

FFI-rapport 2008/00413

XML and Web Services Security

Nils Agne Nordbotten

Norwegian Defence Research Establishment (FFI)

18 February 2008

FFI-rapport 2008/00413

1086

ISBN 978-82-464-1330-3

Keywords

Web services

Sikkerhet

XML

Tjenesteorientert arkitektur (SOA)

Approved by

Anders Eggen Project manager

Vidar S. Andersen Director

 2 FFI-rapport 2008/00413

Summary
This report provides an overview of security standards for XML and Web services. The discussed
standards include XML Signature, XML Encryption, the XML Key Management Specification
(XKMS), WS-Security, WS-Trust, WS-SecureConversation, Web Services Policy, WS-
SecurityPolicy, the eXtensible Access Control Markup Language (XACML), and the Security
Assertion Markup Language (SAML).

FFI-rapport 2008/00413 3

Sammendrag
Denne rapporten gir en oversikt over sikkerhetsstandarder for XML og Web services. Rapporten
omfatter blant annet XML Signature, XML Encryption, XML Key Management Specification
(XKMS), WS-Security, WS-Trust, WS-SecureConversation, Web Services Policy, WS-
SecurityPolicy, eXtensible Access Control Markup Language (XACML) og Security Assertion
Markup Language (SAML).

 4 FFI-rapport 2008/00413

Contents

1 Introduction 7
1.1 A Short Overview of XML and Web Services Security Standards 7

2 XML Security 9
2.1 XML Signature 10
2.1.1 The KeyInfo element 13
2.2 XML Encryption 13
2.3 The XML Key Management Specification (XKMS) 15

3 Web Services Security 16
3.1 WS-Security 17
3.1.1 The UsernameToken Profile 18
3.1.2 The X.509 Certificate Token Profile 18
3.1.3 The Rights Expression Language (REL/XrML) Token Profile 19
3.1.4 The SAML Token Profile 19
3.1.5 The Kerberos Token Profile 19
3.1.6 The Basic Security Profile 19
3.2 Web Services Policy 20
3.2.2 WS-SecurityPolicy 21
3.3 WS-Trust 23
3.4 WS-SecureConversation 25

4 Security Markup Languages 26
4.1 The eXtensible Access Control Markup Language (XACML) 27
4.1.1 The Privacy Policy Profile 29
4.1.2 The SAML Profile 29
4.1.3 The XML Signature Profile 30
4.1.4 The Core and Hierarchical Role Based Access Control (RBAC) Profile 30
4.1.5 The Hierarchical Resource Profile 30
4.1.6 The Multiple Resource Profile 31
4.1.7 The Web Services Profile 31
4.1.8 XACML 3.0 Administrative Policy 31
4.2 The Security Assertion Markup Language (SAML) 31
4.2.1 SAML Protocols 33
4.2.2 Usage Scenarios 33

5 Final Remarks 34
5.1 Related Standards and Specifications 35

FFI-rapport 2008/00413 5

References 36

 6 FFI-rapport 2008/00413

1 Introduction
The Norwegian Defence has adopted network based defence as a strategic guideline for future
systems. Network based defence aims to utilize military resources in a more efficient manner
through providing better support for information sharing. Similar initiatives are also being taken
in other countries and in particular within NATO. Thus, a network based defence should not only
provide for information sharing within a single nation, but also enable sharing of information
within a coalition. In order to achieve this goal, system interoperability and flexibility is essential.

A service-oriented architecture based on loosely coupled components is well suited to provide
this required flexibility. Furthermore, interoperability between the various components can be
facilitated through the use of Web services. Web services based on XML provides
intercommunication based on open standards, independent of platform and programming
language. Thus, a service-oriented architecture based on Web services and XML is the chosen
approach towards realizing a network based defence.

In order to successfully deploy a network based defence, however, it is essential that information
and system security is preserved. The Organization for the Advancement of Structured
Information Standards (OASIS) and the World Wide Web Consortium (W3C) have standardized
several specifications related to security in Web services and XML. Although the standardization
processes for these specifications have mainly been driven by the civilian industry, the resulting
standards have potential applications within military systems as well. Using such established
standards instead of custom solutions clearly has the advantages of facilitating interoperability
and the use of commercial off-the-shelf products.

This report provides an overview of current security standards for XML and Web services. It is
assumed that the reader is familiar with Web services and XML, and has a conceptual
understanding of security mechanisms such as digital signatures and encryption. The next section
provides a brief overview of security standards for Web services and XML. Afterwards, more
detailed discussions of each of the security standards are provided in separate sections. Readers,
who are only interested in a high-level overview, may want to proceed directly to Section 5 after
reading the next section.

1.1 A Short Overview of XML and Web Services Security Standards

XML based SOAP messages form the basis for exchanging information between entities in Web
services systems. The information contained within these SOAP messages may be subject to both
confidentiality and integrity requirements. Although mechanisms at lower layers may provide
end-to-end security for SOAP messages, these lower layer mechanisms are often insufficient.
This is due to the fact that a SOAP message may be subject to processing and even modification
(e.g., removal/insertion of a SOAP header) at intermediary nodes. The result being that the
security provided by lower layer mechanisms (e.g., SSL/TLS) is broken, as illustrated in Figure

FFI-rapport 2008/00413 7

1.1. Relying on lower layers for end-to-end security may also cause problems if a message is to
pass through various networks utilizing different transport protocols. Furthermore, security at the
XML level has the advantage of providing for source integrity to be ensured also during storage
at the receiving node(s).

SSL/TLS SSL/TLS

SOAP
intermediary

Original
sender Ultimate

receiver

Figure 1.1 The provided transport layer security is broken at the intermediary SOAP node.

XML Signature and XML Encryption are used to provide integrity and confidentiality
respectively. Although these two standards are based on digital signatures and encryption, none
of them define any new cryptographic algorithms. Instead, XML Signature and XML encryption
define how to apply well established digital signature/encryption algorithms to XML. This
includes:

• A standardized way to represent signatures, encrypted data, and information about the
associated key(s) in XML, independent of whether the signed/encrypted resource is an
XML resource or not.

• The possibility to sign and/or encrypt selected parts of an XML document.
• The means to transform two logically equivalent XML documents, but with syntactic

differences, into the same physical representation. This is referred to as canonicalization.
In order to be able to verify the signature of an XML resource that has had its
representation changed, but still has the same logical meaning (e.g., an insignificant line
of additional white-space), it is essential that canonicalization is performed as part of the
XML signature creation and verification processes.

As both XML Signature and XML Encryption rely on the use of cryptographic keys, key
management is a prerequisite for their effective use on a larger scale. Therefore, the XML Key
Management Specification (XKMS) was created to be suitable for use in combination with XML
Signature and XML Encryption. XKMS basically defines simple Web services interfaces for key
management, thereby hiding the complexity of traditional public key infrastructures (PKIs) from
the clients. XML Signature, XML Encryption, and XKMS are all discussed in more detail in
Section 2.

WS-Security specifies how to apply XML Signature and XML Encryption to SOAP messages,
effectively providing integrity and confidentiality to SOAP messages (or parts of SOAP
messages). As multiple encryptions can be used within the same SOAP message, the different

 8 FFI-rapport 2008/00413

parts of a SOAP message may be encrypted for different receivers (SOAP intermediaries)
supporting the need-to-know principle. Likewise, a SOAP intermediary may add an additional
signature to a SOAP message, thereby providing integrity protection for a newly added header or
supporting separation-of-duty through co-signatures.

In addition to providing confidentiality and integrity for SOAP messages, WS-Security also
provides a mechanism to avoid replay attacks (i.e., timestamps) and a way to include security
tokens in SOAP messages. Security tokens are typically used to provide authentication and
authorization.

WS-Security has no notion of a communication session, that is, it is only concerned with securing
a single SOAP message or a single SOAP request/response exchange. In cases where multiple
message exchanges are expected, WS-SecureConversation may be used to establish and maintain
an authenticated context. The authenticated context is represented by a URI in a context token
and consists of a shared secret that can be used for key derivation. WS-SecureConversation relies
on WS-Trust to establish the security context.

WS-Trust basically defines a framework for obtaining security tokens (including the context
tokens used in WS-SecureConversation) and brokering of trust. WS-Security, WS-Trust, and WS-
SecureConversation are all discussed in more detail in Section 3.

With a range of Web services standards, interoperability becomes very difficult unless the
communicating parties knows what standards to use and how these standards are to be used. Web
Services Policy provides the means by which service providers and clients can specify their
interoperability requirements and capabilities. WS-SecurityPolicy can be viewed as an extension
to Web Services Policy, defining how Web Services Policy can be used to specify requirements
and capabilities regarding the use of WS-Security, WS-SecureConversation, and WS-Trust. For
instance, a service provider may specify using WS-Policy/WS-SecurityPolicy that it requires
certain message parts to be encrypted. WS-Policy and WS-SecurityPolicy are also further
discussed in Section 3.

The last two standards covered in this report are the Security Assertion Markup Language
(SAML) and the eXtensible Access Control Markup Language (XACML). SAML may be used to
communicate authentication, attribute, and authorization information in a trusted way. SAML is
based on XML and although its original motivation was single sign-on for Web browsing, it is
also well suited for use in Web services. XACML on the other hand is used to define access
control policies in XML, and may be used to define access control policies for any type of
resource. SAML and XACML are both further discussed in Section 4.

