom
oil seeps. (This phenomena should only be considered a look-alike if we are strictly
looking for man-made oil pollution).

• Grease ice: Sea ice can also dampen ocean surface waves. In particular, grease ice
(composed of small crystals that form when seawater begins to freeze) dampens Bragg
waves and produces areas of extremely low backscattering. As it accumulates on the
sea surface, grease ice forms slick patterns similar to those produced by mineral or
biogenic surfactants. Figure 4.2 shows an example of grease ice, and how polarimetry
can be used to reveal that the dark spots are look-alikes.

Figure 4.2: ENVISAT Alt Pol Mode Precision Image. 9th of November 2004. The dark
patches in the HH-polarized image to the left are thin ice. On the HV polarized image to
the right it is clear that these patches are ice and not mineral or biogenic slicks because of
their bright reflection. Original data c©ESA/KSAT.

• Low surface winds: As the sea surface roughness is dependent on the wind condi-
tions, an often seen feature imaged by SAR over the ocean is the wind speed variability
itself. Dark areas appear with wind speeds below the threshold wind speed of about 3
m/s (which is the threshold for generation of Bragg waves). Areas of wind shadowing
by coastal topography are also commonly observed in SAR imagery. The islands and
high mountains shelter the water surface from the wind, and the Bragg wave growth
is reduced on the lee side. An example is shown in figure 4.3.
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Figure 4.3: Part of an ENVISAT ASAR WSM image from the 25th of September 2005.
Example of wind shadowing by the island of Bornholm in the Baltic Sea. Original data
c©ESA/KSAT.

• Rain cells: There are two processes involved when low-backscatter signatures are
caused by rain in SAR imagery. First, atmospheric attenuation due to volume scatter-
ing will tend to decrease the backscattering toward the SAR over an area under a rain
system. Second, depending on the wind speed and Bragg wave scale, the raindrop im-
pact on the sea surface may tend to dampen the Bragg waves. C-band is affected more
by rain volume scattering, while L-band is more sensitive to Bragg wave dampening
by the rain.

• Shear zones: Shear zones appear as narrow, bright or dark curving signatures in SAR
images. Shear zones occure in areas of strong currents.
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• Internal waves: Internal gravity waves in the ocean can affect the local sea surface
velocities and thus the Bragg wave spectrum. This modulation allows imaging internal
waves by SAR. The radar image of internal waves consists of adjacent bright and dark
bands. Internal waves can also accumulate surfactants, in which case the internal waves
are imaged as parallell dark bands. Internal waves appear in shallow water, and the
wavelength is typically several kilometers. Figure 4.1(b) shows an example of what
could be internal waves.

These ocean features reflect either meteorological or oceanographic conditions. There are also
some low-backscattering phenomena caused by large oil installations or ships. An example
is turbulent ship wakes that decrease the surface roughness when wind waves are present
and they are often observed in SAR images.

Table 4.1 shows weather limitations and damping characteristics of some of the low-
backscattering features described in this chapter.

Table 4.1: Weather limitations and damping of some low-backscattering features. (Adapted
from [13]).

Phenomenon Weather limitations Damping [dB]

Oil spill Wind speed <= 15 m/s 0.6 - 13.0

Natural film Wind speed <= 7 m/s 0.8 - 11.3

Grease ice Winter season and cold nights close to ice edge. 14.0 - 19.0

Threshold wind speed area Wind speed <= 3 m/s 9.6 - 18.5

Shear zones Wind speed <= 10-12 m/s 1.4 - 6.2

Internal waves Wind speed <= 8 m/s 0.8 - 6.0

4.4 SAR Configuration for Oil Spill Detection Services

VV polarization gives higher radar backscatter from the sea surface than HH polarization
because of the large dielectric constant of the ocean surface [12]. VV polarized SAR should
therefore provide more contrast (better signal-to-noise ratio) when oil is floating on the sea
surface, and is therefore the preferred polarization for detecting oil pollution at sea [1]. To
illustrate the difference between VV and HH, figure 4.4 shows a possible oil spill imaged
by the ENVISAT ASAR Alternating Polarization (AP) mode (co-pol), and the horizontal
profiles of both bands (VV and HH). VH and HV reflections occur from more complex
reflection mechanisms, and are not particular suitable for oil spill detection because the
reflections from the sea surface will be below the noise floor of the SAR in moderate to
strong wind conditions (the ocean backscatter should be at least 3 dB above the noise floor
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Figure 4.4: Top: Part of an ENVISAT ASAR AP image (VV band), 28th of March 2003.
Original data c©ESA. Bottom left: Horizontal profile of the VV band. Bottom right: Hori-
zontal profile of the HH band.
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in order to support oil slick detection, and for ENVISAT WSM the signal levels are expected
to be above the noise floor for most conditions [35]).

X- and C-bands are more efficient for oil spill detection than L- and P-bands [1] (see
definition of X, C, L and P band in Table 2.1). The C-band frequency seems to be the most
suitable for oil spill detection, allowing oil spills to be visible in SAR images up to a wind
speed of about 10 to 14 m/s (depending on the type of oil and the thickness of the slick).

A bright point target (i.e. possible ship/oilrig) connected to or near by a detected dark
spot can increase the confidence that a spot is an oil spill. Therefore, the distance to the
closest bright spot is an important feature in oil spill detection. Estimated detectability of
ships with respect to a selection of wind speeds and incidence angles for ENVISAT WSM was
presented in Arnesen and Olsen [2], showing that HH polarization gives somewhat smaller
(better) numbers than VV polarization. This is due to the fact that the backscatter from
the sea for HH is lower than for VV, giving a slightly higher contrast to the targets. This
indicates that HH polarized images should be preferred compared to VV for ship detection,
which is in contradiction to the recommended VV mode for oil spill detection. According to
Attema [4], ship detection has largest success using HH polarised data for incidence angles
> 45 degrees while cross-polarised data should be used for incidence angles < 45 degrees. VH
polarization has shown promise in detecting ships, and the VV/VH mode of RADARSAT-2
might therefore be a suitable acquisition mode in the future [9].

Within the frame of this thesis, only a simple ship detector was applied to detect potential
targets in the SAR image data sets (the SAR image sets applied in this work are presented
in Chapter 5). Details on the ship detection algorithm can be found in Paper II.

A wider range of sensors for oil spill detection is discussed in Paper I.



Chapter 5

Data Material and Area of Study

The experiments carried out within the framework of this thesis are based on data from the
ENVISAT Advanced Synthetic Aperture Radar (ASAR) instrument and the RADARSAT-1
SAR instrument. RADARSAT-1 is a Canadian satellite and it was launched 4th of November
1995, while ENVISAT is an ESA satellite launched 1st of March 2002 (from Kourou in French
Guiana).

All satellite images applied in the work with this thesis were processed and delivered by
Kongsberg Satellite Services (KSAT) (former Tromsø Satellite Station) in Tromsø, Norway.
KSAT has provided a service utilising satellite SAR images for detection of oil spills since
1994. The analysis relies upon human interpretation supported by meteorological and ge-
ographical information. The KSAT oil spill service is one of the few operational satellite
services having operational customers [40]. Another example is the Canadian Integrated
Satellite Tracking of Pollution (ISTOP) program that was operationalized in 2006. This
service applies RADARSAT-1 data to monitor marine coastal areas for oil spill pollution [9].

5.1 Selected SAR Modes

Both ENVISAT ASAR and RADARSAT-1 have several image modes (see figure 5.1). In
addition, ENVISAT ASAR has the possibility of several polarization options. The EN-
VISAT ASAR WSM and RADARSAT-1 ScanSAR Narrow (SCN) mode were selected for
this study. The VV-polarization option for the ENVISAT WSM mode was chosen, while
the RADARSAT-1 SCN images are HH-polarized. The main reason for this choice is that
we got an agreement of sharing data acquired by the European Commission (EC) project
Oceanides [51] (a large number of WSM and SCN images with aircraft verifications of pos-
sible oil spills, see section 5.2). ENVISAT ASAR WSM is aimed primarily at oceanographic
applications (like oil spill detection), where there is a special interest in obtaining a wide area
view with high temporal frequency. RADARSAT-1 and ENVISAT are separated in orbit by
approximately 4 hours, and combined use of these two satellites can improve the temporal

25



26 CHAPTER 5. DATA MATERIAL AND AREA OF STUDY

Figure 5.1: Top: the operational mode swaths of ENVISAT ASAR c©ESA. Bottom: the
operational mode swaths of RADARSAT-1 c©CCRS.
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and spatial coverage [40].
Both ENVISAT ASAR and RADARSAT-1 can operate according to the ScanSAR prin-

ciple (see section 2.2). ASAR uses five predefined overlapping antenna beams that cover the
wide swath [3] (see figure 5.2).

Figure 5.2: ENVISAT ASAR WSM. c©ESA.

5.2 Area of Study and Ground Truth

As part of the Oceanides project, a joint satellite-airborne campaign was performed during
2003 to establish a data set consisting of SAR images with associated aircraft verifications by
the German and Finnish pollution control authorities. The campaign covered the Finnish and
German sectors of the Baltic sea, in addition to the German sector of the North Sea. A total
of 59 RADARSAT-1 and ENVISAT images were acquired between July and December 2003.
This campaign was organized in such a manner that KSAT downloaded the satellite images,
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analysed them in near-real time and reported possible oil spills to the Finnish and German
pollution control authorities, which could check the reported dark spots and determine if
they were oil or look-alike. Not all of the possible oil spills in these images were checked
due to e.g. flight cancellations or slicks occurring outside the Finnish and German maritime
territories. Figure 5.3 shows the three test sites from the joint aircraft and satellite campaign.
The images from this campaign have been used for performance testing.

Figure 5.3: Test sites for the 2003 Oceanides campaign. The stippled lines indicates the
maritime territories where the SAR images were acquired. Source: [38].

In addition to the images from the joint satellite-aircraft campaign, 71 RADARSAT-1
and 76 ENVISAT images were applied in this work. These images were used for training
and parameter estimation. For ENVISAT, 56 of the training images were collected during
March to December 2003 and January to April 2004, while 20 of the training images were
collected later on between January and October 2005. See Table 5.1 for an overview of the
data sets.

Oil spill service reports (including e.g. geographical location, extent, wind information,
and confidence estimates) from operators at KSATs manual oil spill detection service were
available to us for many of the SAR scenes in the data set. When available for the training
images, these were used as support during analysis.
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Table 5.1: The number of images from RADARSAT-1 and ENVISAT used in this thesis.

Satellite Image Mode Training Set Test/Benchmark Set Total

RADARSAT-1 SCN 71 32 103

ENVISAT ASAR WSM 56+20 27 103

5.3 Pre-processing

Some pre-processing of the SAR images were done, consisting of:

• Geo-referencing.

• Land masking. Since the radar backscatter over land areas is of less interest for oil
spill detection, a land mask [45] was created in the original geometry of the SAR image.

• Range (incidence angle) dependent scaling and conversion to logarithmic
scale. This was done due to the fact that the radar backscatter from the ocean depends
on the incidence angle, as discussed in section 3.3. A large variation in the backscatter
intensity makes both visual inspection and automatic analysis of the large scenes more
difficult.

The pre-processing of the data sets was performed by Per Ove Husøy (former employee at
Norwegian Computing Center), and some details can be found in [20].

5.4 Image Masking

Collecting SAR image data containing both examples of oil spills and look-alikes was crucial
to be able to succeed with the research objectives of this thesis. Finding an oil spill means
detecting a rare but important event among a large number of other dark structures observed
in SAR images. To maximize the number of positive examples, most of the SAR images
applied in this work contain possible oil spills. Most look-alikes appearing in the images are
natural phenomena and independent of the oil spill occurrences. Therefore we expect the
system to perform well also on new unknown images mostly containing no oil.

The process of using data to determine the parameters of the classifier is referred to
as training, and the most effective methods for developing classifiers involve learning from
example patterns [11]. If a large amount of example patterns are available for training, it
is more likely that the algorithm will perform well on new data samples. When designing a
pattern recognition system, an important part is also to evaluate how the classifier performs
on new samples. A large amount of data in the test set will give a good estimate of the real
error rate. In the work with this thesis, the test set was used for performance testing.
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A considerable amount of working hours was put into analysing and preparing the images
by marking various phenomena visible on the ocean surface. To label the training set, we
created a training mask for each SAR image. By manual inspection, we systematically
scanned through all images tagging off dark spots as either oil spill or doubt. The doubt
category was only used for a limited number of cases, as in some cases a trained operator
cannot discriminate perfectly between oil slicks and look-alikes based on a SAR image alone.
Doubt cases were left out of the training process. In principle, all suspicious dark spots likely
to be oil pollution were tagged off during analysis. All slicks not marked as oil or doubt were
used to train the look-alike class. Input from manual inspection by KSAT operators was
used when available.

A similar procedure was performed for the test set. All slicks we knew were oil pollution
from the aircraft verifications, and all additional slicks we were convinced by manual inspec-
tion to be oil spills and therefore should be detected by the algorithm, were tagged off in the
mask files of the test set.

The ideal situation would have been to have “ground truth” for all dark spots appearing
in the SAR images. This is however not realistic with the technology of today. The time
delay (ca. 1-3 hours) between the satellite overpass and the aircraft surveillance made it
difficult in some cases to verify the slicks. Another difficulty arose when a slick appeared
outside the maritime territory of the pollution control authorities.



Chapter 6

Automatic Analysis

When constructing a system for automatic oil spill detection in SAR imagery there is a
number of issues to consider [24]. One important issue is that construction and selection
of appropriate features (region descriptors) are required. Another issue is that look-alikes
occur much more frequent than oil spills, and the training data set is likely to be imbalanced.
Furthermore, when developing a fully automatic oil spill detection algorithm, one of the first
problems that arise is how to perform the segmentation, i.e. to distinguish the dark spots
occurring on the sea surface from the background.

A very brief bibliography of other automatic oil spill detection approaches is given below.

6.1 Detection of Dark Spots

Oil spills appear as dark spots compared to a brighter background in SAR images. The
images we are dealing with are gray-scale intensity images (i.e. represented by pixel-wise
intensity values) and a popular approach for dark spot segmentation is threshold tech-
niques [22; 23; 34; 39]. Thresholding is applied to each individual image pixel or group
of pixels on a local (or global) level. The pixel value is compared to the mean value of all
pixels in the local window lowered by a threshold value.

As oil spills damps the gravity-capillary waves, applying wavelets for detecting local
variations of the wave spectra has been suggested [28; 29].

Other proposed segmentation methods are based on fuzzy clustering (to allow dealing
with mixed surface-cover classes and unsharp boundaries among regions) [5], and mathemat-
ical morphology [18].

Segmentation is covered in Paper II and III.
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6.2 Feature Extraction

Discrimination between oil spills and look-alikes is often based on a number of features
computed for each suspicious dark spot on the sea surface [10; 15; 23; 33; 39; 41]. Good,
discriminative features are very important for the success of the following classification step.
The selection of features are often based on expert domain knowledge. Most of the features
applied in the literature are covered by the following types:

• The geometry of the dark spot.

• Physical characteristics of the backscatter level of the dark spot and its surroundings.

• Dark spot contextual features.

• Texture features of the dark spot and the surroundings.

The feature vector is usually fed into a classifier.
The topic of feature extraction is covered in Paper III.

6.3 Classification Methods

In some of the published papers covering oil spill detection, classification techniques are
applied where the decision boundaries are constructed by optimising an error criterion, like
Neural-networks (NN) [10; 42] and Support Vector Machines (SVM) [29; 30]. In multi-layer
perceptron NNs the separating hyperplane is iteratively updated as a function of the distance
of the misclassified patterns from the hyperplane. SVMs handles non-separable training data,
and maps the input vector to a high dimensional feature space (through a kernel function)
to be able to find a linear separable hyper plane in that space. NNs and SVMs do not apply
any a priori assumptions concerning the particular probability distribution of the data set.

Another category of classifiers applied is based on a probabilistic approach [15; 34; 39].
In statistical decision approaches, the decision boundaries are determined by the probabil-
ity distributions of the patterns belonging to each class, which is normally estimated from
training data [21].

Keramitsoglou et al. [23] apply a classifier based on fuzzy logic defined by human experts
on the set of features extracted from the SAR images.

All detection algorithms suffer from false alarms because the SAR sensor cannot in all
situations separate between a look-alike (e.g. natural slick) and an oil spill. SAR imaging
of oil spills can be limited by atmospheric and oceanographic conditions and external data
should be taken into account [17].

Classification methodology is the research topic of Paper V and VI.



Chapter 7

Summary of Publications

A summary of the publications included in this thesis follows.

7.1 Paper I: Oil Spill Detection by Satellite Remote Sens-

ing

C. Brekke and A. H. S. Solberg
Published in: Remote Sensing of Environment
March 2005, vol. 95, no. 1, pp. 1-13

Developing a machine vision system for oil spill detection requires knowledge about how
to analyse satellite images and which sensor and mode to select. It is also of importance
to look into what has been done by others in the field; what the new trends are and the
technology that exists or is about to emerge. This study presents results of a literature
review. The main objective of this paper is to give an extensive overview of the present
methodologies and technology applied in the field of oil spill remote sensing. The findings
in this study were also used to identify research areas that later were looked into during the
work with this thesis.

SAR is the most applicable space-borne sensor for operational oil spill monitoring of large
ocean areas. However, SAR imagery has some limitations when it comes to classifying the
type of pollution, estimating the thickness of the spill and in some cases to distinguish oil
spills from other natural phenomena (look-alikes). There are other remote sensing devices
that have some potential as a supplement. Optical sensors can be used to some extent to
distinguish between oil spills and areas with high level of chlorophyll due to algal bloom (both
giving a dark signature in SAR images). A combination of infrared/ultra violet (IR/UV)
sensors can be used for oil spill detection and to estimate the thickness of the spill. Microwave
radiometer (MWR) can be a useful tool for measuring the thickness and estimating the
volume of the oil spill, and laser-fluoro-sensor (LFS) can be used for oil type classification.
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Automatic or semi-automatic oil spill algorithms typically consist of three main steps:
dark spot detection, dark spot feature extraction and dark spot classification. The value of
an extensive comparison of classifiers based on the same data set of features is identified in
this paper. This is addressed further in Paper V, where, based on the same data set two
variations of a statistical classifier are compared to Support Vector Machines (SVM).

Research has shown that manual operators show some variance in detecting oil spills,
particularly in assigning an oil spill confidence estimate (more results from this research are
presented in Paper II and Paper IV). The value of developing an automatic algorithm with a
reliable and objective oil spill confidence estimator is also identified in this paper. Research
on how this could be done and an attempt to develop an automatic confidence estimator
were therefore conducted, and the result is presented in Paper V.

Presently, aircraft equipped with additional sensors like side-looking airborne radar (SLAR),
IR/UV, MWR and LFS are needed for collecting evidence (to verify the oil spill and to iden-
tify the source) to prosecute the polluters. In this paper, we recommended that a future
oil spill system should be an integrated system (applying information from several sensors
and databases), including automatic SAR algorithms followed by a manual step checking
the alarms before notifying the aircraft, a database of “hotspots” (e.g. oilrigs, sunken ships
and seepages), ship lane information, algae information, and more extensive use of wind
information acquired from e.g. meteorological prognoses.

7.2 Paper II: Oil Spill Detection in Radarsat and Envisat

SAR Images

A. H. S. Solberg, C. Brekke and P. O. Husøy
Published in: IEEE Transactions on Geoscience and Remote Sensing
March 2007, vol. 45, no. 3, pp. 746-755

In this paper, an early version of our oil spill detection and classification algorithm is
described. This version was based on the Norwegian Computing Center (NR) algorithm de-
veloped for ERS satellite images by Solberg et al. [39]. Here, the algorithm has been adapted
to analyse RADARSAT-1 ScanSAR and ENVISAT ASAR WSM scenes. This version of the
algorithm is used as a reference for developments and improvements discussed in some of the
following papers (Paper III, V and VI).

One of the objectives of the work conducted in the European Commission (EC) project
Oceanides, was to compare the performance of different automatic or semi-automatic algo-
rithms and manual approaches for SAR image analysis with respect to oil spill detection.
Another objective was to compare the analysis results based on satellite imagery with results
from aircraft surveillance. In this study, our algorithm was benchmarked against manual oil
spill detection (KSAT’s oil spill service) and a semi-automatic approach (QinetiQ’s oil spill
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algorithm). In addition to presenting the initial version of the oil spill algorithm, the pri-
mary contribution of this paper is presenting and discussing the outcome of the Oceanides
benchmark with respect to the algorithm.

In the algorithm, a supervised Bayesian classification scheme is applied to obtain the
posterior probability for a detected dark spot being an oil spill. Because of a very unbalanced
training set with a limited number of oil spill observations, a classifier with common diagonal
covariance matrices is applied in this paper. To overcome a high false alarm ratio produced, a
large set of rules adjusting the posterior probabilities in the statistical classifier is introduced
(the rules are based on feature values from misclassified dark spots in the training data set).
However, establishing these rules was a tedious process and the approach was discarded at
a later stage when automatic confidence estimation was introduced (this is covered in Paper
V and VI).

After dark spot detection, sometimes thin, piecewise linear slicks got fragmented into
several shorter segments or were lost completely in the segmentation process. The need for
an improved dark spot detector is identified in this paper (this is covered in Paper III).

The benchmark experiments were performed on both RADARSAT-1 and ENVISAT im-
ages. The performance of our automatic system was quite comparable to manual inspection,
both in terms of performance in detecting verified oil spills, and in terms of the number of
false alarms. However, aircraft are still needed for oil spill verification and to identify the
polluter. The dark spots reported by satellite but verified as not oil by the aircraft were
studied. In the SAR scenes collected in the Baltic Sea, some cases of verified algae occur-
rences caused false alarms. Additional information about algal blooms, or the likelihood of
observing algae in a given geographical location should be incorporated into the system to
eliminate this problem.

When comparing the inter-operator variance between trained human experts with respect
to the number of detections and the capabilities of detecting verified oil spills, quite a large
difference was found. The automatic oil spill detection and classification algorithm was found
to be a good (and objective) alternative to manual inspection when large ocean areas are
to be inspected. Running the automatic algorithm as part of the oil spill detection service
and including a manual step prior to sending out the aircraft could probably improve the
existing operational fully manual service run in Norway.

Some more results from the benchmark study concerning manual confidence estimation
are discussed in Paper IV.

7.3 Paper III: Segmentation and Feature Extraction for

Oil Spill Detection in ENVISAT ASAR Images

C. Brekke and A. H. S. Solberg
Submitted to: International Journal of Remote Sensing, 2006
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Many of the papers in the literature (e.g. [10; 23]) describing oil spill detection algorithms
list the features (i.e. region descriptors) applied to describe the dark spots, but give very few
arguments on why a particular feature or a combination of features are chosen. This paper
covers the topics of dark spot detection and feature extraction. The novelties of this paper
include a new segmentation algorithm for better detection of thin, piecewise linear slicks and
three new features. The importance of an adapted segmentation process to this particular
problem domain is demonstrated. Combined with an improved feature vector, an increase
in the classification accuracy for the oil spill class is shown.

Preliminary results and the initial ideas for this paper are published in two short papers,
Paper VII and Paper VIII.

First, building upon the general thresholding approach presented in Paper II, an improved
thresholding algorithm for better detection of thin, piecewise linear slicks is described, where
small fragments are merged to continuous segments. Based on the improved segmentation,
the true shape of these slicks can better be reflected in shape features. By including the new
segmentation approach into the algorithm the classification accuracy for oil spills increased
from 78% to 86%, while the classification rate for look-alikes was unchanged at 99%.

Second, three new region descriptors are proposed including a feature measuring the
curvature of the slick border, an improved slick border detector and a feature measuring the
variance of the slick pixel values. By introducing the new region descriptors the classification
accuracy for oil spills increased again from 86% to 89%, but at the same time the classification
ratio for look-alikes was reduced from 99% to 98%. However, we consider misclassifying
oil spills as look-alikes more serious than misclassifying look-alikes as oil spills, but in an
operational context the false alarm ratio should be reduced as much as possible. In this
paper, the focus is on improving the detection of oil spills through better segmentation and
a better set of features. Paper V focuses on classification and the trade off between a high
detection ratio for oil spills and a low false alarm ratio.

It is important to point out that the work presented in this paper was performed more
or less in parallel with the benchmark study presented in Paper II. Therefore, not all the
aircraft verifications were available at the time the test data set was labelled oil spill or
look-alike. When all the aircraft verifications were available, we re-analysed the whole test
data set to include all the aircraft verifications.

7.4 Paper IV: Oil Spill Detection in Northern European

Waters: Approaches and Algorithms

A. H. S. Solberg and C. Brekke
To appear as a book chapter in: Remote Sensing of the European Seas
(Vittorio Barale and Martin Gade (Eds.))
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Springer Science and Business Media B.V., 2007

The aim of this paper is to give the reader an overview of the field of oil pollution
monitoring with respect to the experience from Northern European seas. The paper was
written as an invited contribution to the book Remote Sensing of the European Seas. The
scope of the book determined that the paper should be written also for non image analysis
specialists.

In this paper, the advantages and limitations of combined use of satellite imaging of oil
spills and aircraft monitoring are discussed. In the Baltic Sea and the North Sea, many
national pollution control authorities already have experience with combined satellite and
airborne routine monitoring. Aircraft are used to verify potential spills first spotted by
the satellite. The use of satellite surveillance allows the users to better target the aircraft
used for oil spill surveillance and to cover larger areas. According to Tufte et al. [43],
the best approach for a specific national authority depends on the size and shape of the
area and other resources available. International cooperation with neighbouring countries
on planning satellite acquisitions is important to reduce costs. Knowledge about oil spill
statistics is also important for optimisation of the oil spill surveillance efforts. However, care
must be taken in using oil spill statistics in terms of the number of observed spills if they are
not normalized in terms of how frequently the areas are monitored. Good agreement is found
between aircraft detections and satellite-based detections when the time offset between the
acquisitions is low [51]. Therefore, a combined used of satellite-based SAR and surveillance
aircraft carrying additional sensors is recommended as a cost-effective way of monitoring.

In Paper II, automatic detection of oil spills was found to be an interesting complement
to manual detection, which currently is the primary approach applied by the operational
oil spill services (e.g. [9; 40]). A main contribution of this paper is a study of the inter-
operator variance between trained human experts with respect to assigned confidence levels.
A large inter-operator variance in confidence estimation was found, indicating that there still
is some subjectivity involved. Automatically estimated confidence levels can be helpful as an
objective source of support when prioritising the alarms (automatic confidence estimation is
covered in Paper V).

7.5 Paper V: Classifiers and Confidence Estimation for

Oil Spill Detection in ENVISAT ASAR Images

C. Brekke and A. H. S. Solberg
Submitted to: IEEE Transactions of Geoscience and Remote Sensing, 2007

According to the results presented in Paper II, automatic algorithms could speed up the
analysis process of the SAR images but the false alarm ratio produced by such algorithms
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should be reduced. According to the findings in Paper IV, it would also be desirable that
the automatic system not only reports which slicks are classified as oil spills, but also the
confidence associated with a certain slick being classified as oil. The estimated confidence
levels of the slicks could then be used as support when directing the surveillance aircraft to
the targets.

The aim of this study was 1) to improve the classifier with respect to the number of false
alarms, 2) to reduce the number of parameters to be tuned manually during training and 3)
to develop an automatic confidence estimator to give the operator a tool for prioritising the
alarms.

Preliminary results and the initial ideas for this paper are published in a short paper,
Paper IX.

This study is based on the ENVISAT ASAR WSM image set. In this paper, the statistical
classifier with diagonal common covariance matrices (Paper II) is compared to a statistical
classifier with regularized covariance matrices and a C-Support Vector Classifier (C-SVC).
A main contribution of this study is that we show that it is possible to largely reduce the
false alarm ratio of the statistical classifier by introducing regularization of the covariance
matrix estimates (due to the small number of oil spills observed). The regularized statistical
classifier was also compared to the C-SVC, showing worse performance on the problem. More
experiments with the regularized statistical classifier (the classifier found to perform best on
this particular application) were done later, and the results are presented in Paper VI.

