

FFI-rapport 2009/02267

LybinCom 6.0 – description of the binary interface

Elin Dombestein, Amund Gjersøe and Morten Bosseng

Forsvarets forskningsinstitutt/Norwegian Defence Research Establishment (FFI)

15 January 2010

 2 FFI-rapport 2009/02267

FFI-rapport 2009/02267

361401

P: ISBN 978-82-464-1692-2
E: ISBN 978-82-464-1693-9

Keywords

Akustisk deteksjon

Modellering og simulering

Programmering (Databehandling)

Approved by

Connie Elise Solberg Project Manager

Elling Tveit Director of Research

Jan Erik Torp Director

FFI-rapport 2009/02267 3

English summary
The acoustic ray trace model LYBIN is a well established and frequently used sonar prediction
model owned by the Norwegian Defence Logistic Organisation. The model is used aboard navy
vessels as well as in training situations on shore. LYBIN has become an important tool in both
planning and evaluation of maritime operations, and earlier versions are already integrated in
combat system software, tactical decision aids and tactical trainers.

The calculation kernel of LYBIN is now implemented as a software module called LybinCom. In
addition there exists a graphical user interface which can be used together with LybinCom to
build a stand-alone executive application. We call this stand-alone executive application LYBIN.

An implementation as a software module makes LybinCom suitable for integration with other
applications, and enables LybinCom to interact with other applications such as other
mathematical models, web services, geographical information systems and more. Different from
earlier versions, third parties can now integrate LybinCom in their software without needing
access to the source code.

LybinCom has two different interfaces for data exchange with other software. The two interfaces
are the binary interface and the eXtensible Markup Language (XML) interface. The binary
interface enables fast transportation of large amounts of data to and from LybinCom. The XML
interface is not as fast, but is more robust because the format of the input files is not as strict. The
XML interface discards any parts of the input file it does not recognize.

This report describes the binary software interface of LybinCom 6.0 needed for the integration of
LybinCom with other software applications. All parameters and data sets that can be passed to
and from LybinCom are described. Examples of programming code for integration of LybinCom
are also included. The interface’s inner structure and how the acoustic modelling is performed are
not described in this report.

 4 FFI-rapport 2009/02267

Sammendrag
Den akustiske strålegangsmodellen LYBIN er en etablert og mye brukt sonarytelsesmodell som
eies av Forsvarets Logistikkorganisasjon. Modellen brukes både ombord på marinefartøy og i
treningssituasjoner på land. LYBIN er blitt et viktig verktøy både i planlegging og evaluering av
maritime operasjoner, og tidligere versjoner er allerede integrert i programvare for kampsystemer,
taktisk beslutningsstøtte og taktiske trenere.

LYBINs beregningskjerne er nå implementert som en software modul kalt LybinCom. I tillegg
eksisterer det et grafisk brukergrensesnitt som sammen med LybinCom kan brukes for å bygge en
frittstående, eksekverbar applikasjon. Vi kaller denne frittstående applikasjonen for LYBIN.

Implementasjonen som en software modul gjør LybinCom egnet for integrasjon med andre
applikasjoner, og muliggjør at LybinCom kan samhandle med andre applikasjoner, som
matematiske modeller, web-tjenester, geografiske informasjonssystemer med mer. I motsetning
til tidligere er det nå mulig for andre å integrere LybinCom i deres programvare uten å ha tilgang
til kildekoden.

LybinCom har to ulike grensesnitt for datautveksling med annen programvare. De to
grensesnittene er det binære grensesnittet og eXtensible Markup Language (XML) grensesnittet.
Det binære grensesnittet muliggjør rask transport av store mengder data til og fra LybinCom.
XML grensesnittet er ikke like raskt, men er mer robust fordi formatet til inputfilene ikke er så
rigid. XML grensesnittet forkaster de delene av inputfila det ikke gjenkjenner.

Denne rapporten beskriver det binære grensesnittet til LybinCom 6.0 som trengs for å kunne
integrere LybinCom med andre programvareapplikasjoner. Alle parametere og datasett som kan
sendes til og fra LybinCom er beskrevet i denne rapporten. Noen eksempler på programkode for
integrasjon av LybinCom er også inkludert. Det som skjer innenfor grensesnittene og hvordan
den akustiske modelleringen er gjort vil ikke bli omtalt i denne rapporten.

FFI-rapport 2009/02267 5

Contents

1 Introduction 7

2 Description of LybinCom 9
2.1 The data layer 10
2.1.1 Range dependent input data 12
2.2 The calculation layer 13
2.3 The result layer 14

3 Input data 14
3.1 LybinModelData class 14
3.1.1 Switches 19
3.2 Environment class 20
3.3 Ocean class 20
3.4 WindSpeedMeasurement class 21
3.5 WaveHeight class 22
3.6 SoundSpeed class 23
3.7 BottomProfile class 26
3.8 BottomType class 27
3.9 BottomLoss class 28
3.10 Rayleigh bottom loss 30
3.11 BottomBackScatter class 30
3.12 VolumeBackScatter class 32
3.13 ReverberationAndNoiseMeasurements class 34
3.14 Platform class 34
3.15 Sensor class 35
3.16 Pulse class 36

4 Initiate calculation 37

5 Calculation results 37

Appendix A Example code 45
A.1 C# Windows forms application using LybinCom 45
A.2 Matlab file using LybinCom, basic example 48
A.3 Matlab file using LybinCom, impulse response example 50
A.4 C++ console application using LybinCom 51

References 54

 6 FFI-rapport 2009/02267

Abbreviations 55

Definitions 55

FFI-rapport 2009/02267 7

1 Introduction
The acoustic ray trace model LYBIN is a well established and frequently used sonar prediction
model owned by the Norwegian Defence Logistic Organisation (NDLO). The model is used
aboard navy vessels as well as in training situations on shore. LYBIN has become an important
tool in both planning and evaluation of maritime operations.

LYBIN is a range dependent two-dimensional model. Several thousand rays are simulated
traversing the water volume. Upon hitting the sea surface and sea bed, the rays are reflected and
exposed to loss mechanisms. Losses in the water volume itself, due to thermal absorption are
accounted for. LYBIN estimates the probability of detection for a given target, based on target
strength, the calculated transmission loss, reverberation and noise. LYBIN is a robust, user
friendly and fast acoustic ray-trace simulator. The physical foundations for the model are
described in more detail in [1] and [2].

On behalf of NDLO, the Norwegian Defence Research Institute (FFI) has been responsible for
testing, evaluation and further development of LYBIN since the year 2000. During this period,
several new versions of LYBIN have been released. LYBIN 6.0 was released in august 2009.

LYBIN 6.0 is divided into two separate parts: the calculation kernel and the graphical user
interface. This separation enables LYBIN to interact with other applications, such as
mathematical models, web services, geographic information systems, and more.

The graphical user interface represents the classical LYBIN application, where LYBIN is used as
stand-alone software. Environmental data and information about the sonar and sonar platform are
sent to the calculation kernel by the operator through the graphical user interface. The calculation
results are thereafter displayed by the graphical user interface. A picture of LYBIN 6.0 graphical
user interface is shown in Figure 1.1.

The stand-alone calculation kernel, called LybinCom 6.0, enhances the potential applicability of
LYBIN by enabling connectivity and communication between systems. LybinCom can be
integrated with external applications, and both input and calculation results can be handled
automatically from outside applications.

One example of integration of LybinCom is an application displaying sonar coverage. The
environmental data are fed into LybinCom and calculations started from the external application,
while the calculation results are displayed in the external program. The output from such an
application is shown in Figure 1.2, where calculated signal excess is plotted in the geographical
information system Maria [3]. The integration between LybinCom and Maria is described in more
detail in [4] and [5].

 8 FFI-rapport 2009/02267

Figure 1.1 LYBIN 6.0 graphical user
interface.

Figure 1.2 LybinCom integrated with the
geographical information system
Maria.

The Component Object Model (COM) called LybinCom has two different interfaces for data
exchange. The two interfaces are the binary interface and the eXtensible Markup Language
(XML) interface. The XML interface uses eXtensible Markup Language (XML) to control and
manage the information going to and from LYBIN. XML is an open standard with a simple
syntax and an unambiguous structure. The XML interface is very robust since it discards any
parts of the code it does not recognize.

The binary interface provides a faster data exchange than the XML interface. The binary file
format is more rigorous, though. Deviations from the defined format will lead to failures in the
data transfer process. The binary interface contains both method calls and variable calls to access
the kernel. The binary interface of LybinCom offers more functionality than the XML interface.
In fact, the XML interface can be called through the binary interface of LybinCom as a method
call.

LybinCom is implemented as a COM module for the windows platform. COM is a language-
neutral way of implementing objects that can be used in environments different from the one they
where created in. LybinCom is implemented in C++, but is available from software languages
like C#, C++ and Matlab. LybinCom has a series of interfaces, all with their properties and
functions available. The interfaces are listed in Table 1.1.

FFI-rapport 2009/02267 9

Interface name Description
IEnvironment Environmental data.
ILybinModelCom Start calculation, get results and see the calculation

parameters in XML form.
ILybinModelComBin Start calculation, get results and see the calculation

parameters in binary form.
IModelData Parameters controlling the calculations such as

accuracy, which datasets to be used etc.
IOcean Parameters describing the media (ocean) and the

assumed target.
IPlatform Description of the platform holding the sensor.
IPulse Parameters describing the sensor pulse.
ISensor Parameters describing the sensor.

Table 1.1 LybinCom interfaces.

By using a .NET language such as C#.NET, C++.NET, Visual Basic .NET, Fortran.NET,
Pyton.NET etc, classes defined in the COM Type Library is visible. All the code examples in this
report are written in C#.NET using the object LybinModelComBinClass.
LybinModelComBinClass contain all interfaces, and is thus an alternative to using interfaces
directly. LybinModelComClass is a similar class containing only the interface concerning XML,
and is thus equal to the ILybinModelCom interface found in Table 1.1.