2 XML Security
XML Signature and XML Encryption are fundamental to XML and Web services security.
Because of their widespread use, XML Signature and XML Encryption are well supported both in

FFI-rapport 2008/00413 9

available products and by development tools. The next two sections describe XML Signature and
XML Encryption respectively. Then, in Section 2.3, the XML Key Management Specification
(XKMS) is presented. XKMS facilitates the use of XML Signatures and XML Encryption by
simplifying key management. All three of these specifications are standardized by W3C, and
XML Signature is also published as an IETF RFC.

2.1 XML Signature

The use of digital signatures is a common method for ensuring message integrity, authentication,
and non-repudiation. XML Signature [1;2] defines a standard interoperable format for
representing digital signatures in XML and provides mechanisms for efficiently applying digital
signatures to XML resources. XML Signature is not limited to signing XML resources, however,
as it can also be used to sign binary resources such as a JPEG-file.

Figure 2.1 The Signature element.

 10 FFI-rapport 2008/00413

 SHA-1 Digest Transforms

Figure 2.2 Calculating the digest of a resource.

A single XML signature may cover several resources, where each resource may be an XML
document, a part of an XML document, or a binary resource. The Signature element for
representing digital signatures in XML is shown in Figure 2.1. The SignedInfo element is used to
specify what is being signed. A Reference element within SignedInfo is associated with each
resource, identifying the resource through a URI.1 The reference element also includes a digest of
the referenced resource. As illustrated in Figure 2.2, the digest is created by first applying any
applicable transforms and then calculating the digest value from the result.

Canonicalization is one possible transform that may be applied to an XML resource before
calculating the digest. The need for XML canonicalization is due to the fact that two logically
equivalent XML resources may differ in physical representation. Such variations in physical
representation may for instance be due to the use of different character encodings or insignificant
structural differences. Canonicalization methods define a normal form, that is, the canonical form,
into which logically equivalent documents can be converted to obtain the same physical
representation. Two canonicalization methods are standardized, that is, canonical XML [3] and
exclusive XML canonicalization [4]. Furthermore, in order to resolve issues related to inheritance
of attributes, a new revision of canonical XML is currently being standardized [5].2

Apart from canonicalization, several other transformations may be applied to a resource. These
include Base64 decoding, XPath filtering, and XSLT transformations. There is also an enveloped
signature transform that removes the entire signature element from the digest calculation, so that
an enveloped signature element is not included in the digest of the enveloping XML resource
being signed. Otherwise, an enveloped signature would be broken when finalizing the signature
element. Furthermore, [7] defines a decryption transform that enables XML Signature
applications to distinguish between XML structures that were encrypted before the signature was
calculated and structures that were encrypted after the signature was calculated. Independent of
which transformations are applied to a resource, each applied transformation is identified by a
Transform element within the Reference element.

The last element within the Reference element is the DigestMethod element, used for specifying
the digest algorithm being used. The only digest algorithm required to be supported is SHA-1.

1 The URI reference may be omitted, in which case the receiving application is assumed to know the
identity of the resource.
2 The UDDI Specification Technical Committee within OASIS has also released a specification for a
schema centric XML canonicalization [6].

FFI-rapport 2008/00413 11

However, several implementations support SHA-2 (i.e., SHA-224, SHA-256, SHA-384, and/or
SHA-512) and identifiers for these and other additional algorithms are defined in [8] and [9]. The
U.S. National Security Agency (NSA) has also recently requested that SHA-256 and SHA-384
are incorporated into the standard [10], which would improve the interoperability of applications
using these algorithms.

In addition to containing one or more reference elements, the SignedInfo element also specifies
the signature method used (SignatureMethod) and the canonicalization method for canonicalizing
the SignedInfo element itself (CanonicalizationMethod). Because the SignedInfo element is what
is actually signed in XML Signature, it is required that this element is canonicalized before
calculating the signature value. Notice that because the SignedInfo element contains the digests of
all the resources to be signed, these resources are implicitly signed as well when signing the
SignedInfo element. Signature verification therefore consists of two steps. The first is to make
sure that the signed info element has not changed by verifying the signature value stored in the
SignatureValue element. The second is to make sure that none of the referenced resources have
changed, by verifying the digest of each resource.

The specification only requires one signature algorithm to be supported, that is, DSA with SHA-1
(also known as DSS). Furthermore, support for message authentication codes based on
secret/shared keys (i.e., HMAC-SHA1) is also mandatory. It is also recommended to support
RSA with SHA-1 and many implementations also support some of the additional algorithms
defined in [9], such as RSA with SHA-512 or the Elliptic Curve Signature Algorithm (ECDSA).
Although commonly used algorithms are likely to be supported by most vendors, the differences
between products with regard to what algorithms are supported may cause interoperability
problems.

Figure 2.3 Enveloped, detached, and enveloping signatures.

As mentioned previously, the SignedInfo element contains references to the resources being
signed. In this regard, an XML Signature may be enveloping, enveloped, or detached with respect
to each referenced resource. This is illustrated in Figure 2.3. An enveloped signature means that
the signature element is inside the referenced XML resource. A detached signature on the other
hand references a resource that is separate from the signature element. Finally, an enveloping

Detached

 Signature element

Enveloped

 Signature element

Signature
element

Enveloping

 12 FFI-rapport 2008/00413

signature references a resource that is contained within the signature element. In the latter case, an
instance of the Object element is used to contain the resource. Because a single signature can
reference/sign multiple resources, a signature may be enveloped, detached, and enveloping at the
same time. Furthermore, multiple independent signatures may coexist within the same XML
document.

2.1.1 The KeyInfo element

XML Signature also defines a KeyInfo element (as shown in Figure 2.1) that may be used to
provide information about the key to be used for verifying the signature. This information may be
provided by identifying the key by name, by including the raw public key itself, and/or by
including (or referencing) an X.509 or SPKI certificate corresponding to the key pair being used.
Using the PGPData element, a PGP key packet can also be included. Furthermore, the
RetrivalMethod element enables KeyInfo information at another location (typically within
another KeyInfo element) to be referenced.

As we will see in the next section, the KeyInfo element defined by XML Signature is also used by
XML Encryption. In fact, XML Encryption extends the KeyInfo element with an EncryptedKey
element, which may provide transport for a secret/symmetric key. The KeyInfo element is also
used by the XML Key Management Specification (to be discussed in Section 2.3), facilitating its
close integration with XML Signature and XML Encryption.

2.2 XML Encryption

XML Encryption [8] provides confidentiality by allowing selected parts of, or an entire, XML
document to be encrypted. XML Encryption is similar to XML Signature in many ways. For
instance, like XML Signature, XML Encryption does not apply only to XML resources as it may
be used to encrypt arbitrary binary resources as well.

Figure 2.4 The EncryptedData element.

Data that is encrypted using XML Encryption is represented by an EncryptedData element. The
EncryptedData element is shown in Figure 2.4. As can be seen, the CipherData element is the
only mandatory child element of EncryptedData. CipherData either contains, or provides a
reference to, the ciphertext of the encrypted data. As may be noticed, this is equivalent with the
enveloping and detached variations of XML Signature. Contrary to in XML Signature, however,

FFI-rapport 2008/00413 13

a single EncryptedData element can only contain or reference one resource. If multiple resources
are to be encrypted within the same XML document, multiple EncryptedData elements must be
used.

When encrypting an XML element, one may choose to encrypt the entire element (including its
outmost tags) or only the element’s content. In the case where the ciphertext is contained within
the CipherData (i.e., enveloping), the EncryptedData element replaces the XML element (or
element content) being encrypted.

The encryption algorithm used may be specified in the EncryptionMethod element (or be known
by the receiver). The specification requires support for both Triple-DES and AES-128/256. Both
are used in cipher block chaining (CBC) mode, with an initialization vector that is prefixed to the
ciphertext. Additional information (e.g., specifying the time/date at which the encryption was
performed) may be included within the EncryptionProperties element.

Figure 2.5 The EncryptedKey element.

As mentioned (in Section 2.1.1), XML Encryption defines an EncryptedKey element that may be
used to provide transport for a secret/symmetric key. As can be seen in Figure 2.5, the
EncryptedKey element contains all the child elements of EncryptedData plus two additional ones.
In fact, EncryptedKey and EncryptedData are both derived from the same abstract type (i.e.,
EncryptedType). When using the EncryptedKey element to provide key transport, it is included as
a child element of the KeyInfo element of EncryptedData. EncryptedKey’s CipherData is then
used to transport the secret key in encrypted form, while the KeyInfo element within the
EncryptedKey element is used to communicate information about the key used for encrypting the
secret key. Typically a pre-shared secret key or the public key of the receiver is used for this latter
purpose.

In the case that the same key is used to encrypt multiple EncryptedData elements, the
ReferenceList within EncrtyptedKey may be used to identify the EncryptedData elements that

 14 FFI-rapport 2008/00413

utilize the key. The EncryptedKey can also be given a key name, so that it can be referenced from
each respective EncryptedData element.

2.3 The XML Key Management Specification (XKMS)

An appropriate method for key management is essential in order to employ XML Signature and
XML Encryption in a scalable manner. The XML Key Management Specification (XKMS) [11]
defines simple Web services for retrieving, validating, and registering public keys, thereby
shielding clients from the complexity of the potentially underlying public key infrastructure
(PKI).

XKMS is divided into two main parts, the XML Key Registration Service Specification (X-
KRSS) and the XML Key Information Service Specification (X-KISS). The XML Key
Registration Service Specification defines services in order to register, recover, revoke, and
reissue keys. In the case of registering a new public key, the key pair generation may either be
performed by the client or as part of the offered service. In the case that the key pair is generated
by the client, the client is required to prove possession of the private key in order to register the
public key. In either case, the XML Key Registration Service Specification provides mechanisms
for authenticating clients.

