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Summary

In ship detection based on satellite Synthetic Aperture Radar (SAR) images, the intensity of the
sea surface backscatter is modeled as a stochastic variable. For a single-polarization channel
the K-distribution serves as a statistical model for the backscatter. Combining two channels by
considering the product of the received intensities, it is desirable to determine a model for this new
variable.

The main focus of this report is therefore to derive the probability distribution of the product of two
independent K-distributed variables. By recognizing that a K-distributed variable is itself a product of
two gamma-distributed variables, a four-product of gamma variables is considered instead. This
distribution is determined by the means of the Mellin transform, which allows us to determine the
distribution in general of an arbitrary product of such variables. Necessary background theory is
presented before utilizing the transform. Although no explicit formula is derived, an implicit form is
obtained and finally expressed in terms of the Meijer G-function.

The subsequent sections present a method to evaluate the distribution and produce look-up
tables for the threshold values in the ship detection hypothesis test. Code and look-up tables are
provided in Appendix A and B. Finally, possible caveats of the look-up tables are discussed, especially
the sparseness of the parameter sets involved and the related accuracy of the threshold values.
Some suggestions are made to improve upon the effective accuracy of the threshold values. Further
investigation is required to improve the effective accuracy.

It also remains to investigate whether in fact combining two channels in a product is a more
effective tool in ship detection rather than analyzing the signals from the channels separately.
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Sammendrag

| skipsdeteksjon basert pa SAR-bilder (syntetisk apertur-radar) er intensiteten til sjgoverflatestay
modellert som en stokastisk variabel. For en enkelt polarisasjonskanal fungerer K-fordelingen som
en statistisk modell for sjestayen. Nar to kanaler kombineres ved & vurdere produktet av mottatt
intensitet, er det av interesse & utlede en modell for den nye sammenslatte kanalen.

Hovedfokuset i denne rapporten er derfor a utlede sannsynlighetsfordelingen til produktet av
to uavhengige K-fordelte variabler. Ved & erkjenne at en K-fordelt variabel selv er et produkt av to
gamma-fordelte variabler, har vi derfor tatt tatt utgangspunkt i et fire-produkt av gamma-fordelte
variabler i stedet. Denne fordelingen er bestemt ved hjelp av Mellin-tranformasjonen, som tillater
oss a bestemme fordelingen til et vilkarlig produkt av slike variabler. Nedvendig bakgrunnsteori blir
presentert for transformasjonen anvendes. Selv om ingen eksplisitt formel blir utledet, er fordelingen
gitt p& implisitt form, og til slutt uttrykt ved hjelp av Meijer G-funksjonen.

De pafelgende seksjonene presenterer en metode for & evaluere fordelingen og produsere
tabellverk for terskelverdier i hypotesetesten ved skipsdeteksjon. Koden og tabellverket er tilgjengelig
som vedlegg. Til slutt blir mulige utfordringer knyttet til tabellverket diskutert, spesielt spredningen av
parameterverdiene relatert til presisjonen av beregnede terskelverdier. Enkelte forslag for & forbedre
den effektive presisjonen til terskelverdiene blir presentert. Videre undersgkelser vil veere nadvendig
for & forbedre den effektive presisjonen.

Det gjenstar ogsa & undersgke om det & kombinere to kanaler til ett produkt er et mer effektivt
verktoay for skipsdeteksjon fremfor & analysere signalene fra kanalene separat.
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1 Theory

Let Y be a K-distributed variable. The probability distribution is given by

B11B;
pr(y) = (M2y) 2 Kp—p, 2y i2y), y = 0 (1.1)

2
L(B)I(B2)y

where I'(-) denotes the Gamma function and Kj,(-) the modified Bessel function of the second
kind of order n. The derivation of the above equation [1]] is achieved by considering in return two
Gamma-distributed variables, say X, X, each with probability distribution

1 B
(x) = AP e x>0, j=12. 1.2
Px) = [ x>0, (1.2)

Note that all parameters involved in both (I.T)) and (I.2) are strictly positive. Thus, in order
to determine the product-distribution of two K-distributed variables, we may instead consider
the product of four Gamma-variables. This is ensured by the fact that regular multiplication is
associative.

Hence, consider the general case where Xj, X», ..., Xy are Gamma-distributed variables with
distribution according to (I.2)) with respective indexing j. The goal is to determine the distribution
of U=X;-X,-...- Xy, for which we can later reduce to the special case N = 4.

1.1 Mellin transform in probability theory

Recall that the Fourier transform is a helpful tool to determine sums of stochastic variables. When
dealing with products, however, we consider a different integral transform, namely the Mellin
transform [2l]. What proceeds are some preliminary definitions and results to provide sufficient
background before applying the transform to our particular problem.

Def. 1.1.1. The Mellin norm of f € L;(R,) is defined as

I fllpg, = / |£(x)||x¢~ 1) dx, for some fixed ¢ € C. (1.3)
0

Observe that in the above definition we did not restrict the norm to be less than infinity. Such a
requirement leads to the following space.

Def. 1.1.2. The Mellin space M (R.) for some fixed ¢ € C consists precisely of the functions in
Ly(R) for which the Mellin norm ||-|| o is well-defined, that is, less than infinity.
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From Def it should be evident that if a function f belongs M (R, ), then f also belongs to
Miir(Ry) for all ¢ € R. The space Mp(R,) for D c C is naturally extended from the point-wise
definition above. It is on such an extension we define the Mellin transform.

Def. 1.1.3. The Mellin transform of a function f € M, ,)(R;) is given by

M(f)(s) = /OOO F(x)x"'dx, for s e C. (1.4)

The conditions in the above definition on f ensures that M(f)(s) is well-defined for s €
{a +iB|a € [a, b], B € R}.

The next theorem provides us with a formula for the inverse Mellin transform and sufficient
conditions for the inverse to exist.

Theorem 1.1.1. Suppose f € M, p)(Ry) with Mellin transform M(f)(s). Provided f is
continuously differentiable at point x, the inverse Mellin transform can be expressed

c+ioco

f(x) = L M(f)(s)x"*ds, forall ¢ € [a, b]. (1.5)

2mi c—ioo

Proof. Recall the Fourier transform of a function, say g, is given by

sw) = [ gtoeeras
and the inverse transform

) = / oem

21 J_o

Take ¢ € [a, b] and consider the operator T on g defined by Tg(x) = g(e¥)e“*. It is easy to
show that the inverse operator is given by 7~ 'g(x) = g(In(x))x~¢. We proceed by applying the
Fourier transform to 7' f, that is

TF(w) = [ Cr F(x)e X dx

[0e]

[Se]
= / f(e¥)e* @) dx with substitution u = ¥

= / fw)uc"~'du which we recognize from Def as
0
= M(f)(c - iw).
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By assumption, we have that M (f)(c —iw) is well-defined. Observe that since f is continuously
differentiable, the same is true for 7' f. Hence, by the Fourier inversion theorem [3] (Theorem 2.1),
we get

Tf(x) = % [ T f(w)e'* dw

[Se]

1 o0 )
= 2—/ M(f)(c —iw)e'“*dw with substitution s = ¢ — iw
T J-—co

= [ MU,

2 c—ioo

Finally, apply the inverse operator T~! to 7 f such that

f(x) =TT f)(x)
1 c+ioco
1

S — M(f)(s)e¥ ) ds
2mi

1 c+ioco

= M()(s)x xCds
27

1 c+ico

= — M(f)(s)x*ds.