In this paper, it is also shown that it is feasible to develop and train an algorithm for
automatic assignment of confidence levels with satisfactorily performance. After applying
the regularized classifier, each dark spot with a higher posterior probability of being an oil
spill than a look-alike is automatically assigned a confidence level. The automatic confidence
estimator is based on conditions on the feature values extracted from the dark spots. The
conditions are tuned on oil spill observations from the training set.

The two-step classification approach suggested in this paper (classification followed by
confidence estimation) is easier to train and the number of parameters to be adjusted is
largely reduced compared to the early version of the algorithm (presented in Paper II). In
the early version of the algorithms, a large rule-base was applied to reduce the false alarm
ratio involving a large number of parameters to be tuned. This rule-base now becomes
redundant.

7.6 Paper VI: Classifying Oil Spills and Look-alikes in

ENVISAT ASAR Images

C. Brekke, A. Solberg and G. Storvik
To appear in the proceedings of: ENVISAT symposium
Montreux, Switzerland, 23-27 April, 2007
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In the statistical classifier, we model with Gaussian densities based on the 8-dimensional
feature vector that was selected in Paper III. In Paper II, III and V, the feature space
was divided into 10 subclasses based on two features: an estimate of the roughness of the
sea surrounding the dark spots and a shape descriptor of the dark spots. By splitting the
problem and assuming different densities for each subclass, it was expected to be appropriate
to assume the densities to be Gaussian within each subclass. The subclasses were selected
from experiments on the training set based on a manual approach. A classifier was applied
within each subclass, before finally estimating the confidence levels of the dark spots classified
as oil spills.

In this study, the optimal number of subclasses and the optimal boundaries between the
subclasses were searched for. Optimal boundaries were estimated for different numbers of
subclasses. The search for the boundaries between the subclasses was based on an optimiser
minimizing the sum of the negative log-likelihood for each subclass. In this paper, the
classification accuracies on the ENVISAT ASAR WSM test set are compared after applying
the various subclass configurations.

The main contribution of this paper is the estimate of the optimal number and location
of each subclass. The results show that when there is enough data in the training set,
both a division into 10 subclasses and no subclasses could be applied in combination with a
regularized classifier.
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Chapter 8

Main Contributions

Figure 8.1 illustrates the information chain in a combined satellite-airborne oil spill service.
In this context, the contributions of Paper II, III, V and VI belong to step B) in the figure,
while Paper I and IV discusses issues related to B) in the larger context presented in the
figure.

The main contributions of this thesis are:

• An extensive overview of the present methodologies and technology applied in the field
of oil spill remote sensing is given (Paper I).

• Based on a benchmark study (where automatic, semi-automatic and manual SAR im-
age analysis approaches are compared with “ground truth” from aircraft surveillance),
the potential of automatic algorithms for oil spill detection is documented (Paper II
and Paper IV).

• An improved adaptive thresholding algorithm for better detection of thin, piecewise
linear dark spots is developed (Paper III).

• The classification power of various features are investigated and new features are intro-
duced. Specially a shape feature, a contrast feature and a texture feature are included
for better description of the dark spots (Paper III).

• With respect to reducing the number of false alarms while keeping a high detection rate,
it is shown that a statistical classifier with regularized covariance matrices outperforms
the simpler solution of a statistical classifier with common diagonal covariance matrices
and Support Vector Machines (SVM) (Paper V).

• To give the operator a tool for prioritising the alarms, confidence estimation is sug-
gested as a second step of the classification approach following classification with the
regularized statistical classifier. A confidence estimator is developed, letting the user
tune the system with respect to the trade-off between the number of true positives and
false positives (Paper V).
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Figure 8.1: The elements and flow of information in an operational oil spill service.

• The behaviour of the features will change under different wind conditions. To handle
multimodal conditional densities, experiments with a division of the feature space into
subclasses are done. It is shown that, when there is enough data in the training set, a
division of the feature space into 10 subclasses and no division at all gives comparable
results when the two-step classification approach is applied. Therefore, a division of
the feature space into subclasses might not be as important as first assumed (Paper
VI).



Chapter 9

Discussion and Directions for Further

Research

In this chapter, various aspects of this thesis are discussed. Details that were not satisfactory
solved are highlighted and ideas for improvements are suggested. Thoughts about future
research possibilities that probably should be looked into and ideas for improvements of the
system are discussed as well.

Granularity

Classification can be done on the pixel level, region level (pixels may be grouped into seg-
ments) or on image level. The coarsest granularity works with the whole image and it simply
states that a given image contains an oil spill. This means that the operator has to manually
analyse the scene reported containing one or more oil spills by the system. On a region
level, the system reports the coordinates of dark regions that are detected as oil spills. The
finest granularity works with pixels, letting the user know if a particular pixel is part of
an oil spill. However, if pixels are classified individually there is no guarantee that the oil
spill pixels will form coherent regions in an image. We chose to let the system detect and
classify regions. The output from the automated analysis is oil spill candidates and their
geographical coordinates.

Region Descriptors

In Paper III, the feature SUM_EXTERNAL_ANGLES is defined as the sum of all local
curvature measurements along the boundary of a dark spot. The implementation is based
on ideas presented by Lobregt and Viergever [27]. However, in Paper III the boundary was
traced and vertices were inserted with a three-pixel spacing. This might not be an optimal
solution, as it will be uncertain if the true vertices of the contour are located. To improve
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this, one possibility could be to apply the algorithm for polygonal approximation proposed
by Wall and Danielsson [44], where the algorithm outputs a new line segment when the area
deviation (the difference between the areas above and below the current segment enclosed
by the curve) divided by the length of the current segment exceeds a pre-specified value.

Hu’s seven combinations of the second and third order normalized central moments [19]
are rotation, scale and position invariant and can be used for invariant pattern recognition.
In Paper III, Hu’s 1st invariant planar moment is found to separate well between dark spots
with thin, piecewise elongated shapes and spots with other arbitrary shapes. Adding more
moment features (e.g. higher order moments) can perhaps improve the description of spots
with arbitrary shapes. However, if we could describe the shape of the spots perfectly, there
would be no guarantee that this would improve the classification performance. The reason is
that it is very hard to tell the difference between oil spills and look-alikes only based on the
shape. Due to the problem of the curse of dimensionality in machine vision, the number of
features should also be kept low relative to the number of training samples [21]. Therefore, it
is likely to be more appropriate to base the classification on a combination of feature types,
like features describing the slick surroundings, texture and contrast features in addition to
shape features.

In Paper II, the Sobel operator was used in the computation of the mean of the magnitude
of the border gradients of the dark spot border area. The Sobel operator can be used as a
simple detector of horizontality and verticality of edges when the following two 3× 3 kernels
are convolved with the original image:
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At each point in the image, the resulting gradient approximations can be combined to give
the gradient magnitude (if the h1 response is x and h2 response is y,

√
x2 + y2). The problem

is that we get inaccurate results for thin, linear slicks, particularly lines that are 1 pixel wide,
which is sometimes the case for oil spills imaged by the WSM mode of ENVISAT. In Paper
III, a combination of the Sobel operator and a line detector (consisting of four additional
masks) was suggested. This is an ad hoc solution, and a better approach might be to sum
the square of the responses from the following modified Sobel masks (replacing h1):
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This gives an unchanged estimate for dark lines that are two or three pixels wide (com-
pared to applying h1 and h2), but a single top for lines that are one pixel wide.

Estimates of Wind Speed

Information about wind speed and wind direction derived from models by meteorological in-
stitutions could be incorporated into the system, as it could probably improve the confidence
estimation of a detected dark spot being an oil spill. Wind prognoses are available from e.g.
Meteorologisk institutt (met.no) with a resolution of 10 km (HIRLAM). Another possibility
is to used automatic methods for wind estimation, where the wind speed is derived directly
from the SAR image. SAR wind retrieval is discussed in Christiansen’s thesis [7]. According
to Christiansen, generally, the standard deviation of SAR wind speed retrievals is below
±2 ms−1. See also Salvatori et al. [37] who applied an inverted CMOD4 model in their oil
spill detection system.

Reducing False Alarms

Many of the SAR scenes in the data set are from the same geographical area. During analysis,
we discovered that some look-alikes appeared at the exact same location in several images.
As suggested in Paper I, to build a database of “hotspots” for look-alikes and include this
into the algorithm could reduce the number of false alarms.

Analysis of the characteristics of the verified false alarms in Solberg et al. [38] did not
reveal any particular characteristics. It might be the case that false alarms do not have any
unique characteristics appearing in the SAR images to distinguish them from oil spills. The
data sets applied in this thesis were partly collected from the Baltic Sea. During the summer
months, algae blooming in the Baltic Sea could lead to many false detections. To include
algae information from external sources could also help reduce the number of false alarms.
Web-services covering information about algal blooms exists for some areas. An example
is the algae service provided by Danmarks Meteorologiske Institut (DMI). Figure 9.1 shows
the average of ENVISAT MERIS data collected during a week. By averaging the data
products, the problems with cloud cover are reduced. This information could be used as
prior knowledge and incorporated into the classifier.

The Spaceborne Imaging Radar- C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) 1

sensor was designed and built to make eight different measurements at the same time: L-
band and C-band with four different polarization combinations, including HH, HV, VH and
VV. Experiments done on the C-band polarimetric SAR [16; 31; 32] show that polarimetric
SAR data can improve/assist oil spill detection. It was found that it is possible to distinguish

1SIR-C/X-SAR operated on board the Endeavour Shuttle on mission STS-59 and STS-68 in 1994. It was
the first mission where a multi-frequency, multi-polarization imaging radar system was flown in space.
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Figure 9.1: Algae consentration. The image is an average of (4-5) ENVISAT MERIS images
collected over one week.
Available at: http://www.dmi.dk/dmi/index/danmark/algekort.htm

oil-free from oil-covered areas and in some cases to distinguish among oil spills and biogenic
look-alikes. The technique only needs HH and VV data [16]. According to Migliaccio et
al. [32], there is now general consensus that radar polarimetry is able to provide additional
information to environmental remote sensing.
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Noise Reduction

Noise filters for oil spill segmentation in SEASAT images were studied in a short paper by
Barni et al. [5]. A Sigma filter (7 × 7 kernel size) was found to give the best segmentation
result and was the fastest among the filters compared. It would be natural to also evaluate the
effect of different noise removal filters, applying different window sizes, on the segmentation
of slicks with various shapes and contrasts in ENVISAT ASAR WSM images. The ENVISAT
images in the present study were pre-processed with a mean filter, in addition a Sigma filter
was applied in the segmentation approach.

Parameter Tuning

In Paper VI, we formalized the selection of subclass boundaries based on optimising the
negative of the log-likelihood function. The number of subclasses was selected based on the
classification performance of different subclass configurations. In Paper V, an attempt to
automatically set the confidence condition limits was made, however some manual adjust-
ments were still found necessary. In the algorithm, there are still quite a few variables that
are manually tuned based on a trial-and-error approach. Ideally, the algorithm should be
able to adapt rapidly to changes in the training data set. The possibility of automating a
larger part of the parameter tuning should be looked into, even if the complex nature of the
SAR scenes could make this difficult.

Selection of Classifier

According to Jain et al. [21], the four best known approaches for pattern recognition are: 1)
template matching, 2) statistical classification, 3) syntactic or structural matching, and 4)
neural networks. In this work, mainly statistical classification and SVM have been explored.
Neural networks is a popular classification technique, and has been applied by others for
oil spill detection based on SAR images [10; 41]. It would be interesting to compare the
classification performance of our regularized statistical classifier to neural networks based on
the same feature data set.

Here, a supervised, density-based approach for classification is applied where the pa-
rameters for Gaussian densities are estimated. In Paper VI, it is shown that some of the
features appear to have a skewed distribution. The application of other distributions should
be explored.
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Context Sensitive Learning

All our training images are collected from the same geographical area (the Baltic Sea and
the North Sea). An open research issue is to look into how well the algorithm generalizes to
other geographical areas, and how sensitive the performance is to seasonal climate variations.

Adapting the algorithm to detect other ocean features

It would also be interesting to look at the possibility to train and adapt the algorithm to
detect other ocean features, e.g. fronts, shear zones, internal waves and eddies, which are
frequently observed in SAR images.

Coming/Planned Sensors Suitable for Oil Spill Detection

Avoiding a gap with respect to the ERS and ENVISAT missions, SENTINEL-1 is a planned
ESA two-satellite system to be operated as a constellation for maximized coverage/repeat
cycle. The first satellite will be launched in the 2011-2012 timeframe and the second some
12-15 months later. SENTINEL-1 data should be available for at least 10 years. The SAR
system will be C-band [4].

RADARSAT-2 is another SAR mission. RADARSAT-2 is a Canadian satellite planned to
be launched in the summer of 2007. The SAR instrument will be C-band like RADARSAT-1,
but there will be a flexibility in the selection of polarizations (HH, HV, VH, VV) [52]. The
ScanSAR Wide mode with a nominal swath width of 500 km, an approximate resolution of
100 m × 100 m, approximate incidence angles of 20◦ - 49◦ and VV/VH polarization should
be suitable for oil spill detection (including potential source detection).

The German X-band satellite TerraSAR-X was launched the summer of 2007 [53]. The
oil spill detection capabilities of this sensor should be looked into. The ScanSAR mode
has 100 km swath width and 16 m resolution. As discussed in section 2.1.4, with the
short wavelengths of X-band, it might be that the SAR imaging will be less independent of
atmospheric conditions.
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Abstract

This paper presents the state of the art for oil spill detection in the world oceans. We
discuss different satellite sensors and oil spill detectability under varying conditions. In
particular, we concentrate on the use of manual and automatic approaches to discriminate
between oil slicks and look-alikes based on pattern recognition. We conclude with a discus-
sion of suggestions for further research with respect to oil spill detection systems.
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1 Introduction

Oil spills on the sea surface are seen relatively often. Observed oil spills correlate very well
with the major shipping routes (e.g. in the Southeast Asian Waters [52; 51], and in the Yellow
and East China Sea [40]) and commonly appear in connection with offshore installations (e.g.
in the North Sea [18]). Annually, 48% of the oil pollution in the oceans are fuels and 29%
are crude oil. Tanker accidents contribute with only 5% of all pollution entering into the
sea [22]. After analysing 190 ERS-11 SAR images of the Mediterranean Sea, Pavlakis et al.
[58] found that ”deliberate” oil spills appear with considerably higher frequency than oil
spills corresponding to reported ship accidents. According to the European Space Agency
[20], 45% of the oil pollution comes from operative discharges from ships. When taking into
account how frequent such spillages occur, controlled regular oil spills can be a much greater
threat to the marine environment and the ecosystem than larger oil spill accidents like the
Prestige tanker (carrying > 77, 000 ton of fuel oil [57]) accident at Galice, northwest coast
of Spain in 2002. The impact of not monitoring oil spills is presently unknown, but the main
environmental impact is assumed to be sea-birds mistakenly landing on them and the damage
to the costal ecology as spills hit the beach [65]. Simecek-Beatty and Clemente-Colón [68]
describes how oiled birds lead to the use of SAR for locating a sunken vessel leaking oil.

Active microwave sensors like Synthetic Aperture Radar (SAR) capture 2-dimensional
images. The image brightness is a reflection of the microwave backscattering properties of
the surface. SAR deployed on satellites is today an important tool in oil spill monitoring
due to its wide area coverage and day and night all-weather capabilities.

Satellite-based oil pollution monitoring capabilities in the Norwegian waters were demon-
strated in the early 1990’s by using images from the ERS-1 satellite (e.g. Bern et al.
[6]; Skøelv and Wahl [69]; Wahl et al. [80]). A demonstrator system based on ERS for
the Spanish coast were presented by Martinez and Moreno [55]. Today, RADARSAT-1 and
ENVISAT are the two main providers of satellite SAR images for oil spill monitoring.

Access to an increased amount of SAR images means a growing workload on the operators
at analysis centres. In addition, recent research shows that even if the operators go through
extensive training to learn manual oil spill detection they can detect different slicks and give
them different confidence levels [39]. Algorithms for automatic detection that can help in
screening the images and prioritising the alarms will be of great benefit. Research on this
field has been ongoing for more than a decade, and this paper reviews various methods for
satellite-based oil spill detection in the marine environment.

As SAR is just one of many remote sensing sensors available an evaluation of the appli-
cability of other satellite sensors for oil spill monitoring is included as well. Most studies
done on airborne remote sensing techniques are excluded. For a review of airborne sensor
technology for oil spill observation see Goodman [33]. The detectability of oil spills in SAR
images are discussed, in terms of wind conditions, sensor characteristics and ambiguities

1ERS-1: the First European Remote Sensing Satellite.
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caused by other phenomena than oil spills. Finally, our emphasis is on methodology and
algorithms for oil spill detection in spaceborne SAR imagery.

2 Satellite Sensors for Oil Spill Detection

Microwaves are commonly used for ocean pollution monitoring by remote sensing. They are
often preferred to optical sensors due to the all-weather and all day capabilities, and exam-
ples of SAR-equipped satellites are presented in Table 1.1. Mainly spaceborne instruments

Table 1.1: Some satellites carrying SAR instruments.

Satellite Character-

(sensor) Operative Owner istics

SEASAT 1978-off same year NASA L-band, HH-pol

ALMAZ-1 1991-1992 Russian Space Agency S-band, HH-pol

ERS-1 1991-1996 ESA C-band, VV-pol

ERS-2 1995-operating ESA C-band, VV-pol

RADARSAT-1 1995-operating CSA C-band, HH-pol

ENVISAT 2002-operating ESA C-band, HH and VV,

(ASAR) alt. pol. and cross pol. modes

(C-band 4-8 Ghz, λ 3.75 - 7.5 cm, L-band 1-2 Ghz, λ 15 - 30 cm and S-band 2-4 Ghz, λ
7.5-15 cm).

are covered here, but airborne Side-Looking Airborne Radar (SLAR) is another possibility.
SLAR is an older but less expensive technology than SAR, but SAR has greater range and
resolution [23]. Airborne surveillance is limited by the high costs and is less efficient for wide
area surveillance due to its limited coverage. While spaceborne SAR can be used for a first
warning, aircrafts are more suitable to be brought into action to identify the polluter, the
extent, and the type of spill. An example is the German aerial surveillance, which locates
oil discharges by SLAR, infrared/ultra violet (IR/UV) scanning is used to quantify the ex-
tent of the film, a microwave radiometer (MWR) is used to quantify the thickness and a
laser-fluoro-sensor (LFS) is used for oil type classification [75].

In addition to SAR, there are other spaceborne remote sensing devices that have some
potential for oil spill monitoring. Friedman et al. [27] compare a RADARSAT-1 SAR im-
age with a corresponding Sea-viewing Wide Field-of-view Sensor (SeaWiFS, visible sensor)
image. SeaWiFS measures high levels of chlorophyll for areas with algal bloom, while the
SAR images has low backscatter levels in these regions. It is concluded that multiple data
sets can be used to discriminate between for example algal blooms and man made slicks.
Indregard et al. [39] points out that additional information (in addition to SAR) about algal
bloom is desirable, particularly in the Baltic Sea. This could be taken from optical imagery,
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from algae maps or other related information. Figure 1.1 shows two examples of algal bloom
imaged by SAR.

Figure 1.1: Two subscenes of an ENVISAT ASAR Wide Swath Mode (WSM) image from the
German Baltic Sea (7th of August 2003). Left: The two slicks, indicated by yellow arrows,
was classified as algae by a German surveillance aircraft. Several other phenomena (possible
low wind) causing low backscattering are visible in the scene. The size of the subscene is
346 × 405 pixels. Right: The slick was classified as algae by a German surveillance aircraft.
The size of the subscene is 236 × 241 pixels. c©ESA/KSAT 2004.

A drawback of the SeaWiFS sensor is its coarse spatial resolution of ∼ 1km. Hu et al.
[37] demonstrates the possibility of oil spill monitoring by the Moderate-Resolution Imag-
ing Spectroradiometer (MODIS) instrument, carried onboard the NASA satellites Terra and
Aqua, by an example from Lake Maracaibo, Venezuela. The MODIS instrument has moder-
ate resolution bands of 250 m and 500 m and a wide spectral range. This allows the MODIS
instrument to provide images of daylight-reflected solar radiation and day/night time ther-
mal emissions. The MODIS instrument was originally designed for land imaging, and with
medium resolution it also shows potential for daily monitoring of the coastal zones looking for
oil spills. Cloud cover and the lack of sun light limits the use of optical sensors. On the other
hand, multiple wavelengths can give additional information to distinguish slicks produced
by algal blooms from oil spills. Yet it is difficult to establish automated feature recogni-
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tion systems that identifies oil spills as external knowledge about the region, environment
and current events are needed in the visual analysis of the satellite images to discriminate
between various events.

Hyperspectral sensors used for oil spill monitoring have a potential for detailed identifica-
tion of materials and better estimation of their abundance. With more that 200 wavelengths
provided by a hyperspectral sensor the spectral signature of oil can be exploited and used to
distinguish between different oil types (crude or light oil). This can also eliminate the false
alarm rate of ocean features that have the same colour and appearance as oil. Salem and
Kafatos [63] found that a signature matching method based on airborne hyperspectral imag-
ing (looking at chemical composition) is more accurate than the conventional techniques,
where analysis is based on visual interpretation of the oils colour and its appearance in the
satellite image. There is currently no commercial spaceborne hyperspectral sensor in orbit.
The NASA EO-1 Hyperion hyperspectral sensor is an example of a spaceborne technology
demonstrator that was launched in 2000. However, its major drawback is its small swath
width of only 7.5 × 100 km.

Oil absorbs solar radiation and re-emits a portion of this energy as thermal energy. IR
sensors observe thick oil slicks as hot, intermediate thickness of oil as cool, while thin oil is
not possible to detect [23]. At night a thick spill can appear cooler than the water since it
releases heat quicker than its surrounding water [76]. Tseng and Chiu examined the use and
capability of the visible and IR sensors of NOAA Advanced Very High Resolution Radiometer
(AVHRR) for early detection and monitoring of oil spills. Oil spills from the 1991 Persian
Gulf war were studied. Thick and thin oil layers and the boundary between water and
oil were possible to detect by the IR channel, but the oil spills may not have a significant
different temperature signature from the surrounding water at night. Oil spills could be
detected in the visible images only under highly favourable lighting and sea conditions.

UV technology can be used to detect oil spills as the spill displays high reflectivity of UV
radiation even at thin layers. The UV instrument is not usable at night, and wind slicks,
sun glints and biogenic material can cause false alarms in the UV data. These interferences
are often different from those for IR, and a combination of IR and UV can provide a more
reliable indication of oil and can be used for estimating oil thickness [23].

A MWR is another passive sensor. The instrument looks at the microwave radiation
in the wavelength cm to mm range that the ocean emits, and therefore is almost weather-
independent [75]. Oil slicks emit stronger microwave radiation than the water and appear as
bright objects on a darker sea. According to Robinson [62], oil slicks can have strong surface-
emissivity signatures, but as a spatial resolution of tens to hundreds of meters is desirable
for the determination of oil slicks, this type of sensors for oil spill thickness monitoring
is most appropriately pursued by aircraft sensor. Zhifu et al. [83] did some experiments
using airborne (AMR-OS) and a ship borne (K-band) MWRs looking at various oil types
and thickness. They found that MWRs are useful tools for measuring the thickness and
estimating the volume of the spills, but the resolution is not fine enough to give accurate
results. Fingas and Brown [23] summarize studies done on this field and conclude that the
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potential of radiometers as a reliable device for measuring slick thickness is uncertain.
RADARSAT-1 and Landsat-5/Thematic Mapper (TM) were used to capture images of

the Guanabara Bay, Brazil, after an oil spill emergency where a pipeline ruptured [4]. Bentz
and de Miranda found that RADARSAT-1 provided suitable temporal coverage, while cloud
cover, haze and the 8-day revisit schedule (using both Landsat-5 and -7) prevents Landsat
from being used systematically for oil spill monitoring. However, many sea surface temper-
ature and ocean colour sensors have a large swath width and can provide daily coverage of
the earth surface (e.g. the revisit time for MODIS is 2 days and for SeaWiFS 1 day).

In summary, SAR is still the most efficient and superior satellite sensor for oil spills
detection, though it does not have capabilities for oil spill thickness estimation and oil type
recognition. SAR is useful particularly for searching large areas and observing oceans at
night and at cloudy weather conditions. Usually even small volumes of oil cover large areas
(several hundred meters) and thus the need for very high spatial resolution in SAR images
is not crucial. Wahl et al. [79]; Bern et al. [5]; Wahl et al. [81] found Low Resolution ERS-1
SAR images with a spatial resolution of 100 m sufficient for oil spill detection. The original
ERS images were filtered using a 5 × 5 mean filter, which gave better noise characteristics
than the full resolution images, and they were therefore easier to analyse. SAR also has
some limitations, as a number of natural phenomena can give false oil spill detections. In
addition, SAR is only applicable for oil spill monitoring in a certain range of wind speeds.
The usefulness of SAR in terms of responding to oil spills at various conditions is covered in
more detail in the next section.

3 Detectability of Oil Spills in SAR Images

Oil slicks dampen the Bragg waves (wavelength of a few cm) on the ocean surface and reduce
the radar backscatter coefficient 2. This results in dark regions or spots in a satellite SAR
images. Fig. 1.2 gives two examples.

Kotova et al. [44] emphasises the importance of weathering processes 3, as they influence
an oil spills physicochemical properties and detectability in SAR images. The processes
that play the most important role for oil spill detection is evaporation, emulsification and
dispersion. Lighter components of the oil will evaporate to the atmosphere. The rate of
evaporation is dependent on oil type, thickness of the spill, wind speed and sea temperature.
Emulsification is estimated based on water uptake as a function of the wind exposure of the
actual oil type. Dispersion is an important factor in deciding the lifetime of an oil spill and

2Normalized Radar Cross Section (NRCS) (σ0): The normalised measure of the radar return from e.g.
the ocean is called the radar backscatter coefficient, or sigma nought. It is defined as the reflective strength
of the radar target, σ, per unit area on the ground, A: σ0 = σ

A
[12]. (How to derive the σ0 value from the

RADARSAT-1, ERS-1 and -2 SAR products are described in Laur et al. [46]; Shepherd [67]).
3Weathering processes include: spreading, drift, evaporation, dissolution, dispersion, emulsification, sed-

imentation, biodegradation and photooxidation [44].
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Figure 1.2: Left: A subscene of a RADARSAT-1 ScanSAR Narrow (SCN) near range mode
image (30th of July 2002) containing two oil spill examples (classified as oil spill by manual
inspection) on a homogeneous background. The size of the subscene is 1432 × 1032 pixels.
Right: A subscene of an ENVISAT ASAR WSM image (24th of July 2003) containing a
linear oil spill (classified as oil spill by manual inspection). The size of the subscene is
337 × 320 pixels. c©CSA/ESA/KSAT 2004.

it is strongly dependent on the sea state.

3.1 Discrimination Between Oil Spills and Look-alikes

A part of the oil spill detection problem is to distinguishing oil slicks from other natural
phenomena that dampen the short waves and create dark patches on the surface. Natural
dark patches are termed oil slick look-alikes. Oil slicks may include all oil related surface films
caused by oil spills from oilrigs, leaking pipelines, passing vessels as well as bottom seepages,
while look-alikes do include natural films/slicks4, grease ice, threshold wind speed areas
(wind speed < 3 m/s), wind sheltering by land, rain cells, shear zones, internal waves, etc.
[17]. Oil spills in a narrow sense are only man-made slicks associated with crude petroleum
and its products, heavy and light fuel. Fig. 1.3 shows an example of a dark spot detected
as oil spill by three different satellite based analysis systems while verified as look-alike by
aircraft.