The XML Key Information Service Specification defines two services, namely locate and
validate. The locate service enables a client to retrieve a public key, or information about a public
key. The data format for communicating key information is provided by the KeyInfo element
defined by XML Signature (and also used by XML Encryption), thereby facilitating the use of
XKMS together with XML Signature and XML Encryption.

A client may for instance receive a signed XML document where the key to be used to verify the
signature is identified by some mechanism provided by the KeyInfo element (e.g., an included
X.509 certificate or a key name). Instead of being required to resolve the key itself, the client may
simply include the received KeyInfo element within a request to the locate service, which then
resolves the required KeyInfo elements (e.g., by including the key value) and returns it to the
client. The locate service could obtain the resolved information by parsing a certificate included
in the KeyInfo element, based on a previous registration of the key with an XML key registration
service, from an underlying public key infrastructure, or by some other means. In any case, the
locate service shields the client from the complexity of having to perform these actions itself.
However, the locate service does not validate the returned key information!

This is where the validate service has its role. The validate service provides the same
functionality as the locate service, but also assures that the returned information meets specific
validation criteria (e.g., by validating the X.509 certificate). In order for such an assurance to be
trustworthy, the client is obviously required to have a trust relationship with the validation
service. Furthermore, it must be assured that the applied validation criteria are appropriate for the
application.

FFI-rapport 2008/00413 15

Because validation incurs additional overhead, the locate service is likely to be preferable in
scenarios where there is no sufficient trust relationship between the client and the validation
service, or where the validation requirements of the application are not fulfilled by the validation
service.

Figure 2.6 Alice utilizes XKMS in order to obtain a validated public key for Bob.

Let us consider the scenario in Figure 2.6, where Alice wants to send an encrypted document to
Bob using his public key. However, Alice does not possess the public key of Bob. Furthermore,
although Bob has registered his public key with the XKMS service within his own domain, there
is no trust relationship between Alice and the XKMS service within Bob’s domain. In this case,
Alice may contact the validate service within her own domain, specifying that she requires the
public key of Bob to be used for encryption (or key exchange). The validate service may then
forward this request to the locate service within Bob’s domain (which might be located through
DNS). Before the response is returned to Alice, it is validated by the validate service within her
own domain.

A more thorough discussion of XKMS, and key management in general, can be found in [12].

3 Web Services Security
While the previous section focused on security standards for XML in general, we will now turn
our attention to security standards targeted exclusively at Web services. In particular, this section
provides an overview of WS-Security, Web Services Policy, WS-SecurityPolicy, WS-Trust, and
WS-SecureConversation. All five were originally proposed as part of the Web services security
roadmap by IBM and Microsoft [13]. WS-Security, WS-Trust, WS-SecureConversation, and WS-
SecurityPolicy have later become standardized within OASIS, while Web Services Policy has
been standardized within the W3C. Development support for these standards can for instance be

 16 FFI-rapport 2008/00413

found in the Web Services Interoperability Toolkit [14] for Java and in the Windows
Communication Foundation [15] for .Net. The standards are also supported by various products,
such as XML firewalls [16].

Before we look at each individual standard, let us first briefly consider the relationships between
these and other standards. First of all, WS-Security is concerned with security for SOAP
messages, thus, WS-Security clearly builds on top of SOAP. WS-Trust again builds on WS-
Security, while at the same time providing functionality that may be utilized by WS-Security.
WS-SecureConversation builds on WS-Security and WS-Trust, while at the same time enabling
WS-Security to be used in a more efficient way. WS-SecurityPolicy extends Web Services Policy
in order to facilitate the use of WS-Security, WS-SecureConversation, and WS-Trust. Finally, all
of these standards may utilize XML Signature or XML Encryption to some extent.

3.1 WS-Security

The Web Services Security (WSS) specifications aim to provide a framework for building secure
Web services using SOAP, and consist of a core specification and several additional profiles. The
core specification, the Web Services Security: SOAP Message Security specification [17] (WS-
Security for short), defines a security header for use within SOAP messages and defines how this
security header can be used to provide confidentiality and integrity to SOAP messages. XML
Encryption is utilized to provide confidentiality, while message integrity is provided through the
use of XML Signature. Using these mechanisms, SOAP message body elements, selected
headers, or any combination thereof may be signed and/or encrypted; potentially using different
signatures and encryptions for different SOAP roles (i.e., different intermediaries and ultimate
receiver(s)).

Recall (from Section 1.1) that because SOAP message headers may be subject to processing and
modification by SOAP intermediaries, lower layer security mechanisms such as SSL/TLS are
often insufficient to ensure end-to-end integrity and confidentiality for SOAP messages. For such
messages, the functionality provided by WS-Security is essential if confidentiality and/or
integrity are required.

In order to ensure that the response received by an initiator has been generated in response to the
original request in its unaltered form, WS-Security defines a signature confirmation attribute to be
used for including a copy of the digital signature value of the request message. By including this
attribute in the digital signature of the response message, as a signed receipt, the response
message is tied to the original request.

The specification also defines a timestamp element that may aid in preventing replay attacks. This
element specifies the creation time of the message and optionally an expiration time. As no clock
synchronization is provided, it is suggested that recipients take clock skew into consideration
when evaluating the freshness of a message, unless clock synchronization is performed out-of-
band. It is recommended that the timestamps are cached for a minimum of five minutes (or, if
present, until the expiration time) to detect replay of previous messages. If there is a risk that the

FFI-rapport 2008/00413 17

message could potentially be replayed to another receiver, the recipient should be uniquely
identified and bound to the timestamp by means such as a digital signature.

In order to provide extensibility, WS-Security also provides a mechanism to include security
tokens within SOAP messages. Security tokens contain a set of claims, and may be in binary or
XML representation. An authority may assert the claims contained within a security token by
signing the security token. Currently five token types are defined in separate profiles. These are
the X.509 certificate token profile [18], the Rights Expression Language (REL) token profile
[19], the Kerberos token profile [20], the UsernameToken profile [21], and the SAML token
profile [22]. There is also a WSS: SOAP Messages with Attachments (SwA) Profile [23],
however, this profile is only applicable to SOAP 1.1 and not to SOAP 1.2.

3.1.1 The UsernameToken Profile

The UsernameToken profile [21] specifies how the UsernameToken can be used as a means to
identify a requester by username. A password, or some sort of shared secret constituting a
password equivalent, may also be included. Passwords may be included in their original form or
as a SHA-1 digest. In order to prevent replay attacks, it is also recommended that a nonce (i.e., a
random value created by the sender) and a timestamp are included. By combining nonces with
timestamps, nonces are not required to be cached beyond their validity period. The SHA-1
password digest is to be calculated over the nonce, timestamp, and password, thus, both the
sender and the receiver need to know the plaintext password or password equivalent. Notice
though, that if the password equivalent is the digest of the password, the receiver is not required
to store the plaintext password.

The UsernameToken profile also defines a way to derive a shared key from the password
associated with a given username. Key derivation is achieved by specifying a salt (i.e., a random
value) and a number of iterations. By hashing the password and salt, and iterating the number of
times specified on the result, a shared key can be obtained. The maximum supported key size is
160 bits, although the actual entropy of keys generated from typical passwords in this way is
likely to be much lower.

The specification does not provide measures to prevent a UsernameToken from being replayed to
a different receiver. Thus, if the same usernames/passwords are valid with multiple receivers,
measures against such replay attacks must be provided by implementers. One potential solution is
to require the identity of the receiver to be included in the password digest. Alternatively,
implementations could require the UsernameToken and the identity of the receiver to be covered
by a message authentication code, using a key derived from the password. Nevertheless, such
custom solutions may be susceptible to cause interoperability problems.

3.1.2 The X.509 Certificate Token Profile

The X.509 certificate token profile [18] defines how to include X.509 certificates in SOAP
messages. Such certificate tokens may be used to validate the public key used for authenticating
the message or to specify the public key, which was used to encrypt the message (or more

 18 FFI-rapport 2008/00413

commonly to convey the secret key used to encrypt the message). When the X.509 certificate is
used to authenticate the sender, ownership of the certificate token is proved by signing the
message using the corresponding private key.

3.1.3 The Rights Expression Language (REL/XrML) Token Profile

The Rights Expression Language (REL) token profile [19] defines how to include ISO/IEX
21000-5 Rights Expressions in SOAP messages. The language is also known as the XML Rights
Management Language (XrML). Although a technical committee was formed within OASIS in
order to standardize XrML, this committee was disbanded before reaching an agreement on a
standard. Issues concerning underlying/related patents, held by ContentGuard, may have
contributed towards this outcome.

Anyway, in REL/XrML, rights are expressed in the form of licenses. A license grants a key
holder some rights and is signed by the issuer. Licenses may for instance be used to convey
attributes of the key holder or to provide authorization to perform certain actions (e.g., issuing
specific types of licenses to others). Considering that SAML appears to be more widely supported
by Web services implementations, and can be used to achieve much of the same things, one may
want to consider using SAML instead.

3.1.4 The SAML Token Profile

The SAML token profile [22] defines how to include SAML assertions within security headers
and how to reference these assertions from within the SOAP message. A binding between a
SAML token and the SOAP message (and its sender) can be created by signing the message with
a key specified within the SAML assertion. Alternatively, an attesting entity that the receiver
trusts may vouch for the message being sent on behalf of the subject for whom the assertion
statements apply. In this latter case, the attesting entity must ensure the integrity of the vouched
for SOAP message (e.g., by applying a digital signature). SAML is discussed in more detail in
Section 4.2.