2mi c—ioo

c—io

c—ioco

Since ¢ € [a, b] was arbitrary, the same result holds for all ¢ € [a, b]. O

We will now begin to relate these notions to probability theory, in particular to products of
stochastic variables.

Consider two independent, continuous stochastic variables X, X, > 0 with probability distribu-
tion px,, px,, respectively. The product of these two variables, say U = X; - X, has distribution
determined by the integral

0 d
po =[x (5) e (16)
0 X X

This motivates the following definition.

Def. 1.1.4. For functions f, g € L;(R) their Mellin convolution is given by

u

0 dx
(Fopm= [ 7(%)sw. (17)
0 X X
With this new definition available, py;(u) can be expressed as a Mellin convolution

puu) = (px, © px,)(u). (1.8)
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Since regular multiplication of variables is both associative and commutative, we would naturally
expect that the same should hold for the Mellin convolution. These two properties are summarized
in the next lemma.

Lemma 1.1.2. The Mellin convolution is associative and commutative, thatis forall f, g, h € L;(R;)

(fog)oh=fo(goh), (1.9)
feg=gof. (1.10)

Proof. Commutativity is verified directly by a simple substitution. Associativity is somewhat more
involved

(fog)oh)(u) = /Oo(fog) (%) h(x)ﬂ
[ m (—) (y)—
yx
= [ (g) ]h( )— by the Fubini — Tonelli theorem[4]]
) U dZ
AL s Eot]
: / f(f)@oh)(z)—z
0 b4 F4

= (fo(g o))

h(x)— with substitution z = yx

Similar to the regular convolution, we have a convolution theorem, but now in terms of the
Mellin transform as opposed to the Fourier transform.

Theorem 1.1.3. Let f, g € M (R), then

M(f o g)(s) = M(f)(s) - M(g)(s). (1.11)
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Proof.
M(f o g)s) = / (f o g)wu’ " du
0 -
- /0 /0 ! (%) 8 (x)d%] u*~'du by the Fubini — Tonelli theorem[4]

oo [ (9] d
= / / f (E) us_ldu] g(x)—x with substitution y = 4
0 0 X X X

= /0 ) /O ) f(y)y“‘ldy} g(x)x*dx

- /0 Mf)($)g(x)x* dx

= M(f)(s) /0 g(0)xdx
= M(f)(s) - M(g)(s).

O
This may easily be extended to an arbitrary, finite number of functions.
Corollary 1.1.3.1. Let f1, f5, ..., fv € M (R), then
M(fio fao..o f)ls) = M(fi)(s) - M(f2)(s) - ... - M(fn)(s). (1.12)

Proof. From Lemmal|l.1.2)we have that the Mellin convolution is associative. Thus, by induction
on M((fi ¢ fo¢...0 fy-1) ¢ fiv) the desired result is obtained. O

It is this final Corollary which demonstrates the utility of the Mellin tranform with regard to
products of stochastic variables. If we assume the variables involved are independent, continuous
and positive, then their product distribution can be determined by considering the inverse Mellin
transform of the regular product of Mellin transforms of the individual probability distributions.
Hence, the remaining challenges consist of calculating the Mellin transform of the distributions and,
perhaps more complicated, estimating the inverse of the product.

1.2 Product distribution of N Gamma-variables

As emphasized earlier, we will restrict our attention to products of Gamma-distributed variables
X1, Xo, ..., Xn. From (1.2) it is evident that Px; € M[l,w[ for j = 1,2,..., N. We start by deriving
the Mellin tranform of the single Gamma-distribution.
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Lemma 1.2.1. Let X be a stochastic variable with Gamma distribution px according to (1.2),
without the indexing. Then the Mellin transform of px is given by

1-

M(px)(s) = (1.13)
()
Proof.
M(px)(s) = / (Ol
0
B
= B-1.—-Ax s—1
== XPeT T dx
(B
_/lﬁ - 2.-2
= X)) P27 dx with substitution y = Ax
/ll—s )
- I'(B) yﬁﬂ_ze_y dy where we recognize the Gamma function
0
/ll—s
= F _ 1 .
rp el
O

With this lemma established, we are ready to formulate the main result.

Theorem 1.2.2. Let X, X5, ..., Xy be independent stochastic variables with Gamma-distribution
px; according to (1.2), with respective indexing j. Then the product U = Xj - X5 - ... - X has
probability distribution

N i N

puu) = lnrw)m/ HF(,B]+S) ]_[/1 ds, u > 0. (1.14)

In particular for N = 4 we obtain the product distribution of two K-distributions.

Proof. From Corollary [I.1.3.T] we have

N
M(pu)(s) = l—[ (px;)(s) which by Lemma[T.2.1
1:1/11
=| | (fﬁ)m@ s=1).

~
I
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Since px; € My, for j = 1,2,..., N, the same holds true for pyy. Thus, from Theorem
the inverse Mellin transform of M(py) reads

1+ioco

1
pu(u) = M~ M(py)(u) = i ) M(py)(t)u™ dt
1 I+ico N /ll t

27” 1-ico i F(IBI)

:_HF(,B)Zm/ I_IF(ﬁ]+s) l_[a ds.

['(Bj +t—1)u~"'dt with substitution s =7 — 1

Hence, from (1.14)) we have an exact expression for the product distribution although on implicit
form. In order to evaluate the probability distribution the integral in needs to be estimated,
either numerically or analytically. As is turns out, this integral belongs to a family of functions,
namely the Meijer G-functions [5]].

Def. 1.2.1. Let m,n,p,q € N U {0} such that m < g and n < p. Consider the set of scalars
ai, .., ap, by, ....,b, in C such that ax — b; ¢ Nfor k = 1,...,nand j = 1,..,m. Then the Meijer
G-function at point z # 0 is given by

Gry (i) s, (1.15)

F(b +s)H” (1 —aj—s)
2711/]_[ - b; —s)]_[] ae L@ +5)

Jj= m+1

where L is one of three main paths in the complex plane. The path is such that the poles of
;”:1 ['(b; + s) are separated from the poles of H;”:l I'(1 — a; — 5). The Gamma function has poles
where its argument equals a negative integer. Hence, the path separates the points
{-bj-r;r=012..andj=1,..,m} (1.16)
from
{l—aj+r;r=0,1,2..andj=1,..n}. (1.17)

One possible path L runs from —ioo to ico such that (I.16)) is kept to the left of L and consequently
(1.17) to the right. Then the integral converges absolutely when

larg(z)| < (m—i-n—%(pﬂ-q)). (1.18)
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Observe that any empty product is by convention unity, that is, given numerical value 1.