The fact that the radar cross section values for oil spills are not unique poses a problem

4Natural film: microlayer of organic substances secreted by fish and several planctonic species [36].
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Figure 1.3: RADARSAT-1 SCN near range mode subscene (19th of July 2003) containing an
oil slick look-alike (at 55,47N, 12,28E) detected as oil spill by Kongsberg Satellite Services
AS (KSAT), QinetiQ and Norwegian Computing Centre (NR). The size of the subscene is
394 × 359 pixels. c©CSA/KSAT 2004.

in the development of an oil spill detection and monitoring system [35]. Natural films can
be very difficult to distinguish from oil spills. Examples are presented in Hovland and
Johannessen [35]. Due to a higher viscosity than natural films, oil spills tend to remain more
concentrated and in turn provide larger dampening. In Espedal [17] some trends in slick
properties were found for oil spills and natural films, but no one-to-one relationships were
discovered. Oil spills are reported to give a dampening to the surrounding sea in the range
of 0.6 dB to 13.0 dB, and natural films in the range of 0.8 dB to 11.3 dB. A preliminary
version of a conceptual model for distinguishing oil spills from other slicks is proposed in
Hovland et al. [36], and later on in Espedal [17, 16].

Even though we here focus on single frequency and single polarization SAR images, it is
worth mentioning the possibility of a discrimination algorithm based on differences in multi-
frequency and multi-polarization signatures. Maio et al. [53] proposes such an algorithm for
discrimination between oil spills and false alarm templates. However, Gade et al. [28] did
some experiments to investigate whether spaceborne L, C and X-band multi-polarization
SARs are capable of discriminating between films of different chemical properties, and found
that discrimination is only possible at low to moderate wind speeds. Differences between
polarization signatures (film-covered as well as film-free surfaces) were found only for low
wind speeds and small incidence angles.

Results from testing the performance of a semi-automatic oil spill detection algorithm,
on 59 ERS-1 SAR images, show that oil spills that are misclassified as look-alikes fall into
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three main categories [71]:

• Thin, piecewise-linear slicks. (These slicks might be caused by moving ships chang-
ing direction, or by changes in currents or wind directions affecting oil releases from
stationary objects.)

• Low-contrast slicks in homogeneous sea.

• Slicks on a very heterogeneous background.

In addition to look-alikes, different kinds of pollution can cause slicks that are detectable
in SAR images. Wahl et al. [80] gives some examples of ERS-1 images of fish oil and diesel,
run-off water from an open depository, a controlled chemical spill and drilling fluid from
an oil rig. The SAR sensor is currently not capable of distinguishing between the different
pollutants. A single SAR-frequency is possibly not enough to estimate the thickness of the
oil spill, but Jones [41] found for the large Sea Empress oil spill a good correlation between
the largest reduction in backscatter and the thickest oil as determined by visual observations
for a limited range of wind speeds (ca. 5-6 m/s).

These experiences require some attention when choosing features for discrimination be-
tween oil spills and look-alikes. Important features like wind speed, physical, geometrical
and geographical parameters must be used to discriminate between oil spills and look-alikes.

3.2 The Wind Vector

SAR instruments have the advantage over optical sensors that they can acquire images of
the oceans and coastal areas day and night and despite any weather conditions. However,
the wind level influences the backscatter level and the visibility of slicks on the sea surface.
Oil slicks are visible only for a limited range of wind speeds. Table 1.2 gives an overview for
ERS SAR images. Gade et al. [30] studied oil spill pollution in the Baltic Sea, the North

Table 1.2: Visibility of slicks in SAR images (Bern et al. [5]; Perez-Marrodan [60]).

Wind speed Slick signatures

0 m/s No backscatter from the sea surface, hence no signature of oil slicks.

3 m/s No impact from the wind on oil slicks.

A high probability of oil slick look-alikes due to local wind variations.

3 to 7-10 m/s Fewer false alarms from local low-wind areas.

Oil slicks still visible and more homogeneous background.

>7-10 m/s Only thick oil visible.

Thinner oil slicks will be invisible due to a combination of oil spill dispersion.

Thick oil can be visible with wind stronger than 10 m/s.

Sea and the north-western Mediterranean (700 ERS images). They found that with high
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wind speed (> 10 m/s) few oil spills were detected in the SAR images, which is in agreement
with Table 2. They also compared data from airborne surveillance with ERS SAR data. For
both sensors they found that the maximum number of detected pollutions was found during
summer time, April to September. A reason for this could possibly be that the average wind
speed is higher at wintertime at all test sights (e.g. mean wind speed in the North Sea is
above 10 m/s). A wind speed between 12 m/s to 14 m/s should possibly be considered as
the upper limit for all spaceborne SAR imagery of oil spills [49], but the maximum wind
speed for slick detection depends on oil type and the age (i.e. time since release) of the spill
[5]. Thus, an estimate of the wind speed is valuable information for oil spill detection.

For the oil spill detection algorithm described by Solberg et al. [72], the wind level is
set manually based on inspecting the image visually and it is used as input to a threshold
procedure. Other possibilities are to incorporate wind information delivered by an external
source (e.g. a forecasting centre) or to use automatic methods. With automatic methods
for wind estimation, the wind speed can be derived directly from the SAR image. Salvatori
et al. [64] estimates the wind speed from the SAR image by applying an inverted CMOD45

model. The wind vector appeared useful in knowing the evolution of the spill and to obtain
correct classification.

3.3 Satellite Configurations for Oil Spill Detection

It is well understood that the radar image is a representation of the backscatter return
and mainly proportional to the surface roughness at the scale of the radar wavelength (a
phenomenon known as ”Bragg scattering”) [14]. The radar backscatter coefficient is also a
function of the viewing geometry of the SAR, and the backscatter coefficient decreases with
increasing incidence angle. The scattering properties of a material depend on the polarization
of the incoming radar signal, and according to Girard-Ardhuin et al. [32] is the most suitable
SAR configuration for slick detection C-band single-polarized VV SAR at incidence angles in
the range of 20◦ to 45◦. Dokken [13] writes that oil spill detection is possible under suitable
meteorological conditions when σocean > noise_floor + 4dB. Oil spill detection is possible
for incidence angles in the range of 20◦ (lower limit) to the intersection between the σocean and
the noise floor + 4 dB (upper limit). Because little multiple reflection of the signal occurs
over the ocean there is little effect on the polarization. It is therefore not much to gain by
using cross-polarization (HV or VH) [62]. Fortuny-Guasch [25] discusses the potential of
polarimetric SAR for improved oil spill detection and classification. Its use might extend the
validity ranges of wind speed and incidence angles.

For RADARSAT-1, Vachon et al. [78] recommend the SCN near range mode, see Table
1.3, for slick detection. ScanSAR Wide (SCW) can cause limitations because of the poor
resolution of 100 m. RADARSAT-1 is not particularly suited for oil spill detection because
of its HH polarization, as predictions show that oil spill detection will not be possible for

5CMOD4: developed by ESA for wind vector evaluation of C-band scatterometer.
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the largest incident angles especially at low wind speeds [79]. However, it is successfully
used in operating oil spill monitoring. No significant difference in practical performance
between the detection capabilities of RADARSAT-1 versus ENVISAT has yet been reported
for operational use, however the experience might still be limited (see also Shepherd et al.
[66]). ENVISAT’s ASAR WSM covers a much wider swath than its predecessors ERS-1 and
-2, but the resolution is significantly lower. From Table 1.3 we can see that there is a trade-

Table 1.3: Examples of satellite modes.

resolution pixel spacing swath width incidence angle

SAR sensor mode (m) (m) (km) (deg)

ERS-2 PRI 30 × 26.3 12.5 × 12.5 100 20-26

ENVISAT Image Mode 30 × 30 12.5 × 12.5 100 15-45

(Precision Image) (7 swaths)

RADARSAT-1 SCN 50 × 50 25 × 25 300 20-46

RADARSAT-1 SCW 100 × 100 50 × 50 450-500 20-49

ENVISAT WSM 150 × 150 75 × 75 400 16-44

Approximate values are given. Product overviews: RADARSAT International [61]; European
Space Agency [21]; ERS-2 Web-site [15]. Precision Image Mode (PRI).

off between image resolution and swath coverage. Generally, for efficient oil spill monitoring
larger swath widths should be chosen on the expense of somewhat lower resolution.

Since the SAR satellites usually have polar orbits, the coverage depends on the latitude.
Coverage is good in the polar regions and decreases with the distance from the poles. For
the Mediterranean Sea the number of satellites passes per day is 0.04 for ERS, 0.27 for
RADARSAT-1 (SCN near range) and 0.36 for ENVISAT (Wide Swath Mode) [60]. As the
visibility of oil spills reduces with time (e.g. the rate of natural dispersion at moderate
wind speed conditions is about 0.5-2% of the oil volume/hour [44]) and an early warning is
wanted, a high number of passes per day is favourable. With steerable antennas, like the
one planned for the RADARSAT-2 SAR, we get more flexible observation possibilities and
thus less dependent e.g. on the repeat cycles of the satellites.

These are all important factors in estimating the usefulness and efficiency of the SAR,
and in designing future satellite missions for pollution monitoring.

3.4 Speckle Noise

Speckle arises because the resolution of the sensor is not sufficient to resolve individual
scatters within a resolution cell. Speckle is a large problem in SAR images since even a
homogeneous area has a statistical distribution with large standard deviation. Incoherent
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averaging multiple looks may reduce speckle 6 [47]. Another possibility is to smooth the
speckles after the image has been formed. Barni et al. [2] tested two types of filters, general
noise-reducing filters that do not assume any a priori speckle model and adaptive filters
assuming a multiplicative speckle model (speckle noise by a multiplicative model is described
by Lee [48]). Better results were reported for the latter type in their oil spill detection
algorithm.

For oil spill applications, a filter should suppress speckle noise, but still preserve small
and thin oil spills.

4 Methodology for Oil Spill Detection in SAR Images

We distinguish between manual approaches and automatic algorithms for oil spill detection.
Detection of oil spills can be divided in [39]:

• Detection of suspected slicks.

• Manual verification of the slicks (oil/look-alike) and assignment of confidence levels.

This section addresses issues regarding the design of oil spill detection systems.

4.1 Manual Inspection

Since 1994 KSAT in Norway has provided a manual oil spill detection service. Here operators
are trained to analyse SAR images for the detection of oil pollution. The KSAT approach
is described by Indregard et al. [39]. External information about wind speed and direction,
location of oilrigs and pipelines, national territory borders and coastlines are used as sup-
port during the analysis. The operator uses an image viewer that can calculate some spot
attributes, but he/she still has to go through the whole image manually. This is time con-
suming. Possible oil spills found are assigned either high, medium or low confidence levels.
The assignment is based on the following features: the contrast level to the surroundings,
homogeneity of the surroundings, wind speed, nearby oilrigs and ships, natural slicks near
by, and edge and shape characteristics of the spot. The determination of a confidence level
is not exact science and there will always be an uncertainty connected to the results from
manual inspection.

4.2 Manual Detection Compared to Automatic Detection

During manual inspection, contextual information is an important factor in classifying oil
spills and look-alikes. A challenge is to somehow incorporate the ”expert knowledge” into

6The bandwidth of the SAR system is divided into N discrete contiguous segments, each segment gen-
erating a single-look lower resolution image. The intensities of the N single-look images are incoherently
averaged to form a multiple-look image [77].
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the automatic algorithm. In Solberg and Volden [73] a set of rules and knowledge about
external conditions (e.g. wind speed) are used to adjust prior probabilities of oil slicks in the
scene. This information is incorporated into a classifier based on a multivariate probability
distribution function.

Fiscella et al. [24] found that a human image interpreter and a classification algorithm
have similar ability to discriminate oil spills from look-alikes, but the image set used contained
only 21 oil spill candidates.

A study of best practise, based on a comparison of KSAT’s manual approach, NR’s
automatic algorithm (described in Bjerde et al. [8]; Solberg and Solberg [71]; Solberg and
Volden [73] and lately in Solberg et al. [72, 70]) and QinetiQ’s semi-automatic oil spill
detection approach, has been performed by the ongoing Oceanides project [39]. QinetiQ’s
semi-automatic approach covers only the first step of an automatic algorithm, dark spot
detection, and therefore the output targets must be classified visually by an operator. In
this study the three satellitebased approaches were compared to airborne verifications in a
satellite-airborne campaign. The study was done without the operators or the algorithms
knowing of the aircraft verifications. (The benchmark set consisted of 32 RADARSAT-1
images). This data set contained 17 verified oil spills. KSAT detected 15 of these slicks, NR’s
algorithm detected 14, and QinetiQ detected 12. The results show that a challenge is to have
all operators pick out the same spots and assign the same confidence levels. NR’s algorithm is
objective (with one exception of manual wind level assignment, see section 3.2) and produces
the same result repeatedly. Good agreement was found for high-contrast slicks among the
various methods, but there were some differences on low-contrast slicks. The operators at
KSAT use 3-25 minutes to analyse a scene (on average 9 min.), the NR’s algorithm used
about 3 minutes and QinetiQ’s algorithm used 20 minutes per scene in average. This shows
that automatic approaches are more feasible as the volume of SAR data grows.

4.3 Design Issues for Automatic Detection Systems

Kubat et al. [45] identified a number of issues during their development of a machine learning
component for an oil spill detection system. The first issue is the scarcity of data, as most
satellite SAR images acquired contain no oil spills. The second is the imbalanced training set.
Oil spill detection is an application where the classifier should detect a rare but important
event (look-alikes appear much more frequent). Oil spills happen to appear in batches, where
examples drawn from the same image constitute a single batch. A similarity within batches
and dissimilarity between batches can be present, which can influence the classifier training.
And finally, the performance of the classifier relates to the users possibility to decrease the
number of alarms at the expense of missing genuine oil spills (specificity). Indregard et al.
[39] also points out that automatic algorithms should be tuned in order to be certain that
no suspicious oil spills that would be detected by an operator are missed.

The significant differences in mode characteristics for different SAR sensors, as presented
by Table 1.3, suggests a development of sensor specific modules.
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All of these are considerations to be taken into account when designing an automatic
system for oil spill detection.

5 Automatic Techniques for Oil Spill Detection in SAR

Images

Several of the published papers on oil spill algorithms for SAR images (e.g. Fiscella et al.
[24]; Frate et al. [26]; Solberg et al. [72]) describe a structure comparable with the one in
Fig. 1.4.

Figure 1.4: A framework for oil spill detection algorithms.

The importance of the wind vector was emphasised in section 3.2, and Salvatori et al.
[64] include two additional steps of wind direction estimation and wind speed calculation.
Manual wind estimation was included by Solberg et al. [72]. SAR image calibration, land
masking, speckle reduction and class signature databases belong in this framework as well,
but Fig. 1.4 shows the core modules of an oil spill detection and classification algorithm.
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This section covers algorithms and techniques related to each module of Fig. 1.4.

5.1 Segmentation Techniques

As oil spills are characterised by low backscattering levels this suggest the use of thresholding
for dark spot segmentation. An early attempt on segmentation of ERS-1 SAR images is
described by Skøelv and Wahl [69]. The algorithm simply looks for bimodal histograms in
widows of size N × N pixels (N was sat to 25 pixels). This is reported as a good method
for detection of oil spills provided that the spill is not to thin. A similar approach is briefly
described in Vachon et al. [78]; Manore et al. [54]. This algorithm, which is developed
for RADARSAT-1 SAR data, spatially averages the image before a user defined adaptive
threshold is applied. As both these algorithms lack a classification step look-alikes will be
detected as well.

Solberg et al. [72, 70] apply an adaptive algorithm were the threshold is sat k dB below the
mean value estimated in a moving window. The thresholding is combined with a multiscale
pyramid approach and a clustering step to better separate the spill from its surroundings.
Noise reduction by a mean filter smoothes the edges.

The use of hysteresis thresholding was introduced by Canny [9] and is applied by Kanaa
et al. [42] for detecting oil spills in ERS amplitude images. A search is done in the 8
neighbourhood directions followed by a merging step of the responses. Linear features are
reported accentuated by this method.

An oil slick detection approach, based on the Laplace of Gausian (LoG) and Difference of
Gaussian (DoG) operators, is described in Change et al. [10] and Chen et al. [11]. The LoG
operator is applied on the coarsest layer of a 2 × 2 pixel reduced pyramid with three layers.
The concave areas of the grey level surface are selected. The DoG is used to locate those
areas with more than half of the slick boundary pixels greater than µ+1.75σ (as selected for
ERS-1, where µ and σ are mean and standard deviation over all image pixels). To improve
the result the finer layers of the pyramid are processed.

The use of wavelets in ocean feature detection (including oil spills) is described by Liu
et al. [50] and Wu and Liu [82]. In the general linear feature detection scheme the analysing
wavelet is defined as the LoG. Regions with multiple histogram peaks are selected for the
wavelet transform. The wavelet is applied as an edge detector as the contours of the zero
crossing indicates the feature edges (see Canny [9]).

As oil spills dampens the capillary waves, Mercier et al. [56] suggests a segmentation
method based on detecting local variations of the wave spectra. First a multi-resolution
analysis is achieved by a wavelet packet transform then a Hidden Markov Chain (HMC)
model is applied to the wavelet coefficients. The technique is tested on an ERS PRI image.

QinetiQ’s dark spot algorithm uses a Constant False Alarm Rate (CFAR) algorithm to
locate dark regions. The dark spots are merged according to a clustering radius and a
threshold, and the Hough transform is used specially to identify linear targets [39].
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To allow dealing with mixed surface-cover classes and unsharp boundaries among regions
Barni et al. [2] proposes an algorithm based on fuzzy clustering. A membership function
uA(x) is assigned to each pixel x, which measures how much the pixel belongs to a set A. The
Fuzzy C-means (FCM) algorithm is applied, and a pyramid structure is used in finding the
membership values. Uncertain pixels are tested in the lower pyramid level. Neighbouring
regions are identified, and a Sobel operator is used to enhance the main edges of the original
filtered image. Regions, whose common border does not have a high enough percentage of
large gradient points, are merged together. One difficulty with fuzzy clustering is to find the
optimum number of clusters.

A method using mathematical morphology for oil spill segmentation is presented by
Gasull et al. [31]. Combinations of opening and closing 7 operations are used for oil spill
filtering and thresholding. The algorithm aims at detecting spills from sailing tankers, and
some features used are the elongatedness and dampening of the spill.

Even though a variety of methods are applied, the common goal is to detect all suspicious
slicks and to preserve the slick shapes. The latter is of most importance for the success of
discriminating oil spills from look-alikes in the following steps.

5.2 Slick Feature Extraction

From the thresholded dark spot image, feature extraction is used to compute features for
each slick. Table 1.4 summarizes the features used in three different algorithms. In a feature
vector that is input to the classifier, the individual features are typically covered by the
following classes:

• The geometry and shape of the segmented region.

Geometric and shape features are applied by all methods in Table 1.4. To detect pol-
lution from sailing tankers cleaning their tanks, an important feature is elongatedness
which can be expressed as a ratio between the width and length of the slick [31]. An-
other possible feature useful in identifying these spots is the first invariant statistical
moment of Hu [38].

• Physical characteristics of the backscatter level of the spot and its surroundings.

Frate et al. [26] found that features containing most valuable information for classifi-
cation by neural networks were features covering information on the gradient of the
backscattering value when passing from background to spill (#13, #14 and #15). In
addition, the background standard deviation (#10) was found important which is a
parameter highly affected by the wind level and is generally high for natural sea slicks.
Similarly in Fiscella et al. [24], features connected to the background surrounding the

7Opening: erosion followed by dilation. Closing: dilation followed by erosion (see Sonka et al. [74] for an
introduction to mathematical morphology).
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Table 1.4: Features applied by various algorithms.

# Feature 1 2 3

1 Slick area (A) x x x

2 Slick perimeter (P) x x

3 P/A x

4 Slick complexity x x

5 Spreading (low for long thin slicks, high for circular shape) x

6 Slick width x

7 First invariant planar moment [38] x

8 Dispersion of slick pixels from longitudal axis x

9 Object/dark area standard deviation x x

10 Background/outside dark area standard deviation x x

11 Max contrast (between object and background) x

12 Mean contrast (between object and background) x

13 Max border gradient x

14 Mean border gradient x x

15 Gradient standard deviation x

16 Local area contrast ratio x

17 Power-to-mean ratio of the slick x

18 Homogeneity of surroundings x

19 Average NRCS inside dark area x

20 Average NRCS in limited area outside dark area x

21 Gradient of the NRCS across the dark area perimeter x

22 Ratio #9 to #10 x

23 Ratio #19 to #9 x

24 Ratio #20 to #10 x

25 Ratio #23 to #24 x

26 Ratio #19 to #20 x

27 Distance to a point source x

28 Number of detected spots in the scene x

29 Number of neighbouring spots x

1: Frate et al. [26] , 2: Solberg et al. [72] and 3: Fiscella et al. [24]. x indicates that the
parameter is used in the feature vector of the particular algorithm.

slick were found to be important due to the wind speed dependence of oil spill obser-
vations (these features could also be classified as contextual features).

• Spot contextual features.

Examples are slick location relative to the shore and distance to ships and oilrigs. In the
contextual analysis of the supervised discrimination algorithm described by Espedal
[16] is a ”hot-spot” pollution source database used. Improved classification results were
found by Solberg and Volden [73] when the dark spots are classified in the context of
their surroundings and weather information is incorporated. Espedal and Wahl [19]
suggest using wind history information for slick classification and slick age estimation.
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Wind history can also be looked at as an indirect spot feature.

• Texture.

In contradiction to the pixel intensity itself, texture provides information about the
spatial correlation among neighbouring pixels. Assilzadeh and Mansor [1] describe an
early warning system where texture features based on grey level co-occurrence matrixes
(GLCM)8 are used. Homogeneity and Angular Second Moment were found effective
in separation of oil spills from other objects. Power-to-mean ratio of the slick and the
surroundings is used by Solberg et al. [72] as a measure of homogeneity.

Even though the different methods in Table 1.4 does not apply the exact same features
are several of the features different measures of the same characteristic.

Fractal texture description can be used to describe natural surfaces [59]. The use of
fractal dimension9 as a feature for classifying observed ocean radar signatures is suggested
in Gade and Redondo [29]. A box-counting algorithm (the method is described in Keller
et al. [43]) is used to find the fractal dimension D. A difference in D of oil spills compared
to other oceanic phenomena is reported found. In another paper on fractal dimension by
Benelli and Garzelli [3], was a steady fractal dimension value of D = 2.45 found for the sea
surface, while an average value of D = 2.15 was found for oil spills. A smaller D indicates
less roughness.

Good features are important, but the lack of good guidelines on how to acquire them has
been pointed out by Kubat et al. [45].

5.3 Classification Methods

As a number of phenomena can create dark patches in a SAR image, the purpose of the
classifier is to distinguish oil spills from the other cases.

Based on results from selecting the dark regions with a NRCS lower than one half of the
average NRCS of the sea area in the image, Fiscella et al. [24] apply a Mahalanobis classifier
to estimate the probability p of a dark spot being an oil spill. For ERS images, p > 2/3 and
not looking at uncertain cases, 93% of the oil spills were correct classified (a priori) and 82%
of the oil spills in the test set were correct classified. This was compared with a compound
probability classifier. Here p > 2/3 gave a 85% correct classification rate (a priori) of oil
spills and 91% of the oil spills in the test set were correct classified. A training set of 80
oil spills and 43 look-alikes and a test set of 11 oil spills, 4 uncertain and 6 look-alikes were
used.

In Solberg et al. [72] is a probability assigned to a spot from a multivariate Gaussian
density function. The unknown parameters are derived from a signature database. (Fiscella
et al.’s method is in a similar way based on previous measurements.) This is combined

8GLCM: approximates the grey level joint probability distribution [34].
9A surfaces fractal dimension corresponds closely to our intuitive notion of roughness [59].
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with a prior model for the number of look-alikes, a model for the presence of a slick in
the vicinity of a bright object and a rule-based modification of the probability density to
take into account feature combinations that are indications of certain scene conditions. The
leave-one-out method with 84 scenes gave a correct classification of 94% for oil spills.

An artificial neural network (NN) is a mathematical model composed of many neurons10

operating in parallel. An approach for oil spill detection, tested on ERS images, based
on a multilayer perceptron (MLP) neural network with two hidden layers is described by
Frate et al. [26]. Selection of a dark object and image fragmentation is performed with
manual interaction, while feature extraction and classification into oil spill or look-alike is
performed automatically. The input (to the net) is also here a feature vector. The neuron
is the elemental building block of each layer in the net, and it is mainly characterized by an
activation function (in this case a non-linear sigmoid function). The neuron computes the
sum of its inputs, adds a bias term, and drives the result through the activation function.
A single output is produced from each neuron. Using the leave-one-out method with 139
sample oil spills, 18% were reported misclassified as look-alikes.

The proposed automatic methods for oil spill detection discussed here reports accuracies
from 82% to 94% correct classification of oil spills. These studies are however performed
on different data sets, and the approaches differ both in terms of segmentation approach,
feature extraction methods, and classification methodology. The most important steps in
this process are segmentation and feature extraction. If a slick is not detected during seg-
mentation, it cannot be classified correctly. If the features have good discriminatory power,
the classification problem will be easier and several classifiers will work. We believe that the
variance in shape, contrast, and surroundings of oil slicks and look-alikes is so large that it
is necessary to subdivide the problem into subclasses, and to guide the classifier by using
as much prior information about the problem as possible. This was done in the approach
presented in Solberg et al. [72], which is the approach with the highest accuracy reported so
far.

6 Conclusion and Suggestions for Further Work

Synthetic aperture radar is the most applicable spaceborne sensor for operational oil spill
detection, mostly because of its all weather/all day detection capabilities and wide coverage.
It can operate from light wind to wind speeds up to 12-14 m/s, but the maximum wind
speed for oil slick detection depends on oil type and age. Sensors operating in wide swath
mode with a spatial resolution of 50-150 m are found to be sufficient and allows covering
large ocean areas efficiently.

The largest challenge in detection of oil spills in SAR images is accurate discrimination
between oil spills and look-alikes. Most low wind situations can be handled by analysing the

10A neuron is a non-linear computational element connected to other neurons by links characterized by
different weights (see also Bishop [7]).
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surroundings of a slick, but natural films cannot always be properly distinguished from oil
spills based on a SAR image alone. Additional information about algal blooms is desired,
particularly for the Baltic Sea, where algae is common during the summer. Such information
can be derived from optical sensors. Future oil spill systems should incorporate algae infor-
mation either from multisensor studies, or by using prior knowledge about the likelihood of
observing alga in a given area at a certain time of the year.

For operational purposes there is a need for coordination between satellite overpasses
and aerial surveillance flights. Presently, aerial surveillance is needed for collecting evidence
to prosecute the polluters. The combination of coordinated satellite image acquisitions and
aerial surveillance flights is presently used operationally by many countries in Northern
Europe. Many of these services use the KSAT manual approach to identify oil spills from
the satellite images.

Future SAR missions are crucial for sustainable operational oil spill detection services.
There is a number of commercial SAR missions planned; the Japanese Advanced Land-
Observing Satellite (ALOS) and the European TerraSAR-L are both satellites with L-band
SAR, which means an increased wavelength (24 cm) compared to e.g. ERS and ENVISAT.
TerraSAR-X and COSMO/SkyMed (dual use) are German and Italian X-band satellites.
TerraSAR-X will have a best resolution of 1 m, but will also provide a ScanSAR mode with
16 m resolution and 100 km swath width. Concerning oil spill detection, the most promising
of the coming missions is RADARSAT-2 with its C-band SAR. RADARSAT-2 is planned
launched in 2005, and will provide improved resolution and flexibility in selection of polariza-
tion options (both single and full polarization modes will be available). A future spaceborne
C-band SAR to replace ENVISAT ASAR would be needed to sustain the quality of the oil
spill detection services. This is acknowledge by ESA, as many other ocean applications use
C-band SAR images regularly.

A study of best practice of manual versus automatic oil spill systems showed that oper-
ators show some variance in detecting spills, particularly in assigning an oil spill confidence
estimate. An automatic algorithm with a reliable and objective oil spill confidence estimate
would be highly desirable. The need for automatic algorithms depend on the number of
images to be analysed, but for monitoring large ocean areas it is a cost-effective alternative
to manual inspection.

More work on the direct comparison of the performance of manual versus automatic
methods for oil spill detection is needed. Up to now, the automatic systems have been
tested off-line, thus, additional spills reported by the automatic systems cannot be verified.
We still believe that the slicks classified as oil by automatic algorithms should go through a
manual inspection prior to sending out aircrafts. In that case, inspection of a couple of slicks
per scene would be much more efficient than inspection of the complete scene as currently
done. As part of the ESA project Northern View, NR’s automatic algorithm will be deployed
in KSAT’s operational environment.