3.1.5 The Kerberos Token Profile

The Kerberos token profile [20] defines how to attach Kerberos tickets to SOAP messages. The
specification is limited to the Kerberos AP-REQ message [24], allowing a client to authenticate to
a service. Like with the X.509 certificate token, ownership of the token is proved by signing the
message using the corresponding key. How the AP-REQ is to be obtained is outside the scope of
the profile, but such functionality is provided by the Kerberos specification and might also be
provided using WS-Trust.

3.1.6 The Basic Security Profile

The Web Services Interoperability Organization (WS-I) has also defined another related profile
called the Basic Security Profile [25]. This profile provides clarifications, and requirements, on
how WS-Security and its associated profiles should be implemented in order to promote
interoperability. Because WS-Security makes use of XML Signature and XML Encryption, the
Basic Security Profile also applies to XML Signature and XML Encryption when these are used

FFI-rapport 2008/00413 19

with WS-Security. Because the Basic Security Profile is mostly about implementation details, it is
not discussed in further detail in this report.

3.2 Web Services Policy

The Web Services Policy framework [26] provides for expressing policies in Web services-based
systems. Using such policies, interoperability requirements and capabilities can be expressed by
both Web service requesters and providers. At the top level, a policy consists of a collection of
policy alternatives. Each policy alternative again contains policy assertions corresponding to
specific requirements and capabilities associated with that policy alternative. For instance, a Web
service requester may choose to use any single one of the policy alternatives supported by the
provider. However, once a policy alternative has been chosen, both parties are required to fulfil
all the policy assertions (i.e., requirements/capabilities) within that policy alternative.

The specific policy assertions are not defined within the Web Services Policy specification, as
these are to be defined within domain specific specifications such as WS-SecurityPolicy (which
will be discussed Section 3.2.2). Guidelines for defining policy assertions can be found in [27].
The use of domain specific assertions makes the Web Services Policy framework highly
adaptable to various application areas. Furthermore, because an entity is only required to
understand the assertions within the policy alternative being used, incremental deployment of new
assertions can easily be achieved. That is, by adding the new assertions within separate policy
alternatives, the original policy alternatives may remain unchanged in order to provide backward-
compatibility.

A policy according to Web Services Policy may be expressed in XML using one of two forms,
normal form or compact form. Normal form is a straightforward representation of a policy’s
XML Infoset, enumerating each of its policy alternatives and their assertions. Alternatively, a
policy may be more space efficiently represented using an equivalent compact form. To ensure
interoperability, the specification recommends that the normal form is used where practical
though.

The Web Services Policy specification also defines a domain-independent policy intersection
algorithm. This policy intersection algorithm may be used if two or more communicating parties
want to determine their set of compatible policy alternatives. If defining new assertions, one
should keep in mind that parameterized assertions may require a domain-specific policy
intersection algorithm to be provided. Thus, parameterized assertions should preferably be
avoided.

Apart from being exchanged between requesters and providers, Web Services Policy may also be
used as a declarative language for configuring a system. This was for instance the case in
Microsoft’s Web Services Enhancements (WSE) 2.0. However, this approach has been
abandoned in WSE 3.0 [28]. Apparently, the policies had a tendency to become too complex for
manual editing. This may indicate that Web Services Policy in its current form is best suited as a

 20 FFI-rapport 2008/00413

language used by applications, and is less suitable for use by system developers in order to
specify system policies (at least in more complex systems). Still, a compromise may be to utilize
Web Services Policy for configuration but to provide preconfigured policies providing common
configurations. This is the solution used in for instance the BEA WebLogic Server [29].

3.2.1.1 Web Services Policy – Attachment

Web Services Policy - Attachment [30] defines two general mechanisms for associating policies
with the entities to which they apply. The first mechanism enables references to policies to be
included within arbitrary XML elements. This way, Web services policies can be referenced
within the entities’ existing metadata. More specifically, this is done using a PolicyURIs attribute,
containing a list of IRIs (Internationalized Resource Identifiers), referring to the policies. If more
than one IRI is included within the PolicyURIs attribute, the referenced policies must be merged
to obtain the applicable policy. In the case that policies are merged, conformance to the final
applicable policy enforces conformance to all the referenced policies as well.

Alternatively, with the second mechanism, policies may be associated to the entities to which
they apply through an external binding. For this purpose, a PolicyAttachment element is defined.
This element contains a policy scope in addition to defining and/or referencing one or more
policies. The policy scope identifies the entities to which the referenced/included policies apply.
This way, policies may be associated with arbitrary entities, independent of their definition and
representation.

Although the Web Services – Attachment specification defines two new mechanisms for
attaching policies (i.e., PolicyURIs and PolicyAttachment), this does not prevent the Policy and
PolicyReference elements (as defined in the Web Services Policy framework specification [26])
from being used directly as child elements within other XML elements. In fact, the Web Services
Policy - Attachment specification advocates the use of these original mechanisms within WSDL
and UDDI. Even though WSDL 1.1 forbids the use of extensibility elements/attributes within
some elements, the WS-I Basic Profile 1.1 overrules this restriction and allows element
extensibility everywhere [30].

3.2.2 WS-SecurityPolicy

As previously mentioned, the Web Services Policy specification itself does not define any policy
assertions for expressing specific requirements and capabilities, as this is left to domain specific
specifications. One such assertion specification is WS-SecurityPolicy [31], which defines policy
assertions corresponding to the security features provided by WS-Security, WS-Trust, and WS-
SecureConversation.

For instance, WS-SecurityPolicy defines two mechanisms for specifying the parts of a message
that are to be integrity protected. With the SignedParts assertion, QNames are used to specify that
the entire SOAP message body and/or selected headers require integrity protection. Alternatively,
the XPath based SignedElements assertion may be used to specify arbitrary message elements
requiring integrity protection. Although the names of these assertions suggest that integrity

FFI-rapport 2008/00413 21

protection is to be provided through the use of digital signatures, this is not a requirement.
Likewise, assertions are also defined for specifying the parts of a message that needs
confidentiality protection. The EncryptedParts and EncryptedElements assertions are equivalent
to their integrity counterparts (using QNames and XPaths respectively). Furthermore, the
ContentEncryptedElements assertion allows XPaths to be used to specify arbitrary elements that
require confidentiality protection of their content only. The RequiredElements and RequiredParts
assertions may be used to specify header elements that the message must contain, using XPaths
and Qnames respectively.

Likewise, token assertions may be used to specify required tokens. The supported token types are
those specified for WS-Security (i.e., the Username, X509, Kerberos, SAML, and REL tokens)
and security context tokens according to WS-Trust and WS-SecureConversation. The WS-
SecurityPolicy specification also defines a KeyValueToken assertion. Recall from Section 2.1.1
that the KeyInfo element of XML Signature provides for identifying a public key pair by
including the public key value itself (i.e., in the KeyValue element). Hence, the KeyValueToken
assertion provides a way to specify that the public key value must be included.

As an alternative to the token assertions corresponding to specific tokens, an IssuedToken
assertion intended for use in combination with WS-Trust is also provided. Although WS-Trust is
first to be discussed in the next section, let us say for now that WS-Trust defines a security token
service from which security tokens can be requested. Such requests are made using a request
security token message, where the requested security token is described by a
RequestSecurityTokenTemplate element. In this context, the IssuedToken assertion can be used
to provide/specify the RequestSecurityTokenTemplate (and identify the issuing security token
service). Thus, the IssuedToken assertion serves two important functions: Not only does it
provide for identifying tokens of arbitrary type but it also enables the token to be obtained, even
when the details of the request message are unknown (and potentially incomprehensible) to the
requester.

In addition to simply being able to specify the presence of a security token, assertions are also
provided in order to specify that the token must contain specific claims and be issued by a
specific issuer. Furthermore, a range of token specific assertions are defined for the different
token types, enabling the characteristics of a token to be closely described. Moreover, it can be
specified whether a token is required to be present in all messages (i.e., from the initiator, from
the recipient, or both ways), only in the first message, or is not required to be included at all (i.e.,
being identified through a reference instead).

Apart from the already mentioned assertions, WS-SecurityPolicy also defines assertions for
identifying required/supported cryptographic algorithms and transport bindings (e.g., requiring
the use of HTTPS), and for specifying the order in which confidentiality and integrity protection
is to be applied. Furthermore, additional assertions can be found in the specification (in particular
with regard to specifying the options of WS-Security and WS-Trust).

 22 FFI-rapport 2008/00413

3.3 WS-Trust

We have seen in the previous sections that WS-Security provides for including security tokens in
SOAP messages, while Web Services Policy and WS-SecurityPolicy together provides for
specifying what security tokens are required (or supported). Thus, a scenario like the one shown
in Figure 3.1 may easily occur. In this scenario, Alice wants to access a service. However, this
service requires a specific security token to be included in all SOAP messages for access to be
granted. In order to facilitate interoperability, the service communicates this requirement using
Web Services Policy (and the policy assertions provided by WS-SecurityPolicy). However,
assuming that Alice’s client application does not have access to the appropriate security token,
being aware of the requirement is not likely to help much apart from being able to generate a
sensible error message. This is exactly where WS-Trust has its role, providing mechanisms for
security token management.

Figure 3.1 Alice obtains the security token, required for accessing the service, from a security
token service (STS). The communication with the STS consists of a request security
token (RST) element/message and a request security token response (RSTR)
element/message.