By inspection of (I.14), we observe that the product distribution pyy may be expressed com-
pactly in terms of the Meijer G-function

N
pu) = ]_[ gy O 0 N | s u]—[ (1.19)

Hence, for the product of two K-distributions py reads

4

4
1 1 _
pu(u) = — GOl g plul | 2], u>0. (1.20)

For u = 0 we take the limiting value of py as u — 0%.

Although this classification may seem redundant, recognizing the Meijer G-function in the
probability distribution yields advantages due to the developed theory for this family of functions.

1.3 Cumulative distribution of N Gamma-variables

In applications, the cumulative distribution of a probability distribution is of particular importance.
Recall, that the cumulative distribution of a stochastic variable U > 0 with probability distribution
pu(x) evaluated at point u is given

PU(u):/O pu(x)dx, (1.21)

that is the probability that the variable takes values below threshold «. In order to derive the cu-
mulative distribution of U with distribution according to (1.20), we make use of the following identity.

Lemma 1.3.1. Let p, o € C such that Re(o") > 0 and Re(p + b;) > 0, for j = 1, ..., m according to
Def. Then

1
/ xP~ l(l_x)cr leq ( P Zp
0

under the same convergence condition as in (I.18).

1-p.ay,...ap
a)x) dx =T(0)G %, ;ﬂ (b],__’_ff;,l_;"_a |a)), (1.22)

Proof. See Saxena [5]] Chapter 3 p.98. O

Theorem 1.3.2. Let X, X5, ..., Xy be independent stochastic variables with Gamma distribution
px; according to (T.2), with respective indexing j. Then the product U = X; - X5 - ... - Xy has
cumulative distribution

N

N
1
Py(u)=| | =—=G !\ 0 (1.23)
gwm | o H
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Proof. From the definition of cumulative distribution we have

Py(u) = / pu(x)dx, which when inserting (1.20)
0

N u | N
= —GH Y| pi.sy x| | 4 | dx with substitution x = uz

j=1
N 1 N

— -1~N 0 -

= G Bu...pn Ut | | 45 |dt.
ﬂ r(/s,->/o R N ﬂ !

By comparison we recognize the integral in the above equation equals the left-hand-side of (1.22))
withp=0,0=1andw =u Hj]\il 4;. Since B; > 0 by assumption, we may apply Lemma ,
for which we attain the desired result. O

From this latest theorem we deduce the cumulative distribution for the product of two K-
distributions

4 4
1 -
Py(u) = | | —ng)Gj*; B Bad ul |/1,- , u>0. (1.24)
j=1 '
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2 Application

In Brekke’s report [6] (equation (3.2)) the K-distribution is presented as a statistical model for the
sea surface backscatter for a single channel. Compared with (I.1)) the parameters are expressed
somewhat differently with a more physical interpretation. In summary S;, 8, are replaced with

L the Equivalent Number of Looks (ENL)

* v the order parameter.

Also A - A, is replaced with % where u is the mean of the distribution. Furthermore, numerical
schemes are presented in order to estimate L, v, u from the image data.

Combining two channels, however, yields a probability and cumulative distribution for the
backscatter according to (I.20) and (I.24)), respectively. In this product distribution the same
parameters are involved, with modifications as described above, but now with additional indexing
Jj = 1,2 to emphasize the channel. Hence, the probability distribution of the product becomes

1 1 - LiLoviv,
= - G40 —_— 2.1
U = R T T () 0 (“ " ) @D
and the cumulative distribution
1 L] L2V1 V2
Py(u) = G4l L u-—). 2.2
A AT A (LL e @2

The same numerical schemes as for the K-distribution may be performed, on the individual
images, to determine the parameters in the new distribution.

2.1 Hypothesis test in ship detection

Similar to Brekke’s report, a type 1 hypothesis test can be carried out to distinguish signal from a
vessel versus backscatter. Suppose the received intensity signal u belongs to the backscatter. Then
the probability of an intensity larger or equal than measured u is

1 - Py(u). (2.3)

Thus, for sufficiently large u, such a signal becomes increasingly improbable and is expected
to belong to a vessel rather than backscatter. Fix the constant false alarm rate (CFAR), that is the
probability the signal belongs to sea surface backscatter. For a given CFAR there is a corresponding
intensity value ¢ according to

CFAR = 1 - Py(1). (2.4)

Any received signal above this threshold ¢ is labeled as a detected vessel. Observe that while
CFAR is user specified, the threshold is not and depends on the parameters in the distribution. The
goal is therefore to determine the threshold, which is achieved by solving (2.4) for z.
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For fast processing, it is desirable to create look-up tables of threshold values with different
parameters Ly, Ly, vi, vo. The estimated parameters may then be approximated to the nearest value
in the set of parameters in the tables. Observe that the threshold values should be normalized, that is
the mean y; - uy is set to 1. For distributions with mean u; - y» # 1, the non-normalized threshold
value T is obtained from the normalized ¢ by

T=t-ppo. (2.5)

2.2 Implementation of threshold values

The main challenge of determining the threshold relates to our ability to evaluate the Meijer
G-function in (2.2). If possible, we should take advantage of available software and already built-in
tools related to the Meijer G-function. In python, Fredrik Johansson et al have developed a library,
mpmath, with a built-in Meijer G-function, meijerg() [7]. This library has been utilized in the
subsequent calculations. The necessary python-code is provided in Appendix [A.T] and the main
parts will be outlined in what follows.

Once able to evaluate the Meijer G-function, a numerical scheme is applied to (2.4) to
approximate the threshold. A simple binary search for the threshold has been implemented in the
function search_threshold(). The convergence of the method is guaranteed by the fact that the
cumulative distribution is continuous. For an initial guess Iy and uncertainty ¢, the binary search
has running time & (log({s—")). However, the function only searches for the threshold in the interval
10,21y/(L; Ly v v2)[. Therefore the initial guess should be sufficiently large such that the interval
contains the true solution.

The function multi_threshold() calls search_threshold() and searches for threshold values for all
combinations of parameter values in user specified discrete sets (line 119, 120). These thresholds
and parameter sets are later then saved to separate text-files in save_threshold(). Notice that it
is assumed that the order parameter and the equivalent number of looks take upon values from
separate sets. Still, the order parameter for the two channels are presumed to take values from the
same set, similarly for the equivalent number of looks.