Using unmanaged languages, like traditional C++ or Matlab, the classes defined in the COM
Type Library is not visible. Implementation using these languages is done using the interfaces
described in Table 1.1.

This document describes the binary interface of LybinCom 6.0. Documentation of LYBINs
earlier software interfaces can be found in [6] and [7].

2 Description of LybinCom
LybinCom is the calculation engine of the total LYBIN software package. LybinCom processes
the environmental and sonar information, and perform all the mathematical calculations. If we
take a look inside LybinCom, we will see that it is divided into three separate parts. We have the
data layer, the calculation layer and the result layer. Each of these is described in more detail
below. A schematic description of LybinCom is shown in Figure 2.1. The arrows indicate the data
flow in-between the different calculation stages (boxes). The calculation results from one box are
used in another of the arrow is pointing to the current box.

 10 FFI-rapport 2009/02267

Figure 2.1 Schematic description of LybinCom.

2.1 The data layer

The data layer handles all the data given to the model. All the datasets forming the basis of the
acoustic calculations in LybinCom are organized in classes. A class diagram for the LybinCom
input data model is showed in Figure 2.2 and each of these classes are described shortly in Table
2.1.

LybinModelData has two members: the environment class and the platform class. The
environment class is an assembly of all the environmental data LYBIN uses in the calculations.
The platform class holds all the information about the sonar and the sonar platform.

Result

ProbabilityOfDetection TransmissionLoss RayTrace

LybinModelData

LybinResults

Reverberation

InterpolatedData

Data

Noise Impulse response

Calculation

FFI-rapport 2009/02267 11

Figure 2.2 The LybinCom input data model (Class diagram).

Class name Description
BottomBackScatter Range dependent bottom back scatter values as a

function of each ray’s grazing angle with the bottom.
BottomLoss Range dependent bottom loss values as a function of

each ray’s grazing angle with the bottom.
BottomProfile Single measurements of depth as a function of range.
BottomType Range dependent bottom types ranging from 0-10. The

bottom type is transformed into bottom loss before it is
used in model calculations.

Environment An assembly class for all environmental data: holds no
parameters of its own.

Model Parameters controlling the calculations such as
accuracy, which datasets to be used etc.

Ocean Parameters describing the media (ocean) and the
assumed target, such as ambient noise, pH, surface
scatter, target strength and ship density.

Platform Description of the platform holding the sensor.
Contains platform speed and noise.

LybinModelData

Environment

Ocean WaveHeight

WindSpeedMeasurement SoundSpeed

BottomProfile BottomType

BottomLoss ReverberationAnd
NoiseMeasurement

BottomBackScatter VolumeBackScatter

Platform

Sensor

Pulse

 12 FFI-rapport 2009/02267

Class name Description
Pulse Parameters describing the sensor pulse: its form,

length, bandwidth etc.
ReverberationAndNoiseMeasurement Range dependent total reverberation and noise data.
Sensor Parameters describing the sensor (sonar) such as depth,

tilt, frequency etc.
SoundSpeed Range dependent sound speed, temperature and

salinity measurements as function of depth.
VolumeBackScatter Range dependent volume back scatter values.
WaveHeight Range dependent wave height measurements.
WindSpeedMeasurement Range dependent wind speed measurements.

Table 2.1 LybinCom classes containing input data.

2.1.1 Range dependent input data

LybinCom is able to handle range dependent environments. In LybinCom, range dependent
environmental data is specified for certain range intervals from the sonar.

When the environmental properties are entered for a discrete set of locations (ranges), LybinCom
will create values at intermediate ranges using interpolation. If no environmental descriptions are
given at zero range, LybinCom will substitute the data for the nearest range available, likewise, if
data at maximum range are missing.

Except for BottomProfile and ReverberationAndNoiseMeasurement, the range dependent data are
given with start and stop values to indicate their range of validity. In this context, we call these
datasets, with start and stop related to a value (or sets of values), for a range dependent object. A
range dependent object can contain one or more values with their range of validity. The structure
of range dependent objects, with start and stop range is shown in Figure 2.3. The possible
numbers of values to be used in the calculation are only limited by the calculation accuracy.

The start and stop functionality provides great flexibility in defining the environmental range
dependent properties. By setting start and stop to the same range, the values will be considered to
belong to a point in space, and LybinCom will use interpolation to produce data for intermediate
ranges points. The start and stop functionality might be utilized to illustrate meteorological or
oceanographic fronts, entering ranges with finite ranges of validity to each side of the front, and
separating the sets by any small distance, across which the conditions will change as abruptly as
the user intends. In between these two extreme choices all combination of these are possible to
use.

FFI-rapport 2009/02267 13

Figure 2.3 Schematic description of a range dependent object with start and stop parameters.

The BottomProfile and the ReverberationAndNoiseMeasurements do not have the start-stop
functionality. These datasets are not likely to have constant values over range. Both
BottomProfile and the ReverberationAndNoiseMeasurements are to be inserted into LybinCom as
single values with corresponding range. The number of data points in each dataset is optional.

2.2 The calculation layer

In the calculation layer, all the acoustic calculations are performed. First the ray trace is
calculated. The intensity of all the rays is then summed up within every calculation cell in order
to compute the transmission loss. The reverberation is found based on the backscattering
properties and the transmission loss at the sea surface, bottom and volume. Noise is calculated as
the sum of the ambient noise in the sea and the sonar self noise. Finally the probability of
detection is calculated based on target echo strength, detection threshold, transmission loss,
reverberation and noise.

Impulse response is calculated directly from the ray trace. The intensity loss and travel time of all
points in all rays are sorted according to travel path history. A travel path history, sometimes
called ray family, is a unique sequence of the following: surface reflection, bottom reflection,
upper turning point or lower turning point.

StartRange

Object

StopRange

Value(s)

StartRange

StopRange

Value(s)

StartRange

StopRange

Value(s)

 14 FFI-rapport 2009/02267

2.3 The result layer

The calculation results are managed by the result layer. All the data sets in the result layer are
listed below:

• Simple ray trace
• Travel time
• Transmission loss from sonar to target
• Transmission loss from target to sonar
• Impulse response
• Noise
• Surface reverberation
• Volume reverberation
• Bottom reverberation
• Total reverberation
• Signal excess
• Probability of detection

3 Input data
Every class below LybinModelData, as shown in Figure 2.2 is discussed in this section. The
access methods and variables are described. Some code examples are also included.

3.1 LybinModelData class

The LybinModelData class contains parameters controlling the acoustic calculations: the
resolution of the calculation, what type of calculation to be performed, and so on. All the
parameters in LybinModelData are listed in Table 3.1, and the access functions connected to the
LybinModelData are described in Table 3.2.

Parameter Type Default

value
Unit

BottomReverberationCalculation
Switch to control whether to calculate the bottom reverberation
or not. The switch is available on the interface but not yet
implemented, i.e. will always be set to “true”.
False: This choise is currently not available.
True: Do calculate bottom reverberation.

Boolean true

DepthCells
Number of depth cells in the calculation output.
DepthCell is read only, so the function
SetDepthScaleAndDepthCells must be used to set this parameter
directly.

Integer 50

FFI-rapport 2009/02267 15

Parameter Type Default
value

Unit

DepthCellSize
Size of the depth cells in the calculation output.
DepthCellSize is read only, so the functions
SetDepthCellSizeAndDepthSteps or
SetDepthScaleAndDepthCellSize must be used to set this
parameter directly.

Double 6 Meters

DepthScale
Maximum depth in the calculation.

Double 300 Meters

DepthSteps
Number of depth steps to be used during the calculation.
DepthSteps is read only, so the functions
SetDepthCellSizeAndDepthSteps or
SetDepthScaleAndDepthCellSteps must be used to set this
parameter directly.

Integer 1000

DepthStepSize
Size of the depth steps to be used during the calculation.
This parameter is read only, and is derived by other depth
calculation parameters.

Double 0.3 Meters

ImpulseResponseCalculation
Switch to control whether to calculate impulse response or not.
False: Do not calculate impulse response.
True: Calculate impulse response.

Boolean false

ImpulseResponseDepth
The depth that the impulse response will be calculated from.

Double 0 Meters

MaxBorderHits
Maximum number of boundary hits allowed before a ray is
terminated. A boundary is either the sea surface of the sea
bottom.

Integer 5000

ModelData
Total data model holding all the input parameters to be used in
the calculation. The model data are returned as an XML string.

String
(utf-8)

NoiseCalculation
Switch to control whether to calculate the noise or not.
False: Do not calculate noise.
True: Do calculate noise.

Boolean true

PassiveCalculation
Switch to control whether to perform calculations for active or
passive sonar.
False: Calculate for active sonar.
True: Calculate for passive sonar.

Boolean false

 16 FFI-rapport 2009/02267

Parameter Type Default
value

Unit

ProbabilityOfDetectionCalculation
Switch to control whether to calculate the probability of
detection or not. The switch is available on the interface but not
yet implemented, i.e. will always be set to “true”.
False: This choise is currently not available.
True: Do calculate the probability of detection.

Boolean true

RangeCells
Number of range cells in the calculation output.
RangeCells is read only, so the function
SetRangeScaleAndRangeCells must be used to set this parameter
directly.

Integer 50

RangeCellSize
Size of the range cells in the calculation output.
RangeCellSize is read only, so the functions
SetRangeCellSizeAndRangeSteps or
SetRangeScaleAndRangeCellSize must be used to set this
parameter directly.

Double 200 Meters

RangeScale
Maximum range in the calculation.

Double 10000 Meters

RangeSteps
Number of range steps to be used during the calculation.
RangeSteps is read only, so the functions
SetRangeCellSizeAndRangeSteps or
SetRangeScaleAndRangeCellSteps must be used to set this
parameter directly.