Automatic oil spill detection algorithms are normally divided into three steps, dark spot
detection, dark spot feature extraction, and dark spot classification. Few papers are pub-
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lished on automatic algorithms for classification of oil spills and its look-alikes as most authors
focus on the detection step. Large-scale classification studies with acceptable classification
performance are reported based on statistical classification [24; 72], and neural nets [26]. An
extensive comparison of the classifiers used by the different approaches, based on the same
data set of features, would be desirable.

To increase the performance further, incorporation of more knowledge is needed. We
believe that the future oil spill system should be an integrated system, including automatic
algorithms, a database of “hotspots” (e.g. oilrigs, sunken ships and seepages), ship lanes,
algae information, and more extensive use of wind information.
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Abstract

We present algorithms for automatic detection of oil spills in SAR images. The algo-
rithms consist of three main parts; (i) detection of dark spots; (ii) feature extraction from
the dark spot candidates; and (iii) classification of dark spots as oil spills or look-alikes. The
algorithms have been trained on a large number of Radarsat and Envisat ASAR images.
The performance of the algorithm is compared to manual and semi-automatic approaches in
a benchmark study using 59 Radarsat and Envisat images. The algorithms can be consid-
ered to be a good alternative to manual inspection when large ocean areas are to be inspected.

Index Terms– SAR, oil spill detection, feature extraction, classification.

This work was supported by the EC-project Oceanides and the Norwegian Research Council. The authors would
like to thank Marte Indregard, Peter Clayton and Lars Tufte for valuable input on the benchmark comparisons.

89



1 Introduction

Marine pollution arising from illegal oily discharges from tank cleaning or bilge pumping
represent a serious threat to the marine environment. Discharges from ballast water or tank
cleaning concerns mainly tankers, while engine room effluent discharges concern all types of
ships. Due to such operations, large amounts of oil are deliberately pumped into the marine
environment every day. Oil spills correlate well with the major shipping routes, and they
also often appear in connection with offshore installations.

The combined use of satellite-based SAR images and aircraft surveillance flights is a cost-
effective way to monitor large areas and catch the polluters. Radarsat and Envisat ASAR
images enables covering large areas, but aircraft observations are needed to prosecute the
polluter, and in certain cases to verify the oil spill.

Oil spills appear as dark areas in the SAR images because the oil dampens the capillary
waves of the sea surface. A major part of the oil spill detection problem is to distinguish oil
spills from other natural phenomena (look-alikes) that dampen the short waves and create
dark patches or on the surface. An oil spill may result in several oil slicks. By the term “oil
slick” we will denote a region on the sea surface covered by oil. We distingush between the
terms “oil spill” and “oil slick” to be able to describe each dark region in the image that the
oil spill consists of.

A review of algorithms for automatic detection of oil spills can be found in [1]. Several
of the papers [2; 3; 4] describe a methodology consisting of dark spot detection followed
by feature extraction and classification. Solberg et al. [4] apply an adaptive thresholding
algorithm for dark spot segmentation. Kanaa et al. [5] use hysteresis thresholding. An
edge detection approach based on the Laplace of Gaussians or Difference of Gaussians is
presented in [6; 7]. The use of wavelets for ocean feature detection is described by [8; 9].
QinetiQ’s dark spot algorithm uses a Constant False Alarm Rate (CFAR) algorithm followed
by clustering and Hough transform to identify linear targets [10]. Barni et al. [11] propose
an algorithm based on fuzzy clustering. A method using mathematical morphology for oil
spill segmentation is presented by Gasull et al. [12]. Even though a variety of methods are
applied, the common approach is to detect all suspicious slicks and to preserve slick shapes.

In [1] a discussion of previous approaches to oil spill feature extraction is included. Most
of the features used for slick feature extraction in the literature are typically covered by the
following types: the geometry and shape of the segmented region; physical characteristics
of the backscatter level of the spot and its surroundings; contextual features describing the
slick in relation to its surroundings; and textural features.

Various classifiers have been applied to classify a slick as oil or look-alike. Fiscella et al.
[2] applied a Mahalanobis classifier. Solberg et al. [4] combined a statistical classifier using a
Gaussian model and several subclasses with a rule-based modification of prior probabilities
to take into account feature combinations that are indications of certain scene conditions.
They tested their method on 11 oil spills and 6 look-alikes. A neural-network approach is
described by Del Frate et al. [3]. Their data set consisted of 71 oil slicks and 68 look-alikes,
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and they used leave-on-out for error estimation. A recent study based on fuzzy logic is
given by [13], who used 9 images for training and 26 images for testing. A comparison of
these different oil spill detection approaches in terms of classification accuracy is difficult.
They use different data sets and different classifiers, so the reported classification accuracy
cannot be directly compared. For an automatic algorithm that should operate under all wind
conditions, including low wind where a high number of look-alikes can be expected, the false
alarm ratio becomes very important. By using e.g. loss functions, the number of oil spills
classified as look-alikes can be lowered, but at the cost of a higher false alarm ratio. In this
paper we test the performance of the algorithm on a test set of many thousand look-alikes.

Comparing the results of the automatic algorithm to manual inspection by a trained
operator is very interesting. A significant contribution of this paper is a benchmark study
involving 59 Radarsat and ENVISAT SAR images that compares the algorithm to the manual
detection done as part of the operational oil spill detection service at Kongsberg Satellite
Station in Tromsø, Norway, and aircraft verification.

In this paper, we present a methodology for automatic oil spill detection in Radarsat and
Envisat SAR images. The algorithms are trained on 70-80 images from each sensor, and
they are benchmarked against aircraft verifications and manual detections.

2 SAR Imaging of Oil Spills

A SAR sensor is the most efficient satellite sensor for oil spill detection, though it does not
have capabilities for oil spill thickness estimation and oil type recognition. A discussion of
other sensors used for oil spill imaging is given in [1]. Oil spills dampen the Bragg waves
on the ocean surface and reduce the radar backscatter coefficient, thus creating dark spots
in the SAR image. Oil spill look-alikes are phenomena that result in dark areas in the
SAR image. Oil spills may include all oil-related surface films caused by oil spills from oil
rigs, leaking pipelines, passing vessels as well as bottom seepages, while look-alikes include
natural films/slicks, algae, grease ice, threshold wind speed areas, wind sheltering by land,
rain cells, shear zones, internal waves etc. [14]. A trained human interpreter is able to
discriminate between oil spills and look-alikes based on experience and prior information
concerning location, differences in shape and contrast, and weather information. Knowledge
about ship lanes and oil rig positions can be extracted from a database, but ship and oil
rig positions can also be derived from the SAR image (ships of a certain minimum size).
Information about the wind level is very important to consider for oil spill classification.
The wind level influences the backscatter level and the visibility of oil spills and look-alikes.
The visibility of slicks in SAR images is discussed in [15; 16]. In wind speeds less than 3-5
m/s the probability of observing look-alikes is high. Wind speeds from 5-10 m/s produce
fewer dark spots from local low-wind areas. As the wind increases, the contrast between
the oil and the surrounding sea will decrease. In high wind, only thick oil will be visible,
and look-alikes are rare. The upper limit for observing oil in the SAR image is not known
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exactly. In an operational oil spill detection service at Kongsberg Satellite Station in Tromsø,
an upper limit of 15 m/s is used.

3 The Oil Spill Detection Approach

An overview of the oil spill detection approach is given in Figure 1.1. Pre-processing consists
of land masking the images by converting a land mask to the SAR image grid to avoid re-
sampling the speckle pattern, followed by range-dependent scaling and conversion to radar
brightness values (beta naught values). The land mask is obtained from a shoreline database
[17].

The radar backscatter from the ocean depends strongly on the incidence angle, yielding
a much stronger signal at low incidence angles. The incidence dependency depends on the
wavelength, polarization, and wind and weather conditions on the ocean surface. Instead
of trying to estimate and compensate for the weather dependent effects, we have opened
for the simple solution of using a standard incidence angle compensation for all weather
conditions. Two different correction functions were identified in a small experimental study,
one for Radarsat and one for ASAR. For ASAR, a tan4(α) term is used, where α is the
incidence angle, while for Radarsat a tan2(α) is sufficient to yield a visually satisfactory
range intensity for the relevant scenes.

Figure 1.1: Overview of the oil spill detection approach.
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3.1 Dark Spot Detection and Segmentation

The first step in the oil detection algorithm is to segment out oil spill candidates. We have
chosen to segment out all dark regions in the image, and later discriminate between oil spills
and look-alikes based on features computed for each region. This approach can result in
a large number of dark areas being segmented, particularly for low-wind conditions where
look-alikes are frequently observed.

Sensor-specific modules for dark spot detection have been developed for Radarsat ScanSAR
and Envisat Wide Swath ASAR images. Sensor-specific modules were necessary because of
different spatial resolution and contrast. Radarsat ScanSAR Narrow full resolution images
(HH polarization) have a resolution of approximately 50 m and a pixel spacing of 25 m.
Envisat Wide Swath images (VV polarization) have a resolution of approximately 150 m
and a pixel spacing of 75 m.

Initial segmentation experiments with the algorithm developed for ERS images [4] showed
that a single-scale approach did not perform well in segmenting both large and small regions.
Thus, a multiscale approach was developed.

First, an image pyramid is created by averaging pixels in the original image. From the
original image, the next level in the pyramid is created with half the pixel size of the original
image, and so on. Adaptive thresholding is then applied to each level in the pyramid.

The following adaptive thresholding algorithm is used to segment each level in the pyra-
mid:

I. For each pixel i, compute the mean value (µ) and the power-to-mean (PMR) value
(σ/µ) in a local window of size W (where σ is the standard deviation).

II. Compute homogeneity category k from PMR as described in Table 1.1.

III. Get threshold value ∆dBk (in dB) given homogeneity category from Table 1.1.

IV. Set Ti = µ − ∆dBk.

V. Threshold pixel i with the computed value of Ti.

The threshold is thus set adaptively based on estimates of the roughness of the sur-
rounding sea. The motivation for this is the following: In low wind with many look-alikes,
the Power-to-mean ratio (PMR) will be high, and a high contrast between slicks and their
surroundings can be expected. As the wind increases, the PMR value will decrease, and the
expected contrast between the oil and the surrounding sea will also decrease.

The parameter values in Table 1.1 were found by experiments on the training data set
(see Section 3.3).

It is possible to replace the homogeneity category with wind predictions or estimated
wind levels. For the data set we worked with, no wind predictions were available, and we
did not have access to an algorithm for wind speed estimation based on the SAR image.
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Table 1.1: Parameters values for thresholding

PMR intervals Homogeneity Thresholds Thresholds

category (k) ∆dBk in dB in dB

(Envisat) (Radarsat)

PMR > 0.15 1 4.0 4.0

PMR ∈ [0.05, 0.15] 2 2.7 3.0

PMR ∈ [0.04, 0.05] 3 2.4 2.0

PMR ∈ [0.03, 0.04] 4 1.5 1.8

PMR ∈ [0.015, 0.03] 5 1.3 1.5

PMR < 0.015 6 1.0 1.0

If µ and the PMR value is recomputed for every single pixel, this procedure is fairly slow
for a 400×400 km2 image (Envisat WS). The segmentation step is the most computationally
intensive step of the algorithm. To speed up the processing, two skip factors are introduced.
Skip factor s1 is used for thresholding, the adaptive window is moved s1 pixels for each
threshold computation, while skip factor s2 is used when computing the mean and PMR value
inside the window (only every s’ pixel is included in the mean and variance computations).
The following parameter values are used: W = 121, s1 = 5, and s2 = 11.

After segmenting each level in the pyramid, the different levels are merged using a very
simple procedure. All segmented pixels in the highest resolution level are kept, and the lower
resolution levels are used to fill holes in the segmentation result using a logical operator. The
Radarsat segmentation module uses three pyramid levels, while the Envisat module uses two
levels.

The segmented image will contain all oil spills, but also a high number of look-alikes.
The segmentation step works well in general, but in some cases thin linear slicks can be
fragmented. Fig. 1.2 shows an example of an image and the corresponding segmentation
result.

3.2 Dark Spot Feature Extraction

After segmentation, "‘region objects"’ are formed for all objects in the segmented image.
Small objects (< 20 pixels) are not further processed. The subsequent processing considers
only region objects. For each region, a set of features is computed. These features are later
used to classify each slick as oil or look-alike.

The feature set consists of a mix of features specially developed for oil spill detection and
traditional descriptors from the image analysis literature.

The features can be grouped into descriptors for shape, contrast, slick surroundings, and
slick homogeneity. We previously performed a study regarding oil spill features in ERS
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Figure 1.2: Part of the Envisat image from July 21, 2003, and the corresponding segmentation
result. c©ESA/KSAT/NR

images [4] and the features used here are mainly from [4], but some of them have been
modified.

The following features are used:
Shape features

• Slick complexity is defined by C = P 2/A, where P is the perimeter and A is area of
the region.

• Slick width is the ratio between the area of the region and the width of the branches
of the skeleton of the region.

• Slick area is the size (in number of pixels) of the region.

• Slick moment is the first invariant planar moment [18], defined as φ1 = η20 +η02, where
ηpq are normalised central moments: ηpq = µpq

µ00
, and µpq are the non-normalised central

moments.

Contrast features

• Slick local contrast is the difference between the mean value of the slick and the mean
value of a larger window surrounding the slick.

• Border gradient is the mean of the magnitude of gradient values of the region border
area. The Sobel operator is used to compute the gradient.
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• Smoothness contrast (Nr/Gr

Nb/Gb
) is defined as the ratio between the number of region pixels

Nr and the sum of the region pixel gradient values Gr, and the ratio of the number of
background pixels Nb and the sum of the background gradient values Gb .

Homogeneity features

• Surrounding PMR is computed as the PMR ratio (σ/µ) in a large window (containing
slick surroundings).

• Slick PMR is computed as the PMR ratio of the slick.

Slick surroundings

• Number of detected spots in the scene.

• Number of neighboring spots in a large window centered at the region.

• Number of neighboring spots in a small window centered at the region.

• Distance to ship/rig A simple point detector to detect ships or oil rigs has been im-
plemented. To detect point targets, pixel cliques (a clique consists of two or more
neighboring pixels) within a center window of size 3×3 is compared to the mean value
of a larger window (size 15 × 15). If the difference between the clique with the largest
mean value and the mean of the large window is larger than 7 dB, the center location
is said to be a point target. From every region from spot detection, the distance to the
closest point target is computed.

3.3 Dark Spot Classification

In designing a classifier to discriminate between oil spills and look-alikes, several factors
are important to consider. One factor is the expected number of oil spills compared to the
expected number of look-alikes. The number of look-alikes depends on the wind speed (and
also location). With the given segmentation approach we sometimes observe several hundred
look-alikes in a single scene during low-wind conditions. In high wind, only a few look-alikes
are expected. The expected number of oil spills does not depend strongly on wind speed. In
low wind, even very thin oil films are visible in the SAR image, whereas in high wind, only
thicker oil films are visible. The expected number of oil spills in a scene might also depend
on the location. Oil spills are commonly seen near oil rigs or major shipping lanes. Fig.
1.3 shows the number of reported oil spills in the Baltic sea during 1990-2002. Note that
this information is not normalized in terms on monitoring frequency, so it cannot be directly
used to calculate the yearly expected number of oil spills at a given location. Studying the
spatial distribution and temporal trends for oil spills is beyond the scope of this paper, for
further information see [19].
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Figure 1.3: Oil spills In the Baltic Sea 1990-2002 reported to HELCOM. (Copyright BfG
2004)
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The difference between the expected number of oil spills and the number of look-alikes will
influence the estimates of the corresponding class-conditional probability distributions. A
training set consisting of e.g 100 images is likely to contain thousands of look-alikes and about
100 oil spills. We need to consider this when estimating the variance of the distributions.

Basic Classifier

In the following we describe our basic classifier for oil spill classification. It is given in [4],
but it is included here for easier reference. For each of the detected dark spots, a number of
features are computed and collected in the feature vector xi. These features are constructed
such that they typically will be different depending on if the dark spot is an oil spill or a
look-alike. However, the behavior of these features will change with different wind levels.
Denote the wind level by w.

A prior distribution and a probability density for the features are combined through
Bayes theorem to obtain the posterior probability for a detected spot being an oil spill. Let
c be the unknown class membership of a detected spot. Then

Pr(c = o|xi, w) =
πo(w)fo,w(xi)

πo(w)fo,w(xi) + (1 − πo(w))fl,w(xi)

=
πo(w)fo,w(xi)

fl,w(xi)

πo(w)fo,w(xi)
fl,w(xi)

+ (1 − πo(w))
. (1.1)

πo(w) and πl(w) are the prior model for the probability that a detected spot is oil or look-
alike given wind level w. fo,w(xi) and fl,w(xi) are the probability densities for the observed
features xi in classes o = oil spills and l = look-alikes, respectively.

In the following paragraphs, we describe how the class-conditional proability densities
are computed, the use of prior models for the expected number of oil spills and look-alikes
in an image, the use of loss functions to model false positives and false alarms, and the use
of rule-based corrections of the prior probabilities.

Specification of Class-conditional Probability Densities The simplest choice of den-
sities is to use multivariate Gaussian ones. Even within each wind level both the oil spills
and the look-alikes may vary quite a lot in shape and other features. Describing the feature
density by a unimodal density such as the Gaussian is therefore not appropriate. Instead
we have assumed different densities depending on the value of a shape descriptor s (we have
used the feature slick moment). The sample space of s was divided into four subgroups
ranging from wide slicks with regular shape to wide slicks with a complex boundary to thin,
linear spots. The density for class c and wind level w is then given by fc,w(xi) = fc,w,g(xi) if
s is in subgroup g. This hierarchical structure is illustrated in Fig. 1.4. Finally, the densities
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within each subgroup are assumed Gaussian:

fc,w,g(xi) =
1

(2π)
d
2 | Σw,g |

1
2

×

exp{−1

2
(xi − µc,w,g)

T Σ−1
w,g(xi − µc,w,g)},

where c ∈ {o, l}, d is the number of features, µc,w,g is the mean vector under wind level w and
shape descriptor in subgroup g for class c and Σw,g is a diagonal covariance matrix, common
for both classes given (w, g). A diagonal covariance matrix is used because the number of
oil spills in each subclass in the training data set is small, typically 10-20. Equal variance
for a given feature for a given oil spill subclass and its corresponding look-alike subclass
is used because the look-alike classes have many times more observations than the oil spill
classes, and experiments showed that using class-conditional covariance estimates resulted
in classifying all slicks as look-alikes.

Only the features slick complexity, slick local contrast, border gradient, smoothness con-
trast, slick PMR, slick width and number of neighboring spots are used to compute the
probability densities. These features were selected in previous studies [4].

Prior Model for the Number of Slicks Prior distributions for the presence of oil spills
can in its simplest form be specified trough the number of oil slicks in the scene. In particular,
we will assume that the probability of k oil slicks in the scene is given by

π(k) = αk(1 − α) (1.2)

where 1/α is a parameter describing the expected number of oil slicks in the scene.
Denote by M the number of detected spots. We assume that all the present oil slicks

will be detected as dark spots. Given Mo, the number of oil slicks, the stochastic variable is
Ml = M −Mo, the number of look-alikes that will appear in the scene. We will assume that

Pr(Ml = m|Mo = k, w) = αm
w (1 − αw),

that is a geometric distribution with the parameter depending on the wind level (given by
the dependence on w). In particular, we have assumed that the wind level is divided into 4
categories. These categories are given in Table 1.2 together with their corresponding values
of 1

1−αw
. We use the following as the prior πo(w) for an object being an oil slick:

Pr(c = o|M, w) =
α

αw

α
αw

+ 1
.

99



Figure 1.4: Subclass structure based on wind and shape.

Table 1.2: The expected number of look-alikes is given by 1/(1−αw) where αw is the corresponding

parameter in the geometric distribution for the number of look-alikes.

Wind level Expected no. look-alikes

Low 10000

Low-to-moderate 100

Moderate 20

High 7

Loss Functions We want the classifier to find all spots with a certain probability of being
oil. All spots classified as oil are then inspected by an operator. Misclassifying oil as look-
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alikes is considered more serious than misclassifying look-alikes as oil. This can be modeled
in terms of a simple loss function. Let l1 be the loss associated with misclassifying a true oil
slick as a look-alike and l2 the loss associated with misclassifying a true look-alike as an oil
slick. Then the optimal classification for spot i is given by

ĉ =

{
o if Pr(c = o|xi, w) > l2

l1+l2
;

l otherwise.

Extended Classifier: Rule-based Corrections

The classification performance using the basic classifier was not satisfactory, mainly because a
high number of look-alikes were classified as oil. A set of rules adjusting the prior probabilities
based on a certain combination of features was developed.

The basic classifier resulted in a high false alarm ratio, which is unacceptable because
a scene in low-wind conditions can contain hundreds of look-alikes. To overcome this, we
inspected the misclassified slicks (in the training data set) to understand why they were
misclassified. What we found was that a human operator in many cases could identify many
such slicks as look-alikes based on a combination of features. We then studied the feature
values for misclassified slicks in relation to why an expert would label them look-alike. Then
a rule for these circumstances was established. The rule specifies a multiplicative factor
adjusting the Gaussian densities (or actually the ratios between the densities of oil slick and
look-alikes). Establishing these rules was a tedious process for the first images, but after
performing it for 10-20 images the procedure tended to converge and the number of false
alarms was greatly reduced.

The procedure resulted in 37 rules for Radarsat imagery. Examples of the rules used
are given in Table 1.3. Three of these were used to set prior probabilities for regions close
to point sources (using the DIST feature). Most of the rules (28) were used to reduce false
alarms, and 8 rules were used for false negatives. For Envisat, the rule set was extended with
13 rules tailored to Envisat statistitics. Generally, we observed more look-alikes in Envisat
images than Radarsat images (as could be expected due to the higher sensitivity of Envisat’s
VV polarization), making additional rules necessary.

4 Experimental Results

The oil spill detection system is trained and tested on Envisat ASAR and Radarsat SAR
images. A set of 56 Envisat ASAR Wide Swath images and 71 Radarsat SAR images from
2003 and 2004 from European waters (mainly the Baltic and the North Sea) was used to
train the algorithm. All the SAR images were processed by Kongsberg Satellite Services
(KSAT).

For some of the images, the reports made by KSAT as part of their oil spill detection
service were available. To label all of the images in the training set, we created a training
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Table 1.3: Examples of rules used to compute the rule-based modifications of the prior probabili-

ties. The feature abbreviations are: DIST = Distance to ship/rig, NLN = Number of neighboring

spots in a large window, AREA = Slick Area, COMPLEXITY = Slick Complexity, PMRSURR =

Surrounding PMR, LCONT = Slick local contrast, NSN = Number of neighboring spots in a small

window, MOM = Slick Moment

Increase prior probability for oil spills if

DIST < 20 AND NLN = 0 AND AREA > 20

DIST < 10 AND NLN = 0 AND COMPLEXITY < 20

Increase prior probability for look-alikes if

AREA < 20 AND PMRSURR > 0.05

NSN > 5 AND PMRSURR > 0.05 AND LCONT < 3.0

WIND = LOW AND NLN > 5 AND MOM < 1

mask for each SAR image. KSAT reports were used when available. We scanned through
all images labeling all possible oil spill candidates as either oil spill or doubt. Doubt cases
were used because in many cases a trained operator cannot discriminate perfectly between
oil slicks and look-alikes based on the SAR image alone. All slicks not marked as oil or
doubt were used to train the look-alike class (thus the slicks marked doubt were left out of
the look-alike class).

We first studied the performance of the oil spill detection algorithm compared to the test
masks made by manual inspection. The Envisat test set of 27 images contained 37 slicks
that were manually labeled as oil spills, in addition to 12110 look-alikes. This set of images
will also be used for benchmarking against other approaches in the following subsection.
Table 1.4 summarizes the classification accuracy for the Envisat test data set. To study the
effect of the rule-based adjustments of the prior probabilities, the performance is reported
with and without the rules. Without the rule-based corrections, the average classification
accuracy is 89% for oil spills and 71% for look-alikes. However, since the total number of
look-alikes is 12110, 3504 false alarms occur. This is not acceptable. With the rule-based
corrections, the average classification accuracy is 78% for oil spills and 99.4% for look-alikes.
This result in an acceptable false alarm ratio.

Benchmarking Oil Spill Detection Systems

As part of the EC project Oceanides, a joint satellite-airborne campaign was performed dur-
ing 2003 to establish a data set consisting of SAR images with associated aircraft verifications
by the German and Finnish pollution control authorities. The campaign covered the Finnish
and German sectors of the Baltic Sea, in addition to the German sector of the North Sea.
A total of 59 Radarsat and Envisat images were acquired between July and December 2003.
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Table 1.4: Classification accuracies on the Envisat test set with and without the rule-based
confidence levels.

Basic classifier, no rules

Classified as oil Classified as look-alike

Marked as oil 33 (89.2)% 4 (10.8%)

Marked as look-alike 3504 (28.9%) 8613 (71.1%)

Advanced classifier with rules

Classified as oil Classified as look-alike

Marked as oil 29 (78.4%) 8 (21.6%)

Marked as look-alike 77 (0.7% ) 12033 (99.4%)

This campaign was organized in such a manner that KSAT downloaded the satellite images,
analyzed them in near-real time, and reported possible oil spills to the Finnish and German
pollution control authorities, which would check the reported locations and determine if the
reported slicks were oil or look-alikes.

The Radarsat benchmark data set consisted of 32 Radarsat images, and the Envisat
benchmark data set of 27 Envisat images. The details of this benchmarking can be found
in [10]. The images were analyzed by KSAT, by a semi-automatic algorithm developed at
QinetiQ, and by our automatic algorithm. For the benchmark comparison, KSAT let another
operator analyze the images without knowing the results of the previously reported oil slicks.
The results from this operator are termed KSAT-B and are used in the benchmark tables.

The benchmarking was done without any of the persons/algorithms knowing the aircraft
detections, so that none of the approaches could be tuned to the aircraft results. The joint
aircraft-satellite campaign was organized in such a manner that KSAT downloaded the satel-
lite images, analyzed them in near-real time, and reported possible oil spills to the Finnish
and German pollution control authorities, which would check the reported locations. Air-
craft verification of all slicks was not possible, as many of the slicks were outside the Finnish
or German territories (meaning that the aircraft was not allowed to fly to the location), or
because flight plans or satellite acquisitions sometimes had to be changed.

The performance in detecting verified oil slicks is given in Table 1.5. The Radarsat data
set contained 18 oil slicks verified by the aircraft. 15 of these slicks were found by the KSAT-
B operator, the algorithm described in this paper found 14, while the QinetiQ approach
found 12. The Envisat data set contained 11 oil slicks verified by the aircraft. 8 of these
slicks were found by the KSAT operator, 8 by the algorithm, and Qinetiq’s oil spill system
found 5 of these. Fig. 1.5 shows examples of verified oil slicks which were correctly classified.

A very interesting scene is from July 21, 2003. For this date, the same area in the Finnish
sector of the Baltic sea was covered by both Envisat and Radarsat images. Parts of this
scene is shown in Figure 1.6. The Radarsat image was taken at 16.05 and the Envisat image
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Table 1.5: Performance in detecting verified oil slicks

Envisat data set Radarsat data set

Slicks verified by aircraft 11 18

Detected by operator KSAT-B 8 (72%) 15 (83%)

Detected by algorithm 8 (72%) 14 (77%)

Detected by QinetiQ 5 (45%) 12 (66%)

at 19.45. In the Radarsat image, the leftmost slick was reported as oil by KSAT, QinetiQ
and the algorithm, while the rightmost slick was not reported. Both these slicks have been
verified as oil. In the Envisat image, the rightmost slick was reported by KSAT, the algorithm
and QinetiQ, while the leftmost slick was not reported. The leftmost slick appears larger and
clearer in the Radarsat image. It is possible that the oil has partly evaporated during this
time. The rightmost slick appears with good contrast and separated from the surrounding
low-wind pattern in the Envisat image, but in the Radarsat image the contrast is lower, and
it can be mistaken to be part of the low-wind pattern. Note also that in the Envisat image
a ship or oil rig can be seen adjacent to the slicks. However, this is probably not the source
of the slick as the slick was also visible on the Radarsat image taken 3.5 hours earlier.