Now, suppose there are m choices for the order parameter and n choices for the equivalent
number of looks. This yields a total of (m - n)> combinations of the parameters. However, not all
of the combinations return unique threshold values. Due to symmetry of (2.2) with respect to the
parameters, the threshold is invariant to any permutation of the parameters. In particular it does not
matter whether vi = a,v, = b or vi = b, v, = a. This symmetry has been exploited in the code,
with additional indexing, to reduce the running time.

The function check() was originally intended to verify that the symmetry indexing is performed
correctly. Once verified under implementation, it now serves as an initial quality check for the
searches. If for a single estimated threshold ¢ the corresponding quantile 1 — Py () is not within the
interval ]0.99, 1.01[CFAR, the function returns -1. This implies that either the initial guess or the
accuracy is too low. If the initial guess is in fact properly established, then the accuracy must be
increased, achieved by reducing delta (line 122).

Preliminary tests show that the initial guess must be increased if the parameters in the distribution
increase. If true, it is then sufficient to establish the initial guess for the largest parameter values in
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the user specified sets. Observe, users are advised to perform some tests on suitable initial guess in
advance to avoid unnecessary large initial guess, e.g. 100 fold greater than largest threshold value
scaled with factor L) L,v;v,. Large initial guess will increase the running time for both the binary
search and the Meijer G-evaluation in meijerg().
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3 Results and discussion

In Appendix two look-up tables are presented for the threshold values of the product
distribution with CFAR = 1077, 1078 respectivelyﬂ The calculated threshold values have an

uncertainty of +1078. The choice for the parameter sets are based on the parameter sets in Brekke’s
report [6]], that is ENL; = 1.0, 2.0, 3.0, 4.0 and v; = 5.0, 10.0, 15.0, 20.0, 40.0, 90.0 for j = 1,2.

As an additional quality check of the algorithm, the look-up tables in Brekke’s report in
Appendix A has been recreated, located in Appendix [B.4] The python-code is provided in
Appendix [A.2)and is structured similarly to the code for the product distribution. Brekke’s table is
somewhat incomplete, with some threshold values omitted and some require an update (A.2, block:
ENL = 1.0). These values are nevertheless calculated in the new and updated look-up table. The
re-estimated values carry an uncertainty of +1078.

However, deviations from Brekke’s table start as early as the sixth cipher. Although Brekke’s
estimated values are presented with 16 decimals, it is unclear whether the values in fact are estimated
to such an accuracy. Hence from a conservative point of view, it is reasonable to conclude that the
new implemented algorithm has at least five cipher accuracy. On the other hand, notice the current
sparseness of the table parameters, e.g. v = 5.0, 10.0, 15.0, ... instead of say v = 5.0, 5.1, 5.2, ...
Including the round-off of the parameters, the sparseness reflects an effective accuracy of about
two ciphers for the threshold values. Hence, even a five cipher accuracy should seem sufficient for
further use.

Returning to the look-up tables for the product distribution, the same effective accuracy problem
related to parameter sparseness occurs here. A basic solution is simply to increase the density of
the parameters in the user parameter sets. In practice, this might not be a tangible solution as an
increase in possible parameters rapidly increases both the memory consumption and running time.
Therefore, any extra parameter values should be added to capture large changes in the threshold
value.

In figure [3.1] and figure [3.2] some of the threshold values are plotted as a function of the
parameters v; and L, respectively. The line between the points represents a linear approximation of
the threshold between the discrete points. The threshold values will develop similarly for the L, v»
orif L, vy are increased in the current plots. From these figures, it seems evident that the threshold
decreases as the parameters increase. In addition the threshold function appears to have a positive
curvature, that is the rate of decrease is decreasing. Suppose that the threshold function is smooth
up to the second derivative for each parameter. Then a linear approximation between discrete points
will lie above the actual curve. Thus, a linear approximation will systematically provide a larger
threshold estimate. Furthermore, this approach will also improve the final estimated thresholds
values compared to only nearest round-off.

This linear spline method yields a continuous approximation to the threshold function. However,
the aforementioned approximation is not smooth. In order to capture possible smoothness of the
function, higher order spline methods can be considered, say the cubic spline [§]].

ISince the distribution is symmetric, as explained in the symmetric values are not listed. In particular for a > b
where v| = a, v = b, the corresponding threshold value will be listed at vi = b, v» = a, similarly for ENL, ENL,
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Figure 3.1 Threshold values for CFAR = 10~% as a function of order parameter v, for channel 1, where
L, =1.0and v, =5.0.

CFAR = 0.00000001
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Figure 3.2 Threshold values for CFAR = 1078 as a function of efficient number of looks L, for channel
1, where L, = 1.0 and v, = 5.0.
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4 Notation

The notation used in this text in pretty standard. However, I will list the main possible points of
confusion

* The set of natural numbers N contains precisely the strictly positive integers, that is, zero is
not included.

* The imaginary unit V-1 is denoted by .

* The argument of a complex number z is denoted by arg(z).

 The real part of a complex number z is denoted by Re(z).

¢ The open interval from a to b in R is denoted by ]a, b[ and the closed by [a, b]. Half-open-
half-closed intervals are naturally extended from this.

e The L;(M) space of measure space M is the space of all absolutely integrable functions
f: M — R (or C), that is, f is measurable and fM | f(x)|dx < oo.

* For linguistic simplicity the probability density function of a continuous stochastic variable is
referred to as the probability distribution or simply distribution. This should not be confused
with the cumulative distribution which is always referred to as such.
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A Code

A1 Product distribution: Threshold values

from math import gamma
from mpmath import meijerg
from time import time

def search_threshold(L_1, L_2, nu_1, nu_2, CFAR, delta, initial):

# Function that searches for threshold value u for given CFAR with accuracy

delta
# Parameters in the K'2—distribution are
# L_j = ENL for channel j
# nu_j = Order parameter for channel j, j = 1,2

step = initial
u = initial
cdf = 0.0 # cumulative distribution function

while step >= delta: # binary search
# calculate cumulative distribution function

cdf=meijerg ([[1],[1].[[L_1,L_2,nu_1,nu_2],[0]],u)/(gamma(L_1)*gamma(L_2

)sxgamma(nu_1)xgamma(nu_2))
# print ("%8.20f" %(cdf))
# print u
step = step / 2.0
a=1.0
b=1.0
if 1-cdf > CFAR:

u += step
else:

u —= step
# print step

return [u, cdf]

def multi_threshold (ENL, nu, CFAR, delta, initial):