Integer 500

RangeStepSize
Size of the range steps to be used during the calculation.
RangeStepSize is read only, and it is derived by other range
calculation parameters.

Double 20 Meters

RayTraceCalculation
Switch to control whether to calculate the total ray trace or not.
The switch is available on the interface but not yet implemented,
i.e. will always be set to “true”.
False: This choice is currently not available.
True: Calculate the total ray trace.

Boolean true

SignalExcessCalculation
Switch to control whether to calculate the signal excess or not.
The switch is available on the interface but not yet implemented,
i.e. will always be set to “true”.
False: This choice is currently not available.
True: Calculate the signal excess.

Boolean true

FFI-rapport 2009/02267 17

Parameter Type Default
value

Unit

SignalExcessConstant
Parameter affecting the relation between signal excess and
probability of detection.

Double 3

SurfaceReverberationCalculation
Switch to control whether to calculate the surface reverberation
or not. The switch is available on the interface but not yet
implemented, i.e. will always be set to “true”.
False: This choice is currently not available.
True: Do calculate surface reverberation.

Boolean true

TerminationIntensity
Each ray is terminated when its intensity falls below this value.

Double 1E-16

TransmissionLossFromTargetCalculation
Switch to control whether to calculate the transmission loss from
target to sonar or not. The switch is available on the interface
but not yet implemented, i.e. will always be set to “true”.
False: This choice is currently not available.
True: Do calculate the transmission loss from target to

sonar.

Boolean true

TransmissionLossToTargetCalculation
Switch to control whether to calculate the transmission loss from
sonar to target or not. The switch is available on the interface
but not yet implemented, i.e. will always be set to “true”.
False: This choice is currently not available.
True: Do calculate the transmission loss from sonar to

target.

Boolean true

TravelTimeAngleRes
The distance in degrees between the start angles of the rays to
be used in the travel time calculation.

Double 1 Degrees

TravelTimeCalculation
Switch to control whether to calculate travel time or not.
False: Do not calculate travel time.
True: Calculate travel time.

Boolean false

TRLRays
Number of rays to be used in the transmission loss calculation.

Integer 1000

TypeOfRevNoiseCalculation
Enumerator used to control how the calculation of reverberation
is performed:
0: Calculate bottom reverberation from bottom types
1: Calculate bottom reverberation from back scatter values
2: Use measured reverberation and noise data

Integer 0

 18 FFI-rapport 2009/02267

Parameter Type Default
value

Unit

UseMeasuredBottomLoss
Tells the model how to calculate bottom loss. If
UseRayleighBottomLoss = true, it will overrule
UseMeasuredBottomLoss.
False: Use bottom types to calculate bottom loss
True: Use measured or supplied bottom loss values

Boolean false

UseRayleighBottomLoss
Tells the model how to calculate bottom loss. If
UseRayleighBottomLoss = true, it will overrule
UseMeasuredBottomLoss.
False: Use Rayleigh bottom loss
True: Do not use Rayleigh bottom loss.

Boolean false

UseWaveHeight
Tells the model to use wave height instead of wind speed.
False: Use wind speed.
True: Use wave height.

Boolean false

VisualRayTraceCalculation
Switch to control whether to calculate a ray trace plot for
visualisation or not.
False: Do not calculate ray trace for visualisation.
True: Calculate ray trace for visualisation.

Boolean false

VisualBottomHits
Number of bottom hits alloved in the ray trace plot.

Integer 1

VisualNumRays
Number of rays in the visual ray plot.

Integer 50

VisualSurfaceHits
Number of surface hits alloved in the ray trace plot.

Integer 2

VolumeReverberationCalculation
Switch to control whether to calculate the volume reverberation
or not. The switch is available on the interface but not yet
implemented, i.e. will always be set to “true”.
False: This choise is currently not available.
True: Do calculate volume reverberation.

Boolean true

Table 3.1 Parameters in the LybinModelData class.

FFI-rapport 2009/02267 19

3.1.1 Switches

TypeOfRevNoiseCalculation, UseMeasuredBottomLoss and UseRayleighBottomLoss can make
LybinCom use certain datasets instead of predefined default values. In order to follow these
demands, the spesified datasets must be sent into LybinCom. If LybinCom cannot find these
datasets, the switches will be set back to default values. For all the three parameters
TypeOfRevNoiseCalculation, UseMeasuredBottomLoss and UseRayleighBottomLoss, default
values mean using the predefined bottom types to calculate bottom reverberation and bottom loss
respectively.

Both UseMeasuredBottomLoss and UseRayleighBottomLosss tells LybinCom how to calculate
the bottom loss. These two parameters can cause a conflict. If both are set to true,
RayleighBottomLoss wil be used.

The interface has various calculation switches that will give clients accessing LybinCom the
possibility to decide what data to calculate. These switches are available, but will not affect the
returned results from the calculation, i.e. they are all set to “true”. The intention is to implement
these switches further in a future release. The calculation switches are:

• BottomReverberationCalculation
• ProbablityOfDetectionCalculation
• RayTraceCalculation
• SignalExcessCalculation
• SurfaceReverberationCalculation
• TransmissionLossFromTargetCalculation
• TransmissionLossToTargetCalculation
• VolumeReverberationCalculation

Function Type Unit of input

parameters
ChangeModelData(string xmlData)
Send in the complete XML LYBIN dataset as one string.

Void

GetCurrentModelData(out string modelData)
Get the complete XML LYBIN dataset as one string.

Void

SetDepthCellSizeAndDepthSteps(double cellSize, int steps)
Set the depth cell size and the number of depth steps. This setting will
overrule all earlier depth settings affecting the calculation precision.

Void cellSize: meters

SetDepthScaleAndDepthCells(double scale, int cells)
Set the depth scale and the number of depth cells. This setting will
overrule all earlier depth settings affecting the calculation precision.

Void scale: meters

SetDepthScaleAndDepthCellSize(double scale, double cellSize)
Set the depth scale and the depth cell size. This setting will overrule all
earlier depth settings affecting the calculation precision.

Void scale: meters,
cellSize: meters

 20 FFI-rapport 2009/02267

Function Type Unit of input
parameters

SetDepthScaleAndDepthSteps(double scale, int steps)
Set the depth scale and the number of depth steps. This setting will
overrule all earlier depth settings affecting the calculation precision.

Void scale: meters

SetRangeCellSizeAndRangeSteps(double cellSize, int steps)
Set the range cell size and the number of range steps. This setting will
overrule all earlier range settings affecting the calculation precision.

Void cellSize: meters

SetRangeScaleAndRangeCells(double scale, int cells)
Set the range scale and the number of range cells. This setting will
overrule all earlier range settings affecting the calculation precision.

Void scale: meters

SetRangeScaleAndRangeCellSize(double scale, double cellSize)
Set the range scale and the range cell size. This setting will overrule
all earlier range settings affecting the calculation precision.

Void scale: meters,
cellSize: meters

SetRangeScaleAndRangeSteps(double scale, int steps)
Set the range scale and the number of range steps. This setting will
overrule all earlier range settings affecting the calculation precision.

Void scale: meters

Table 3.2 Functions in the LybinModelData class.

3.2 Environment class

The environment class does not hold any functions or parameters of its own. It is only an
assembly class for all the classes holding environmental data.

3.3 Ocean class

The parameters in the ocean class represent the ocean environment and targets within the sea. All
the parameters in the ocean class are listed in Table 3.3. There are no access functions connected
to the ocean class.

Ambient noise can either be given as a fixed parameter, AmbientNoiseLevel, or it can be
calculated from the given environmental input. Which one of these alternatives to be used is
decided by the parameter NoiseCalculation in LybinModelData.

FFI-rapport 2009/02267 21

Parameter Type Default

value
Unit

AmbientNoiseLevel
Noise from ambient sources.

Double 50 dB

PH
pH level in the sea water.

Double 8

PrecipitationType
Type of precipitation in the area.
0: No precipitation
1: Light rain
2: Heavy rain
3: Hail
4: Snow

Enum 0

ShipDensity
Density of ship traffic in the area of the calculation. The ship
density can vary from 1 (low) to 7 (high).

Double 4

SurfaceScatterFlag
True: Surface reflected ray angles will be modified in order

to simulate rough sea scattering.
False: Rays hitting the sea surface will be reflected

specularly, as from a perfectly smooth surface.

Boolean true

TargetStrength
Target echo strenght.

Double 10 dB

TargetSpeed
Target speed.

Double 10 Knots

Table 3.3 Parameters in the Ocean class.

3.4 WindSpeedMeasurement class

The WindspeedMeasurement class only has one accessible parameter, WindSpeedMeasurements,
which is listed in Table 3.4.

Parameter Type Default values Units
WindSpeedMeasurments
Wind speed in the area of
calculation.

Object
(Double[x,3])

(0, 0, 0)
(start, stop, value)

(Meters, Meters,
Meters/Second)

Table 3.4 Parameters in the WindSpeedMeasurement class.

An example of how WindSpeedMeasurements can be used is shown in the C# code example
below. In the example, the measured wind speed is 2 meters/second from 0 to 5 kilometers, and 4
meters/second from 5 to 10 kilometers.

 22 FFI-rapport 2009/02267

LybinCom.LybinModelComBinClass Lybin = new

LybinCom.LybinModelComBinClass();

// Wind
double[,] ws = new double[2, 3];
ws[0, 0] = 0; // Start
ws[0, 1] = 5000; // Stop
ws[0, 2] = 2; // Wind speed
ws[1, 0] = 5000; // Start
ws[1, 1] = 10000; // Stop
ws[1, 2] = 4; // Wind speed

Lybin.WindSpeedMeasurments = ws;

3.5 WaveHeight class

The WaveHeight class only has one accessible parameter, the WaveHeight, which is listed in
Table 3.5.