In addition to the capabilities of detecting the verified oil slicks, we can also study the
slicks reported by satellite, but verified as not oil by the aircraft. For ENVISAT, 9 slicks were
detected by the algorithm, the location checked by the aircraft, but found not to contain any
oil. 6 of these 9 slicks (all from the Baltic Sea) were verified as algae. Algae is a problem
in the Baltic Sea because the type of algae observed here will dampen the capillary waves
and result in a dark spot in the SAR image. Additional information about algal activity is
desirable in the Baltic during the summer. For 2 of the 9 false alarms, nothing was visible
when the aircraft checked the location a few hours later. In this case, the slicks were small,
and the oil might have disappeared in the time between satellite image aquisition and aircraft
inspection. An example of a slick verified as algae is given in Figure 1.7.

We can also try to compare the number of alarms for the automatic algorithm compared
to the operator. For the Radarsat data set, the operator produced 75 alarms, while the
algorithm produced 71 alarms. Thus, they are expected to be comparable in terms of false
alarm ratio. (Note here that all additional slicks reported by the algorithm could not be
verified because the images were not processed in real-time.) For the Envisat data set, the
operator reported 69 slicks, while the algorithm reported 112 slicks.

In judging the performance of an automatic algorithm compared to manual detection, it
is also intersting to study the variance in detections done by different operators at KSAT.
In the benchmark study, two different operators (called KSAT-1 and KSAT-2) inspected the
same SAR images (without knowing the results of the other inspections). For Radarsat,
the two operators at KSAT detected 75 and 68 oil slick candidates, while the algorithm
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Figure 1.5: Envisat images with examples of verified oil slicks correctly classified as oil.
c©ESA/KSAT/NR

detected 71 slick candidates. Note that not all these slicks could be verified by aircraft, as
only KSAT-1 inspected the images in real time. Of the 18 slicks detected by KSAT-1 and
verified, KSAT-2 detected 15 and the algorithm 14. For ENVISAT, KSAT-1 detected 11
slicks that were verified by aircraft. KSAT-2 detected 8 of these slicks, and the algorithm
also detected 8 slicks.

A question that arises is why some of the verified oil slicks were not detected by any
of the approaches. Fig. 1.8 shows verified oil slicks from Radarsat images that were not
detected. The two slicks in the upper row are low-contrast slicks in a locally homogeneous
background, while the scene does contain many low-wind areas with many look-alikes. We
expect that the algorithm did not classify these two slicks as oil because the wind estimate
was too low because the surroundings (in a larger local window) contained low-wind areas.
Improving the local wind estimate will help this. The slicks in the second row of Fig. 1.8
are slicks in very heterogeneous surroundings with complex look-alike patterns. It is very
difficult to discriminate these slicks from the surroundings. Low contrast slicks on a locally
homogeneous background was found to be difficult to detect on Radarsat images, but this was
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Figure 1.6: Envisat (left) and Radarsat (right) image of the same scene, taken on the same
date. On the Envisat image, the leftmost spill was missed, while the rightmost spill was cor-
rectly classified as oil. In the Radarsat image, the result was the opposite. c©ESA/Canadian
Space Center/KSAT/NR

not a problem for ENVISAT images (perhaps due to the more favourable VV polarization).
The slicks not detected on ENVISAT images were slicks that overlapped with dark areas
due to low wind (see Fig 1.9 for examples).

For Radarsat images, the processing time for manual inspection at KSAT was between
3 to 25 minutes with an average inspection time of 9 minutes. QinetiQ’s semi-automatic
approach took 7 to 32 minutes per scene with an average of 20 minutes. The automatic
algorithm had an average processing time of 3 minutes per Radarsat image. The processing
time for Envisat images for KSAT was 10 minutes per scene in average, and varied between
5 and 23 minutes. QinetiQ used 6-29 minutes with an average of 18 minutes, while the
automatic algorithm had an average processing time of 1.45 min on a 2 GHz Linux computer.
Note that even if the scene size for Radarsat SCN is smaller that for Envisat (300× 300 km
compared to 400 × 400 km), the resolution is higher for Radarsat, thus the processing time
is longer.
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Figure 1.7: Slick from August 7, 2003, verified as algae by the aircraft. c©ESA/KSAT/NR

5 Discussion and Conclusions

In this paper, we have presented a system for automatic detection of oil spills in Radarsat and
Envisat images. A major part of the oil spill detection problem is to distinguish oil slicks
from other natural phenomena that create dark patches in the SAR image. The oil spill
approach can be divided into detection of dark areas, extracting features for all dark areas,
and then classifying all spots as oil spills or look-alikes. A multi-scale approach for dark
spot segmentation was presented. Sensor-specific modules for Radarsat and Envisat images
have been developed. Slick feature extraction was based on features describing slick shape,
contrast, homogeneity, and surroundings. The classification approach is a mix between a
statistical classifier with subclasses based on wind and shape, and a rule-based approach.
The rule-based approach was introduced to reduce the number of false alarms.

In some cases, algae can be misclassified as oil because certain algae types have a similar
effect to oil in dampening the radar backscatter signal. Additional information about algal
blooms, or the likelihood of observing algae in a given geographical location, should be
utilized in the classification step. We also consider to include oil spill hot spot information
in terms of a database with previously reported oil slicks and their location.

The dark spot segmentation step works well in most situations, but it can sometimes
fragment a thin, linear slick into several shorter segments. We are currently working on
improving the segmentation for such slicks. Future work on this topic will also include a
thorough evaluation of the use of different classifiers for the dark spot classification step.
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Figure 1.8: Examples of oil slicks verified by the aircraft, but not detected by the operator
or the algorithm. c©ESA/KSAT/NR
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Figure 1.9: Examples of oil slicks from Sept 2., 2003 (ENVISAT), verified by the aircraft,
but not detected by the operator or the algorithm. c©ESA/KSAT/NR

The algorithm has been benchmarked against manual oil spill detection and a semi-
automatic approach on 59 Radarsat and Envisat images. The benchmark showed that two
manual operators do not identify exactly the same oil slicks. The performance of the au-
tomatic system is quite comparable to manual inspection, both in terms of performance in
detecting verified oil spills, and in terms of the number of alarms. The autmatic algorithm
is faster than manual inspection, with an average processing time of 1.45 min compared to
10 minutes for manual inspection.

In determining the best procedure for operational monitoring of oil spills, we find that the
algorithm can be a very intesting supplement to manual inspection. Aircrafts are still needed
for oil spill verification. We propose to run the algorithm as part of an oil spill detection
service by including a manual step prior to sending out the aircraft. This would improve the
existing fully manual service, as the benchmark revealed that there is some variance between
different operators. Currently, a prototype version of this algorithm has been implemented
at KSAT.

109



110



References

[1] C. Brekke and A. Solberg, “Oil spill detection by satellite remote sensing,” Remote
Sensing of Environment, vol. 95, no. 1, pp. –13, 2005.

[2] B. Fiscella, A. Giancaspro, F. Nirchio, P. Pavese, and P. Trivero, “Oil spill detection
using marine SAR images,” Int. J. Remote Sensing, vol. 21, no. 18, pp. 3561–3566, 2000.

[3] F. Del Frate, A. Petrocchi, J. Lichtenegger, and G. Calabresi, “Neural networks for oil
spill detection using ERS-SAR data,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 38, no. 5, pp. 2282–2287, 2000.

[4] A. H. S. Solberg, G. Storvik, R. Solberg, and E. Volden, “Automatic detection of oil
spills in ERS SAR images,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 37, no. 4, pp. 1916–1924, 1999.

[5] T. F. N. Kanaa, E. Tonye, G. Mercier, V. Onana, J. Ngono, P. Frison, J. Rudant,
and R. Garello, “Detection of oil slick signatures in SAR images by fusion of hysteresis
thresholding responses,” Proc. IGARSS’03, vol. 4, pp. 2750–2752, 2003.

[6] L. Y. Change, K. Chen, C. Chen, and A. Chen, “A multiplayer-multiresolution ap-
proach to detection of oil slicks using ERS SAR image,” Proc. ACRS 1996 - 17th Asian
Conference of Remote Sensing, Sri Lanka, 1996.

[7] C. F. Chen, K. S. Chen, L. Y. Chang, and A. J. Chen, “The use of satellite imagery for
monitoring coastal environment in Taiwan,” Proc. IGARSS’97, vol. 3, pp. 1424–1426,
1997.

[8] A. K. Liu, C. Y. Peng, and S. Y.-S. Chang, “Wavelet analysis of satellite images for
costal watch,” IEEE Journal of Oceanic Engineering, vol. 22, no. 1, pp. 9–17, 1997.

[9] S. Y. Wu and A. K. Liu, “Towards an automated ocean feature detection, extraction
and classification scheme for SAR imagery,” Int. J. Remote Sensing, vol. 24, no. 5, pp.
935–951, 2003.

111



[10] M. Indregard, A. Solberg, and P. Clayton, “D2-report on benchmarking oil spill recogni-
tion approaches and best practice,” Oceanides project, European Commission, Archive
No. 04-10225-A-Doc, Contract No: EVK2-CT-2003-00177, Tech. Rep., 2004.

[11] M. Barni, M. Betti, and A. Mecocci, “A fuzzy approach to oil spill detection on SAR
images,” Proc. IGARSS ’95, vol. 1, pp. 157–159, 1995.

[12] A. Gasull, X. Fabregas, J. Jimenez, F. Marques, V. Moreno, and M. Herrero, “Oil
spills detection in SAR images using mathematical morphology,” Proc. EUSIPCO’2002,
Toulouse, France, September 2002, vol. 1, pp. 25–28, 2002.

[13] I. Keramitsoglou, C. Cartalis, and C. Kiranoudis, “Automatic identification of oil spills
on satellite images,” Environmental Modelling & Software, vol. 21, no. 5, pp. 640–652,
2006.

[14] H. A. Espedal and O. M. Johannessen, “Detection of oil spills near offshore installations
using synthetic aperture radar (SAR),” Int. J. Remote Sensing, vol. 21, no. 11, pp.
2141–2144, 2000.

[15] T.-I. Bern, S. Moen, T. Wahl, T. Anderssen, R. Olsen, and J. A. Johannessen, “Oil spill
detection using satellite based SAR. Completion report for Phase 0 and 1,” OCEANOR
report no. OCN-R92071, Trondheim, Tech. Rep., 1992.

[16] M. Perez-Marrodan, “ENVISYS - environmental monitoring warning and emergency
management system,” Proc. of the AFCEA Kiev Seminar, 28-29 May, pp. 122–132,
1998.

[17] P. Wessel and W. H. F. Smith, “A global self-sonsistent, hierarcical, high-resolution
shoreline database,” J. Geophys. Res,, vol. 101, no. 1, pp. 8741–8743, 1996.

[18] M.-K. Hu, “Visual pattern recognition by moment invariants,” IEEE Trans. Inform.
Theory, vol. 8, pp. 179–187, 1962.

[19] L. Tufte, “D6(a)-report on oil spill data standardisation, oil spill pattern analysis and
hot spots, as well as pollution conditions in test sites including oil spill maps and
time series.” Oceanides project, European Commission, Archive No. 04-10225-A-Doc,
Contract No: EVK2-CT-2003-00177, Tech. Rep., 2004.

112



Chapter 12

Paper III: Segmentation and Feature

Extraction for Oil Spill Detection in

ENVISAT ASAR Images

Camilla Brekke and Anne H. S. Solberg

Submitted: International Journal of Remote Sensing, 2007.

113



114



Segmentation and Feature Extraction for Oil Spill

Detection in ENVISAT ASAR Images

Camilla Brekke,
Norwegian Defence Research Establishment,

Postboks 25, 2027 Kjeller, Norway.
Department of Informatics, University of Oslo,
Postboks 1080 Blindern, 0316 Oslo, Norway.

E-mail: Camilla.Brekke@ffi.no.
and

Anne H. S. Solberg,
Department of Informatics, University of Oslo,
Postboks 1080 Blindern, 0316 Oslo, Norway.

E-mail: anne@ifi.uio.no

Abstract

An automatic algorithm processing SAR images for the purpose of detecting illegal oil
spill pollution in the marine environment has earlier been developed [28; 31]. The framework
consists of modules for dark spot detection, dark spot feature extraction, and a classifier that
discriminates between oil slicks and other oceanographic phenomena which resemble oil slicks
(look-alikes). Based on this framework, we have in this study aimed at identifying new fea-
tures that lead to significant improvements in classification performance for ENVISAT ASAR
Wide Swath Mode images. Both traditional region descriptors, features tailored to oil spill
detection, and techniques originally associated with other applications are evaluated. Ahead
of feature extraction, a successful segmentation of dark spots on the sea surface is crucial.
Improvements done to the segmentation process are discussed as well, and the importance
of an adapted segmentation process to this particular problem domain is demonstrated. The
novelties of this paper include a new segmentation algorithm for better detection of thin,
linear slicks and three new features. The algorithm is evaluated on a set of 83 satellite
images, and experimental results are presented. The combination of the presented improve-
ments gave a significant increase in classification accuracy from 78% to 89% in the number
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of detected oil spills, and as many as 98% of the look-alikes were correctly classified by our
method.

1 Introduction

Oil spills correlate very well with the major shipping routes, and do often appear in connec-
tion with offshore installations. When taking into account how frequent illegal discharges
from ships appear, controlled regular oil spills can be a much greater threat to the marine en-
vironment and the ecosystem than larger oil spill accidents like the Prestige tanker accident
in 2002.

Spaceborne Synthetic Aperture Radar (SAR) has proven to be the most efficient satellite
sensor for oil spill monitoring of the worlds oceans. Oil spills appear as dark areas in the SAR
images because the oil dampens the capillary and short gravity waves on the sea surface. A
part of the oil spill detection problem is to distinguish oil slicks from other natural phenomena
(look-alikes) that dampen the short waves and create dark patches in a similar way. Oil slicks
may include all oil related surface films caused by oil spills from oilrigs, leaking pipelines,
passing vessels as well as bottom seepages, while look-alikes do include natural films/slicks,
grease ice, threshold wind speed areas (wind speed < 3 m/s), wind sheltering by land (like
in the lee of an island), rain cells, shear zones, internal waves, etc. [10]. These ambiguities
put a challenge on the selection of suitable features for oil spill detection (see figure 1.1).

A review of algorithms for automatic detection of oil spills can be found in Brekke and
Solberg [5]. Several papers [9; 11; 28; 31] describe a methodology consisting of dark spot
detection followed by feature extraction and classification. Solberg et al. [28, 31] apply an
adaptive thresholding algorithm for dark spot segmentation. Kanaa et al. [16] use hysteresis
thresholding. An edge detection approach based on the Laplace of Gaussians or Difference
of Gaussians is presented in Change et al. [7]; Chen et al. [8]. The use of wavelets for
ocean feature detection is described by Liu et al. [20]; Wu and Liu [38]. QinetiQ’s dark
spot algorithm uses a Constant False Alarm Rate (CFAR) algorithm followed by clustering
and Hough transform to identify linear targets [30]. Edge detection by a CFAR filter is
also applied in Migliaccio et al. [22], where experiments were done on airborne X-band SAR
images (single-look). Barni et al. [3] propose an algorithm based on fuzzy clustering. A
method using mathematical morphology for oil spill segmentation is presented by Gasull et
al. [14]. Even though a variety of methods are applied, the common approach is to detect all
suspicious slicks and to preserve slick shapes. At the feature extraction step, parameters that
can be used to discriminate oil spills from other phenomena appearing on the sea surface are
extracted. The features extracted vary between approaches. Most of the features used for
slick feature extraction in the literature can be sorted into these classes: the geometry and
shape of the segmented region, physical characteristics of the backscatter level of the spot
and its surroundings, contextual features describing the slick in relation to its surroundings,
and textural features. Little attention seems to have been given to the feature extraction
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Figure 1.1: Left: ENIVSAT Advanced Synthetic Aperture Radar (ASAR) Wide Swath Mode
(WSM) image from 6th of September 2005. Dimentions: 5596 × 5051. c©ESA/KSAT 2005.
The image shows an example of a possible oil spill (within the shaded rectangle). A wind
speed of 4 m/s was reported in the area, and low wind look-alikes are present. Right: zoom-
in on the shaded rectangle. A dark spot with high contrast is visible. Kongsberg Satellite
Services (KSAT) reports medium confidence that this slick is an oil spill.

step. An early study on feature extraction for oil spill detection based on ERS images is
described by Solberg and Solberg [27], and an evaluation of the discrimination efficiency
of typically used features can be found in Topouzelis et al. [33]. Various classifiers have
been applied to classify a slick as oil or look-alike. Fiscella et al. [11] applied a Mahalanobis
classifier and a compound probability classifier, and the probabilistic approach was improved
by Nirchio et al. [23]. Solberg et al. [28, 31] combined a statistical classifier using a Gaussian
model and several subclasses with a rule-based modification of prior probabilities to take
into account feature combinations that are indications of certain scene conditions. A neural-
network approach is described by Del Frate et al. [9], and Keramitsoglou et al. [17] developed
a classifier based on fuzzy logic.

All detection algorithms suffer from false alarms, and slicks classified as oil spills may
be confused with look-alikes. SAR imaging of oil slicks can be limited by atmospheric and
oceanographic conditions. Girard-Ardhuin et al. [13] suggest a four step approach including
the three steps 1) detection, 2) characterization, 3) classification and a fourth additional
step taking external data into account. To improve classification and assess the slick nature,
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characteristics of the automatically detected slicks from the SAR images and meteorological
and oceanic data are combined through a multisensor approach (including e.g. surface wind
measurements (from SeaWinds on QuikSCAT), sea-surface temperature (from MODIS on
Terra and Aqua) information about atmospheric fronts and clouds (from AVHRR, Meteosat)
and chlorophyll (from SeaWiFS)). A multisensor approach is also applied by Migliaccio et
al. [22] where SAR data and wind fields from the SeaWinds scatterometer are combined.

Segmentation of dark spots and feature extraction are crucial parts of the algorithms
for oil spill detection. If a slick is not detected during segmentation, it will not enter the
classification procedure and cannot be classified correctly. Turning to classification, if the
features have good discriminatory power, the classification problem will be easier and several
classifiers can work. Keeping these issues in mind, we hereby present results from a study
aiming at identifying suitable features that lead to significant improvements in classification
performance for ENVISAT ASAR WSM images (some early results were presented in Brekke
and Solberg [6]). In addition, we discuss improvements done to the detection of dark spots,
leading to a segmentation approach contributing to the improved performance (the ideas were
first outlined in Solberg et al. [29]). The novelties of this paper include a new segmentation
algorithm for better detection of thin, linear or piecewise slicks and three new features. The
new features include a feature measuring the curvature of the slick shape, an improved slick
border detector and a feature measuring the variance of the slick pixel values.

This paper is organized in the following manner. Section 2 describes the automatic
algorithm that constitutes the fundament of our work. The details of our new and latest
contributions to the algorithm design are as well discussed here. Section 3 outlines the
experimental design and presents the experimental results. Finally, the conclusions can be
found in section 4.

2 The Automatic Oil Spill Detection Algorithm

Our goal is to develop an automatic system for oil spill detection, in which objects with
a high probability of being oil slicks are automatically identified. These slicks should then
be presented to an operator for manual inspection/verification before the information is
forwarded to a surveillance aircraft. Processing techniques are considered semi automatic
when a human expert selects the SAR image area to be processed and assist interpretation.
However, our algorithm is considered fully automatic (in the sense that there is no need for
manual interaction) up to the point when the operator is notified of a slick assigned high
confidence of being an oil spill.

The framework of this study is a fully automatic advanced oil spill detection algorithm
(see figure 1.2). The algorithm was originally intended to process ERS-1/-2 SAR images, but
has now been adapted to work for RADARSAT-1 SAR and ENVISAT ASAR images. The
algorithm includes sensor specific modules for dark spot detection, spot feature extraction
and a classifier that discriminates between oil spills and look-alikes. Sensor-specific modules
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Figure 1.2: The oil spill detection algorithm and its context. Arrows indicate data flow.

are necessary because of different spatial resolution and contrast. RADARSAT-1 ScanSAR
Narrow full resolution images (HH polarization) have a resolution of 50 m × 50 m and a
pixel spacing of 25 m × 25 m. ENVISAT ASAR WSM images (VV polarization) have a
resolution of 150 m × 150 m and a pixel spacing of 75 m × 75 m.

Pre-processing, consisting of converting a land mask to the image grid and a normalization
of the backscatter with respect to incidence angles, is performed ahead of the segmentation
step for ENVISAT ASAR images. The radar backscatter over land areas is not of importance
for successful oil spill detection in the marine environment, therefore a land mask is created.
To avoid re-sampling the speckle pattern, the land mask is created in the original geometry
of the SAR image. The geo-referencing information available in the SAR product is used,
and the land mask is obtained from Wessel and Smith [37]. The incidence angle range varies
between 16◦ - 44◦ for ENVISAT ASAR WSM (see also table 1.8 in Appendix A). The radar
backscatter from the sea depends strongly on the incidence angle, yielding a much stronger
signal at low incidence angles. The dependency is not constant, however it depends on both
wavelength and polarization of the SAR sensor and wind and weather conditions on the
ocean surface. We have applied a standard incidence angle compensation for all weather
conditions to reduce the impact of incidence angle variations on the statistical parameters
extracted from the image (this is a however somewhat simplified solution, not estimating
and compensating for the weather dependent effects).

2.1 Dark Spot Detection

The dark spot detector applies an adaptive threshold where the threshold is set k dB below
the estimated local mean in a large window. The window is moved across the image in small
steps to threshold all pixels in the scene. The goal of this step is to segment out all possible
oil spill candidates (i.e. to create a binary image where the dark spots are represented by
one pixel value and the background by another). A high number of look-alikes will also be
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segmented out, but these will hopefully be classified as look-alikes during the classification
step. From the segmented image, “region objects” are formed for all objects representing a
dark spot (applying 8-pixels connectivity). In the following feature extraction step (described
in section 2.2), only region objects are considered.

As earlier experiments showed that a single-scale segmentation approach did not perform
satisfying on both large and small regions, a two-level multiresolution approach has been
developed for ENVISAT ASAR images [31]. The resolution levels are created by averaging
pixels in the original image. The first resolution level has the same dimensions as the original
image, while the next resolution level is created with half the row and column dimensions of
the original image.

Each resolution level is segmented using the adaptive threshold after applying a mean
filter with a small window consisting of 3 × 3 pixels. The threshold is computed given the
mean (µ) and the power-to-mean (PMR) ratio (σ/µ) (computed in a local window consisting
of 121×121 pixels), and a homogeneity category. The homogeneity category is set according
to the local PMR level. A look-up table for the parameter values can be found in Solberg et
al. [31]. The threshold is thus set adaptively based on estimates from the SAR image of the
roughness of the surrounding sea. The motivation is: in low wind with many look-alikes, the
PMR value will be high, and also a high contrast between slicks and their surrounding can
be expected. As the wind increases, the PMR value will decrease, and the expected contrast
between the oil and the surrounding sea will also decrease. After segmenting both resolution
levels, the results are merged.

The details of the initial segmentation algorithm can be found in Solberg et al. [31].
Figure 1.3 illustrates the result from the segmentation process.

Detection of Thin, Linear Slicks The procedure described above works very well in
general, but in some cases it does not work for thin, linear slicks. These slicks are often
piecewise linear due to moving ships changing directions, or wind or current altering the
shape of the slick. Here, we present a new approach developed for ENVISAT ASAR WSM
images for detecting these cases. The main idea is to grow elongated segments in the direction
of their orientation, if certain criteria are fulfilled. After a proper segmentation of these slicks,
their suspicious shapes can more easily be reflected through geometry and shape features.

The following algorithm is used to detect thin, linear slicks:

I. Threshold the SAR image with the approach described above, but fix k at a small dB
value. k = 1.3 dB is here selected, which is based on experiments on the training data
set and reported among the parameter values for thresholding in Solberg et al. [31].
(This gives an image with too many object pixels only intended to be used to locate
fragments that can be part of a linear oil spill).

II. Compute Hu’s first invariant planar moment (definition given in table 1.1) for every
region object in the segmented image in I. Select the fragments with a moment value >
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Figure 1.3: Left: Section of an ENVISAT ASAR WSM scene (16th September 2003).
c©ESA/KSAT 2003. A long oil spill with a loop is clearly visible. A likely source can
be seen at the upper end of the spill. Right: segmentation result. The oil spill and the ship,
in addition to several other dark phenomena, have been separated from the background.

0.5 for further processing. The threshold is empirically derived from elongated regions
in the training data set. (Hu’s first invariant planar moment is a good indicator of
elongatedness. See also figure 11).

III. For every selected fragment, find the object-oriented bounding box B1, which is the
smallest rectangle around the fragment having one side parallel to the orientation of
the fragment, where the fragments orientation is defined as the angle (relative to the
x-axis) of the axis through the center of mass that gives the lowest moment of inertia.
See also Sonka et al. [32].

IV. For denoising slightly the ASAR image, apply a sigma filter 1 on the fragment and its
nearby surroundings.

V. Set T = µB2 − ∆dB, where µB2 is the mean value inside an object-oriented box B2,
which is found by expanding the width and the length of B1 (to cover a larger part of
the background pixels). ∆dB is a small dB value found by experiments on the training
data. ∆dB = 0.3 is here selected.

1The window size used is 7 × 7 pixels. The center pixel is replaced with the average of all pixels in the
window whose value is within +1 standard deviation, σ, from the center pixel. The σ is estimated in a larger
window of 41 × 41 pixels surrounding the center pixel of the smaller window, giving us a local estimate of
the σ for every window position (see Lee [19] for the original definition of the sigma filter).

121



VI. Extend the object-oriented bounding box B1 by about 15 pixels in both directions of
the fragments orientation, and reduce the width of B1 to a couple of pixels if the ratio
of the fragments width and length is larger than 0.2 (to narrow the area to be searched
for broad and complex shaped fragments).

VII. Apply T as a threshold on every pixel i inside the extended parts of B1. If the
backscatter value of i is < T , accept i only if i or one of its 8-neighbour pixels represents
an edge pixel, using the Sobel operator (an idea discussed in Trier and Jain [34]).

VIII. Add the segmented slick to the original segmented image.

See figure 1.4 for an illustration of the process.

Figure 1.4: Left: section of an ENVISAT ASAR image (5th of December 2003).
c©ESA/KSAT 2003. Middle: original segmentation result. Right: an extended object-
oriented box (light grey) and the final segmentation result (darker grey).

The improved segmentation process works generally better than the basic, adaptive
thresholding approach for thin, linear slicks. Figure 1.5 shows that fragments are merged
and that the shape of the thin, linear slick is preserved by this approach. Figure 1.6 gives
another examples of a slick affected by the approach.

After the segmentation process, a set of features are computed and extracted from every
region above a certain minimum size. (This step eliminates the small regions found in
figure 1.5 and figure 1.6).

2.2 Slick Feature Extraction

First, we briefly report the feature set derived from previous studies, then the new features
studied in this paper are described.
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Figure 1.5: Top: section of an ENVISAT ASAR WSM image (19th of September 2003).
c©ESA/KSAT 2003. Bottom: the original segmented image and the improved result after
including the object-oriented box approach. Note that small regions are filtered out at a
later stage.

Existing Set of Features

A basic set of features is described in table 1.1. The features are a mix of standard region
descriptors and features tailored to oil spill detection. The features were presented in Solberg
et al. [28, 31].

As no wind predictions were available here, and we did not have access to an algorithm
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Figure 1.6: Top: section of an ENVISAT ASAR WSM image (17th of August 2003).
c©ESA/KSAT 2003. The white area at the top of the image is part of a land mask. Bottom:
the original segmented image and the improved result after including the object-oriented box
approach. Note that small regions are filtered out at a later stage.

for wind speed estimation based on the SAR image, homogeneity categories were used to
represent the WIND feature (#1 in Table 1.1). (As explained in section 2.1, a look-up table
for the homogeneity categories based on the PMR feature can be found in Solberg et al.
[31]). The categories are from LOW to HIGH.