# Function that searches for for multiple threshold values u for given CFAR

with accuracy delta

# Parameters in the K'2—distribution are

# ENL = vector with possible ENL values

# nu = vector with possible order parameter values

# initial = initial guess for binary search

# Remark: The threshold values are bounded by 2xinitial.

# Initial should be chosen sufficiently large such that non—normalized
threshold is within interval [0, 2xinitial]

# n_j = length of vector j, j = ENL, nu
n_nu = len(nu)
n_ENL = len (ENL)

u = [0] %* (n_ENL % n_ENL % n_nu *% n_nu) # threshold values
s =0 # iteration parameter to keep track of process
tmp_u = 0.0

FFI-RAPPORT 17/16253 23




47
48
49

50

51
52
53
54
55

56
57
58
59
60
61
62
63
64

65

66
67
68
69
70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

for i in xrange(0, n_ENL): # iteration over smallest ENL
for j in xrange(i, n_ENL): # iteration over largest ENL

for k in xrange(0, n_nu): # iteration over smallest order
parameter
for 1 in xrange(k, n_nu): # iteration over largest order
parameter

index=(i%n_ENL*n_nusxn_nu)+(j*n_nusxn_nu)+(k#n_nu)+1
if u[index] > 0: # Check
print ’Index error’
else:
[tmp_u, _]=search_threshold(ENL[i],ENL[j],nu[k],nu[l],
CFAR,
ENL[i]+ENL[j]*nu[k]*nu[l]xdelta, initial)
tmp_u /=(ENL[i]+ENL[j]#nu[k]xnu[l]) # Normalize
# threshold value for symmetric parameters

u[iskn_ENL%n_nu%n_nu + j*n_nuxn_nu + k¥n_nu + 1] = tmp_u
u[ixn_ENL#*n_nu%n_nu + j*n_nuxn_nu + l*n_nu + k] = tmp_u
u[j*n_ENL#n_nusxn_nu + i%n_nu#n_nu + kkn_nu + 1] = tmp_u
ulj*n_ENL%n_nusn_nu + i%n_nusn_nu + lxn_nu + k] = tmp_u
s += 1
print (’Threshold value no. %d calculated. %d iterations
remain’
%(s, int(len(ENL)x(len(ENL)+1)xlen(nu)*(len(nu)+1)/4)-s

)

return u

def save_threshold (ENL, nu, CFAR, u):
# Function that saves threshold values u for given CFAR with parameters ENL
, nu in text—file
# ENL = vector with possible ENL values
# nu = vector with possible order parameter values

n_nu = len(nu)
n_ENL = len (ENL)

file = open(’threshold_CFAR_’ + str(l1 + CFAR)[2:] + ’.txt’, ’w’)
for i in xrange(0, (n_ENL % n_ENL % n_nu % n_nu) — 1):
file . write(str(u[i]) + "\n’)
file . write(str(u[-1]))
file .close ()

file = open(’ENL. txt’,’w’)
for j in xrange(0,n_ENL-1):
file . write(str (ENL[j]) + *\n’)
file . write (str (ENL[-1]))
file .close ()

file = open(’'nu.txt’, 'w’)
for k in xrange(0, n_nu-1):
file . write (str(nu[k]) + "\n’)
file . write(str(nu[—-1]))
file .close ()
return 0

def check (ENL, nu, CFAR, u):

24 FFI-RAPPORT 17/16253




98 # Function that serves as a quality check for the calculated threshold

values u
99 # It checks that the values for given CFAR are indexed correctly according
to their corresponding parameters ENL, nu
100
101 n_ENL = len (ENL)
102 n_nu = len(nu)
103
104 for i in xrange(0, n_ENL): # iteration over ENL channel 1
105 for j in xrange(0, n_ENL): # iteration over ENL channel 2
106 for k in xrange(0, n_nu): # iteration over order parameter channel
1
107 for 1 in xrange(0, n_nu): # iteration over order parameter
channel 2
108 index=(i #n_ENL#n_nu%n_nu)+(j*n_nu*n_nu)+(ksn_nu)+1
109 cdf = meijerg ([[1],[1]1,[[ENL[i],ENL[j],nu[k],nu[1]],[0]],
110 ul[index ]*ENL[i]*ENL[j]*nu[k]*nu[l])
111 cdf /= (gamma(ENL[1i])=xgamma(ENL[j ])s*gamma(nu[k])=xgamma(nul[l
1)) # Normalize
112 if 1.0 — cdf > 1.01 % CFAR or 1.0 — cdf < 0.99%CFAR:
113 print index
114 return -1
115 return 0
116
117 | t0 = time () # Register start time
118

119 |ENL = [1.0, 2.0, 3.0, 4.0] # ENL

120 |nu = [5.0, 10.0, 15.0, 20.0, 40.0, 90.0] # Order parameter
121 |[CFAR = 0.0000001 # Constant false alarm rate

122 | delta = 0.00000001 # Accuracy

123 | initial = 4000000.0 # Initial guess

124
125 |u = multi_threshold (ENL, nu, CFAR, delta, initial)
126
127 | print save_threshold (ENL, nu, CFAR, u)
128
129 | print check (ENL, nu, CFAR, u)
130
131 | t1 = time() # Register stop time
132
133 | print (’script takes %f seconds’ %(tl—-t0)) # print time
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A.2

K-distribution: Threshold values

from
from
from
from
getc

def

def

math import gamma
decimal import x
mpmath import meijerg
time import time
ontext ().prec = 100

search_threshold (L, nu, CFAR, delta, initial):
# Function that searches for threshold value u for given CFAR with accuracy

delta
# Parameters in the K-distribution are
# L = ENL
# nu = Order parameter for channel
step = initial
u = initial
cdf = 0.0 # cumulative distribution function

while step >= delta: # binary search
# calculate cumulative distribution function
cdf = meijerg ([[1],[]].[[L, nu],[0]], u)/(gamma(L)sxgamma(nu))
# print ("%8.20f" %(cdf))
# print u
step = step / 2.0
a=1.0
b =1.0
if 1-cdf > CFAR:
u += step
else:
u —= step
# print step

return [u, cdf]
multi_threshold (ENL, nu, CFAR, delta, initial):

# Function that searches for for multiple threshold values u for given CFAR
with accuracy delta

# Parameters in the K-distribution are

# ENL = vector with possible ENL values

# nu = vector with possible order parameter values

# n_j = length of vector j, j = ENL, nu

# initial = initial guess for binary search

# Remark: The threshold values are bounded by 2xinitial.

# Initial should be chosen sufficiently large such that non—normalized

threshold is within interval [0, 2%initial]
Do some numerical "experiments" in advance

H*

n_ENL = len (ENL)

n_nu = len(nu)

u = [0] * (n_ENL % n_nu) # threshold values

s =0 # iteration parameter to keep track of process
tmp_u = 0.0

tmp_cdf = 0.0
for i in xrange(0, n_ENL): # iteration over ENL
for k in xrange(0, n_nu): # iteration over order parameter
index = (i % n_nu) + k