Wave height is an optional parameter to wind speed. If wave height is to be used the parameter
UseWaveHeight must be set to true. The parameter UseWaveHeight can be found in the
LybinModelData class.

Parameter Type Default value Unit
WaveHeight
Wave height in the area of
calculation.

Object
(Double[x,3])

(0, 0, 0)
(start, stop,
value)

(Meters, Meters,
Meters)

Table 3.5 Parameters in the WaveHeight class.

An example of how WaveHeight can be used is shown below. In the example the wave height is
1 meter from 0 to 5 kilometers, and 2 meters from 5 to 10 kilometers.

FFI-rapport 2009/02267 23

LybinCom.LybinModelComBinClass Lybin = new

LybinCom.LybinModelComBinClass();

// Wave height
double[,] wh = new double[2, 3];
wh[0, 0] = 0; // Start
wh[0, 1] = 5000; // Stop
wh[0, 2] = 1; // Wave height
wh[1, 0] = 5000; // Start
wh[1, 1] = 10000; // Stop
wh[1, 2] = 2; // Wave height

Lybin.WaveHeight = wh;
Lybin.UseWaveHeight = true;

3.6 SoundSpeed class

The SoundSpeed class handles the sound speed in the water volume. The sound speed is a
function of both range and depth. Since the sound speed is most often measured as depth
dependant profiles, the SoundSpeed class can contain multiple sound speed profiles,
representative of different ranges.

The profile can contain the parameters temperature, salinity and sound speed for a given set of
depths. If two of the three parameters are given, LybinCom will estimate the remaining one based
on depth and the two given parameters. If only one parameter is available, LybinCom can
estimate the missing parameters using depth and a default value. Sound speed, temperature and
salinity have default values. They are listed in Table 3.6. If only temperature is given, the default
salinity is used to calculate the sound speed. If only sound speed is given, the default salinity is
used to calculate temperature. If only salinity is given the default sound speed is used to calculate
the temperature. Sound speeds for intermediate depths are computed using linear interpolation.

Parameter Default value Unit
SoundSpeed 1480 m/s
Temperature 7,36 °C
Salinity 35 parts per

thousand

Table 3.6 Default values for profile parameters in the SoundSpeed class.

There is only one parameter in the SoundSpeed class, the SoundSpeedProfileCount, given in
Table 3.7. The functions in the SoundSpeed class are given in Table 3.8. Depth is always the first
parameter in a profile. The internal order of the others is given in the function name, and is:

 24 FFI-rapport 2009/02267

1. Sound speed
2. Temperature
3. Salinity

Parameter Type Default value Unit
SoundSpeedProfileCount
Number of sound speed profiles.

Integer 1

Table 3.7 Parameters in the SoundSpeed class.

Function Type Unit of input
parameters

AddSalinityProfile(int start, int stop, object profile)
Add another salinity profile. This function can only be used after the
first profile has been added with one of the SetFirstProfile functions.

Void

AddSoundSpeedProfile(int start, int stop, object profile)
Add another sound speed profile. This function can only be used after
the first profile has been added with one of the SetFirstProfile
functions.

Void

AddSoundSpeedAndSalinityProfile(int start, int stop, object
profile)
Add another sound speed and salinity profile. This function can only
be used after the first profile has been added with one of the
SetFirstProfile functions.

Void

AddSoundSpeedAndTempProfile(int start, int stop, object
profile)
Add another sound speed and temperature profile. This function can
only be used after the first profile has been added with one of the
SetFirstProfile functions.

Void

AddSoundSpeedTempAndSalinityProfile(int start, int stop,
object profile)
Add another sound speed, temperature and salinity profile. This
function can only be used after the first profile has been added with
one of the SetFirstProfile functions.

Void

AddTempAndSalinityProfile(int start, int stop, object profile)
Add another temperature and salinity profile. This function can only
be used after the first profile has been added with one of the
SetFirstProfile functions.

Void

AddTempProfile(int start, int stop, object profile)
Add another temperature profile. This function can only be used after
the first profile has been added with one of the SetFirstProfile
functions.

Void

start: meters

stop: meters

profile:
depth:
meters
sound speed:
meters/second
temperature:
°Celsius
salinity:
parts per
thousand
(ppt)

FFI-rapport 2009/02267 25

Function Type Unit of input
parameters

GetSoundSpeedProfile(int index, out int start, out int stop, out
object profile)
Get the sound speed profile corresponding to the given index.

Void

SetFirstSalinityProfile(int start, int stop, object profile)
Set the first salinity profile.

Void

SetFirstSoundSpeedProfile(int start, int stop, object profile)
Set the first sound speed profile.

Void

SetFirstSoundSpeedAndSalinityProfile(int start, int stop, object
profile)
Set the first sound speed and salinity profile.

Void

SetFirstSoundSpeedAndTempProfile(int start, int stop, object
profile)
Set the first sound speed and temperature profile.

Void

SetFirstSoundSpeedTempAndSalinityProfile
(int start, int stop, object profile)
Set the first sound speed, temperature and salinity profile.

Void

SetFirstTempAndSalinityProfile(int start, int stop, object profile)
Set the first temperature and salinity profile.

Void

SetFirstTempProfile(int start, int stop, object profile)
Set the first temperature profile.

Void

Table 3.8 Functions in the SoundSpeed class.

An example of how some of the sound speed functions can be used is shown below. In the
example, the first sound speed profile is set at the range from 0 to 2 kilometres, LybinCom is to
use the profile given by the sound speed 1480 m/s, temperature 7° Celsius and a salinity of 35 ppt
at 0 meters depth and the sound speed 1510 m/s, temperature 8° Celsius and a salinity of 34 ppt at
620 meters depth.

The second sound speed profile is to be used at ranges from 2 km to 5 km. This profile contains
only sound speed measurements. At the depth of 50 m, the sound speed is 1488 m/s, and at the
depth of 100 m the sound speed is 1499 m/s.

The third profile contains temperature and salinity measurements and is to be used at the ranges
from 5 km to 8 km. At the depth of 10 m, the temperature is 6.1° Celsius and the salinity is 34
ppt. At the depth of 200 m, the temperature is 4.2° Celsius and the salinity is 33 ppt.

At the end of the example, the first sound speed profile is retrieved from LybinCom. This profile
contains calculated temperature, salinity and sound speed as used in the calculations.

 26 FFI-rapport 2009/02267

LybinCom.LybinModelComBinClass Lybin = new

LybinCom.LybinModelComBinClass();

// Set the first sound speed profile
// Containing sound speed, temperature and salinity
double[,] ssp = new double[2, 4];
ssp[0, 0] = 0; // Depth
ssp[0, 1] = 1480; // Sound speed
ssp[0, 2] = 7; // Temperature
ssp[0, 3] = 35; // Salinity
ssp[1, 0] = 620; // Depth
ssp[1, 1] = 1510; // Sound speed
ssp[1, 2] = 8; // Temperature
ssp[1, 3] = 34; // Salinity
Lybin.SetFirstSoundSpeedTempAndSalinityProfile(0, 2000, ssp);

// Set the second sound speed profile
// Containing only sound speed
double[,] sss = new double[2, 2];
sss[0, 0] = 50; // Depth
sss[0, 1] = 1488; // Sound speed
sss[1, 0] = 100; // Depth
sss[1, 1] = 1499; // Sound speed
Lybin.AddSoundSpeedProfile(2000, 5000, sss);

// Set the third sound speed profile
// Containing temperature and salinity
double[,] tsp = new double[2, 3];
tsp[0, 0] = 10; // Depth
tsp[0, 1] = 6.1; // Temperature
tsp[0, 2] = 34; // Salinity
tsp[1, 0] = 200; // Depth
tsp[1, 1] = 4.2; // Temperature
tsp[1, 2] = 33; // Salinity
Lybin.AddTempAndSalinityProfile(5000, 8000, tsp);

// Get the first SoundSpeedProfile
int index = 0;
int start, stop;

object profile = new object();

Lybin.GetSoundSpeedProfile(index, out start, out stop, out

profile);

3.7 BottomProfile class

The BottomProfile class only has one accessible parameter, the BottomProfile, which is listed in
Table 3.9. The BottomProfile can consist of any number points in range with their corresponding
bottom depths.

FFI-rapport 2009/02267 27

Parameter Type Default value Unit
BottomProfile
Depth of bottom as function of range.

Object
(Double[x,2])

(0, 280)
(range, depth)

(Meters, Meters)

Table 3.9 Parameter in the bottom profile class.

An example on how the BottomProfile can be used is shown below. In the example, two points
are inserted. The first is the depth 300 meters at a range of 0 meter. The second is the depth 380
meters at a range of 1000 meters.

LybinCom.LybinModelComBinClass Lybin = new

LybinCom.LybinModelComBinClass();

// Bottom
double[,] bp = new double[2, 2];
bp[0, 0] = 0; // Range
bp[0, 1] = 300; // Depth
bp[1, 0] = 1000; // Range
bp[1, 1] = 380; // Depth

Lybin.BottomProfile = bp;

3.8 BottomType class

The geo-acoustic properties of the bottom are coded by a single parameter in LybinCom. Bottom
types ranging from 1 to 9, where 1 represents a hard, rock type of bottom with low bottom
reflection loss, while 9 represents a soft bottom with a high reflection loss. In addition, bottom
types 0 and 10 have been added, representing lossless and fully absorbing bottoms, respectively.

Bottom type is one of three options for modelling the bottom loss. Bottom type is the default
choice if both UseMeasuredBottomLoss and UseRayleighBottomLoss are set to false, which also
are their default setting. UseMeasuredBottomLoss and UseRayleighBottomLoss are found in the
LybinModelData class.

The BottomType class only has one accessible parameter, BottomType, which is listed in Table
3.10.

 28 FFI-rapport 2009/02267

Parameter Type Default value Unit
BottomType Object

(Double[x,3])
(0, 0, 0)
(start, stop, value)

(Metres, Metres, -)

Table 3.10 Parameters in the BottomType class.