Improvements to the feature vector are discussed in the next section. A goal of this paper
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Table 1.1: Basic feature set. The features are based on geometrical characteristics, texture,
the backscatter/contrast level, and contextual information.

# Feature Description

1 WIND (Wind level) The local wind level in the scene.

2 MOM (Slick Moment) Hu’s first invariant planar moment of the region, defined as φ1 = η20 + η02,

where ηpq are normalised central moments: ηpq =
µpq

(µ00)γ , γ = p+q

2
+ 1, ∀p + q >= 2,

µqp are central moments of order p + q and µ00 are zero-order moments [15; 24].

3 COMPL (Slick complexity) C = P 2/A, where P is the perimeter and A is the area of the region.

4 PMR (Power-to-mean ratio) Homogeneity of the regions surroundings, defined as the ratio of standard deviation,

σb, and mean, µb, of near-by background pixels surrounding the region.

Window size used: 150 × 150 pixels.

5 LCONT (Slick local contrast) Local area contrast, defined as µb − µr , where µb is the background pixel mean

and µr is the region pixel mean (estimated in a window surrounding the

region containing a larger amount of background than region pixels).

6 THICK (Slick thickness) Defined as the ratio between the area of the region and the

width of the branches of the region skeleton.

7 NSN (Number of regions The number of neighbouring regions completely within a window, consisting of

in small neighbourhood) 150 × 150 pixels, centered at the slick.

8 BGRAD (Slick border The mean of the magnitude of the region border gradient. Sobel is used to

gradient) compute the gradients.

9 SMC (Slick smoothness Defined as the ratio between the ratio of the number of region pixels

contrast) and the sum of the region gradient values, and the ratio of

the number of background pixels and the sum of the background gradient values

(window used contains a larger amount of background than region pixels).

10 AREA (Slick area) The number of pixels in the region.

11 DIST (Distance) The distance from the region to the closest bright spot (ship/oilrig).

12 NLN (Number of regions The number of neighbouring regions touching within a window, consisting of

in large neighbourhood) 150 × 150 pixels, centered at the slick.

13 NREG (Number of regions) The total number of detected regions in the scene.

is to discuss new features and compare their performance to the existing.

New Features

Kubat et al. [18] recognize that good features are important for oil spill classification, but
there are few guidelines on how to estimate them. In our search for new features that could
add some discrimination information and improve the performance, we emphasised on:

• weaknesses in the existing set of features from table 1.1
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• features reported valuable for the purpose of oil spill detection by other algorithms
described in the literature

• other general features used in image analysis that we expected, based on our domain
knowledge, could add some discrimination power.

Table 1.2 presents the features from table 1.1 grouped into feature categories. Shape,

Table 1.2: The features from table 1.1 grouped into categories.

Feature class Feature

Shape MOM, COMPL, THICK, and AREA

Texture PMR

Contrast LCONT, BGRAD, and SMC

Contextual WIND, NSN, DIST, NLN, and NREG

texture, and contrast features will be discussed here. New features are introduced in the
following, and the basic feature set has been extended with some of these. Selected feature
combinations are evaluated through performance testing in section 3.2.

Contrast Features LCONT, BGRAD, and SMC defined in table 1.1 are features based
on the backscatter level contrast between oil slicks and the sea. We have here focused on
improving the BGRAD feature. It works generally well, but it seems to give inaccurate results
for thin, linear regions. The Sobel operator is an edge detector that has been suggested used
for oil slick border gradient estimation, see e.g. Girard-Ardhuin et al. [12, 13]; Solberg et al.
[28]. In table 1.1, the mean value of the Sobel gradient magnitude is applied in the BGRAD
feature. The main problem is that the edge response does not match the real borders of the
region (e.g. a one pixel broad line gets no response for the object pixels but a one pixel top
on both sides of the line). The top row to the right of figure 1.7 illustrates the response of
the Sobel operator on the oil spill to the left in the same figure. As we can see, the largest
gradient magnitude appears outside the true region border. The following four additional
convolution masks are suggested as a line detector for thin oil spill regions:

2
6664

0 0 0 0 0
0 0 0 0 0
1 1 −4 1 1
0 0 0 0 0
0 0 0 0 0

3
7775 ,

2
6664

0 0 1 0 0
0 0 1 0 0
0 0 −4 0 0
0 0 1 0 0
0 0 1 0 0

3
7775 ,

2
6664

0 0 0 0 1
0 0 0 1 0
0 0 −4 0 0
0 1 0 0 0
1 0 0 0 0

3
7775 and

2
6664

1 0 0 0 0
0 1 0 0 0
0 0 −4 0 0
0 0 0 1 0
0 0 0 0 1

3
7775

The response from the mask returning the largest magnitude is selected. The bottom row of
figure 1.7 illustrates the response to these masks. The response from the additional masks
decreases as the slick gets thicker. If the Sobel operator gives stronger magnitude response
to any of the border pixels that value is kept, otherwise the response from the additional
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Figure 1.7: Left: section of an ENVISAT ASAR WSM image (24th of July 2003).
c©ESA/KSAT 2003. A possibly thin, linear oil spill with a likely source visible. Top row to
the right: the Sobel operator yields the largest border gradient magnitude response outside
the slick region. The detected edge is misplaced with respect to the real border of the region.
(The red lines shows the outline of the region border). Bottom row to the right: response
from improved border estimation.

masks is used. This gives us an ad hoc solution where a gradient detector and a line detector
are combined, and further refinement of this method is likely possible. However, the mean
of this border detector gives us an improved indication of the contrast to the surrounding
background for thin regions, and it is used in the feature SLICK_BORDER to replace the
BGRAD feature in table 1.1.

The standard deviation of the slick border gradient values were found significant for
the success of classification in Del Frate et al. [9]. To be able to evaluate this feature, we
implemented it (SLICK_BORDER_STDEV) based on our improved slick border detector
described above. The result from the evaluation is presented in section 3.2.

Texture Texture refers to the properties that represent the surface or structure of an ob-
ject, but there is no precise mathematical definition of texture due to its wide variability. In
table 1.1 there is no feature representing the texture of the slick it self, only of its surround-
ings. Solberg et al. [28] have earlier suggested the PMR of the slick, defined as σr/µr where
σr is the standard deviation and µr is the mean value of the pixels belonging to the slick.
Del Frate et al. [9] have simply used the standard deviation of the slick as a texture measure.
However, the standard deviation of the intensity values of the pixels belonging to a slick
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is highly correlated with the area/size of the region. This is due to the inherent nature of
speckle statistics. Speckle is a large problem in SAR images since even a homogeneous area
has a statistical distribution with large standard deviation. As the region grows larger the
variance in intensity values will increase as well. A better choice would be to look at the ratio
σ2

r/A, where σr is the standard deviation and A is the area of the slick. This is implemented
as the new feature SLICK_VARIANCE. After normalization by area, the measured feature
values of larger oil spills are comparable to smaller samples.

Geometrical/Shape Properties MOM, COMPL, THICK, and AREA defined in table
1.1 are all shape features. Generally, look-alikes are much more complex in shape with less
smooth borders than man made oil spills. Oil spills are often elongated or have wide, regular
shapes caused by stationary objects releasing a large amount of oil. We have here aimed at
identifying features that can represent curvature and elongatedness, as this seems like two
important properties of shape that can help to distinguish oil spills from natural slicks.

Features based on the ratio between the perimeter and the area, aiming at describing the
shape complexity of regions, have been used in several algorithms described in the literature
[11; 28; 9; 33]. Del Frate et al. [9] applies the formula C = P/2

√
πA, where P is the perimeter

and A is the area of the region. According to Del Frate et al., this feature is generally expected
to get a small numerical value for regions with simple geometry, while a larger value for more
complex regions. In contradiction to common intuition, the thin, linear oil spill to the right
of figure 1.8 gets a larger complexity value than both the others when using COMPL in
table 1.1. Del Frate et al.’s [9] formula gives very similar but differently scaled results. This
indicates that the ratio between perimeter and area is not a good complexity measure as it
is not possible to separate complex shaped slicks from linear slicks. This weakness is also
pointed out by Nixon and Aguado [24], and Topouzelis et al. [33] found that the feature gave
little contribution to oil spill detection.

To resolve this ambiguity we could introduce additional shape measures, or replace this
measure with a more robust one. A possibility is to look at the number of branching points 2

in the skeleton of each region (see figure 1.9). Because we only look at the number of
branching points, the information level is decreased so much that again it is often not possible
to distinguish simple regions from more complex ones (e.g. a straight line would get the same
feature value as an “S” shaped region). It is clear that it is important to preserve more shape
information in features expressing geometrical complexity.

Instead, we propose a new measure of complexity. Contour or snake models are commonly
applied in medical image segmentation, e.g. ultrasound images. In Lobregt and Viergever
[21] a discrete dynamic model for defining contours in 2-D images is presented. Lobregt and
Viergever gives a definition of a contours local curvature as a part of their model description.
As the definition is general, it can be adapted as a feature extracted from the contour of dark
structures appearing in SAR images. The edge segment leaving from vertex Vi is represented

2We define the number of branching points as a point with three lines or more connected to it.
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Figure 1.8: Sections of ENVISAT ASAR WSM images. Left: 3rd of August 2003. Middle:
7th of August 2003. Slicks with wide, complex, irregular shapes. Right: 2nd of December
2003. Thin, linear oil spill with a regular shape. c©ESA/KSAT 2003.

by a vector di; its direction is described by the unit vector d̂i (see figure 1.10). The local
curvature ci is defined as the difference between the directions of two edge segments that
join at a vertex: ci = d̂i − d̂i−1. The local curvature has length and direction. This
provides a measure of the angle between two joining edge segments. The length of the
curvature vector depends only on this angle and is not influenced by the lengths of the
two edge segments. In our implementation of the curvature feature, we have traced the
boundary of every region and inserted vertexes with a three-pixel spacing 3. This gives us an
approximation of the contour given by vertexes which are connected by straight line segments
or edges. The angle between two edge segments is calculated as described above, and the
final SUM_EXTERNAL_ANGLES feature is the sum of all local curvature measures along
the boundary. Each external angle in a regular n-sided polygon will be 2π/n and the sum
of the angles will be 2π. More complex regions get a higher curvature measure.

Concerning elongatedness, Topouzelis et al. [33] report the standard deviation of the
asymmetries of sub-objects as one of the most effective features of those that were evaluated
in their study. Asymmetry were expressed as the ratio of the lengths of the minor and major
axes of the object approximated ellipse 4. Topouzelis et al. emphasise that the lengthier an
object is the more asymmetric it is. We implemented and calculated the asymmetry feature

3The distance between the vertexes represents the resolution of the approximation. If it is large, the
model will not be able to follow variations of small scale along the contour. However, this regression might
not be optimal as it is uncertain if the true vertexes of the contour are located.

4The object ellipse is defined as the ellipse whose least and greatest moments of inertia equal
those of the object. The length of the semimajor and semiminor axes can be expressed as [39]:
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Figure 1.9: Left: section of an ENVISAT ASAR WSM image (3rd of August 2003).
c©ESA/KSAT 2003. Right: example of a segmentation result of the oil spill and its skeleton
(presented in the small frame in the upper right corner).

Figure 1.10: Local curvature ci. d̂i−1 and d̂i are the directions (unit vectors) of the edge
segments di−1 and di meeting at vertex Vi.

for a number of dark regions. Figure 1.11 compares the asymmetry feature with MOM, and
as we can see the asymmetry feature is comparable (by an opposite correlation) to Hu’s first
invariant planar moment. However, figure 1.11 also shows that the latter more significantly
reflects the elongated regions.

(α, β) =

√
2[µ20+µ02

+
√

(µ20−µ02)2+4µ2
11

]

µ00
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Figure 1.11: Comparison of Hu’s first invariant planar moment and asymmetry. 20 regions
(out of thousands) are selected as examples from the segmented images. Region #11, #12,
#15, #16, and #20 represents elongated regions.

2.3 Statistical Classification

After a set of M dark spots has been detected, we want to classify them as either oil spills
or look-alikes. For this purpose, a classification algorithm has been developed (see Solberg
et al. [28, 31]) combining a statistical model for oil spills of different shapes and seen under
different wind conditions, a prior model for the probability of observing oil and look-alikes,
and a rule-based approach which takes care of certain expert knowledge related to oil spill
detection.

The WIND feature is first used to divide the objects in two different subclasses and
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then these are each further divided into five subclasses based on the shape descriptor MOM.
This is due to the fact that the variance in shape, contrast, and surroundings of oil slicks
and look-alikes depends on the wind level. The densities inside each subgroup are assumed
Gaussian. Common covariance matrices for both the oil slick and the look-alike class (given
the wind level and shape) are used. This is because look-alikes occur much more frequently
than oil slicks and their features will vary more than the features for oil slicks. Because of
limited training data for oil slicks, a further reduction in the number of unknown parameters
to be estimated is obtained by assuming the covariance matrices to be diagonal. This choice
is an important one, because correlations between features are ignored by assuming diagonal
covariance matrices.

A set of rule-based corrections of the prior probabilities in certain situations were ap-
plied in Solberg et al. [31]. Without these rules, the classifier resulted in a high number of
false alarms, because a high number of look-alikes were classified as oil. These rules were
determined by inspecting the misclassified slicks to understand why they were misclassified.
By inspecting the feature values for these slicks, a set of rules for these circumstances was
established.

Combinations of features are known to give strong indications either toward an oil slick
or toward a look-alike [28]. Because we use diagonal covariance matrices in the Gaussian
densities, knowledge of such combinations are instead utilized through the rule-based cor-
rections of the Gaussian densities (or actually the ratios between the densities of oil slicks
and look-alikes). These corrections are specifically important in reducing the number of false
alarms (as will be illustrated in section 3).

The basic feature vector, feature #3 - #9 in table 1.1, was used to compute the probability
densities in Solberg et al. [28, 31]. Here, we have introduced new features and therefore
we need to alter the feature vector. Which feature vector that is used to compute the
probability densities are specified together with every classification result presented in the
next section. However, our final result is based on a feature vector consisting of feature #3 -
#7, SLICK_BORDER, #9, and SLICK_VARIANCE. The SUM_EXTERNAL_ANGLES
feature is included together with feature #2, #4 - #7, SLICK_BORDER, and #9 - #13 in
the rule-based corrections of the probability densities.

The classifier is trained (that is, the means and the covariance matrices in the Gaussian
densities are estimated) on a large set of labelled samples. The training process is further
described in section 3.

3 Performance Testing

According to Alpers and Espedal [2], C-band single-polarized VV SAR has so far proven to
be the most efficient SAR configuration for oil spill detection. No significant difference in
practical performance between the detection capabilities of the HH-polarized RADARSAT-1
ScanSAR mode versus the VV-polarized ENVISAT ASAR WSM mode has yet been reported
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for operational use, however the experience might still be limited (Shepherd et al. [26];
Solberg et al. [30]). Usually even small volumes of oil cover large areas and thus the need for
very high spatial resolution in SAR images is not crucial. Bern et al. [4]; Wahl et al. [36, 35]
found Low Resolution ERS-1 SAR images with a spatial resolution of 100 m sufficient for oil
spill detection. ENVISAT’s ASAR WSM covers a much wider swath than its predecessors
ERS-1 and -2, but the resolution is lower. Generally, for efficient oil spill monitoring larger
swath widths should be chosen on the expense of somewhat lower resolution. Because of
ENVISAT’s good oceanography and oil spill detection properties, we have chosen its WSM
mode (VV polarization) for our experimental design. Olsen and Wahl [25] argue that if
we base our evaluation on a contrast requirement of -2 to -3 dB for labelling features as
potential oil slicks, this means that ocean backscatter should be at least 3 dB above the
noise floor to support slick discrimination. The estimated noise floor is about 4 dB below
the expected low-wind backscatter for VV-polarized data at the outer edge of the swath,
while HH-polarized data will be around the expected noise floor. Therefore, VV-polarized
wide swath data would be the best option for monitoring slicks. (See also Brekke and
Solberg [5] for a discussion on satellite sensors and modes for oil spill detection). Table 1.8
in Appendix A gives a description of some key features of the SAR sensor and mode selected
for this study.

This section covers the experimental design and the experimental results produced during
performance testing of the improved segmentation process and the new features discussed in
the previous sections.

3.1 Experimental Design

Our results are based on a set of 83 ENVISAT ASAR WSM images. We have aircraft verifi-
cations collected by the European Commission (EC) project Oceanides for 27 of the scenes.
This is done in collaboration with Kongsberg Satellite Services (KSAT), QinetiQ, Norwegian
Computing Center (NR), German pollution control authorities (MLZ) and Finnish pollution
control authorities (SYKE) (see Solberg et al. [30]).

For performance testing, the set of SAR scenes is split into two parts. 56 of the SAR
scenes are used for training and adjusting the model parameters, and the 27 benchmark
scenes are used as a validation/test set to estimate the generalization error. The training
set is collected from the German and Finnish Baltic Sea, the North Sea and some along
the Norwegian coastline during March to December 2003 and January to April 2004. The
benchmark set is collected mainly from the German and Finnish Baltic Sea and the German
North Sea between July and December 2003.

To label the training set, we created a training mask for each SAR image. By manual
inspection, we systematically scanned through all images tagging off dark spots as either
oil spill or doubt. The doubt category was only used for a limited number of cases that
could either be classified as oil spills or look-alikes. Doubt cases were left out of the training
process. All slicks not marked as oil or doubt were used to train the look-alike class. A
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similar procedure was performed for the test/benchmark set. All together, 37 dark spots
were tagged off as oil spills and thousands of dark segments as look-alikes. Not all of the
possible oil spills were checked due to e.g. flight cancellations or oil spills occurring outside
the Finnish and German maritime territories. The classification performance was evaluated
on the total set of dark spots, and not on the image level. Doubt cases are left out of all the
classification results presented in the following.

3.2 Intermediate Classification Results - Improved Feature Extrac-
tion

Table 1.3 presents the results from classifying the complete benchmark set of 27 scenes by
applying feature #3 - #9 in table 1.1 as a basic feature vector. This classification was done

Table 1.3: Classification results based on the basic feature vector.

Basic Rule-based Correctly classified Correctly classified

Segmentation feature vector corrections oil spills look-alikes

Basic, adaptive thresholding extended

with the object-oriented box approach #3 - #9 No 89% 90%

without the rule-based corrections of the probability densities described in Solberg et al.
[28, 31] and in section 2.3. (The rule-based corrections are based on the observed values
of the features on the training set. When replacing some of the features, the rules have to
be modified 5. To adjust the rule-based corrections according to new features is a time
consuming process, and it is not necessary for the purpose of demonstrating the efficiency of
the new features. The rule-based corrections are left out of all performance results presented
in this section, but are however included in the final results presented in the next section).
All other parameter settings, except for the feature vector, were fixed in the algorithm during
feature evaluation. The results in table 1.3 can for this reason be used as a reference for
table 1.4 and 1.6.

The SLICK_BORDER_STDEV feature (see section 2.2) were added to the basic feature
vector (feature #3 - #9 from table 1.1) and the classification results are presented in table
1.4. By comparing this result with table 1.3, it is clear that this feature does not add any
significant value to the classification accuracy. For this reason this feature were not taken
into further consideration.

Table 1.5 gives a definition of the new features we finally selected for our experiment,
and Table 1.6 presents the intermediate classification results after introducing one at the

5An example of a rule is [31]: "Increase prior probability for oil spills if DIST < 10 AND NLN =
0 AND COMPL < 20". DIST, NLN and COMPL are features (see table 1.1). If we change the definition
of these features we then might have to adjust the limit values as well.

134



Table 1.4: Evaluation of the slick border standard deviation feature.

Correctly Correctly

Rule-based classified classified

Segmentation Feature vector corrections oil spills look-alikes

Basic, adaptive thresholding extended #3 - #9 and

with the object-oriented box approach SLICK_BORDER_STDEV No 89% 90%

Table 1.5: New set of features.

# Feature Description

14 SLICK_BORDER Defined as a combination of the mean of the magnitude of the Sobel gradient

values of the region border area and the four additional masks described

in section 2.2.

15 SLICK_VARIANCE Defined as the ratio σ2
r/A, where σr is the standard deviation and A is the

area of the slick.

16 SUM_EXTERNAL_ANGLES Defined as the sum of all local curvature measures (changes of slope) along the

boundary.

time of the new features into the basic feature vector. The BGRAD feature in table 1.1 is

Table 1.6: Intermediate classification results after introducing the new features.

Rule-based Correctly classified Correctly classified

Segmentation Feature vector corrections oil spills look-alikes

Basic, adaptive thresholding extended

with the object-oriented box approach #3 - #7, #14, and #9 No 95% 88%

Basic, adaptive thresholding extended

with the object-oriented box approach #16 and #4 - #9 No 89% 91%

Basic, adaptive thresholding extended

with the object-oriented box approach #3 - #9, and #15 No 92% 89%

substituted with the improved border gradient detector SLICK_BORDER, COMPL with
SUM_EXTERNAL_ANGLES, and SLICK_VARIANCE is added as an additional feature
to the feature vector. As the new features either replace old features or measure a new prop-
erty not represented in the old feature set, we avoid high correlation among the features and
the assumption of diagonal covariance matrices is still valid. By introducing each of the new
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features in table 1.6, either the number of correctly classified oil spills or the number of look-
alikes correctly classified has increased compared to table 1.3. For SLICK_BORDER and
SLICK_VARIANCE have the numbers of correctly classified oil spills increased, while there
is a reduction in the numbers of look-alikes correctly classified compared to table 1.3. For
SUM_EXTERNAL_ANGLES the number of correctly classified look-alikes has increased,
while the number of correctly classified oil spills is unchanged.

3.3 Final Classification Results

In the previous section, we illustrated the importance of suitable features for oil spill detec-
tion. A good segmentation result can as well contribute significantly to the success of oil
spill detection. Table 1.7 presents the classification results for the benchmark set before (first
table row) and after (second table row) introducing the object-oriented box approach (de-
scribed in section 2.1). The basic feature vector, feature #3 - #9 in table 1.1, is kept in both
cases. The object-oriented box approach aims at detecting thin, linear oil spills often left

Table 1.7: Final classification results. Rule-based corrections of the probability densities
were included in the algorithm.

Rule-based Correctly Correctly

classified classified

Segmentation Feature vector corrections oil spills look-alikes

Basic, adaptive thresholding #3 - #9 yes 78% 99%

Basic, adaptive thresholding extended

with the object-oriented box approach #3 - #9 yes 86% 99%

Basic, adaptive thresholding extended

with the object-oriented box approach #3 - #7, #14, #9, and #15 yes 89% 98%

out or fragmented by the basic, adaptive thresholding approach (described in section 2.1).
This class of oil slicks are often visible behind vessels in motion, discharging oil while sailing.
Figure 1.12 presents two of the cases that were missed by the basic, adaptive thresholding,
but classified correctly as oil spills after adding the improvements to the segmentation pro-
cess. The large increase from 78% to 86% in the number of detected oil spills shows the
importance of a tailored segmentation process to this particular application.

Finally, the last row of table 1.7 presents the classification results after also introducing
the new features from table 1.5 and adjusting the rule-based corrections of the probability
densities according to the new feature values of the training set. The SUM_EXTERNAL_A-
NGLES feature (#16 in table 1.5) is not included in the final feature vector (used to compute
the probability densities), but instead applied directly in the rule-based corrections of the
probability densities. SUM_EXTERNAL_ANGLES was shown in table 1.6 to decrease the
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Figure 1.12: Sections of ENVISAT ASAR WSM images (13th of July 2003 and 24th of July
2003). c©ESA/KSAT 2003. Thin, linear slicks (marked off) that were correctly detected as
oil spills after the improvements to the dark spot detector were added to the algorithm.

false alarm rate, and contributes with this property through the rule-based corrections. The
results show that the combination of an improved segmentation process and an improved set
of features lead to a significant better classification result for oil spills. It gives us an increase
from 78% to 89% when comparing the first and third row of table 1.7. In contradiction to
the intermediate results presented above (section 3.2), we have here in table 1.7 added rule-
based corrections of the probability densities. This contributes strongly to the very high
classification rate of 98% for look-alikes. We do only get 238 false alarms out of 12 247
regions tagged off as look-alikes.

Even though some of the desired alarms on possible oil spills are lost, this motivates the
use of the rule-based corrections as a classification rate of 88-91% for look-alikes (table 1.6) is
far too low considering the number of false alarms. However, there are room for improvement
because of the large amount of time and effort necessary to produce such a rule-base when
e.g. adapting the algorithm to a new sensor mode.

Detecting the dark spots (segmentation) is the most computationally intensive step of
the algorithm. Adding the object-oriented box approach to this step might call for an
optimization of the algorithm with respect to processing time.

Del Frate et al. [9], Solberg et al. [28], and Fiscella et al. [11] describe automatic oil spill
detection algorithms and report accuracies from 82% to 94% in the number of correctly clas-
sified oil spills. These studies are however performed on different data sets, and the methods
differ both in segmentation approach, features extracted, and classification methodology.
For this reason, these results are not directly comparable with our results.
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4 Conclusions

In this paper, we have developed new features for oil spill detection that lead to improvements
in classification performance of SAR images. In addition, a new segmentation algorithm
aiming at detecting thin, linear oil spills is presented.

We have studied properties of the border gradient and texture measures of the slicks.
These features are based on the backscatter level characteristics of the slicks and their sur-
roundings. In addition, we have evaluated several features measuring various aspects of the
slicks shape. The use of curvature, as adopted from the well-known concepts of contour
models (snakes), is suggested as a more robust complexity feature than those commonly
applied in the oil spill remote sensing literature.

We have as well illustrated through examples and improved classification results the
importance of an adapted segmentation process. A combination of an improved segmentation
of thin, linear oil spills, an improved set of features, and adjusted rule-based corrections of
the probability densities has lead to a significant increase from 78% to 89% in the number
of correctly classified oil spills. 98% of the look-alikes are correctly classified. The algorithm
has been evaluated on a set of 83 ENVISAT ASAR WSM images.

Using a statistical classifier, our experimental results show that the rule-based corrections
of the probability densities are very important in keeping the false alarm rate down, but some-
times, unfortunately, at the expense of loosing some of the desired alarms on suspected slicks.
However, such modifications of the feature densities are not common in statistical classifi-
cation, but more often used in knowledge-based classification methods [28]. To improve the
algorithm, incorporation of external knowledge about algae blooms (from e.g. numerical
models, see e.g. Albretsen et al. [1], optical sensors, and geographical information related to
seasonal algae-blooms) and a database of “hotspots” (e.g. oilrigs, sunken ships, seepages and
other phenomena known to create dark patches on given locations) should be considered.

Some large-scale classification studies with acceptable classification performance, have
been reported earlier using e.g. statistical classification and neural nets. As the perfor-
mance results are based on different data sets and sometimes even different SAR sensors, a
comparison of various classifiers based on the same data set would be desired.

Appendix A: Data Set Characteristics

Table 1.8 presents information concerning the data sets used in this study with respect to
SAR product details.
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Table 1.8: SAR product details.

Sensor ENVISAT ASAR

Mode ASA_WSM_1P: Wide Swath-Medium Resolution Image

Frequency (GHz) 5,331 (C-band)

Polarization V/V

Incidence angles (◦) 16 - 44

Approx. coverage (km) (range × azimuth) 400 × 400

Nominal resolution (m) (range × azimuth) 150 × 150

Nominal pixel spacing (m) (range × azimuth) 75 × 75

Processing station KSAT

Husøy (NR) for pre-processing the SAR data.
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Abstract

The combined use of satellite-based synthetic aperture radar (SAR) images and aircraft
surveillance flights is a cost-effective way to monitor deliberate oil spills in large ocean areas
and catch the polluters. SAR images enable covering large areas, but aircraft observations
are needed to prosecute the polluter, and in certain cases to verify the oil spill. We discuss the
limitations of satellite imaging of oil spills compared to aircraft monitoring. Automatic detec-
tion of oil spills has proven to be an interesting complement to manual detection. We present
an overview of algorithms for automatic detection, and discuss their potential compared to
manual inspection as part of an operational oil spill detection framework. Experimental
results show that automatic algorithms can perform comparable to manual detection, both
in terms of accuracy in detecting verified oil slicks, false alarm ratio, and they can also speed
up the image analysis process compared to fully manual services.
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1 Introduction

Marine pollution arising from illegal oily discharges from ships represents a serious threat
to the marine environment. Oil pollution caused by large accidents like the Prestige event
in 2002 capture many headlines, but the majority of the oil pollution cases are caused by
operational discharges from tankers. Observed oil spills commonly appear in connection
with off-shore installations and correlate well with major shipping routes. A combination
of aircraft and satellite sensors are currently used to monitor large ocean areas to detect oil
spills and catch the polluter. The inclusion of satellite surveillance allows the user to better
target the aircrafts used for oil spill surveillance and to cover larger areas.