26 FFI-RAPPORT 17/16253




52 if u[index] > 0: # Check

53 print ’Index error’

54 else:

55 [tmp_u, tmp_cdf] = search_threshold (ENL[i], nu[k], CFAR,

56 ENL[i] % nu[k] * delta, initial)

57 tmp_u = tmp_u/(ENL[i] * nu[k]) # Normalize

58 ul[i % n_nu + k] = tmp_u

59 # print u

60 s += 1

61 print (’Threshold value no. %d calculated. %d iterations remain

62 Y(s, int(n_ENL#%n_nu)-s))

63 return u

64

65

66 |def save_threshold (ENL, nu, CFAR, u):

67 # Function that saves threshold values u for given CFAR with parameters ENL
, nu in text—file

68 # ENL = vector with possible ENL values

69 # nu = vector with possible order parameter values

70 # n_j = length of vector j, j = ENL, nu

71 n_ENL = len (ENL)

72 n_nu = len(nu)

73

74 file = open(’threshold_CFAR_’ + str(l + CFAR)[2:] + ’.txt’, 'w’)

75 for i in xrange(0, (n_ENL% n_nu) - 1):

76 file . write(str(uf[i]) + ’\n’)

77 file . write (str(u[-1]))

78 file .close ()

79

80 file = open( ’ENL. txt’,’w’)

81 for j in xrange(0,n_ENL-1):

82 file . write (str (ENL[j]) + ’\n’)

83 file . write (str (ENL[-1]))

84 file .close ()

85

86 file = open(’nu.txt’, 'w’)

87 for k in xrange(0, n_nu-1):

88 file . write (str(nu[k]) + "\n’)

89 file . write (str(nu[—-1]))

90 file.close ()

91 return 0

92

93

94 | def check_index (ENL, nu, CFAR, u):

95 # Function that serves as a quality check for the calculated threshold
values u.

96 # It checks that the values for given CFAR are indexed correctly according
to their corresponding parameters ENL, nu

97 n_ENL = len (ENL)

98 n_nu = len(nu)

99 for i in xrange(0, n_ENL): # iteration over ENL

100 for k in xrange(0, n_nu): # iteration over order parameter

101 index = (i * n_nu) + k

102 cdf = meijerg ([[1],[]1].[[ENL[i],nu[k]],[0]], u[index]+ENL[i]*nul[k])

103 cdf /= (gamma(ENL[i]) * gamma(nu[k])) # Normalize

104 if 1.0 — cdf > 1.01 % CFAR or 1.0 — cdf < 0.99%CFAR:
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105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

print index
return -1
return 0

t0 = time () # Register start time

ENL = [1.0,2.0,3.0,4.0] # ENL

nu = [5.0, 10.0, 15.0, 20.0, 40.0, 90.0] # Order parameter
CFAR = 0.00000001

delta 0.00000001

initial= = 4000.0

u = multi_threshold (ENL, nu, CFAR, delta, initial)
print save_threshold (ENL, nu, CFAR, u)

print check_index (ENL, nu, CFAR, u)

tl = time() # Register stop time

print (’script takes %f seconds’ %(t1-t0)) # print

time
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B Look-up tables

B.1 Product distribution, CFAR: 0.0000001

ENL, ENL, V] %) t

1.0 1.0 5.0 5.0 188.15227365
10.0 159.05825320

15.0 148.64651498

20.0 143.25519888

40.0 134.88170346

90.0 130.05162249

10.0 10.0 133.49937582
15.0 124.33138640

20.0 119.57610234

40.0 112.17483841

90.0 107.89387475

15.0 15.0 115.59841859
20.0 111.06462417

40.0 103.99992501

90.0 99.90745104

20.0 20.0 106.64322469
40.0 99.74853126

90.0 95.75062921

40.0 40.0 93.10932653
90.0 89.25218007

90.0 90.0 85.47142905
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Product distribution, CFAR: 0.0000001

ENL, ENL, 141 ) t

1.0 2.0 5.0 5.0 129.01381057
10.0 108.10120831

15.0 100.60521456

20.0 96.71847642

40.0 90.67101218

90.0 87.17428865

10.0 10.0 89.88773960
15.0 83.34415536

20.0 79.94537857

40.0 74.64533502

90.0 71.57169335

15.0 15.0 77.13476711
20.0 73.90648301

40.0 68.86604028

90.0 65.93807118

20.0 20.0 70.76488707
40.0 65.85581706

90.0 63.00104337

40.0 40.0 61.14448040
90.0 58.39871690

90.0 90.0 55.71204243
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ENL,
1.0
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Product distribution, CFAR: 0.0000001

ENL,
3.0

V1

5.0

10.0

15.0

20.0

40.0

90.0

31

V2
5.0
10.0
15.0
20.0
40.0
90.0

10.0
15.0
20.0
40.0
90.0

15.0
20.0
40.0
90.0

20.0
40.0
90.0

40.0
90.0

90.0

t

107.33152875
89.44589900
83.02770250
79.69675624
74.50772255
71.50239395

73.94772823
68.37344829
65.47536332
60.95015896
58.32108015

63.09584890
60.34928988
56.05506750
53.55573095

57.67985930
53.50263666
51.06852752

49.50162390
47.16464136

44.88020517



Product distribution, CFAR: 0.0000001

ENL; ENL, V1 %) t

1.0 4.0 5.0 5.0 95.85092007
10.0 79.57040682

15.0 73.72311140

20.0 70.68631773

40.0 65.95107486

90.0 63.20506196

10.0 10.0 65.51245418
15.0 60.45176209

20.0 57.81875024

40.0 53.70326432

90.0 51.30882968

15.0 15.0 55.66795749
20.0 53.17647132

40.0 49.27688264

90.0 47.00378779

20.0 20.0 50.75707460
40.0 46.96690609

90.0 44.75482700

40.0 40.0 43.34157466
90.0 41.22030807

90.0 90.0 39.14806912
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ENL;
2.0
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Product distribution, CFAR: 0.0000001

ENL,
2.0

V1
5.0

10.0

15.0

20.0

40.0

90.0

33

V2
5.0
10.0
15.0
20.0
40.0
90.0

10.0
15.0
20.0
40.0
90.0

15.0
20.0
40.0
90.0

20.0
40.0
90.0

40.0
90.0

90.0

t

87.51779746
72.67131073
67.34197253
64.57510262
60.26243230
57.76268727

59.85680048
55.24653077
52.84878861
49.10277169
46.92458954

50.88939971
48.62107309
45.07256790
43.00548579

46.41869292
42.97035585
40.95920388

39.67309503
37.74535285

35.86280982



Product distribution, CFAR: 0.0000001

ENL; ENL, V1 %) t

2.0 3.0 5.0 5.0 72.34499486
10.0 59.73761128

15.0 55.20739432

20.0 52.85332275

40.0 49.17958747

90.0 47.04656689

10.0 10.0 48.91382744
15.0 45.01589413

20.0 42.98678435

40.0 39.81257349

90.0 37.96344869

15.0 15.0 41.34097577
20.0 39.42602334

40.0 36.42627044

90.0 34.67540796

20.0 20.0 37.56931490
40.0 34.65814153

90.0 32.95679020

40.0 40.0 31.88069966
90.0 30.25321039

90.0 90.0 28.66569867
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ENL;
2.0
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Product distribution, CFAR: 0.0000001