An example of how BottomType can be used is shown below. In the example two different
bottom types are set. From the range of 0 km to 5 km, the bottom type is 4. From the range of
5 km to 10 km, the bottom type is 2.3.

LybinCom.LybinModelComBinClass Lybin = new

LybinCom.LybinModelComBinClass();

// Bottom type
double[,] bt = new double[2, 3];
bt[0, 0] = 0; // Start
bt[0, 1] = 5000; // Stop
bt[0, 2] = 4; // Bottom type
bt[1, 0] = 5000; // Start
bt[1, 1] = 10000; // Stop
bt[1, 2] = 2.3; // Bottom type

Lybin.BottomType = bt;

3.9 BottomLoss class

Bottom loss is the fraction of energy that is lost after the sound has been reflected from the ocean
bottom, usually expressed in dB. The bottom loss is also referred to as forward scattering in
underwater acoustic terminology. Bottom loss is generally a function of bottom type, gracing
angle and frequency. A dataset representing bottom loss is entered into LybinCom in tabular
form, giving bottom loss (in dB) for a set of grazing angles. Based on the tabulated values,
LybinCom interpolates between tabulated values to create loss values for equidistantly spaced
grazing angles.

The parameter UseMeasuredBottomLoss tells LybinCom to use BottomLossTable instead of
calculating the bottom loss. If UseRayleighBottomLoss is set to true, UseMeasuredBottomLoss
will be ignored. UseRayleighBottomLoss must always be set to false and
UseMeasuredBottomLoss to true if one wants to use predefined bottom loss values in LybinCom.
Both UseMeasuredBottomLoss and UseRayleighBottomLoss can be found in the
LybinModelData class.
There is only one parameter in the BottomLoss class, the BottomLossTableCount, given in Table
3.11. The functions in the BottomLoss class are given in Table 3.12.

FFI-rapport 2009/02267 29

Parameter Type Default value Unit
BottomLossTableCount
Number of bottom loss tables.

Integer 1

Table 3.11 Parameters in the BottomLoss class.

Function Type Unit of input

parameters
AddBottomLossTable(int start, int stop, object table)
Add another bottom loss table.This function can only be used once the
first bottom loss table is added with the SetFirstBottomLossTable
function.

Void

GetBottomLossTable(int index, out int start, out int stop, out object
table)
Get the bottom loss table corresponding to the given index.

Void

SetFirstBottomLossTable(int start, int stop, object table)
Set the first bottom loss table.

Void

start: meters,
stop: meters
table:
dB vs. degrees

Table 3.12 Functions in the BottomLoss class.

An example of how some of the bottom loss functions can be used is shown below. In the
example, the first bottom loss fan is set to be valid from 0 km to 30 km. The loss table consist of
the following data: 10°, 4.2 dB, 30° = 6.4 dB and 80° = 9 dB. At the end of the example, the first
bottom loss table is fetched back from LybinCom.

LybinCom.LybinModelComBinClass Lybin = new
LybinCom.LybinModelComBinClass();

// Set the first bottom loss table
double[,] bl = new double[3, 2];
bl[0, 0] = 10; // Grazing angle
bl[0, 1] = 4.2; // Bottom loss
bl[1, 0] = 30; // Grazing angle
bl[1, 1] = 6.4; // Bottom loss
bl[2, 0] = 80; // Grazing angle
bl[2, 1] = 9; // Bottom loss
Lybin.SetFirstBottomLossTable(0, 30000, bl);
Lybin.UseMeasuredBottomLoss = true;
Lybin.UseRayleighBottomLoss = false;

// Get the first bottom loss table
int index = 0;
int start, stop;
object table = new object();
Lybin.GetBottomLossTable(index, out start, out stop, out table);

 30 FFI-rapport 2009/02267

3.10 Rayleigh bottom loss

In order to calculate the bottom loss more accurately, a Rayleigh bottom loss model is included.
The Rayleigh bottom loss is based on the physical parameters: bottom attenuation, bottom sound
speed and density ratio. In order to relate these bottom parameters to other bottom models, the
sound speed in the water at bottom depth is assumed to be 1500 m/s. This sound speed is only
used in the calculation of bottom loss, and will not influence any other part of the model. The
Rayleigh bottom loss is not allowed to be range dependent.

Parameter Type Default value Unit
RayleighBottomLoss Object

(Double[1,3])
(0.5, 1700, 2.0)
(bottom attenuation,
bottom sound speed,
density ratio between density in
water and density in the bottom)

dB/wavelength
Meters/second
scalar

Table 3.13 Parameters in the RayleighBottomLossClass.

In order to make LybinCom calculate and use Rayleigh bottom loss, the UseRayleighBottomLoss
parameter in LybinModelData class must be set to true. This parameter will overrule the
parameter UseMeasuredBottomLoss if there is any conflict between the settings of the two.

An example of how the Rayleigh bottom loss is used is shown in the C# code example below:

Lybin = new LybinCom.LybinModelComBinClass();

// Rayleigh parameters
double[,] rbl = new double[1, 3];
rbl[0, 0] = 0.92; // BottomAttenuation;
rbl[0, 1] = 1717; // BottomSoundSpeed;
rbl[0, 2] = 1.81; // DensityRatio;
Lybin.RayleighBottomLoss = rbl;
Lybin.UseRayleighBottomLoss = true;

3.11 BottomBackScatter class

Bottom back scatter is the fraction of energy that is scattered back towards to the receiver when a
ray hits the sea bottom. The bottom back scattering is generally a function of bottom type, grazing
angle and frequency. A dataset representing bottom back scattering coefficients is entered into
LybinCom in tabular form, giving backscattering coefficients (in dB) for a set of grazing angles.
Based on the tabulated values, LybinCom interpolates between tabulated values to create
backscattering coefficients for equidistantly spaced grazing angles. The back scattering
coefficients are given as dB per square meter.

FFI-rapport 2009/02267 31

Bottom back scatter is an optional choice to calculate bottom reverberation. LybinCom will only
use the bottom back scatter values given if the TypeOfRevNoiseCalculation parameter in
LybinModelData class is set to 1 (Calculate bottom reverberation from back scatter values).

There is only one parameter in the BottomBackScatter class, the BottomBackScatterTableCount,
given in Table 3.14. The functions in BottomBackScatter class are given in Table 3.15.

Parameter Type Default value Unit
BottomBackScatterTableCount
Number of bottom back scatter tables.

Integer 1

Table 3.14 Parameters in the BottomBackScatter class.

Function Type Unit of input

parameters
AddBottomBackScatterTable(int start, int stop, object table)
Add another bottom back scatter table. This function can only be used
once the first bottom back scatter table is added with the
SetFirstBottomBackScatterTable function.

Void

GetBottomBackScatterTable(int index, out int start, out int stop, out
object table)
Get the bottom back scatter table corresponding to the given index.

Void

SetFirstBottomBackScatterTable(int start, int stop, object table)
Set the first bottom back scatter table.

Void

start: meters,
stop: meters
table:
dB/meter2 vs.
degrees

Table 3.15 Functions in the BottomBackScatter class.

An example of how the some of the bottom back scatter functions can be used is shown in the
code example below. In the example, the first bottom back scatter table is set. At the range from
 0 km to 30 km LybinCom shall use the data points: 10° = 35 dB, 30° = 25 dB and 80° = 23 dB.
At the end of the example, the first bottom back scatter table is fetched back from LybinCom.

LybinCom.LybinModelComBinClass Lybin = new
LybinCom.LybinModelComBinClass();

// Set the first bottom back scatter table
double[,] bc = new double[3, 2];
bc[0, 0] = 10; // Grazing angle
bc[0, 1] = 35; // Back scatter
bc[1, 0] = 30; // Grazing angle
bc[1, 1] = 25; // Back scatter
bc[2, 0] = 80; // Grazing angle

 32 FFI-rapport 2009/02267

bc[2, 1] = 23; // Back scatter
Lybin.SetFirstBottomBackScatterTable(0, 30000, bc);
Lybin.TypeOfRevNoiseCalculation = 1;

// Get the first bottom back scatter table
int index = 0;
int start, stop;
object table = new object();
Lybin.GetBottomBackScatterTable(index, out start, out stop, out
table);

3.12 VolumeBackScatter class

Volume back scatter is fraction of energy scattered back towards the receiver from the sea
volume. Scattering elements in the sea volume can be particles or organic life, like plankton, fish
or sea mammals. The volume back scatterers are not distributed uniformly in the sea, and may
vary considerably as a function of depth, range and time of the day. In LybinCom, the volume
back scatter is given as a profile of back scattering coefficients as a function of depth. Scatter
values for the depths between data points are calculated using linear interpolation. The influence
region of each profile is determined from the corresponding start range and stop range values.

There is only one parameter in the VolumeBackScatter class, the VolBackScatterProfileCount,
given in Table 3.16. The functions in the VolumeBackScatter class are given in Table 3.17.

Parameter Type Default value Unit
VolBackScatterProfileCount
Number of volume back scatter profiles.

Integer 1

Table 3.16 Parameters in the VolumeBackScatter class.

FFI-rapport 2009/02267 33

Function Type Unit of input

parameters
AddVolBackScatterProfile(int start, int stop, object profile)
Add another volume back scatter profile.This function can only be used
when the first volume back scatter profile is added with the
SetFirstVolumeBackScatterFan function.

Void

GetVolBackScatterProfile(int index, out int start, out int stop, out
object profile)
Get the volume back scatter profile corresponding to the given index.

Void

SetFirstVolBackScatterProfile(int start, int stop, object profile)
Set the first volume back scatter profile.

Void

start: meters,
stop: meters
profile:
dB /meter3

Table 3.17 Functions in the VolumeBackScatter class.