2 Remote Sensing Sensors for Oil Spill Detection

For routine monitoring of illegal oil discharges from ships and offshore installations both
aircraft sensors and satellite sensors can be used. Satellite-based SAR images can be used
to screen large ocean areas, while aircrafts are more suitable to be brought into action to
identify the polluter, the extent, and the type of spill.

2.1 Aircraft Sensors

Most surveillance aircrafts used for oil pollution monitoring in Europe are equipped with a
combination of sensors (Side-Looking Airborne Radar (SLAR), infrared/ultraviolet (IR/UV),
Laser-Fluoro-Sensor (LFS) , Microwave Radiometer (MWR)). For an overview of aircraft
sensors for oil spill detection, see [10; 19]. SLAR is the main sensor for long-range detection
of oil pollution on the sea surface. The SLAR is used to locate possible spill locations. Then
the spill is inspected more closely using additional sensors and/or visual inspection. The
sensor configuration used on board surveillance aircrafts varies from country to country. An
example is the German aerial surveillance, which locates the oil spills by SLAR, IR/UV
scanning is used to quantify the extent of the film, a MWR is used to quantify the thickness,
and a LFS is used for oil type classification. The SLAR, IR, and LFS can operate at night.
A number of different aircraft types are used for oil spill aerial surveillance. They differ in
terms of endurance, cruising speed and SLAR sensor equipment resulting in different SLAR
area coverage during one flight hour. One hour of airborne remote sensing over the sea at a
speed of 335 km/h covers an area of 13400 km2 [20].

2.2 Satellite Sensors

SAR is the main spaceborne remote sensing instrument for oil spill imaging, with all-weather
and all-day operation capabilities, although it is not capable of oil spill thickness estimation
and oil type recognition. The main limitation for spaceborne optical sensors is the need for
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daylight and cloud-free scenes, but they have a potential to discriminate between oil and
algal blooms. A more detailed discussion of other satellite sensors for oil spill detection is
given in [3].

SAR is particularly useful for searching large areas. Usually even small volumes of oil
cover large areas and thus the need for very high spatial resolution in SAR images is not
crucial. SAR has however some limitations, as a number of natural phenomena can produce
similar dark objects in the SAR images (see Section 3).

Currently, RADARSAT-1 and ENVISAT ASAR are the two main SAR sensors used
for oil spill detection. The best trade-off between spatial coverage and spatial resolution is
achieved using RADARSAT-1 ScanSAR and ENVISAT ASAR Wide Swath image modes.
Table 1.1 describes the coverage and resolution of these sensors. The costs of satellite images
are much lower than the costs of covering the same area by aircraft. The actual time that
the satellite passes over a given location will vary with latitude, but the overflight will be
fixed in time.

Table 1.1: Coverage and resolution for selected RADARSAT-1 and ENVISAT ASAR prod-
ucts.

RADARSAT-1 ENVISAT ASAR

ScanSAR Narrow Wide Swath

Spatial coverage per scene 300 km × 300 km 400 km × 400 km

Spatial resolution per scene 50 m × 50 m 150 m × 150 m

The number of available RADARSAT-1 or ENVISAT ASAR images of a given area on
a given date depends on the geographic latitude and the observation period. Daily coverage
is possible in Northern Europe, and a coverage a couple of times a week is possible for all
European waters.

2.3 Satellite vs. Aircraft - Advantages/Limitations

The advantages and limitations of satellite-based vs. aircraft monitoring are summarized in
Table 1.2. In order to cover the same area as a RADARSAT-1 ScanSAR Narrow scene or
an ENVISAT ASAR Wide Swath scene with an aircraft, 6 or 12 flight hours, respectively,
are needed. A limitation with the satellite monitoring is that the images are taken at fixed
times of the day. The fate and persistence of oil in seawater are controlled by processes
that vary considerably in space and time. The amount of oil spilled, its initial physical and
chemical characteristics, and the prevailing climatic and sea conditions have great impact on
the lifetime of an oil spill. A reasonable assumption might be that most illegal oil discharges
are bilge oil (i.e. a mixture of several kinds of oils (fuel oil, hydraulic oil, etc.)). For instance,
in the Finnish surveillance area it is estimated that 1-5 percent of the detected slicks are
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thicker slicks that persist several days, and 95-99% are bilge oil that persists only some
hours [20]. To cover oil spills occurring at all times of the day, aerial surveillance can be
used to supplement the fixed coverage times of the SAR satellites.

Table 1.2: Advantages and drawbacks with SAR satellite and aerial surveillance. (Adapted
from [20]).

Satellite SAR Aerial surveillance

Advantages Advantages

Large and well-defined spatial coverage. Flexible monitoring.

Less expensive than airborne surveillance. High accuracy of oil spill detection.

Can be used to cue aircraft to improve Can be deployed at short notice.

aircraft operational efficiency. Can identify polluter.

Can identify additional oil parameters.

Limitations Limitations

False targets can occur in analysis. High cost.

Fixed monitoring schedule. Smaller spatial coverage.

Limited to certain wind conditions. Limited to certain weather conditions.

3 SAR Imaging of Oil Spills

Oil slicks dampen the Bragg waves (wavelength of a few cm) on the ocean surface and reduce
the radar backscatter coefficient. This results in dark regions or dark spots in a satellite SAR
image. A part of the oil spill detection problem is to distinguish oil slicks from other natural
phenomena that dampen the short waves and create dark patches on the surface. Natural
dark patches are termed oil slicks look-alikes. Oil slicks include all oil related surface films
caused by oil spills from oilrigs, leaking pipelines, passing vessels as well as bottom seepages,
while look-alikes include natural films/slicks, grease ice, threshold wind speed areas, wind
sheltering by land, rain cells, shear zones, internal waves etc.

A service for oil spill detection based on SAR images must contain an oil spill detection
step where the SAR images are analyzed, and dark regions that might be oil spills are
identified. In this process, the factors that can be used to discriminate between an oil spill
and a look-alike are important. Due to higher viscosity, oil spills tend to remain more
concentrated and provide larger damping to the surrounding sea than natural films [11]. A
newly released oil spill will have reasonably sharp borders to the surrounding sea. As the
weathering effects the spill, the borders can become more fuzzy. The shape will be altered by
wind and current. Depending on the source of the outlet, certain shapes of the oil spills can
be expected. Oil slicks from moving ships are thin, linear or piecewise slicks, while oil slicks
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from stationary sources can be wide and regular if a significant amount of oil is released in
short time.

Other types of pollution can also cause slicks that are visible in the SAR image Algae
can also create dark patches in the SAR image very similar to oil slicks. This is in particular
a problem in the Baltic Sea, where a certain algae type that dampens the Bragg waves is
common during the summer season. If additional information from e.g. ocean color sensors
is available, it can be used to identify algae.

The wind speed is also important for imaging of oil spills. With very low wind, no
backscatter from the sea surface will be seen. Look-alikes are very frequently observed in
low to moderate wind conditions (approximately 3 to 7 m/s). As the wind speed increases,
the expected number of look-alikes will be lower. For oil spills, the contrast between the
spill and the surrounding sea will decrease with higher wind speeds. At high wind speeds
(>10 m/s) only larger slicks with thicker oil will be visible. The upper limit for observing
oil in the SAR image is not known exactly. In an operational oil spill detection service at
Kongsberg Satellite Services (KSAT) in Tromsø, Norway, an upper limit of 15 m/s is used.

4 SAR Oil Spill Detection: Manual vs. Automatic

Oil spills in a SAR image can be identified by manual inspection, or the image can first be
screened by an automatic algorithm for oil spill detection, followed by manual inspection
of the suspect alarms only. Manual interpretation of e.g. a 400 km × 400 km ENVISAT
ASAR image can be a complex and time consuming task because the image is so large that
the operator can only view a small part of the scene at a time to be able to detect thin
oil slicks. Recent benchmarks [15; 14] comparing automatic algorithms to manual detection
shows that an automatic algorithm can be a valuable tool when a large number of images
are to be inspected.

4.1 Manual Oil Spill Detection

A well-established operational service for oil spill detection is run at KSAT. Trained operators
detect oil spills by inspecting the SAR images. In addition to the image, they can use external
information about wind speed and direction, oil rig/pipeline location, national territory
borders and coast lines. After a possible oil slick has been detected, it is assigned confidence
level low, medium or high based on a certain set of rules [15]. The location of detected oil
spills and their confidence level is then immediately sent to the surveillance aircrafts.

4.2 Automatic Approaches

A literature review of automatic techniques for oil spill detection in SAR images can be found
in Brekke and Solberg [3]. In this section we give a short update on the state-of-the-art in
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Figure 1.1: A framework for oil spill detection algorithms.

this field.
Several of the published papers on oil spill algorithms for SAR images (e.g. [8; 7; 17; 14])

describe a methodology consisting of dark spot detection followed by feature extraction and
a classification step (see Fig. 1.1).

Segmentation Techniques

As oil spills are characterized by low backscattering levels, the use of thresholding for dark
spot segmentation is commonly applied (see e.g. Keramitsoglou et al. [12]; Solberg et al.
[17]; Brekke and Solberg [3]). As SAR images tend to become darker with increasing range
and as local variations in the wind level and other meteorological and oceanic conditions
occur, thresholding algorithms where the threshold is set adaptively based on local statistical
estimates should be preferred.

Dark Spot Feature Extraction

Discrimination between oil spills and look-alikes are often based on a number of features
computed for each suspicious dark spot on the sea surface (see e.g. [18; 17; 5; 7; 8]).

Good features are very important for the sucess of the following classification step. Most
of the features applied in the literature are covered by the following types:

• The geometry and shape of the dark spot.

• Physical characteristics of the backscatter level of the dark spot and its surroundings.

• Dark spot contextual features.

• Texture features of both the dark spot and the surroundings.

Slick Classification

The purpose of the classification step is to distinguish oil slicks from look-alikes. How difficult
the classification task is depends on the variability in the feature values for objects in the
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oil spill class relative to the difference between feature values for objects in the look-alike
class. Effective methods for developing classifiers involve learning from example patterns
(training). In statistical approaches, the classification decision is based on the probability
and the cost of a certain decision (e.g. [17; 6; 4]).

Various classifiers have been applied to the oil spill detection problem [8; 13; 7; 12]. All
detection algorithms suffer from false alarms, and dark spots classified as oil spills may be
confused with look-alikes (e.g. natural film and low wind areas). Applying external data
to improve classification and assess the slick nature has been suggested. Girard-Ardhuin
et al. [9] combines characteristics of the detected dark spots from the SAR images and me-
teorological and oceanic data through a multisensor approach (including information about
surface wind measurements, sea-surface temperature, atmospheric fronts and clouds and
chlorophyll).

5 A Benchmark Study of Oil Spill Detection Approaches

As part of the EC project Oceanides, a benchmark study comparing oil spill recognition
approaches was performed. Manual oil spill detection based on SAR images was compared
to semi-automatic and automatic approaches. A joint satellite-airborne campaign was per-
formed during 2003. The campaign covered the Finnish and German sectors of the Baltic
Sea, in addition to the German sector of the North Sea. The campaign was organized in such
a way that a trained operator at KSAT (KSAT1) analyzed the SAR images, and reported
possible oil spills to the Finnish and German pollution control authorities. They would check
the positions and verify the slicks, and report additional slicks found by the aircraft. This
was done for both ENVISAT and RADARSAT-1 images.

For benchmark comparisons, KSAT let another operator (KSAT2) inspect the same SAR
images without knowing the aircraft detections or the result of the previous inspection to
study the inter-operator variance. The automatic oil spill detection approach developed at
Norwegian Computing Center (NR) [14] was used to analyze all images without knowing
aircraft detections or KSAT results. Fig. 1.2 shows examples of both correctly classified oil
slicks, false alarms, and slicks detected only by aircraft.

The benchmark data set contained 27 ENVISAT images and 32 RADARSAT-1 images.
The real-time inspection of the ENVISAT images at KSAT (KSAT1) detected 11 oil slicks
that were verified as oil slicks by the aircraft. The repeated inspection by another operator,
KSAT2, detected 8 of these verified slicks, the automatic algorithm (NR) also detected 8 of
the verified slicks. For RADARSAT-1 data, there was 18 verified oil slicks, KSAT2 found 15
of these, while the NR algorithm found 14.

This demonstrates that the inter-operator variance was significant. KSAT has later
taken measures to reduce this variability by increasing operator training and harmonising
the interpretation process. The performance of the NR algorithm is also almost comparable
to KSAT2, so it can be a valuable alternative or supplement to manual inspection.

153



Examples of oil slicks verified by aircraft.

Examples of oil slicks detected by aircraft, but not by KSAT and NR.

Examples of false alarms. The slick in the image on the left was verified as algae, while the
clearly suspect dark spot in the right image could not be found when the aircraft inspected

the position (possibly resolved).

Figure 1.2: ENVISAT images with examples of oil slicks and false alarms.
c©ESA/KSAT/NR
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It is also of interest to study additional slicks reported by the aircraft, but not detected
from satellite image analysis. In general, these slicks involved a small amount of oil. For
some of them, the time of aircraft pass was several hours after the satellite image acquisition,
so the release could be new. For other cases, the satellite image was taken several hours after
the air-craft pass, and a small amount of oil could very well be resolved during this time
period.

The number of false alarms, the number of slicks reported by satellite, but verified as not
oil by the aircraft, was also studied. All false alarms are discussed in detail in [15]. Some
linear slicks with good contrast were detected in the satellite image but verified as algae.

The confidence levels that are associated with reported possible oil slicks from KSAT
can be used by the surveillance aircraft crew to prioritize which oil spill positions they will
inspect first. Slicks that were assigned confidence level High had very low false alarm ratio,
slicks that were assigned confidence Medium had reasonably low false alarm ratio, while
slicks that were assigned confidence Low had relatively high false alarm ratio (again the
details can be found in [15]). However, the confidence assigned by two different operators
at KSAT varied. The automatic algorithm can also be used to compute confidence levels
using a set of rules that simulate the rules used by the operators at KSAT (see [16] for how
this is done). By comparing the confidence levels assigned by two KSAT operators and NR’s
automatic algorithm on a set of 22 selected oil slicks, it was found that KSAT1 and KSAT2
assigned the same confidence for 7 out of 22 slicks, while the algorithm and KSAT1 agreed
for 13 of 22 slicks, and had a confidence level difference of one (indicating e.g. High vs.
Medium) for six additional slicks. What this indicates is that there is still some subjectivity
involved in confidence assignment, and using an algorithm to get a "second opinion" to use
in confidence assignment might be valuable.

The processing time for manual inspection at KSAT varied between 3 and 25 minutes
for RADARSAT-1 images, with an average of 9 minutes. The automatic algorithm had an
average processing time of 3 minutes. For ENVISAT images, the average time for manual
inspection at KSAT was 10 minutes, while the automatic algorithm had an average processing
time of 1.45 minutes.

6 Discussion and Conclusions

The combined use of satellite-based SAR images and aircraft surveillance flights is a cost-
effective way to monitor large areas and catch the polluters. The coverage in terms of the
number of weekly satellite passes of European waters is very good in Northern Europe and
decent in the Mediterranean.

Oil spill detections from aircrafts and satellite images were compared in a benchmark
study. In general, there were good agreement between aircraft detections and satellite-based
detections when the time offset between the image acquisitions was low.

Some information about oil spill statistics and hot spots exist, see e.g. [2; 20]. Hot spots
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coincide well with major shipping routes, pipelines, oil rigs etc. Tufte et al. [20] discuss
sampling requirements as guidelines for operational oil spill monitoring in European waters.
They also summarize current monitoring efforts for many countries in Northern Europe,
and their experience in using a combination of aerial- and satellite monitoring. The best
approach for a specific national authority depends on the size and shape of the area to
be monitored, and other resources available. International cooperation with neighboring
countries on planning satellite acquisitions and sharing costs is important.

Many different techniques are proposed for automatic detection of oil spills. They often
consist of three main parts: segmentation, feature extraction and classification. However,
there is still a challenge in reducing the number of false alarms, and automatically assigned
confidence levels can be helpful in prioritizing the alarms. Interoperator variance in manual
detection should be reduced by better training, or introducing the algorithm as a second
information source. This applies to both detection and confidence assignment.

Presently, one of the biggest challenges for operational oil spill detection services is ob-
taining sustainability in terms of data availability. SENTINEL-1 is a planned two-satellite
system (C-band) to be operated as a constellation for maximized coverage/repeat cycle.
The first satellite will be launched in 2010 and the second some 12-15 months later [1].
RADARSAT-2 is a Canadian SAR satellite planned to be launched in the summer of 2007.
The SAR instrument will be C-band like RADARSAT-1, but there will be more flexibility
in the selection of polarizations.
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Abstract

An improved classification approach is proposed for automatic oil spill detection in SAR
images. The performance of statistical classifiers and Support Vector Machines (SVM) are
compared. Regularized statistical classifiers prove to perform the best on this problem. To
allow the user to tune the system with respect to the trade-off between the number of true
positive alarms and the number of false positives, an automatic confidence estimator has
been developed. Combining the regularized classifier with confidence estimation leads to
acceptable performance.

Index Terms– SAR, oil spill, classification.
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1 Introduction

Oil spills appear as dark areas in SAR images because the oil damps the short gravity waves
on the sea surface. A part of the oil spill detection problem is to distinguish oil spills from
other low-backscatter ocean phenomena (look-alikes) creating dark structures in the images.
The framework of our algorithm is a dark spot detector, a feature extractor and a dark spot
classifier. Dark spots in the images are primarily detected by adaptive thresholding. For
each of them a number of features are computed in order to classify the slick as either an oil
spill or a look-alike. Segmentation and feature selection were discussed in [1; 12], here we
focus on the classification step.

Various classifiers have been applied to the oil spill detection problem. A Mahalanobis
classifier and a compound probability classifier was applied in [5]. The probabilistic approach
was improved in [9] by using a different classification algorithm including a multi-regression
approach where the regression coefficients represent the contribution of each feature on the
prediction of a new sample. A neural-network approach is described in [6], and in [7] a
classifier based on fuzzy logic is presented. In [8] a SVM technique for oil spills detection
was applied.

Oil spill detection is an application where the classifier should detect a rare but important
event (look-alikes appear much more frequent). Based on a statistical classifier for oil spill
detection earlier described [12], we here suggest introducing regularization of the covariance
matrices to decrease the number of false positives. SVMs has been used for a number
of applications often showing good performance [2]. We compare SVM to the regularized
statistical classifier. Confidence levels automatically assigned to the slicks can be useful for
prioritising the alarms and helpful as a ”second opinion” to manual analysis [11]. We present
a novel algorithm for automatic assignment of confidence levels.

2 SAR Images

Our system is trained and tested on 103 complete ENVISAT ASAR Wide Swath Mode im-
ages. The image set is split into three sets: training (56 images), validation (20 images) and
testing (27 images). The images are collected from the Baltic Sea and the North Sea from
2003-2005. Aircraft verifications, from a joint airborne-satellite campaign [10], are available
for the test set. To label the training and validation sets, oil slick candidates were manually
masked and associated categories “high-confidence” and “moderate-confidence” (this infor-
mation was used in the training of the confidence estimator, section 3.3). For more details
on the masking process see [12].
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3 Classification Methodology

For each of the segmented dark spots i, a number of features (selected in previous studies [1;
13]) are computed: Shape features: “Sum of External Angles”, “Slick Moment”, “Slick
Area”, “Slick Complexity”, “Slick Width”, Contrast features: “Slick Local Contrast”, “Slick
Border”, “Smoothness Contrast”, Texture: “Power-to-mean Ratio”, “Slick Variance” and
Surroundings: “Regions in Small Neighbourhood”, “Distance to Ship/Oilrig”. In addition,
a new feature “Low Wind Area” is developed. It is defined as a binary feature, assigned 1
if the region overlaps with a large region (≥ 4000 pixels, i.e. larger than the largest oil spill
observation among the training samples) in a coarse segmented version of the image where
large dark structures at the size of large low wind areas will be detected.

The simplest classifier to consider is to use a multivariate Gaussian classifier. However,
the behaviour of the features will change with different wind levels. Describing the condi-
tional density by a unimodal density such as a Gaussian is therefore not appropriate. If we
split the problem and assume different densities depending on the wind level, we can train
a classifier for each subclass. The data within each subdivision would then be reasonably
homogeneous and it might be appropriate to assume the densities to be Gaussian.

The class-conditional multivariate normal density is completely specified by d+d(d+1)/2
parameters, namely the elements of the class-specific mean vector µk and the independent
elements of the covariance matrix Σk. d is the dimensionality of the feature vector. As oil
spills just occasionally occur, we need to consider robust estimation of Σk due to the low
number of training samples. We suggest regularizing the estimated covariance matrix, by
forming a combination of the fully estimated covariance matrix and the diagonal covariance
matrix.

Oil spill detection based on SAR is today used in combination with surveillance aircraft
in many European countries. In addition to the cost of sending out aircraft, the false alarm
ratio acceptable by the customers could vary. It would be desirable that the automatic
system not only reports which slicks were classified as oil, but also the probability associated
with that decision. Using the computed posterior probability for this purpose would be the
first option to consider. However, initial experiments indicated that this did not perform
well. The posterior probability for a two-class Gaussian tends to be very close to either 1
or 0. Comparing probabilities across subclasses also turned out to be difficult because of
the difference in variance between the subclasses. To reduce the number of false positives
and to give the operator a tool for prioritising the alarms, we have developed an automatic
confidence estimator for all spots labelled oil spill by the classifier. First, a classifier is
applied to each feature vector xi, then for each slick with a higher posterior probability of
being an oil spill than a look-alike (Pr(oil spill|xi) > Pr(look− alike|xi)) a confidence level
is automatically estimated.
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3.1 Statistical Classifier

In [13; 12], a prior distribution and a probability density for the features are combined
through Bayes theorem to obtain the posterior probability for a detected spot being an oil
spill. Let c be the unknown class membership of a detected spot (we are dealing with a two
class problem: oil spill or look-alike). Then

Pr(c = o|xi) =
πofo(xi)

πofo(xi) + (1 − πo)fl(xi)
(1.1)

where πo is the prior model for the probability that a detected spot is oil. fo(xi) and fl(xi)
are the probability densities for the observed features xi in classes o = oil spills and l =
look-alikes, respectively. The densities are assumed Gaussian:

fc(xi) =
1

(2π)
d
2 |Σ| 12

× exp{−1

2
(xi − µc)

T Σ−1(xi − µc)} (1.2)

where c ∈ {o, l}, d is the number of features, µc is the mean vector for class c and Σ is
the covariance matrix, common for both classes due to the imbalanced data set. Only “Slick
Complexity”, “Power-to-mean Ratio”, “Slick Local Contrast”, “Slick Width”, “Regions in Small
Neighbourhood”, “Slick Border”, “Smoothness Contrast” and “Slick Variance” are included in
feature vector xi.

Division of Each Class Into a Set of Subclasses

Even within each wind level W , both the oil slicks and the look-alikes may vary quite a lot
in shape, contrast and other features. The wind level W is first used to divide the samples
in two different subclasses and then these are divided into five subclasses based on the
shape descriptor “Slick Moment (MOM)” (see Table 1.1). The wind level is represented by
a homogeneity category ∈ {1, ..., 6} estimated based on the “Power-to-mean Ratio (PMR)”
of the surroundings [12]. The division of the feature space might not be optimal, and is the
subject of ongoing research.

Covariance Matrix Estimation

With the subclass division, the density for class c and wind level W is then given by fc,W,g(xi)
if “Slick Moment” is in shape subgroup g. Different densities depending on the value of “Slick
Moment” are assumed. Applying Gaussian densities, the simplest classifier consists of using
common diagonal covariance matrices for each subclass: Σ̂W,g = diag{ΣW,g} where ΣW,g is
the fully estimated common covariance matrix. Replacing Σ̂W,g with a regularized covariance
matrix leads to a more general family of covariances indexed by ρW,g:

Σ̃W,g(ρW,g) = ρW,g[diag{ΣW,g}] + (1 − ρW,g)ΣW,g (1.3)
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Table 1.1: Subclasses and the number of observations in the training set.

Subclass MOM PMR Oil Spills Look-alikes

1 < 0.3 >=0.04 37 5267

2 ∈ [0.3, 0.5) >=0.04 34 4202

3 ∈ [0.5, 0.8) >=0.04 23 1681

4 ∈ [0.8, 1.2) >=0.04 12 617

5 >=1.2 >=0.04 16 278

6 <0.3 < 0.04 23 786

7 ∈ [0.3, 0.5) < 0.04 25 604

8 ∈ [0.5, 0.8) < 0.04 14 152

9 ∈ [0.8, 1.2) < 0.04 9 51

10 >=1.2 < 0.04 14 27

Here ρW,g ∈ [0, 1] allows a continuum of models, and needs to be specified through experi-
ments. If class-dependent covariance matrices are used, the variance of the look-alike class
could be huge compared to the oil class, and the resulting class-conditional probabilities
for the look-alikes would be of another magnitude than for oil resulting in a large “bias”
in the classification. A way of handling the very unbalanced data set is to avoid using
class-conditional covariance matrices. However, how imbalanced the training set is varies
among the subclasses. If we use class-conditional covariance matrices within each subclass,
regularization can be expressed as:

Σ̃c,W,g(ρW,g) = ρW,g[diag{Σc,W,g}] + (1 − ρW,g)Σc,W,g (1.4)

where c ∈ {o, l} and Σc,W,g is the fully estimated class-conditional covariance matrix.

Loss Functions and Prior Probabilities

We are considering misclassifying oil spills as look-alikes more serious than misclassifying
look-alikes as oil spills. A spot is classified as oil if:

fl(xi)

fo(xi)
<

πol1
(1 − πo)l2

(1.5)

Equal prior probabilities for the oil spill and the look-alike classes (πo = πl = 0.5) are
applied, and l1 = β0.6 and l2 = 0.4. πo = 0.5 is far from realistic, as an oil spill is considered
a rare event compared to look-alikes, however πo is adjusted in eq. (1.5) through β which
is based on a model presented in [13; 12] for the expected number of look-alikes and oil
spills depending on the wind level. In total, this gives a reasonably realistic model for the
imbalanced class problem.
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Training the Regularized Classifier

A search for the optimal regularization parameter, ρ, and experiments to compare regulariza-
tion with common vs. class-conditional covariance matrices have been done. As some of the
subclasses have a quite limited number of training samples, we chose to use cross-validation
with leave-one-out on the training set to identify optimal values for ρ within each subclass.
The validation set was used to compare the performance of eq. (1.3) and (1.4). The result
is presented in table 1.2. To study the effect of regularization on the classifier (section 4),

Table 1.2: The optimal selection Σ̃ and ρ for each subclass.

Subclass ρ eΣ

1 0 common

2 0 common

3 0.1 common

4 0 class-conditional

5 0 class-conditional

6 0.1 common

7 0 common

8 0.1 common

9 0.8 common

10 1 common

two versions of the statistical classifier were trained: a classifier applying common, diago-
nal covariance matrices as in [12], and a regularized classifier. Our regularization technique
adapts to the subclasses, and is likely to generalize better than diagonal covariance matrices.
For the small subclasses 9 and 10 the optimal ρ was found to be close to 1 (giving diago-
nal covariance matrices). The results also showed that for subclass 1-8 (a majority of the
subclasses) the optimal ρ is close to 0 which means that the classifier performs best using
a non-diagonal covariance matrix. We found that class-conditional (compared to common)
covariance matrices give a better result on the validation set only for subclasses 4 and 5
(which are the two least imbalanced subclasses among those with highest PMR).