WS-Trust [32] augments the functionality of WS-Security and Web Services Policy/WS-
SecurityPolicy by defining mechanisms for obtaining/issuing, renewing, cancelling, and
validating security tokens. Specifically, a security token service (STS) is defined, providing these
mechanisms as Web services. Thus, after discovering what security token is required, Alice’s
client may use WS-Trust in order to obtain the required token from an STS as illustrated in Figure
3.1. Then, when Alice attempts to access the service after having obtained the required security
token, the service may rely on the security token service to validate the token or chose to perform
the validation itself.

Although this appears to solve our example scenario, there are some important underlying
assumptions. Clearly, in order for the security token to be of value, it must be trusted by the
relying party (i.e., in our case the service). This trust may exist because the relying party has a

FFI-rapport 2008/00413 23

pre-established trust relationship with the STS, implying that the relying party trusts the claims
within security tokens issued by that STS. Considering that the relying party may specify the
trusted issuer(s) in its policy, this is not an unlikely scenario. Even when the relying party has no
direct trust relationship with the STS, the relying party may sometimes still be able to trust
security tokens issued by that service. This may for instance be the case for X.509 certificate
tokens, whose trustworthiness is based on whether the certificate chain can be validated or not
(relying on a trusted certificate authority). In this latter case it may very well be that the certificate
is not really issued by the STS, but that the security token service simply provides an interface to
obtain a certificate issued to the client by someone else.

Likewise, the STS also requires trust in the claims for which it vouches in a security token. Thus,
the client will usually be required to supply the STS with some evidence of its identity and/or of
the claims to be included in the security token. The client may for instance provide this evidence
by authenticating using a username/password (token) or by supplying a security token from some
other trusted STS. This facilitates trust brokering, where a security token from one domain can be
exchanged for another security token for use in another domain. This is illustrated in Figure 3.2,
where Alice first obtains a security token from the STS in her own domain (e.g., by authenticating
with a username/password). The security token issued by the STS in domain 1 is then used to
obtain the security token (from the STS in domain 2) required to access the service. This
illustrates the fact that an STS, like any other Web service, may require specific security tokens to
be supplied. Also notice that the security token obtained from the STS in domain 2 may be of the
same or a different type as the one issued by the STS in domain 1. In the prior case it could
potentially be sufficient to have the STS in domain 2 to co-sign the security token issued by the
STS in domain 1.

Figure 3.2 Alice obtains a security token, from the STS in her own domain, which she then
uses to obtain a security token in the domain of the service to be accessed.

Please be aware that the scenarios shown in Figure 3.1 and Figure 3.2 are just examples of
possible communication patterns. For instance, in Figure 3.2, the STS in domain 1 could obtain

 24 FFI-rapport 2008/00413

the final security token on behalf of the client from the STS in domain 2. Likewise, the service
could potentially request the required security token on behalf of the client (even without the
client requesting it). In fact, the STS might be collocated with the service in the sense that the
security token is generated by the service and transmitted to the client using the message elements
defined by WS-Trust. The request-response model may also be extended to include a challenge-
response, or include negotiation.

Another important point is that the client should not be required to parse the token. Thus, all
parameters required by the client (e.g., the token lifetime) should be included as part of the
response message. For security tokens where a private-key is used as proof of possession, this key
is also returned to the client (typically encrypted using XML Encryption unless a secure
connection is used). In order to ensure that the token contains the required claims, the client may
also specify the required claims in the request message.

Considering that security tokens (e.g., the X.509 certificate token or the SAML token) may bind a
key with an identity, a security token service issuing, renewing, validating, and cancelling such
security tokens offers similar functionality as that provided by the XML Key Management
Specification (XKMS). Still, important differences exist. For instance, while WS-Trust can in
principle be used to handle any type of security token, XKMS is primarily intended (and better
suitable) for use together with XML Signature and XML Encryption, utilizing their KeyInfo
element. Cancelling a security token is also different from revoking a certificate as we know it
from public key infrastructures. Cancelling a security token at the issuer (i.e., the STS issuing the
security token) simply means that the issuer will no longer renew or validate the token. Because
there are no revocation lists, it is required to have a token validated by the issuer in order to make
sure that is has not been cancelled.

3.4 WS-SecureConversation

In Section 3.1 we discussed how WS-Security can be used to secure the integrity and
confidentiality of SOAP messages. WS-Security provides no notion of a context for exchanging
multiple messages however. WS-SecureConversation [33] therefore builds on WS-Security and
WS-Trust to provide mechanisms for establishing and identifying a security context. The security
context is shared by the communicating parties for the duration of the communication session,
and has the benefit of providing an authenticated state with associated key material. Thus, full key
exchange and authentication (e.g., using X.509 certificate tokens) is only required to be
performed when establishing the security context, and not for every message.

The security context is represented by a security context token, where the security context is
identified by a URI. The specification defines three different ways to obtain the security context
token (and thereby establishing the security context). All three methods utilize the WS-Trust
framework in order to request/distribute the security context token. One way is for the context
initiator to request a security context token from a security token service (STS), which then
distributes the security context token to the communicating parties. If not to rely on an STS, the
context initiator may instead create a security context token itself and unsolicited distribute this

FFI-rapport 2008/00413 25

token to the other parties. Alternatively, the initiating party may send a request for a security
context token to the other party, which may then return the security context token or initiate
negotiations.

WS-SecureConversation also provides for establishing a shared secret among the communicating
parties. The shared secret is distributed within a proof-of-possession token that is distributed
together with the security context token. This proof-of-possession token contains a secret
encrypted for the recipient of the token (e.g., using the public key of the recipient or a TLS
connection). Although the shared secret might be used for encrypting and/or authenticating
messages directly, the specification recommends that a new key is derived for each message. Key
derivation is, by default, performed by hashing the shared secret together with some supplied
parameters.3 A derived key token is used to identify the key being used, by referencing the
security context token and providing the (non-secret) parameters used for deriving the key from
the shared secret or previously derived key. An XML Signature or Encryption element, utilizing
the derived key, may refer to the derived key token in order to identify the key being used.

The security context token will typically have a lifetime. Thus, in case the security context
expires before the end of the communication session, the token will have to be renewed.
Likewise, the security context token may be explicitly cancelled if its lifetime lasts beyond the
end of the communication session. It is also possible to amend the security context token with
additional associated claims during the communication session. Renewal, cancelation, and
amending of security context tokens are all performed using the mechanisms provided by WS-
Trust.

4 Security Markup Languages
This section provides an overview of the eXtensible Access Control Markup Language
(XACML) and the Security Assertion Markup Language (SAML), which have both been
standardized within OASIS. While the previous section focused on standards targeted exclusively
at Web services, XACML and SAML are applicable to other types of systems as well. In
particular, XACML may be used to define access control policies for any type of system, while
SAML is also being used for single-sign-on web browsing.

Open-source implementations of both standards are freely available to developers. For instance,
the Open SAML project [34] provides Java and C++ implementations of SAML. Likewise, an
open source Java implementation of XACML is available from Sun [35]. For an extensive list of
XACML related work and products, the reader is referred to [36].

3This is similar, but not identical, to the key derivation discussed in Section 3.1 (for use with the Username
token).

 26 FFI-rapport 2008/00413

4.1 The eXtensible Access Control Markup Language (XACML)

The eXtensible Access Control Markup Language (XACML) [37] is a specification for defining
access control policies using XML. In addition to defining a policy language for expressing
policies, XACML also provides an architectural model. The basic architectural model is shown in
Figure 4.1. As illustrated in the figure, policy enforcement is performed by one or more policy
enforcement points (PEPs). The policy enforcement point(s) again relies on a policy decision
point (PDP) for deciding the outcome of a request, based on the policies applicable to the request.
The logical division into PEP and PDP facilitates centralized control/maintenance of policies, as a
single PDP may typically serve multiple PEPs.

Figure 4.1 The basic architectural/usage model of XACML, containing a policy enforcement
point (PEP) and a policy decision point (PDP).

XACML also defines policy administration points (PAPs) and Policy Information Points (PIPs).
Policy administration points are used for managing and distributing policies. A policy may be
stored in one or more centralized locations or be attached to the resource(s) to which it apply. In
the former case, the location(s) may be referenced by the resource. Policy information points, on
the other hand, provide attributes of subjects, resources, and the environment (e.g., the role of a
subject or the time of day). Such attributes may be required by the PDP in order to evaluate a
request against a policy. Furthermore, a context handler may be used to transfer between native
formats used by PEPs and the format used by the PDP (referred to as the XACML context). This
way, the context handler(s) may enable various non-XACML aware PEPs to rely on a single
XACML PDP.

Let us now turn our attention to the policy language used for expressing policies in XACML. As
shown in Figure 4.2, the XACML rule constitutes the basic building block for defining policies in
XACML. Each rule has an effect, which is either permit or deny. Furthermore, each rule may
specify a target. The target of a rule defines the subjects, resources, actions, and/or environments
to which the rule applies (i.e., who may, or may not, do what to which resource given the
environment).

FFI-rapport 2008/00413 27

A rule may also contain conditions, further restricting the applicability of the rule. Conditions
may involve attributes of the subject, resource, action, and/or environment, and can make use of
arithmetical, comparative, set, and Boolean operators. Thus, XACML provides high granularity
for defining rules and allows rules to be made context sensitive. Conditions may for instance
involve the role of the subject, the time of day, or previous events.

Figure 4.2 The XACML policy language model [37].

A XACML rule is not to exist on its own, but instead as part of a XACML policy. In case there is
more than one rule in a policy, these are interrelated by a rule-combining algorithm. Three
different rule combining algorithms are defined: deny-overrides, permit-overrides, and first-
applicable. In addition, custom algorithms can be defined.