An example of how some of the volume back scatter functions can be used is shown below. In the
example, the first volume back scatter profile is set. At the range from 0 km to 10 km, LybinCom
is to use the values: 10 meters = -80 dB and 50 meters = -92 dB. At the end of the example, the
first volume back scatter profile is fetched back from LybinCom.

Volume reverberation back scatter coefficients are given as dB per cubic metre.

LybinCom.LybinModelComBinClass Lybin = new
LybinCom.LybinModelComBinClass();

// Set the first volume back scatter profile
double[,] vc = new double[2, 2];
vc[0, 0] = 10; // Depth
vc[0, 1] = -80; // Back scatter
vc[1, 0] = 50; // Depth
vc[1, 1] = -92; // Back scatter
Lybin.SetFirstVolBackScatterProfile(0, 10000, vc);

// Get the first volume back scatter profile
int index = 0;
int start, stop;
object profile = new object();
Lybin.GetVolBackScatterProfile(index, out start, out stop, out
profile);

 34 FFI-rapport 2009/02267

3.13 ReverberationAndNoiseMeasurements class

The ReverberationAndNoiseMeasurements class only has one accessible parameter,
ReverberationAndNoiseMeasurements, which is listed in Table 3.18. The
ReverberationAndNoiseMeasurements can consist of any number of measurements with
corresponding ranges. To find values for the ranges not given as measurements, LybinCom uses
linear interpolation.

Reverberation and noise measurements are an optional choice where one uses measured values
instead of letting LybinCom estimate reverberation and noise. LybinCom will only use the
reverberation and noise measurements values given if the TypeOfRevNoiseCalculation parameter
in LybinModelData class is set to 2 (Use measured reverberation and noise data).

Parameter Type Default value Unit
ReverberationAndNoiseMeasurements
Reverberation and noise measurement
 as function of range.

Object
(Double[x,2])

(0, 80)
(range, measurement)

(Metres, dB)

Table 3.18 Parameter in the ReverberationAndNoiseMeasurements class.

An example on how the ReverberationAndNoiseMeasurements can be used is shown below. In
the example, two points are inserted. The first is the value 80 dB at a range of 2 km. The second
is the value 70 dB at a range of 8 km.

LybinCom.LybinModelComBinClass Lybin = new

LybinCom.LybinModelComBinClass();

// Reverberation and noise measurements
double[,] ran = new double[2, 2];
ran[0, 0] = 2000; // Range
ran[0, 1] = 80; // Measurement
ran[1, 0] = 8000; // Range
ran[1, 1] = 70; // Measurement

Lybin.ReverberationAndNoiseMeasurements = ran;
Lybin.TypeOfRevNoiseCalculation = 2;

3.14 Platform class

The platform class contains all the relevant information about the platform holding the sonar. The
platform is most often a ship, but can also be a helicopter or a buoy. The parameters in the
platform class are listed in Table 3.19.

FFI-rapport 2009/02267 35

Parameter Type Default
value

Unit

SelfNoise
Noise from the platform that holds the sonar.

Double 50 dB

SelfNoisePassive
Noise from the platform that holds the sonar. To be used in
calculations for passive sonars.

Double 50 dB

Speed
Speed of the platform that holds the sonar.

Double 10 Knots

Table 3.19 Parameters in the platform class.

3.15 Sensor class

The sensor class contains all the relevant information about the sonar. The parameters in the
sensor class are listed in Table 3.20. There are no access functions in to the sensor class.

Parameter Type Default

value
Unit

BeamWidthReceiver
Vertical beam width of the receiving part of the sonar.

Double 15 Degrees

BeamWidthTransmitter
Vertical beam width of the transmitting part of the sonar.

Double 15 Degrees

CalibrationFactor
The parameter is on the interface, but are not yet
implemented or used in the calculations.

Double 0 dB

Depth
Depth of the sonar.

Double 5 Meters

DetectionThreshold
The strength of the signal relative to the masking level
necessary to see an object with the sonar.

Double 10 dB

DirectivityIndex
The sonars ability to suppress isotropic noise relative to the
response in the steering direction.

Double 1 dB

Frequency
Centre frequency of the sonar.

Double 7000 Hz

IntegrationTimePassive
Integration time for the passive sonar.

Double 1 Seconds

PassiveBandWidth
Band width of the passive sonar.

Double 100 Seconds

PassiveFrequency
Centre frequency of the passive sonar.

Double 800 Hz

 36 FFI-rapport 2009/02267

Parameter Type Default
value

Unit

SideLobeReceiver
The suppression of the highest side lobe relative to the
centre of the beam for the receiving sonar.

Double 13 dB

SideLobeTransmitter
The suppression of the highest side lobe relative to the
centre of the beam for the transmitting sonar.

Double 13 dB

SonarTypePassive
Tells whether the passive sonar is broad- or narrowband.
0: Narrowband
1: Broadband

Enumerator 0

SourceLevel
Source level of the sonar.

Double 221 dB

SourceLevelPassive
Source level of the possible target in the calculation for
passive sonar.

Double 100 dB

SystemLoss
System loss due to special loss mechanisms in the sea or
sonar system, not otherwise accounted for.,

Double 0 dB

TiltReceiver
Tilt of the receiving part of the sonar.

Double 4 Degrees

TiltTransmitter
Tilt of the transmitting part of the sonar.

Double 4 Degrees

Table 3.20 Parameters in the sensor class.

3.16 Pulse class

All the information about the pulse is gathered in the pulse class. All the access parameters in the
pulse class are listed in Table 3.21 below. The pulse class does not have any access functions.

Parameter Type Default

value
Unit

EnvelopeFunc
Envelope function of the signal. Currently, only “Hann” is
available.

String Hann

FilterBandWidth
Filter bandwidth of the pulse.

Double 100 Hz

FMBandWidth
Frequency modulation bandwidth of the pulse. Applicable
for FM signals only.

Double 100 Hz

FFI-rapport 2009/02267 37

Parameter Type Default
value

Unit

Form
Pulse type:
FM: Frequency modulated
CW: Continuous wave

String FM

Length
Pulse length.

Double 60 Milliseconds

Table 3.21 Parameters in the pulse class.

4 Initiate calculation
The DoCalculation function initiates a new LYBIN calculation. Before the DoCalculation
function is called, all input parameters must be set, otherwise default parameters are used.

DoCalculation is implemented to throw an exception containing a message describing the cause
of the error.

Function Type
DoCalculation()
Start the calculation.

Void

Table 4.1 Function for initiation of calculation.

5 Calculation results
The calculation results can be accessed through parameters or functions found in
LybinModelData. The result parameters are listed in Table 5.1. Each parameter represents a
complete dataset. The result functions give more flexibility in the way that you can access the
calculated results. All the functions delivering calculation results are listed in Table 5.2. If a
calculation fails, the returned value properties will be NULL.

Parameter Access Type Unit
AmbientNoiseLevelUsed
The ambient noise used in the calculations.

Read Double dB

BottomReverberation
Calculated bottom reverberation values.

Read Double[RangeCells] dB

EchoLevel
Not yet implemented inside LybinCom. This object
will not have any data.

Read Double[0,0] dB

 38 FFI-rapport 2009/02267

Parameter Access Type Unit
ImpulseResponseNumRanges
Returns total number of equidistant ranges the
impulse response is calculated for.

Read Integer

NoiseAfterProcessing
Calculated noise after processing.

Read Double dB

ProbabilityOfDetection
Calculated probability of detection.

Read Double[DepthCells,
RangeCells]

%

RayTrace
Not implemented inside LybinCom. This object will
not have any data.

Read Double[0,0]

ResultModelData
The model data used during the calculation.

Read String

SignalExcess
Calculated signal excess.

Read Double[DepthCells,
RangeCells]

dB

SurfaceReverberation
Calculated surface reverberation.

Read Double[RangeCells] dB

TotalReverberation
Calculated total reverberation.

Read Double[RangeCells] dB

TransmissionLossReceiver
Calculated transmission loss from the target to the
receiver.

Read Double[DepthCells,
RangeCells]

dB

TransmissionLossTransmitter
Calculated transmission loss from the transmitter to
the target.

Read Double[DepthCells,
RangeCells]

dB

TravelTimePathCount
Returns total number of travel time paths calculated.

Read Integer

VisualRayTraceCount
Returns the total number of visual ray trace paths
calculated.

Read Integer

VolumeReverberation
Calculated volume reverberation.

Read Double[RangeCells] dB

Table 5.1 Parameters containing calculation results.

FFI-rapport 2009/02267 39

Function Result format
GetAllResults(out string xmlResult)
Gets all results from the calculation in a single XML-string. The ray
trace, travel time and impulse response are not accessible as XML-
strings, so they will not be returned through this function call.

String

GetImpulseResponseFamilliesAsArray(int pIndex)
Returns all the ray families2 in the range corresponding to pIndex as an
array. Each family has the following order of parameters:
[,0]: Ray family identifier (string)

The ray family identifier represents the ray family’s
travel history, using the letter codes:
s: Surface reflection
b: Bottom reflection
u: Upper turning point
l: Lower turning point

[,1]: Intensity loss (double)
[,2]: Mean arrival time – first arrival time in seconds (double)
[,3]: Arrival time standard deviation in seconds (double)
[,4]: Phase identifier1 (double)
[,5]: First arrival in seconds (double)

Object[x,6]

GetImpulseResponseFamily(int pIndex, int pFamilieIndex, out
string pFamiliName, out double pIntensity, out double
pMeanArrivalTime, out double pStandardDeviation, out double
pPhase, out double pFirstArrival)
Returns the calculated ray family identifier, intensity, mean arrival time,
arrival time standard deviation, phase and first arrival from one single
ray family.
pIndex represents the corresponding range.
pFamilieIndex is the running number of the family at the specified
range, resulting from the ray tracing calculation. There is no direct
connection between pFamilieIndex and pFamiliName. pFamiliName is
the ray family identifier.
pIntensity is the intensity loss.
pMeanArrivalTime is the mean arrival time – first arrival time in
seconds.
pStandardDeviation is the arrival standard deviation in seconds.
pPhase is the phase identifier1.
pFirstArrival is the time of the first arrival in seconds.