3.2 Support Vector Machines

As the training set is imbalanced, we have chosen to use C-Support Vector Classification
(C-SVC) for the special case where different penalty parameters are used for the oil spill
and look-alike classes. We have applied an implementation by Chang and Lin [3]. In regular
C-SVC [4], a common penalty parameter C is applied for both the classes.
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Given a training set of feature vector - label pairs (xi, yi), i = 1, 2, ..., N where xi ∈ Rn

and yi ∈ {1,−1} (note that we here are dealing with a two class approach since we are
considering a pair of classes, oil spill or look-alike), C-SVC requires training that involves
the minimization of the error function:

min
w,b,ξ

1

2
wTw + C1

∑

yi=1

ξi + C−1

∑

yi=−1

ξi (1.6)

subject to:
yi(w

T φ(xi) + b) >= 1 − ξi, ξi >= 0, i = 1, ..., N

where the ξi are slack variables which measure the degree of misclassification of xi and
C1 > 0 is the oil spill and C−1 > 0 is the look-alike penalty parameters of the error terms, w
is the vector of coefficients and b a constant. The feature vectors are mapped into a higher
dimensional space by the kernel φ. A RBF kernel is used: K(xi,xj) = exp(−γ||xi − xj||2),
where γ > 0 is the kernel parameter to be specified. The same feature vector as applied for
the statistical classifiers was applied here.

Training the C-SVC

In early attempts on applying regular C-SVC almost all slicks were classified as look-alikes.
Since we are dealing with an imbalanced data set, we added a cost model that makes errors
on the oil spill examples more expensive. This improved the results. It is emphasized in eq.
(1.6) how the class dependent penalty parameters C1 and C−1 are applied in C-SVC. The
penalty parameter for the oil spill class (C1) is set equal to w1 ∗C, where w1 is a weight. The
penalty parameter for the look-alike class (C−1) is set equal to w−1 ∗C, where w−1 is another
weight. We selected w1 = number of look−alikes in subclass

number of oil spills in subclass
and w−1 = 1. A standard grid-search

was done where pairs of (C, γ) were tried out and the one with the best performance accuracy
(on the validation set) was picked. The exponentially growing sequences C = 2−5, 2−4, ..., 215

and γ = 2−15, 2−14, ..., 23 were used for a coarse grid search. Then, a region on the grid
containing the best validation accuracy was selected for a grid search with finer resolution.
The final selection of C, γ, w1 and w−1 used in the training of the classifier is presented in
table 1.3. Each attribute of the feature vectors were scaled to the range [−1, 1], as commonly
done for SVM.

3.3 Automatic Confidence Estimation

A study performed by Oceanides [10] showed that a confidence assigned manually by the
operator would be of high value to the surveillance aircraft if it is reliable. However, experi-
ments involving several operators and aircraft detections showed that reliable and consistent
assignment of confidence levels is difficult and the manual procedure was subjective. We
have thus developed an automatic (and objective) confidence estimator as a second step in
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Table 1.3: Optimal selection of C, γ, w1 and w−1 for C-SVC.

Subclass γ[2x] C[2x] w1 w−1

1 -15.25 16.75 142 1

2 -8 15.5 123 1

3 -2.75 -4.25 73 1

4 -2 12 51 1

5 2.5 -3 17 1

6 -0.75 -5.75 33.5 1

7 -3.5 -6 23.5 1

8 -0.25 -4.25 10.5 1

9 -3.5 -2.25 5.2 1

10 -1.5 1 1.9 1

our two-step classification approach. A confidence level is estimated for all slicks classified
as oil spills in the first step of the classification approach.

To determine the confidence level of a slick, the operators at KSAT use a set of guide-
lines [10]. Early experiments showed that it is not sufficient to base the design of an automatic
procedure only on these guidelines [11]. In addition to translating several of the KSAT cri-
teria into computed features, we included additional features that we found important for
reliable confidence estimation. An example is the KSAT guidelines for High confidence: “The
slick has a large contrast to gray-level surroundings. The surroundings are homogenous, with
a constant gray-level. The wind speed is moderate to high, i.e. approximately 6-10 m/s.
Ship or platform directly connected to slick.“ and the following rule established in our auto-
matic confidence estimator: IF “Slick Local Contrast” ≥ 0.91 AND “Distance to Ship/Oilrig”
≤ 85.84 AND “Power-to-mean Ratio” ≤ 0.04 AND “Regions in Small Neighbourhood” ≤ 6
AND “Slick Moment” ≥ 0.25 AND “Slick Area” ≥ 20 THEN HIGH (the feature limits are
automatically estimated).

We use four confidence levels, High, Medium, Low and Very Low, and the following
features for High: “Slick Local Contrast”, “Power-to-mean Ratio”, “Regions in Small Neigh-
bourhood”, “Distance to Ship/Oilrig”, “Slick Moment” and “Slick Area”. Medium: “Slick
Local Contrast”, “Slick Border”, “Sum of External Angles”, “Power-to-mean Ratio”, “Slick
Area”, “Regions in Small Neighbourhood” and “Low Wind Area”. Low: “Low Wind Area”,
“Power-to-mean Ratio”, “Regions in Small Neighbourhood”, “Sum of External Angles”, “Slick
Border”, “Distance to Ship/Oilrig”, “Slick Local Contrast”, “Slick Area”, “Smoothness Con-
trast” and “Wind”.

Both the training and the validation sets were used in the training of the confidence
estimator. The conditions for level High and Medium confidence were semi-automatically
trained, while level Low was manually trained. For High, the feature value limits were
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estimated automatically from the computed feature vectors of the oil slicks. Depending
on the feature, the limit was set at either the first or the last quartile of all the sorted
feature values. We only applied those slick candidates in the training and the validation set
that were marked “high-confidence”. The limit for the feature “Power-to-mean Ratio” was
however slightly adjusted, as the automatic estimate appeared to be too strict. Confidence
level Medium was trained in a similar manner as High, but here we applied the first or
the last quartile of all the feature vectors masked as oil spills in both the training and the
validation sets for the initial estimation of the limits. Some of the limits were afterwards
manually adjusted after inspection of their performance on the validation set. The manual
training of Low was done basically by visually studying the slicks in the validation images
and their computed feature values.

4 Comparing the Classifiers Performance

Table 1.4 presents the performance accuracy on the test set for both the previously published
statistical classifier and the new regularized statistical classifier. If we compare the classifier

Table 1.4: Classification results on the test set.

Classifier with Common Diagonal Covariance Matrices

Classified as Oil Classified as look-alike

Marked as Oil 36 (87.8%) 5 (12.2%)

Marked as Look-alike 1879 (15.3%) 10366 (84.7%)

Classifier with Regularized Covariance Matrices

Classified as Oil Classified as look-alike

Marked as Oil 38 (92.7%) 3 (7.3%)

Marked as Look-alike 1256 (10.3%) 10989 (89.7%)

C-SVC

Classified as Oil Classified as look-alike

Marked as Oil 34 (82.9%) 7 (17.1%)

Marked as Look-alike 2768 (22.6%) 9476 (77.4%)

with common diagonal covariance matrices with the regularized one, there are 623 less false
alarms after having introduced the regularization technique. If we have a look at the oil
spill class, we can see that we lose 5 out of 41 oil spills with the earlier published version
of the classifier, while we only lose 3 out of 41 with the regularized one. Binary C-SVC for
imbalanced data sets was evaluated against the regularized statistical classifier. It is clear
from table 1.4 that C-SVC performs worse than the statistical classifiers for both the oil spill
and the look-alike classes. Based on this, no further investigations with C-SVC were done.
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5 Confidence Estimation

Based on the results presented in section 4, we selected the regularized statistical classifier for
the first step of our classification approach. Each slick with a higher posterior probability of
being an oil spill than a look-alike is then automatically assigned a confidence level. Table 1.6
summarizes the final classification accuracy. Here, the classifier was trained on 76 images

Table 1.5: Performance results for the two-step classification approach.

High

Classified as Oil Classified as Look-alike

Marked as Oil 13 (31.7%) 28 (68.3%)

Marked as Look-alike 8 (0.1%) 12237 (99.9%)

Medium (includes all High and Medium slicks)

Classified as Oil Classified as Look-alike

Marked as Oil 21 (51.2%) 20 (48.8%)

Marked as Look-alike 30 (0.2%) 12215 (99.8%)

Low (includes all High, Medium and Low slicks)

Classified as Oil Classified as Look-alike

Marked as Oil 32 (78.0%) 9 (22.0%)

Marked as Look-alike 94 (0.8%) 12151 (99.2%)

Very Low (includes all High, Medium, Low and Very Low slicks)

Classified as Oil Classified as Look-alike

Marked as Oil 38 (92.7%) 3 (7.3%)

Marked as Look-alike 1200 (9.8%) 11045 (90.2%)

(both the training and the validation set), compared to 56 in Table 1.4, which reduces the a
number of false alarms to 1200 for Very Low confidence level.

The trend found is that the surroundings of the detected slicks get more and more in-
homogeneous and the number of look-alikes present increases for lower confidence levels.
Fig. 1.1 presents some examples from the test set.

Counting the actual number of alarms, there were twice as many true positive as false
positive alarms for the confidence category High, about an equal amount of true positive
alarms and false positive alarms for Medium and about half as many true positives as false
positives for Low. The number of correctly recognized positive examples can thus be in-
creased at the cost of an increased number of false alarms, or vice versa. We believe that for
practical use the Low confidence level would probably be the most suitable in most cases.
The system is thus designed to produce some false alarms, which should be sorted out by
manual inspection.
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Figure 1.1: Slicks automatically assigned High (first row), Medium (second row), Low (third
row) and Very Low (fourth row) confidence. Note that as the confidence decreases, the
surroundings of the slicks get more and more heterogeneous.

6 Conclusion
We propose a two-step classification procedure for oil spill detection in SAR images, consist-
ing of a regularized statistical classifier and automatic confidence estimation of the detected
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slicks. This combination leads to an acceptable classification performance if the algorithm is
run prior to a manual verification step before sending out aircraft/vessel. The performance
is comparable to results presented in [12] where a large rule-base was trained to reduce the
false alarm ratio. However, the approach proposed here is much easier to train as it is done
semi-automatically and the number of parameters to be adjusted is largely reduced. Com-
pared to the classifier earlier proposed, the results presented here show that it is possible to
largely reduce the false alarm ratio by introducing regularization of the covariance matrices.
By selecting a confidence level the user is also able to tune the system with respect to the
frequency of true positives vs. false positives. The associated confidence level seems to be
well correlated with the homogeneity of the surroundings. Information about algal blooms
and wind is planned incorporated in future versions of the algorithm.
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Abstract

We propose an improved classification approach for automatic oil spill detection in Synthetic
Aperture Radar (SAR) images in the framework of a dark spot detector, a dark spot feature
extractor and dark spot classification. New ideas for optimal subclass estimation are dis-
cussed. A regularized statistical classifier for oil spill and look-alike classification is applied
within each subclass. To allow the user to tune the system with respect to the trade-off
between the number of true positive alarms and the number of false positives, an automatic
confidence estimator has been developed. The system is trained on 76 ENVISAT ASAR
images and performance tested on 27 images.
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1 Introduction

Oil spills and several other ocean features (look-alikes) dampen out the small scale waves on
the sea surface. This reduces the backscattering back to the SAR antenna and dark slicks
appear in the SAR images. A part of the oil spill detection problem is to distinguish oil
slicks from the look-alikes. Our goal is to develop an automatic system for oil spill detection,
in which objects with a high probability of being oil spills are identified.

The framework of our algorithm is a dark spot detector, a dark spot feature extractor
and a dark spot classifier. Dark spots in the images are primarily detected by adaptive
thresholding. For each of them a number of features are computed in order to classify the
slick as either an oil spill or a look-alike. The classification scheme is based on statistical
modelling.

As the behaviours of the features will change with different wind levels, we spilt the feature
space into subclasses. A search for an optimal feature space division for the purpose of oil
spill classification within each subclass has been performed based on Maximum Likelihood
Estimation (MLE) and is the focus of this paper.

Various classifiers have been applied to the oil spill detection problem: A Mahalanobis
classifier and a compound probability classifier were applied in [4]. The probabilistic ap-
proach was improved in [6]. A neural-network approach is described in [3], and a classifier
based on fuzzy logic was developed in [5]. The work presented here is based on a statistical
classifier [10; 8; 1; 2].

2 Algorithm Design

The algorithm consists of the following main steps: 1) dark spot detection based on segmen-
tation of the SAR image, 2) feature extraction from the segmented image, 3) classification
of the detected dark spots as oil spills or look-alikes and finally 4) estimation of confidence
levels for each of the slicks classified as oil spills.

Pre-processing of the SAR image, consisting of converting a land mask to the image grid
and a normalization of the backscatter with respect to incidence angles, is performed ahead
of the segmentation step.

2.1 Segmentation of Dark Spots

In the segmentation step, dark spots are separated from the background. This is the most
computationally intensive step of the algorithm.

First, an image pyramid is created by averaging pixels in the original image. From the
original image, the next level in the pyramid is created with half the pixel size of the original
image, and so on. Adaptive thresholding is then applied to each level in the pyramid. The
threshold is set adaptively based on estimates from the SAR image of the roughness/texture
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of the surrounding sea. After segmenting each level in the pyramid, the different levels are
merged. More details are given in [8].

To detect thin linear slicks, elongated segments are first located in a coarse segmented
version of the image. Then these segments are grown in the direction of their orientation if
certain criteria are fulfilled (e.g. the backscatter value of a pixel has to be below a threshold
value and it or one of its 8-neighbour pixels has to represents an edge pixel). See [1] for more
details.

The 27 segmented test images contains 12245 look-alikes and 41 oil spills (64 segmented
regions).

2.2 Dark Spot Feature Extraction

Discrimination between oil spills and look-alikes is based on a number of features computed
for each of the segmented dark spots. The features are computed and collected in a feature
vector xi. These features are constructed such that they typically will be different depending
on if the dark spot is an oil spill or a look-alike. The following features were selected in
previous experiments [1].

• Shape features: “Sum of External Angles”, “Slick Moment (MOM)”, “Slick Area”,
“Slick Complexity” and “Slick Width”

• Contrast features: “Slick Local Contrast”, “Slick Border”, “Smoothness Contrast”

• Texture: “Power-to-mean Ratio (PMR)”, “Slick Variance”

• Surroundings: “Regions in Small Neighbourhood”, “Distance to Ship/Oilrig”, “Wind”,
“Low Wind Area”

2.3 Optimal Subclass Boundary Estimation

When selecting a classifier to solve this problem, a possibility is to use Bayesian estimation
techniques to calculate the posterior probability for a detected spot being an oil spill. Then,
a distribution needs to be selected to model the classes. The simplest choice would be
multivariate Gaussian densities.

However, the behaviour of the features will change with different wind levels. In low
wind, the backscatter difference between an oil spill and the surrounding sea will be large.
As the wind level increases, the backscatter contrast will be lower and the feature values
will change. A multimodal conditional density will likely occur. Describing the conditional
density by a unimodal density (e.g. Gaussian) is therefore not appropriate. If we split the
problem and assume different densities depending on the wind level, the data within each
subdivision is more likely to be more homogeneous.
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Even within each wind level, both the oil slicks and the look-alikes may vary quite a lot in
shape, contrast and other features. In [2], the wind level was first used to divide the samples
in two different subclasses and then these were divided into five subclasses based on the shape
descriptor. We have applied MOM as a shape descriptor and the wind level is represented
by PMR. In low wind with many look-alikes, the PMR value will be high, and high contrast
between slicks and their surrounding can be expected. As the wind increases the PMR value
will decrease, and the expected contrast between the oil and the surrounding sea will also
decrease. Let Ω1, ..., ΩK represent the subclasses, where K = the number of subclasses.
Tab. 1.1 shows the initial configuration with K = 10 as applied in earlier studies [2]. The
goal of the current study is to estimate these subclass borders. θ̂ = {p, m1, m2, m3, m4}

Table 1.1: The initial subclass division.

Slick Surrounding

Subclass MOM PMR

Ω1 MOM < m1 PMR ≥ p

Ω2 MOM ∈ [m1, m2 > PMR ≥ p

Ω3 MOM ∈ [m2, m3 > PMR ≥ p

Ω4 MOM ∈ [m3, m4 > PMR ≥ p

Ω5 MOM ≥ m4 PMR ≥ p

Ω6 MOM < m1 PMR < p

Ω7 MOM ∈ [m1, m2 > PMR < p

Ω8 MOM ∈ [m2, m3 > PMR < p

Ω9 MOM ∈ [m3, m4 > PMR < p

Ω10 MOM ≥ m4 PMR < p

are the parameters defining the subclasses and their values need to be optimised for a best
possible performance. Tab. 1.2 presents the parameter values applied in [2]. These values
are here used as the initial input to an optimiser searching for the optimal θ̂.

Table 1.2: θ: best guess for θ̂.

p m1 m2 m3 m4

0.04 0.3 0.5 0.8 1.2

For the parameter search, the oil spill and the look-alike classes are merged in the training
set, and the sum of the negative log-likelihood for each subclass is used as a criteria for
optimisation. During the search, Gaussian densities are assumed within each subclass: fΩk

=

180



N(ηΩk
,TΩk

), and the θ̂ minimizing the sum of all l(θ̂)Ωk
for k = 1, ..., K is selected, where

l(θ̂)Ωk
is defined as:

l(θ̂)Ωk
= −

∑

xi∈Ωk

[−p

2
log(2π) − 1

2
log |TΩk

|

− 1

2
(xi − ηΩk

)T T−1
Ωk

(xi − ηΩk
)]

(1.1)

where p is the number of features. Because ηΩk
and TΩk

are unknown, these must be
estimated as well. Using maximum likelihood estimates for these, Eq. 1.1 reduces to

l(θ̂)Ωk
= −(−1

2
nΩk

log |T̂Ωk
|) (1.2)

where nΩk
represents the number of samples within subclass Ωk and T̂Ωk

is the maximum
likelihood estimate for TΩk

based on these nΩk
samples.

2.4 Log-transform of the Data Set

If we look at the training data, some of the features appear to have a skewed distribution,
therefore we did some experiments with a Log-transform (x′ = log(x − min(x) + 1)) on
the data set. As an example, Fig. 1.1 shows histograms for the feature “Slick Complexity”
before and after the Log-transform. A Linear Bayes Normal Classifier (LDC) in Matlab was
trained for each subclass to evaluate the effect of the Log-transform on the test set. The
initial configuration with 10 subclasses (Tab. 1.1) and θ (Tab. 1.2) was applied. The results
presented in Tab. 1.3 shows that a normalization with the Log-transform does not improve
the result. Therefore, we have not applied any transformation on the feature vectors before

Table 1.3: Log-transform. Classification results.

LDC

No transform Log-transform

Oil spills (error rate) 9/64 12/64

Look-alikes (error rate) 1947/12245 1394/12245

Total error rate: 15.0% 15.1%

the classification step.

2.5 Classification

A prior distribution and a probability density for the features are combined through Bayes
theorem to obtain the posterior probability for a detected spot being an oil spill. Let c be
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Figure 1.1: Histograms on the training set for the feature “Slick Complexity”. Top: No
transform. Bottom: Log-transformed data.

the unknown class membership of a detected spot (we are dealing with a two class problem:
oil spill or look-alike). Then, for xi ∈ Ωk,

Pr(c = o|xi) =

πofo,Ωk
(xi)

πofo,Ωk
(xi) + (1 − πo)fl,Ωk

(xi)

(1.3)
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where πo is the prior model for the probability that a detected spot is oil. fo,Ωk
(xi) and

fl,Ωk
(xi) are the probability densities for the observed features xi in classes o = oil spills and

l = look-alikes, respectively.
The densities are assumed Gaussian:

fc,Ωk
(xi) =

1

(2π)
d
2 |ΣΩk

| 12
×

exp{−1

2
(xi − µc,ΩK

)T Σ−1
Ωk

(xi − µc,Ωk
)}

(1.4)

where c ∈ {o, l}, d is the number of features, µc,Ωk
is the mean vector for class c and ΣΩk

is
the covariance matrix, common for both classes due to the imbalanced data set.

The features “Slick Complexity”, “Power-to-mean Ratio”, “Slick Local Contrast”, “Slick
Width”, “Regions in Small Neighbourhood”, “Slick Border”, “Smoothness Contrast” and “Slick
Variance” are included in feature vector xi.

Covariance Matrix Estimation

Regularized covariance matrices are used in the classifier. With the subclass division, the
density for class c within a subclass Ωk is then given by fc,Ωk

(xi) = N(µc,Ωk
, Σ̃Ωk

).
Applying Gaussian densities and regularized covariance matrices Σ̃Ωk

(ρΩk
), leads to a

general family of covariances indexed by ρΩk
. Regularization of the common covariance

matrices can be expressed as follows:

Σ̃Ωk
(ρΩk

) = ρΩk
[diag{ΣΩk

}] + (1 − ρΩk
)ΣΩk

(1.5)

where ρΩk
is the regularization parameter and ΣΩk

is the fully estimated common covariance
matrix. Here ρΩk

∈ [0, 1] allows a continuum of models, and needs to be estimated from
experiments as described in [2].

2.6 Confidence Estimation

After first applying a regularized statistical classifier within each subclass, each slick with
a higher posterior probability of being an oil spill than a look-alike is automatically as-
signed a confidence level. We have developed an automatic confidence estimator as a second
step in our two-step classification approach (see Fig. 1.2). The confidence estimator will
automatically assign a slick one of four confidence levels: High, Medium, Low or Very Low.

If the system is operating on level Medium, all slicks with High and Medium confidence
are reported. If the system is operating on level Low, all slicks with High, Medium and Low
confidence are reported. All slicks that are not detected as High, Medium or Low are given
Very Low confidence. When operating on level Very Low all slicks detected as oil spills in
the first step of the classification approach (see Fig. 1.2) are reported.

183



Figure 1.2: The two-step classification approach.

Kongsberg Satellite Services (KSAT) manual oil spill service chain is described in [9].
To determine the confidence level of a slick, the operators use a set of guidelines. We used
these guidelines as a starting point when designing our automatic procedure for confidence
estimation. However, experiments showed that it is not sufficient to base the design only on
these guidelines [7]. In addition to translating several of the criteria into computed features,
we included additional features that we found important for reliable confidence estimation.
The development and training of the confidence estimator is described in more detail in [2].
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3 Results

The results from estimating the subclass boundaries are presented in Sect. 3.2. The final
classification results are presented in Sect. 3.3.

3.1 Data Set

The data set applied in this study consist of 103 ENVISAT ASAR WSM images. The
training set contains 76 scenes, while the test set contains 27 scenes. The images are collected
mainly from the German and Finnish Baltic Sea and the German North Sea from 2003 to
2005. Aircraft verifications, collected during a combined satellite and aircraft campaign,
were available for the test set.

3.2 Results - Optimal Subclass Division

Tab. 1.4 shows the classification results from the first step of the classification approach
(see Fig. 1.2) for no subclasses, 2, 4, 6 and 8 subclasses. For K = 8, the optimiser was
given θ = [p = 0.04, m1 = 0.3, m2 = 0.5, m3 = 0.8, m4 = 1.2] as initial values and returned
θ̂ = [p = 0.1285, m1 = 0.2513, m2 = 0.3210, m3 = 0.4646, m4 = 2.5844] which should
have given 10 subclasses. However some of the subclasses were empty or had very few
samples. After merging some of the subclasses, 8 subclasses were left. For K = 6, θ = [p =
0.04, m1 = 0.5, m2 = 0.8] was applied as an initial guess, while the optimal estimate was
θ̂ = [p = 0.1510, m1 = 0.2996, m2 = 0.5171]. For K = 4, θ = [p = 0.04, m1 = 0.5] was
applied as the initial guess, and θ̂ = [p = 0.1510, m1 = 0.3971] was the optimal estimate.
For K = 2, θ = [p = 0.04] was applied as the initial guess, and θ̂ = [p = 0.1510] was the
optimal estimate.

Tab. 1.4 shows that K = 1 (no subclasses) gives the best classification result. Fig. 1.3
presents the two oil spills misclassified as look-alikes when applying K = 1. Tab. 1.5 presents
the number of training samples within each of the two classes and the regularization param-
eter ρΩ1 . As ρΩ1 = 0, this means that there is enough data to get a good estimate of the
common covariance matrices (see eq. 1.5) when applying K = 1 (all ρΩk

were also estimated
to be 0 for 2, 4 and 6 subclasses).

3.3 Results - Confidence Estimation

Applying K = 1 (no subclasses), Tab. 1.6 shows the classification accuracies for the four
confidence levels. The trend found in [2], with respect to the automatic confidence estimator,
is that the surroundings of the detected slicks get more and more inhomogeneous and the
number of look-alikes present increases for lower confidence levels.

185



Table 1.4: Classification accuracies on the test set applying no subclasses, 2, 4, 6 and 8
subclasses, and common regularized covariance matrices.

K = 1: No subclasses.

Classified as Oil spill Classified as Look-alike

Marked as Oil Spill 39 (95.1%) 2 (4.9%)

Marked as Look-alike 1196 (9.8%) 11049 (90.2%)

K = 2: 2 subclasses.

Classified as Oil spill Classified as Look-alike

Marked as Oil Spill 39 (95.1%) 2 (4.9%)

Marked as Look-alike 1494 (12.2%) 10751 (87.8%)

K = 4: 4 subclasses.

Classified as Oil spill Classified as Look-alike

Marked as Oil Spill 39 (95.1%) 2 (4.9%)

Marked as Look-alike 1676 (13.7%) 10569 (86.3%)

K = 6: 6 subclasses.

Classified as Oil spill Classified as Look-alike

Marked as Oil Spill 39 (95.1%) 2 (4.9%)

Marked as Look-alike 1606 (13.1%) 10639 (86.9%)

K = 8: 8 subclasses.

Classified as Oil spill Classified as look-alike

Marked as Oil Spill 38 (92.7%) 3 (7.3%)

Marked as Look-alike 1607 (13.1%) 10638 (86.9%)

Table 1.5: The number of training samples within each class and the estimated ρΩ1 when
applying K = 1 (no subclasses).

Training Set

ρΩ1
Oil Spills Look-alikes

0 285 18779

4 Conclusion

In earlier studies [10; 2], the feature space was divided into 10 subclasses. The division
boundaries were selected from experiments on the training set based on a manual approach.
Here, we have searched for the optimal division boundaries based on an optimiser minimizing
the negative log-likelihood function.
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Table 1.6: Classification accuracies on the test set.

High

Classified as Oil Spill Classified as Look-alike

Marked as Oil Spill 13 (31.7%) 28 (68.3%)

Marked as Look-alike 12 (0.1%) 12233 (99.9%)

Medium

Classified as Oil Spill Classified as Look-alike

Marked as Oil Spill 21 (51.2%) 20 (48.8%)

Marked as Look-alike 42 (0.3%) 12203 (99.7%)

Low

Classified as Oil Spill Classified as Look-alike

Marked as Oil Spill 32 (78.0%) 9 (22.0%)

Marked as Look-alike 122 (1.0%) 12123 (99.0%)

Very Low

Classified as Oil Spill Classified as look-alike

Marked as Oil Spill 39 (95.1%) 2 (4.9%)

Marked as Look-alike 1196 (9.8%) 11049 (90.2%)

We have compared the classification accuracies from applying no subclasses with dividing
the feature space into 2, 4, 6 and 8 subclasses. The results show that no division of the feature
space gives the best performance result on the test set.

As the final results from our two-step classification approach are comparable to earlier
results where 10 subclasses were applied [2], this study shows that when there is enough data
in the training set both a division into 10 subclasses and no subclasses could be applied in
combination with a regularized classifier. A regularized classifier is preferred (compared to a
classifier with diagonal covariance matrices as applied in early versions of the algorithm [10])
to avoid a low detection rate for oil spills and a larger amount of false alarms.

For Low confidence, 78.0% of the oil spills are here correctly classified while 99.0% of
the look-alikes are correctly classified. This confidence level gives a good trade-off between
detecting significant oil spills and having a low number of false alarms.

187



Figure 1.3: Oil spills classified as look-alikes when K = 1 (no subclasses) are applied.
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