The target of a policy may be determined from the targets of its rules or be specified explicitly. If
no target is specified by a rule, the target of the rule is taken to be the same as the target of the
containing policy. Anyway, the target is used by the PDP to determine if the policy/rule is

 28 FFI-rapport 2008/00413

applicable to a given request. Consequently, the effective target of a rule is as least as strict as the
target of the containing policy (i.e., PDPs only consider the rules within applicable policies).

A policy may also specify obligations. Such obligations may for instance be that an e-mail should
be sent to the resource owner if access is granted or that denied requests for access should be
logged. In order to ensure that the obligations are fulfilled, any obligations should be carried out
by the PEP before granting access.

Policies may again be combined into a policy set in basically the same way as rules are combined
into policies. The algorithms for this are equivalent to the ones for combining rules, with the
addition of an only-one-applicable algorithm, where only one policy is to be applicable to a given
request/target.

A request may have multiple subjects, but only one action and one resource (some exceptions for
multiple resources are specified in a separate profile). A PDP’s response to a request is either
permit, deny, not applicable (i.e., if no policy/rule was applicable), or indeterminate (i.e., if an
error occurred). One or more obligations may also be specified, and the PEP must deny access
unless it can fulfill all the obligations.

While the description here is based on the current version of XACML (i.e., version 2.0), the
XACML technical committee within OASIS is currently working on the specification for
XACML 3.0. One of the major changes will be with regard to the Target element, which will be
based on a generic matching mechanism instead of using the current special target categories (i.e.,
the subject, resource, action, and environment categories). For anyone wanting to experiment
with XACML 3.0, there is a preliminary patch for Sun’s XACML implementation available from
the Swedish Institute of Computer Science (SICS) [38].

In addition to the core specification, XACML also has several profiles. We will now give a brief
overview of each of these profiles.

4.1.1 The Privacy Policy Profile

The Privacy policy profile [39] defines two attributes for specifying the purpose for which
personal identifiable information is collected. It also defines a rule for enforcing that the
information/resource is being used according to the purpose for which it was collected.

4.1.2 The SAML Profile

The SAML profile [40] defines how to use SAML to carry XACML policies, queries, and
responses. In particular, the profile extends SAML with a XACMLAuthzDecisionQuery and a
XACMLAuthzDecisionStatement which may be used to communicate authorization queries and
responses between a policy enforcement point (PEP) and a policy decision point (PDP). The
profile also defines a XACMLPolicyQuery and a XACMLPolicyStatement which may be used to
exchange policies between a policy decision point (PDP) and a policy administration point.
Furthermore, it is defined how standard SAML attribute requests and responses are to be used for

FFI-rapport 2008/00413 29

requesting and exchanging XACML attributes, defining a mapping between SAML and XACML
attributes.

By defining extensions to SAML, the profile enables the full functionality of XACML to be
utilized when used in conjunction with SAML. In addition, the XACMLAuthzDecisionStatement,
the XACMLPolicyStatement, and SAML’s attribute statement may be used as part of SAML
assertions for storing authorizations, policies, and attributes respectively.

4.1.3 The XML Signature Profile

The XML Signature profile [41] recommends that XACML schema instances are embedded in
SAML assertions, requests, and responses as defined in the SAML Profile [40]. These SAML
objects should then be canonicalized and signed according to the SAML specification [42]. The
use of SAML for this purpose has the advantage of providing a format for specifying the identity
of the signer and a validity period.

4.1.4 The Core and Hierarchical Role Based Access Control (RBAC) Profile

The RBAC profile [43] specifies how XACML can be used to meet the requirements for “core”
and “hierarchical” role based access control according to the ANSI/INCITS standard [44]. In
order to meet these requirements, the RBAC profile defines four types of policies, out of which
the first two are mandatory:

• A role policy set is used to associate a given role with a permission policy set.
• A permission policy set defines the permissions associated with a given role.
• A role assignment policy (or policy set) may be used to define which roles can be enabled

or assigned to which subjects. The role assignment policy may also impose restrictions on
combinations of roles or the total number of roles held by a subjected.

• A HasPrivilegesOfRole policy may be included within each permission policy set in
order to support queries asking whether a subject has the privileges of a given role. It can
not be used to answer questions such as what roles are associated with a given subject
though.

By including multiple roles in the target of a role policy set, that policy set only applies to
subjects having all the specified roles enabled. In order to support hierarchical roles, the
permission policy set for a senior role may refer the permission policy set(s) of its junior role(s) in
order to inherit those privileges as well. It is recommended in the profile that roles are specified
as values of a role attribute. However, roles may also be identified by defining separate attributes
for each role.

4.1.5 The Hierarchical Resource Profile

The Hierarchical resource profile [45] defines how XACML can be efficiently used to provide
access control for a resource organized as a hierarchy (e.g., file systems, XML documents, and
organizations). The hierarchical resource is required to form a directed acyclic graph (i.e., a tree
or a forest) and may be represented as an XML document or in some other way. The individual
resources that are part of the hierarchical resource are referred to as nodes. The profile defines

 30 FFI-rapport 2008/00413

how the identities of nodes are to be consistently represented (using XPath if the hierarchical
resource is represented as an XML document and URIs otherwise). Furthermore, the profile
defines how to request access to a node and suggests how to define policies applying to multiple
nodes.

4.1.6 The Multiple Resource Profile

The Multiple resource profile [46] defines how access to multiple resources can be requested in a
single request to a PDP, and how the response to such a request can be sent in a single response.

4.1.7 The Web Services Profile

Although it has not yet reached standardization status, the Web services profile [47] defines
XACML related policy assertions for use with Web Services Policy. The
XACMLAuthzAssertion may for instance be used to communicate required/provided role
attributes or to specify the willingness/requirement to fulfill certain obligations (such as
encrypting stored data). The XACMLPrivacyAssertion may for instance be used to specify the
intended/acceptable use, distribution, and time of retention for a resource.

4.1.8 XACML 3.0 Administrative Policy

There is also work in progress on an Administrative policy profile [48], defining how
administration and delegation policies can be expressed in XACML 3.0. In particular, policy
administration policies may be used to define the types of policies that individuals can create and
modify. Delegation policies may permit users to dynamically create policies of limited duration in
order to delegate capabilities to others.

4.2 The Security Assertion Markup Language (SAML)

The Security Assertion Markup Language [42] defines how to express security assertions in
XML. Conceptually, an assertion is a set of statements, made by an asserting party (i.e., a SAML
authority), that a relying party may trust. To clarify this, we will consider the contents of SAML
assertions in more detail.

As indicated in Figure 4.3, the asserting party issuing the assertion is identified by the Issuer
element. Although the Issuer element is the only required element of an assertion, an assertion
without any statements is generally not of much use. Thus, SAML defines three different
statement types, namely authentication, authorization, and attribute statements. In order to
provide for extensibility, these three statement types are all derived from the same abstract type
(i.e., the Statement element), from which additional statement types may be derived. As shown in
the figure, a SAML assertion can contain any number of statements.

An assertion containing an authentication, authorization, or attribute statement is also required to
specify the subject to which the assertion(s) apply, utilizing the Subject element. Apart from
identifying the subject, the Subject element may also specify methods for subject confirmation.
Such methods for subject confirmation may be used by the relying party to confirm that a

FFI-rapport 2008/00413 31

message indeed came from the subject identified in the assertion (or an associated entity of the
subject). Methods of subject confirmation are defined in [49]. Typically, the subject may
authenticate itself by signing the message using a private key associated with the assertion.
Alternatively, other application specific procedures may be applied or it may be considered
sufficient to be in possession of the assertion (potentially in combination with some other
constraint(s), such as a short validity period).

Figure 4.3 The SAML assertion element.

Let us now take a closer look at the three defined statement types, starting with the authentication
statement. An authentication statement specifies how and when the subject was authenticated. As
a wide range of authentication methods exist, how to specify the authentication context is covered
in a separate standards document [50].

An authorization decision statement states whether authorization to perform specific actions on a
specific resource has been granted or not (or alternatively, that authorization could not be
decided). An authorization statement may also refer or include other assertions, upon which the
authorization decision was made. Finally, the attribute statement element may include one or
more attributes associated with the subject, e.g., the subject’s role or credit limit. Such attributes
may be included in plaintext or in encrypted form.

The Conditions element allows an asserting party to place restrictions on the valid use of an
assertion. Such restrictions may specify the intended audience (i.e., restricting the potential
relying parties) or the assertion’s validity period. It may also be indicated that the information
within the assertion is likely to change soon, and that the assertion should therefore only be relied
upon once. In fact, considering the lack of a revocation model in SAML, it is preferable that

 32 FFI-rapport 2008/00413

assertions have a relatively short lifetime. Restrictions may also be placed on the use of the
assertion for issuing new assertions (with regard to the audience of the new assertion and the
number of indirections).

The Signature element provides for protecting the integrity of the assertion by applying a
signature. Typically, the asserting party will sign the assertion using its private key, thereby
providing proof of the assertion’s origin. Finally, the Advice element may be used by the
asserting party for communicating additional information. This additional information should not
affect the validity of the assertion, however, as applications are allowed to ignore this element.

4.2.1 SAML Protocols

In addition to defining the syntax and semantics of SAML assertions, SAML also defines various
request/response protocols. For instance, an assertion query and request protocol is defined. This
protocol may be used for requesting an existing assertion by referring its unique identifier or for
querying assertions based on subject and statement type. In the latter case, queries are defined for
all of the three statement types. Thus, an authentication query can be used to obtain the assertions
containing authentication statements for a given subject, while an attribute query can be used to
obtain assertions containing specific attributes of a given subject. Likewise, an authorization
decision query may be used to query whether specific actions should be permitted on a specific
resource by the given subject. However, as noted in the specification, one may consider using
XACML instead for this latter purpose. Considering that XACML provides richer features for
authorization decisions and is very well suited for being used in combination with SAML, using
XACML is clearly a good option.