String,
Double,
Double,
Double,
Double,
Double

1 The phase identifier is incremented by 2 each time the ray hits the sea surface. Phase shifts originated
from bottom hits or caustics are not accounted for in this release.

 40 FFI-rapport 2009/02267

Function Result format
GetImpulseResponseNumFamilies(int pIndex)
Returns the number of different ray families2 at the range corresponding
to pIndex.

Integer

GetInterpolatedBottomProfile(out object pProfile)
Get the interpolated bottom profile.

Double[x,2]

GetResultModelData(out string xmlData)
Gets all the model data used in the calculation in a single XML-string.

String

GetResults(int resultCat, out string xmlResult)
Gets the result specified in resultCat as a XML-string. The possible
choices of resultCat are listed in Table 5.3.

String

GetResultsBin(int resultCat, out object result)
Gets the result specified in resultCat as an object. The possible choices
of resultCat are listed in Table 5.3.

Format depends on
type of returned
object. See Table 5.1.

GetResultsBinValue(int resultCat, int xVal, int yVal, out double
result)
Get a single value from the result specified in resultCat and by the
indexes x and y. The possible choices of resultCat are listed in Table
5.3.

Double

GetTravelTimePath(int pIndex)
Returns all the points in a travel time path. pIndex is path number.
Each point in the travel time path contains depth in meters, initial ray
angle in degrees, range in meters and travel time in seconds.

Array of
TravelTimePoint

GetTravelTimePathAsDoubleArray(int pIndex)
Returns all the points in a travel path as a double array. pIndex is the
path number. Each point has the following order of parameters:
[,0]: Initial ray angle (degrees)
[,1]: Range (meters)
[,2]: Depth (meters)
[,3]: Travel time (seconds)

Double[x,4]

GetTravelTimePathLength(int pIndex)
Returns the length of a travel time path. pIndex is path number.

Integer

GetTravelTimePoint(int pIndex, int pPointNum)
Returns the calculated parameters in one single point. pIndex is path
number and pPointNum is point number in the path. The travel time
point contains depth in meters, initial ray angle in degrees, range in
meters and travel time in seconds.

TravelTimePoint

2 A ray family is a set of rays that share a unique ray history, a sequence of the following: surface
reflection, bottom reflection, upper turning point or lower turning point.

FFI-rapport 2009/02267 41

Function Result format
GetTravelTimePoint2(int pIndex, int pPointNum, out double
pInitialAngle, out double pRange, out double pDepth, out double
pTraveTime)
Returns the calculated parameters in one single point as parameters.
pIndex is path number and pPointNum is point number in the path.
pInitialAngle is in degrees, pRange in meters, pDepth in meters and
pTravelTime in seconds.

Boolean

GetVisualRayTrace(int pIndex)
Returns all the points in a visual ray trace path as a double array.
pIndex is path number.
Each point has the following order of parameters:
[,0]: Initial ray angle (radians)
[,1]: Range (meters)
[,2]: Depth (meters)

Double[x,3]

GetVisualRayTraceLength(int pIndex)
Returns the length of a visual ray trace path. pIndex is path number.

Integer

GetVisualRayTracePoint(int pIndex, int pPointNum, out double
pInitialAngle, out double pRange, out double pDepth)
Returns a single point in the visual ray trace. pIndex is path number and
pPointNum is point number in the path. pInitialAngle is in radians,
pRange in meters and pDepth in meters.

Boolean

Table 5.2 Functions delivering calculation results

resultCat Description
0 Transmission loss from transmitter to target
1 Transmission loss from target to receiver
2 Signal excess
3 Probability of detection
4 Total reverberation
5 Surface reverberation
6 Volume reverberation
7 Bottom reverberation
8 Noise after processing
9 Ambient noise

Table 5.3 Available values of resultCat with description.

 42 FFI-rapport 2009/02267

An example of how some of the result functions can be used is shown below. Three methods are
defined, returning the bottom reverberation, the noise after processing and the parameters used in
the calculations.

LybinCom.LybinModelComBinClass Lybin = new
LybinCom.LybinModelComBinClass();

public double[] GetBottomReverberation()
{
 // Initiate the reverberation array
 int NumberOfValues = Lybin.rangeCells;
 double[] BottomReverberationValues = new
double[NumberOfValues];

 Object Objekt;
 Lybin.GetResultsBin(7, out Objekt);
 BottomReverberationValues = (double[])Objekt;

 return BottomReverberationValues;
}

public double GetNoise()
{
 double noise;
 Object Objekt;

 Lybin.GetResultsBin(8, out Objekt);
 noise = (double)Objekt;

 return noise;
}

public string GetUsedParameters()
{
 string parameters;
 Lybin.GetResultModelData(out parameters);

 return parameters;
}

FFI-rapport 2009/02267 43

The results from the impulse response calculations can only be accessed through the binary
interface. The following gives an example of how to use the impulse response functions. The
example is written in C#. The passive frequency and the Rayleigh bottom loss are also set in this
example because these parameters are to be used in the calculation of the impulse response.

Lybin = new LybinCom.LybinModelComBinClass();

Lybin.PassiveFrequency = 500;

// Rayleigh parameters
double[,] rbl = new double[1, 3];
rbl[0, 0] = 0.92; // bottomAttenuation;
rbl[0, 1] = 1717; // bottomSoundSpeed;
rbl[0, 2] = 1.81; // densityRatio;
Lybin.RayleighBottomLoss = rbl;
Lybin.UseRayleighBottomLoss = true;

// Initiate impulse response
Lybin.ImpulseResponseCalculation = true;
Lybin.ImpulseResponseDepth = 100;

Lybin.DoCalculation();

// Number of ranges calculated
int ranges = Lybin.ImpulseResponseNumRanges;

// Number of families at range number 4
int numFamilies = Lybin.GetImpulseResponseNumFamilies(4);

// Get values from family 5 at range 4:
string familyName;
double intensity;
double meanArrivalTime;
double arrivalTimeStandardDeviation;
double phase;
double firstArrival;

Lybin.GetImpulseResponseFamily(4, 5, out familyName, out
intensity,
out meanArrivalTime, out arrivalTimeStandardDeviation, out phase,
out firstArrival);

// Get all families at range 4
object families = Lybin.GetImpulseResponseFamiliesAsArray(4);

 44 FFI-rapport 2009/02267

The results from the travel time calculations can only be accessed through the binary interface.
The following gives an example of how to use the travel time functions. The example is written in
C#:

Lybin = new LybinCom.LybinModelComBinClass();
Lybin.TravelTimeCalculation = true;
Lybin.TravelTimeAngleRes = 0.5;
Lybin.DoCalculation();

Object obj;
Object obj2;
// Number of rays calculated
int pathCount = Lybin.TravelTimePathCount;
//Length of middle ray
int travelLength = Lybin.GetTravelTimePathLength(pathCount / 2);
double[,] values = new double[travelLength, 4];
obj = Lybin.GetTravelTimePathAsDoubleArray(pathCount / 2);
obj2 = Lybin.GetTravelTimePath(pathCount / 2);
if (obj2 is LybinCom.TravelTimePoint[])
{
 LybinCom.TravelTimePoint[] ttp =
(LybinCom.TravelTimePoint[])obj2;
}
values = (double[,])obj;

The results from the visual ray trace calculations can only be accessed through the binary
interface. The following gives an example of how to use the visual ray trace functions. The
example is written in C#:

lybin = new LybinCom.LybinModelComBinClass();
lybin.VisualRayTraceCalculation = true;
lybin.VisualSurfaceHits = 6;
lybin.VisualBottomHits = 8;
lybin.VisualNumRays = 66;
lybin.DoCalculation();

Object obj;
// Number of rays calculated
int pathCount = lybin.VisualRayTraceCount;
//Length of middle ray
int travelLength = lybin.GetVisualRayTraceLength(pathCount / 2);
double[,] values = new double[travelLength, 3];
obj = lybin.GetVisualRayTrace(pathCount / 2);
values = (double[,])obj;

FFI-rapport 2009/02267 45

Appendix A Example code

A.1 C# Windows forms application using LybinCom

using System;
using System.Windows.Forms;
using LybinCom;

namespace BrukLybinComEksempel
{
 public partial class Form1 : Form
 {
 // Create
 private readonly LybinModelComBinClass Lybin = new
LybinModelComBinClass();

 public Form1()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {
 // Set the first bottom loss table
 var bl = new double[3,2];
 bl[0, 0] = 10;
 bl[0, 1] = 40;
 bl[1, 0] = 30;
 bl[1, 1] = 40;
 bl[2, 0] = 56;
 bl[2, 1] = 40;
 Lybin.SetFirstBottomLossTable(0, 4000, bl);

 // Second bottom loss table
 bl[0, 0] = 10;
 bl[0, 1] = 80;
 bl[1, 0] = 30;
 bl[1, 1] = 80;
 bl[2, 0] = 56;
 bl[2, 1] = 80;
 Lybin.AddBottomLossTable(4000, 10000, bl);
 Lybin.UseMeasuredBottomLoss = true;

 // Bottom profile
 var bp = new double[2,2];
 bp[0, 0] = 0;
 bp[0, 1] = 200;
 bp[1, 0] = 5000;
 bp[1, 1] = 188;
 Lybin.BottomProfile = bp;

 // Set the wave height
 var wh = new double[2,3];
 wh[0, 0] = 0;

 46 FFI-rapport 2009/02267

 wh[0, 1] = 4000;
 wh[0, 2] = 5;
 wh[1, 1] = 4000;
 wh[1, 1] = 9000;
 wh[1, 2] = 3;
 Lybin.WaveHeight = wh;
 Lybin.UseWaveHeight = true;