ENL,
4.0

V1
5.0

10.0

15.0

20.0

40.0

90.0

35

V2
5.0
10.0
15.0
20.0
40.0
90.0

10.0
15.0
20.0
40.0
90.0

15.0
20.0
40.0
90.0

20.0
40.0
90.0

40.0
90.0

90.0

t

64.31893919
52.89845139
48.79142648
46.65579910
43.31981368
41.38033414

43.13006118
39.60943739
37.77544430
34.90356653
33.22813229

36.29592272
34.56803670
31.85846156
30.27452107

32.89433297
30.26722722
28.72940930

27.76469851
26.29568400

24.86385364



Product distribution, CFAR: 0.0000001

ENL; ENL, V1 %) t

3.0 3.0 5.0 5.0 59.57167672
10.0 48.91015360

15.0 45.07544683

20.0 43.08105213

40.0 39.96480084

90.0 38.15231360

10.0 10.0 39.80756906
15.0 36.52648183

20.0 34.81696988

40.0 32.13926399

90.0 30.57643003

15.0 15.0 33.44104804
20.0 31.83182070

40.0 29.30759927

90.0 27.83134893

20.0 20.0 30.27382894
40.0 27.82764103

90.0 26.39506575

40.0 40.0 25.49941116
90.0 24.13203652

90.0 90.0 22.79992705
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ENL;
3.0
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Product distribution, CFAR: 0.0000001

ENL,
4.0

V1
5.0

10.0

15.0

20.0

40.0

90.0

37

V2
5.0
10.0
15.0
20.0
40.0
90.0

10.0
15.0
20.0
40.0
90.0

15.0
20.0
40.0
90.0

20.0
40.0
90.0

40.0
90.0

90.0

t

52.81841961
43.18818481
39.72176694
37.91769738
35.09614216
33.45282770

34.99789327
32.04348652
30.50312109
28.08792670
26.67621608

29.27027906
27.82287601
25.55010516
24.21882164

26.42301185
24.22271417
22.93202667

22.13205356
20.90198408

19.70466543



Product distribution, CFAR: 0.0000001

ENL; ENL, V1 \2) t

4.0 4.0 5.0 5.0 46.74011917
10.0 38.05862571

15.0 3493141171

20.0 33.30278657

40.0 30.75317475

90.0 29.26617923

10.0 10.0 30.70467164
15.0 28.05010827

20.0 26.66513791

40.0 24.49140023

90.0 23.21890621

15.0 15.0 25.56305255
20.0 24.26410457

40.0 22.22230498

90.0 21.02440481

20.0 20.0 23.00919064
40.0 21.03459375

90.0 19.87437495

40.0 40.0 19.16175513
90.0 18.05782747

90.0 90.0 16.98428935
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B.2 Product distribution, CFAR: 0.00000001

ENL,
1.0
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ENL,
1.0

5.0

10.0

15.0

20.0

40.0

90.0

39

V2
5.0
10.0
15.0
20.0
40.0
90.0

10.0
15.0
20.0
40.0
90.0

15.0
20.0
40.0
90.0

20.0
40.0
90.0

40.0
90.0

90.0

t

267.16917503
222.10669927
205.96711459
197.59907308
184.57623387
177.04228614

183.26928551
169.33002748
162.09116036
150.80181130
144.25214667

156.16493750
149.32195402
138.63734720
132.42854296

142.68084858
132.30340245
126.26669102

122.39061961
116.61192825

110.97447901



Product distribution, CFAR: 0.00000001

ENL, ENL, 141 ) t

1.0 2.0 5.0 5.0 179.61633031
10.0 148.04928606

15.0 136.72866675

20.0 130.85225616

40.0 121.69201461

90.0 116.38047634

10.0 10.0 121.07265494
15.0 111.37845130

20.0 106.33808371

40.0 98.46381467

90.0 93.88410303

15.0 15.0 102.25800480
20.0 97.51156201

40.0 90.08718054

90.0 85.76158692

20.0 20.0 92.91527699
40.0 85.71980686

90.0 81.52270703

40.0 40.0 78.87122173
90.0 74.86698430

90.0 90.0 70.96829555
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ENL,
1.0
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Product distribution, CFAR: 0.00000001

ENL,
3.0

Vi
5.0

10.0

15.0

20.0

40.0

90.0
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V2
5.0
10.0
15.0
20.0
40.0
90.0

10.0
15.0
20.0
40.0
90.0

15.0
20.0
40.0
90.0

20.0
40.0
90.0

40.0
90.0

90.0

t
147.72227076
121.11341161
111.56213893
106.60013609
98.85647702
94.35913893

98.48963259
90.35240604
86.11803346
79.49494160
75.63618725

82.71481929
78.73667832
72.50624477
68.86955268

74.88957857
68.85913430
65.33481003

63.13201340
59.77639983

56.51303236



Product distribution, CFAR: 0.00000001

ENL; ENL, 141 ) t

1.0 4.0 5.0 5.0 130.88264742
10.0 106.89699223

15.0 98.28108440

20.0 93.80218634

40.0 86.80627784

90.0 82.73813347

10.0 10.0 86.57625022
15.0 79.26218484

20.0 75.45368112

40.0 69.49109201

90.0 66.01239415

15.0 15.0 72.40863747
20.0 68.83648151

40.0 63.23637736

90.0 59.96284381

20.0 20.0 65.38528664
40.0 59.96992363

90.0 56.80024976

40.0 40.0 54.83490287
90.0 51.82116566

90.0 90.0 48.89259159
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ENL,
2.0
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Product distribution, CFAR: 0.00000001

ENL,
2.0

Vi
5.0

10.0

15.0

20.0

40.0

90.0
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V2
5.0
10.0
15.0
20.0
40.0
90.0