SAML also defines an authentication request protocol. The authentication request protocol differs
from the authentication query just discussed by being a request for having authentication
performed by an identity provider, while the authentication query was for existing authentication
assertions. How authentication is performed by the authentication provider is outside the scope of
the protocol, although the entity requesting the authentication to be performed may specify
requirements on how the authentication is to be performed. One potential usage of this protocol
would be a service provider requesting a client to authenticate, providing the client a list of
trusted service providers. The client could then present this authentication request to one of the
listed identity providers, which upon successful authentication returns an assertion containing an
authentication statement.

In addition to the already discussed protocols, SAML also defines a single logout protocol and
protocols for managing the identifiers used, between identity providers and service providers, for
identifying principals. Bindings for the SAML protocols to lower layers (i.e., SOAP and HTTP)
are specified in [51].

4.2.2 Usage Scenarios

Being designed to work without a single centralized authority, SAML has many potential uses in
scenarios where having a central authority is challenging from a political or technical point of

FFI-rapport 2008/00413 33

view, as for instance within NATO. Potential usage scenarios include single sign-on, federated
identity, authorization, and SOAP message security (i.e., being used as a security token for WS-
Security). As discussed in Section 4.1.2, SAML is also well suited for being used in combination
with XACML. Other potential uses include retrieving attributes from X.509 identity providers
[52]. For additional and more in-depth usage scenario examples, please refer to the SAML
technical overview [53].

5 Final Remarks
In this report we have provided an overview of current security standards for XML and Web
services. Together these standards provide a flexible framework for fulfilling basic security
requirements such as confidentiality, integrity, and authentication, as well as more complex
requirements such as non-repudiation, authorization, and federated identities. Furthermore, the
standards offer flexibility in the terms of the cryptographic algorithms used, facilitating
adaptation of stronger algorithms if required.

The flexibility and high number of options does nonetheless come at the cost of an increased risk
of erroneous use. For instance, the option to only sign parts of a message may put an
implementation at risk if its security in some direct or indirect way depends on message parts that
are not signed. The combination of relatively complex policies and subjects operating across
organizational boundaries may also require advanced management and auditing tools, and may in
some cases make it difficult to determine exactly who has access to a given resource.

Mechanisms such as those provided by Web Services Policy and the Web Services Description
Language (WSDL) may also provide valuable sources of information to an attacker trying to find
weaknesses in a system. Furthermore, the severity of a single vulnerability may be amplified
when federated identities or trust brokering is being used. When relying on trust brokering or
other trust relationships, it is also essential to ensure that the level of trust is sufficient for the
application at hand.

In addition to more common security issues, there are also some attacks/vulnerabilities that are
specific to XML [54-56]. Although XML firewalls may be able to detect messages trying to
exploit these vulnerabilities, the use of end-to-end encryption may effectively prevent such
detection. Consequently, XML parsers and other affected applications should be able to handle
such messages in a secure manner. Thus, in summary, although the standards discussed in this
report provide essential tools for successfully deploying secure Web services, they do not provide
a complete solution.

The next section concludes this report by providing some references to related standards and
specifications.

 34 FFI-rapport 2008/00413

5.1 Related Standards and Specifications

The Web services security roadmap [13] from IBM and Microsoft also proposed three other
specifications, namely WS-Privacy, WS-Federation, and WS-Authorization, in addition to those
discussed in Section 3. Because none of these additional proposals have become standardized,
they were not included in this report. There is, however, a technical committee [57] within
OASIS working to standardize WS-Federation.

WS-Federation extends WS-Trust in order to provide federated identities. Recall from our
discussion of WS-Trust that a security token service (STS), supporting a range of security token
types and with the proper trust relationships, can provide a cornerstone for brokering trust and
federating identities between different domains. Although this is similar to what is offered by
SAML, a key difference is that WS-Federation is independent of the security token type.
Considering that SAML and WS-Federation are both strongly supported, they appear likely to
coexist in the imminent future. Because the standardization process for WS-Federation is still in
an early stage, however, WS-Federation is not covered in more detail in this report. The interested
reader is referred to [58] for a more detailed description.

Another specification of interest is WS-MetadataExchange [59], which may be used to request
and exchange metadata, including policies. However, considering that the main motivation of
Web Services Policy is to provide for interoperability, a system should not depend on WS-
MetadataExchange for communicating policies unless WS-MetadataExchange also becomes a
standard.

In addition to the OASIS standards discussed previously in this report, there is also an OASIS
standard defining how to represent biometric information in XML, that is, the XML Common
Biometric Format (XCBF) [60]. Because XCBF has very specific (and relatively narrow) usage, it
was not included in this report.

Finally, WS-ReliableMessaging [61] (which is also an OASIS standard) may be used to
implement ordered and guaranteed delivery of SOAP messages (without duplicates). Considering
that guaranteed and ordered delivery may be fundamental for the security of some applications,
WS-ReliableMessaging may beneficially be used together with WS-SecureConversation for
securing sequences of messages.

FFI-rapport 2008/00413 35

References

 [1] Donald Eastlake, Joseph Reagle, and David Solo, "XML-Signature Syntax and
Processing," W3C Recommendation, 2002.

 [2] D.Eastlake 3rd, J.Reagle, and D.Solo, "(Extensible Markup Language) XML-Signature
Syntax and Processing," IETF RFC 3275, 2002.

 [3] John Boyer, "Canonical XML Version 1.0," W3C Recommendation, 2001.

 [4] John Boyer, Donald E.Eastlake 3rd, and Joseph Reagle, "Exclusive XML Canonicalization
Version 1.0," W3C Recommendation, 2002.

 [5] John Boyer and Glenn Marcy, "Canonical XML 1.1," W3C Candidate Recommendation,
2007.

 [6] Selim Aissi, Andrew Hately, and Maryann Hondo, "Schema Centric XML Canonicalization
Version 1.0," http://www.uddi.org/pubs/SchemaCentricCanonicalization.htm , 2005.

 [7] Merlin Hughes, Takeshi Imamura, and Hiroshi Maruyama, "Decryption Transform for XML
Signature," W3C Recommendation, 2002.

 [8] Donald Eastlake and Joseph Reagle, "XML Encryption Syntax and Processing," W3C
Recommendation, 2002.

 [9] D.Eastlake 3rd, "Additional XML Security Uniform Resource Identifiers," IETF RFC 4051,
2005.

 [10] National Security Agency, "XML Cryptographic Security and Suite B,"
http://www.w3.org/2007/xmlsec/ws/slides/17-roddy-nsa/ , 25-9-2007.

 [11] Phillip Hallam-Baker and Shivaram H.Mysore, "XML Key Management Specification (XKMS
2.0)," W3C Recommendation, 2005.

 [12] Anders Fongen, "XML Based Certificate Management," FFI-rapport 08/00278, Norwegian
Defence Research Establishment, 2008.

 [13] IBM Corporation and Microsoft Corporation, "Security in a Web Services World: A
Proposed Architecture and Roadmap,"
http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/ws-secmap.pdf , 7-4-2002.

 [14] Sun Microsystems, "The WSIT Tutorial,"
http://java.sun.com/webservices/reference/tutorials/wsit/doc/ , 18-9-2007.

 [15] Microsoft Corporation, "Web Services Protocols Supported by System-Provided
Interoperability Bindings," http://msdn2.microsoft.com/en-us/library/ms730294.aspx , 2007.

 [16] Layer 7 Technologies, "XML Firewall and VPN,"
http://www.layer7tech.com/products/page.html?id=70 , 2007.

 36 FFI-rapport 2008/00413

http://www.uddi.org/pubs/SchemaCentricCanonicalization.htm
http://www.w3.org/2007/xmlsec/ws/slides/17-roddy-nsa/
http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/ws-secmap.pdf
http://java.sun.com/webservices/reference/tutorials/wsit/doc/
http://msdn2.microsoft.com/en-us/library/ms730294.aspx
http://www.layer7tech.com/products/page.html?id=70

 [17] Anthony Nadalin, Chris Kaler, Ronald Monzillo, and Phillip Hallam-Baker, "Web Services

Security: SOAP Message Security 1.1 (WS-Security 2004)," OASIS Standard, 2006.

 [18] Anthony Nadalin, Chris Kaler, Ronald Monzillo, and Phillip Hallam-Baker, "Web Services
Security X.509 Certificate Token Profile 1.1," OASIS Standard, 2006.

 [19] Thomas DeMartini, Anthony Nadalin, Chris Kaler, Ronald Monzillo, and Phillip Hallam-
Baker, "Web Services Security Rights Expression Language (REL) Token Profile 1.1,"
OASIS Standard, 2006.

 [20] Anthony Nadalin, Chris Kaler, Ronald Monzillo, and Phillip Hallam-Baker, "Web Services
Security Kerberos Token Profile 1.1," OASIS Standard, 2006.

 [21] Anthony Nadalin, Chris Kaler, Ronald Monzillo, and Phillip Hallam-Baker, "Web Services
Security UsernameToken Profile 1.1," OASIS Standard, 2006.

 [22] Ronald Monzillo, Chris Kaler, Anthony Nadalin, and Phillip Hallam-Baker, "Web Services
Security: SAML Token Profile 1.1," OASIS Standard, 2006.

 [23] Frederick Hirsch, "Web Services Security SOAP Messages with Attachments (SwA) Profile
1.1," OASIS Standard, 2006.

 [24] J.Kohl and C.Neuman, "The Kerberos Network Authentication Service (V5)," IETF RFC
1510, 1993.

 [25] Michael McIntosh, Martin Gudgin, K.Scott Morrison, and Abbie Barbir, "Basic Security
Profile Version 1.0," Web Services Interoperability Organization (WS-I) Final Material,
2007.

 [26] Asir S.Vedamuthu, David Orchard, Frederick Hirsch, Maryann Hondo, Prasad Yendluri,
Toufic Boubez, and Ümit Yalcinalp, "Web Services Policy 1.5 - Framework," W3C
Recommendation, 2007.

 [27] Asir S.Vedamuthu, David Orchard, Frederick Hirsch, Maryann Hondo, Prasad Yendluri,
Toufic Boubez, and Ümit Yalcinalp, "Web Services Policy 1.5 - Guidelines for Policy
Assertion Authors," W3C Working Group Note, 2007.

 [28] Aaron Skonnard, "Migrating to WSE 3.0,"
http://msdn.microsoft.com/msdnmag/issues/06/04/ServiceStation/ , 2006.

 [29] BEA, "WebLogic Web Services: Security - Configuring Message-Level Security,"
http://edocs.bea.com/wls/docs100/webserv_sec/message.html , 2008.

 [30] Asir S.Vedamuthu, David Orchard, Frederick Hirsch, Maryann Hondo, Prasad Yendluri,
Toufic Boubez, and Ümit Yalcinalp, "Web Services Policy 1.5 - Attachment," W3C
Recommendation, 2007.

 [31] Anthony Nadalin, Marc Goodner, Martin Gudgin, Abbie Barbir, and Hans Granqvist, "WS-
Security Policy 1.2," OASIS Standard, 2007.

FFI-rapport 2008/00413 37

http://msdn.microsoft.com/msdnmag/issues/06/04/ServiceStation/
http://edocs.bea.com/wls/docs100/webserv_sec/message.html

 [32] Anthony Nadalin, Marc Goodner, Martin Gudgin, Abbie Barbir, and Hans Granqvist, "WS-

Trust 1.3," OASIS Standard, 2007.

 [33] Anthony Nadalin, Marc Goodner, Martin Gudgin, Abbie Barbir, and Hans Granqvist, "WS-
SecureConversation 1.3," OASIS Standard, 2007.

 [34] Internet 2, "OpenSAML - an Open Source Security Assertion Markup Language toolkit,"
http://www.opensaml.org/ , 2007.

 [35] Sun Microsystems, "Sun's XACML Implementation," http://sunxacml.sourceforge.net/ , 21-
6-2006.

 [36] OASIS Open, "XACML References and Products, Version 1.83," http://docs.oasis-
open.org/xacml/xacmlRefs.html , 31-7-2007.

 [37] Tim Moses, "eXtensible Access Control Markup Language (XACML) version 2.0," OASIS
Standard, 2005.

 [38] Swedish Institute of Computer Science, "SICS's implementation of the XACML 3.0 draft,"
http://www.sics.se/spot/xacml_3_0 , 12-6-2007.

 [39] Tim Moses, "Privacy policy profile of XACML v2.0," OASIS Standard, 2005.

 [40] Anne Anderson and Hal Lockhart, "SAML 2.0 profile of XACML v2.0," OASIS Standard,
2005.

 [41] Anne Anderson, "XML Digital Signature profile of XACML v2.0," OASIS Standard, 2005.

 [42] Scott Cantor, John Kemp, Rob Philpott, and Eve Maler, "Assertions and Protocols for the
OASIS Security Assertion Markup Language (SAML) v2.0," OASIS Standard, 2005.

 [43] Anne Anderson, "Core and hierarchical role based access control (RBAC) profile of XACML
v2.0," OASIS Standard, 2005.

 [44] American National Standards Institute, "ANSI INCITS 359-2004, Role Based Access
Control," 2007.

 [45] Anne Anderson, "Hierarchical resource profile of XACML v2.0," OASIS Standard, 2005.

 [46] Anne Anderson, "Multiple resource profile of XACML v2.0," OASIS Standard, 2005.

 [47] Anne Anderson, "Web Services Profile of XACML (WS-XACML) Version 1.0," OASIS
XACML TC Working Draft, 2007.

 [48] Erik Rissanen, Hal Lockhart, and Tim Moses, "XACML v3.0 Administrative Policy Version
1.0," OASIS XACML TC Working Draft, 2007.

 38 FFI-rapport 2008/00413

http://www.opensaml.org/
http://sunxacml.sourceforge.net/
http://docs.oasis-open.org/xacml/xacmlRefs.html
http://docs.oasis-open.org/xacml/xacmlRefs.html
http://www.sics.se/spot/xacml_3_0

 [49] John Hughes, Scott Cantor, Jeff Hodges, Frederick Hirsch, Prateek Mishra, Rob Philpott,

and Eve Maler, "Profiles for the OASIS Security Assertion Markup Language (SAML) V2.0,"
OASIS Standard, 2005.

 [50] John Kemp, Scott Cantor, Prateek Mishra, Rob Philpott, and Eve Maler, "Authentication
Context for the OASIS Security Assertion Markup Language (SAML) V2.0," OASIS
Standard, 2005.

 [51] Scott Cantor, Frederick Hirsch, John Kemp, Rob Philpott, and Eve Maler, "Bindings for the
OASIS Assertion Markup Language (SAML) V2.0," OASIS Standard, 2005.

 [52] Eve Maler, Rob Philpott, Tom Scavo, and Ari Kermaier, "SAML V2.0 Attribute Sharing
Profile for X.509 Authentication-Based Systems," OASIS Security Services TC Committee
Draft, 2008.

 [53] Nick Ragouzis, John Hughes, Rob Philpott, Eve Maler, Paul Madsen, and Tom Scavo,
"Security Assertion Markup Language (SAML) V2.0 Technical Overview," http://www.oasis-
open.org/committees/download.php/23920/sstc-saml-tech-overview-2.0-cd-01.pdf , 13-3-
2007.

 [54] Esmiralda Moradian and Anne Håkansson, "Possible attacks on XML Web Services,"
International Journal of Computer Science and Network Security, vol. 6, no. 1B, pp. 154-
170, Jan.2006.

 [55] Pete Lindstrom, "Attacking and Defending Web Services,"
http://forumsystems.com/papers/Attacking_and_Defending_WS.pdf , 2004.

 [56] Brad Hill, "A Taxonomy of Attacks against XML Digital Signatures & Encryption,"
http://www.isecpartners.com/files/iSEC_HILL_AttackingXMLSecurity_Handout.pdf , 2004.

 [57] "OASIS Web Services Federation (WSFED) TC," http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsfed , 2008.

 [58] Marc Goodner, Maryann Hondo, Anthony Nadalin, Michael McIntosh, and Don Schmidt,
"Understanding WS-Federation," http://msdn2.microsoft.com/en-us/library/bb498017.aspx ,
28-5-2007.

 [59] Keith Ballinger et al., "Web Services Metadata Exchange (WS-MetadataExchange),
Version 1.1," http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
mex/metadataexchange.pdf , 2006.

 [60] John Larmouth, "XML Common Biometric Format," OASIS Standard, 2003.

 [61] Doug Davis, Anish Karmarkar, Gilbert Pilz, Steve Winkler, and Ümit Yalcinalp, "Web
Services Reliable Messaging (WS-ReliableMessaging) Version 1.1," OASIS Standard,
2007.

FFI-rapport 2008/00413 39

http://www.oasis-open.org/committees/download.php/23920/sstc-saml-tech-overview-2.0-cd-01.pdf
http://www.oasis-open.org/committees/download.php/23920/sstc-saml-tech-overview-2.0-cd-01.pdf
http://forumsystems.com/papers/Attacking_and_Defending_WS.pdf
http://www.isecpartners.com/files/iSEC_HILL_AttackingXMLSecurity_Handout.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsfed
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsfed
http://msdn2.microsoft.com/en-us/library/bb498017.aspx
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-mex/metadataexchange.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-mex/metadataexchange.pdf

	1 Introduction
	1.1 A Short Overview of XML and Web Services Security Standards

	2 XML Security
	2.1 XML Signature
	2.1.1 The KeyInfo element

	2.2 XML Encryption
	2.3 The XML Key Management Specification (XKMS)

	3 Web Services Security
	3.1 WS-Security
	3.1.1 The UsernameToken Profile
	3.1.2 The X.509 Certificate Token Profile
	3.1.3 The Rights Expression Language (REL/XrML) Token Profile
	3.1.4 The SAML Token Profile
	3.1.5 The Kerberos Token Profile
	3.1.6 The Basic Security Profile

	3.2 Web Services Policy
	3.2.1.1 Web Services Policy – Attachment
	3.2.2 WS-SecurityPolicy

	3.3 WS-Trust
	3.4 WS-SecureConversation

	4 Security Markup Languages
	4.1 The eXtensible Access Control Markup Language (XACML)
	4.1.1 The Privacy Policy Profile
	4.1.2 The SAML Profile
	4.1.3 The XML Signature Profile
	4.1.4 The Core and Hierarchical Role Based Access Control (RBAC) Profile
	4.1.5 The Hierarchical Resource Profile
	4.1.6 The Multiple Resource Profile
	4.1.7 The Web Services Profile
	4.1.8 XACML 3.0 Administrative Policy

	4.2 The Security Assertion Markup Language (SAML)
	4.2.1 SAML Protocols
	4.2.2 Usage Scenarios

	5 Final Remarks
	5.1 Related Standards and Specifications

	References