10.0
15.0
20.0
40.0
90.0

15.0
20.0
40.0
90.0

20.0
40.0
90.0

40.0
90.0

90.0

t

119.59431990
97.72499981
89.87330647
85.79303399
79.42236779
75.71977051

79.19845016
72.53384624
69.06481441
63.63625690
60.47111767

66.28910515
63.03555966
57.93754532
54.95957155

59.89231245
54.96281266
52.07964936

50.28920278
47.54857268

44.88598986



Product distribution, CFAR: 0.00000001

ENL; ENL, V1 %) t

2.0 3.0 5.0 5.0 97.78373943
10.0 79.46915416

15.0 72.88829039

20.0 69.46575940

40.0 64.11601717

90.0 61.00169482

10.0 10.0 64.03611805
15.0 58.48004042

20.0 55.58573974

40.0 51.05121091

90.0 48.40267472

15.0 15.0 53.28699984
20.0 50.57923225

40.0 46.33121148

90.0 43.84514309

20.0 20.0 47.96705346
40.0 43.86526195

90.0 41.46157148

40.0 40.0 39.98577229
90.0 37.70600895

90.0 90.0 35.49408147
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ENL;
2.0
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Product distribution, CFAR: 0.00000001

ENL,
4.0

v
5.0

10.0

15.0

20.0

40.0

90.0
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V2
5.0
10.0
15.0
20.0
40.0
90.0

10.0
15.0
20.0
40.0
90.0

15.0
20.0
40.0
90.0

20.0
40.0
90.0

40.0
90.0

90.0

t

86.27926617
69.84431416
63.93496098
60.85979308
56.04877998
53.24448739

56.04692499
51.07658360
48.48580825
44.42305589
42.04677456

46.43927507
44.01975494
40.22028993
37.99345942

41.68806571
38.02308121
35.87207295

34.56268748
32.52577906

30.55128492



Product distribution, CFAR: 0.00000001

ENL; ENL, V1 %) t

3.0 3.0 5.0 5.0 79.66321110
10.0 64.38506293

15.0 58.89105563

20.0 56.03159709

40.0 51.55695707

90.0 48.94773995

10.0 10.0 51.58088080
15.0 46.96797313

20.0 44.56317433

40.0 40.79115406

90.0 38.58405865

15.0 15.0 42.66770161
20.0 40.42372880

40.0 36.89908126

90.0 34.83249023

20.0 20.0 38.26227194
40.0 34.86403402

90.0 32.86876304

40.0 40.0 31.65822086
90.0 29.77034275

90.0 90.0 27.94125356
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ENL;
3.0
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Product distribution, CFAR: 0.00000001

ENL,
4.0

V1
5.0

10.0

15.0

20.0

40.0

90.0
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V2
5.0
10.0
15.0
20.0
40.0
90.0

10.0
15.0
20.0
40.0
90.0

15.0
20.0
40.0
90.0

20.0
40.0
90.0

40.0
90.0

90.0

t

70.11032523
56.43729160
51.51744632
48.95529463
44.94236119
42.59931061

45.02258442
40.90788951
38.76153740
35.39180640
33.41731982

37.07921332
35.08011954
31.93712164
30.09156424

33.15664585
30.12960838
28.34954175

27.27924451
25.59784370

23.97043555



Product distribution, CFAR: 0.00000001

ENL; ENL, V1 %) t

4.0 4.0 5.0 5.0 61.58933963
10.0 49.37605318

15.0 44.97886852

20.0 42.68756115

40.0 39.09565738

90.0 36.99564230

10.0 10.0 39.22042914
15.0 35.55762902

20.0 33.64588491

40.0 30.64173529

90.0 28.87894743

15.0 15.0 32.15601463
20.0 30.37886182

40.0 27.58216502

90.0 25.93749108

20.0 20.0 28.67088712
40.0 25.98038626

90.0 24.39575767

40.0 40.0 23.45184271
90.0 21.95773713

90.0 5.0 36.99564230
10.0 28.87894743

15.0 25.93749108

20.0 2439575767

40.0 21.95773713

90.0 90.0 20.51316385
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B.3 K-distribution, CFAR: 0.0000001
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ENL
1.0

2.0

3.0

4.0

5.0
10.0
15.0
20.0
40.0
90.0

5.0
10.0
15.0
20.0
40.0
90.0

5.0
10.0
15.0
20.0
40.0
90.0

5.0
10.0
15.0
20.0
40.0
90.0
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t

32.33718280
25.07230963
22.39907320
20.98216068
18.70552302
17.32270455

20.26196923
15.48611416
13.72773347
12.79431262
11.28962713
10.36957284

15.91029020
12.04443735
10.62039115
9.86361959
8.64081759
7.88943467

13.61673051
10.23368141
8.98693594
8.32380369
7.25027873
6.58796957



B.4

K-distribution, CFAR: 0.00000001

ENL
1.0

2.0

3.0

4.0

5.0
10.0
15.0
20.0
40.0
90.0

5.0
10.0
15.0
20.0
40.0
90.0

5.0
10.0
15.0
20.0
40.0
90.0

5.0
10.0
15.0
20.0
40.0
90.0

50

t

39.60740649
30.12173544
26.63936878
24.79370922
21.82379504
20.01185789

24.41911334
18.32492583
16.08750363
14.90040391
12.98519745
11.80994710

18.98241587
14.11755826
12.33121919
11.38269880
9.84947302
8.90456299

16.12805424
11.91261168
10.36448206
9.54191774
8.21023452
7.38663564
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About FFI

The Norwegian Defence Research Establishment (FFI)
was founded 11th of April 1946. It is organised as an
administrative agency subordinate to the Ministry of
Defence.

FFI's MISSION

FFl is the prime institution responsible for defence
related research in Norway. Its principal mission is to
carry out research and development to meet the require-
ments of the Armed Forces. FFI has the role of chief
adviser to the political and military leadership. In
particular, the institute shall focus on aspects of the
development in science and technology that can
influence our security policy or defence planning.

FFI's VISION

FFI turns knowledge and ideas into an efficient defence.

FFI's CHARACTERISTICS

Creative, daring, broad-minded and responsible.

Om FFI

Forsvarets forskningsinstitutt ble etablert 11. april 1946.
Instituttet er organisert som et forvaltningsorgan med
seerskilte fullmakter underlagt Forsvarsdepartementet.

FFIs FORMAL

Forsvarets forskningsinstitutt er Forsvarets sentrale
forskningsinstitusjon og har som formal a drive forskning
og utvikling for Forsvarets behov. Videre er FFI radgiver
overfor Forsvarets strategiske ledelse. Spesielt skal
instituttet falge opp trekk ved vitenskapelig og
militeerteknisk utvikling som kan pavirke forutsetningene
for sikkerhetspolitikken eller forsvarsplanleggingen.

FFIs VISJON

FF1 gjer kunnskap og ideer til et effektivt forsvar.

FFIs VERDIER
Skapende, drivende, vidsynt og ansvarlig.

FFI's organisation

Ministry of Defence

Director General

Administrative Staff

Cyber Systems and
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FFI"s Board Internal Audit

Defence Research
Review Board

Strategy and Planning

Defence Industrial
Development

4 Airand Protection and
T S Space Systems Societal Security
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