 // Set bottom back scatter table
 double[,] bb = new double[3, 2];
 bb[0, 0] = 11;
 bb[0, 1] = 3.2;
 bb[1, 0] = 33;
 bb[1, 1] = 7.4;
 bb[2, 0] = 88;
 bb[2, 1] = 4;
 Lybin.SetFirstBottomBackScatterTable(0, 10000, bb);
 Lybin.TypeOfRevNoiseCalculation = 1;

 // Set volume back scatter profile
 double[,] vc = new double[2, 2];
 vc[0, 0] = 10;
 vc[0, 1] = -80;
 vc[1, 0] = 50;
 vc[1, 1] = -92;
 Lybin.SetFirstVolBackScatterProfile(0, 10000, vc);

 // Set the first sound speed profile
 // Containing sound speed, temperature and salinity
 var ssp = new double[2,4];
 ssp[0, 0] = 0;
 ssp[0, 1] = 1480;
 ssp[0, 2] = 7;
 ssp[0, 3] = 35;
 ssp[1, 0] = 620;
 ssp[1, 1] = 1510;
 ssp[1, 2] = 8;
 ssp[1, 3] = 34;
 Lybin.SetFirstSoundSpeedTempAndSalinityProfile

(0, 2000, ssp);

 // Set the second sound speed profile
 // Containing only sound speed
 var sss = new double[2,2];
 sss[0, 0] = 50;
 sss[0, 1] = 1488;
 sss[1, 0] = 100;
 sss[1, 1] = 1499;
 Lybin.AddSoundSpeedProfile(2000, 5000, sss);

 // Set the third sound speed profile
 // Containing temperature and salinity
 var tsp = new double[2,3];
 tsp[0, 0] = 10;
 tsp[0, 1] = 6.1;
 tsp[0, 2] = 34;
 tsp[1, 0] = 200;
 tsp[1, 1] = 4.2;
 tsp[1, 2] = 33;
 Lybin.AddTempAndSalinityProfile(5000, 8000, tsp);

FFI-rapport 2009/02267 47

 // Set sonar parameters
 Lybin.Depth = 50;
 Lybin.TiltReceiver = 0;
 Lybin.TiltTransmitter = 0;
 Lybin.SideLobeReceiver = 12;
 Lybin.SideLobeTransmitter = 12;
 Lybin.DetectionThreshold = 13;
 Lybin.Frequency = 1000;
 Lybin.DirectivityIndex = 25;
 Lybin.SourceLevel = 210;
 Lybin.BeamWidthReceiver = 30;
 Lybin.BeamWidthTransmitter = 18;
 Lybin.Length = 1000;
 Lybin.FMBandWidth = 1000;
 Lybin.Form = "FM";

 // Set calculation parameters
 Lybin.SetRangeScaleAndRangeCells(10000, 100);
 Lybin.SetDepthScaleAndDepthCells(600, 50);
 Lybin.TRLRays = 5000;

 // Set target strength
 Lybin.TargetStrength = 10;

 // Calculate ray trace for visuaisation
 Lybin.VisualRayTraceCalculation = true;
 Lybin.VisualSurfaceHits = 6;
 Lybin.VisualBottomHits = 8;
 Lybin.VisualNumRays = 66;

 // Let LybinCom calculate noise
 Lybin.NoiseCalculation = true;
 Lybin.PrecipitationNoiseType = PrecipitationType.LightRain;

 // Do calculation
 Lybin.DoCalculation();

 // Get raytrace for visualization
 int pathCount = Lybin.VisualRayTraceCount;

 int travelLength =
Lybin.GetVisualRayTraceLength(pathCount/2);

 object obj = Lybin.GetVisualRayTrace(pathCount/2);

 // Get the ambient noise used in
 double used = Lybin.AmbientNoiseLevelUsed;

 // Get calculation results
 string modelData, trl, sig, pod, tot;
 Object totRev;

 // XML
 Lybin.GetResults(0, out trl);
 Lybin.GetResults(2, out sig);
 Lybin.GetResults(3, out pod);
 Lybin.GetResults(4, out tot);

 // Binary
 Lybin.GetResultsBin(4, out totRev);

 48 FFI-rapport 2009/02267

 // Get modeldata used in the calculations
 Lybin.GetResultModelData(out modelData);

 // Display in textbox
 textBox1.Text = modelData;
 }
 }

}

A.2 Matlab file using LybinCom, basic example

% LybinCom used in Matlab %
%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;
% initiate LybinCom
lb=actxserver('LybinCom.LybinModelComBin');

% Interfaces
env = lb.invoke('IEnvironment'); % Environment
mod = lb.invoke('IModelData'); % Model
sensor = lb.invoke('ISensor'); % Sonar
pulse = lb.invoke('IPuls'); % Pulse
platform = lb.invoke('IPlatform'); % Platform
ocean = lb.invoke('IOcean'); % Ocean

% Sonar parameters
sensor.Depth = 50;
sensor.TiltReceiver = 0;
sensor.TiltTransmitter = 0;
sensor.SideLobeReceiver = 12;
sensor.SideLobeTransmitter = 12;
sensor.DetectionThreshold = 13;
sensor.Frequency = 1000;
sensor.DirectivityIndex = 25;
sensor.SourceLevel = 210;
sensor.BeamWidthReceiver = 18;
sensor.BeamWidthTransmitter = 18;

% Pulse
pulse.Length = 1000;
pulse.FMBandWidth = 1000;

%Platform
platform.SelfNoise = 60; % [dB]

% Model
R = 20000;
Z = 600;
R_cells = 100;
Z_cells = 50;
mod.SetRangeScaleAndRangeCells(R, R_cells);
mod.SetDepthScaleAndDepthCells(Z, Z_cells);
mod.TRLRays = 1000;

% Target strength
ocean.TargetStrength = 10;

FFI-rapport 2009/02267 49

% Environment
%%%%%%%%%%%%%%%%%

% WindSpeed
env.WindSpeedMeasurments = [0,5000,10; 5000,10000,6];

% Sound speed
env.SetFirstSoundSpeedProfile(0, 0, [0, 1480; 660, 1510]);

 % Bottom type
env.BottomType = [0,5000,3;5000,10000,4];

% Bottom profile
prof = [0,200;5000,400; 10000,600];
env.bottomProfile = prof;

% Calculate
lb.DoCalculation

% Get calculation results
data.trl.forward = lb.TransmissionLossTransmitter;
data.trl.backward = lb.TransmissionLossReceiver;
data.sig = lb.SignalExcess;
data.pod = lb.ProbabilityOfDetection;
data.rev.Tot_rev = lb.TotalReverberation;
data.rev.Surf_rev = lb.SurfaceReverberation;
data.rev.Vol_rev = lb.VolumeReverberation;
data.rev.Bot_rev = lb.BottomReverberation;
data.rev.Noise = lb.NoiseAfterProcessing;

% Release interfaces
env.release; % Environment
mod.release; % Model
sensor.release; % Sonar
pulse.release; % Pulse
platform.release; % Platform
ocean.release; % Ocean
lb.delete; % Component

% Parameters for plotting
r = R/R_cells * [.5:(R_cells-.5)];
z = Z/Z_cells * [.5:(Z_cells-.5)];

% Plot data
figure(1)
contourf(r/1000,z,data.trl.forward, 30,'linestyle', 'none')
set(gca, 'ydir', 'reverse')
xlabel('Range [km]')
ylabel('Depth [m]')
title('Transmission loss')
colorbar;
hold on
fill([prof(:,1);0;0]/1000, [prof(:,2);Z;Z], 'k');
hold off

figure(2)
contourf(r/1000,z,data.sig, 30,'linestyle', 'none')
set(gca, 'ydir', 'reverse')

 50 FFI-rapport 2009/02267

xlabel('Range [km]')
ylabel('Depth [m]')
title('Signal excess')
colorbar;
hold on
fill([prof(:,1);0;0]/1000, [prof(:,2);Z;Z], 'k');
hold off

figure(3)
contourf(r/1000,z,data.pod, 30,'linestyle', 'none')
set(gca, 'ydir', 'reverse')
xlabel('Range [km]')
ylabel('Depth [m]')
title('Propability of detection')
colorbar;
hold on
fill([prof(:,1);0;0]/1000, [prof(:,2);Z;Z], 'k');
hold off

figure(4)
plot(r/1000, data.rev.Tot_rev)
hold on
plot(r/1000, data.rev.Bot_rev, 'r')
plot(r/1000, data.rev.Surf_rev, 'g')
plot(r/1000, data.rev.Vol_rev, 'c')
title('Reverberation')
legend('Total', 'Bottom', 'Surface', 'Volume')
xlabel('Range [km]')
ylabel('Rev [dB]')
grid on
hold off

A.3 Matlab file using LybinCom, impulse response example

% Use LybinCom to calculate impulse response %
%%

clear;
% Initiate LybinCom
lb=actxserver('LybinCom.LybinModelComBin');

% Interfaces
env = lb.invoke('IEnvironment'); % Environment
mod = lb.invoke('IModelData'); % Model
sensor = lb.invoke('ISensor'); % Sonar

% Frequency
sensor.PassiveFrequency = 500;

% Rayleigh bottom loss
bottomAttenuation = 0.92;
bottomSoundSpeed = 1717;
densityRatio = 1.81;
env.RayleighBottomLoss = [bottomAttenuation, bottomSoundSpeed,
densityRatio];
mod.UseRayleighBottomLoss = true;

FFI-rapport 2009/02267 51

% Initiate impulse response
mod.ImpulseResponseCalculation = true;
mod.ImpulseResponseDepth = 50;

% Start calculation
lb.DoCalculation;

% Number of ranges calculated
numRanges = lb.ImpulseResponseNumRanges;

% Number of ramilies at range number 30
numFamilies = lb.GetImpulseResponseNumFamilies(30);

% Get all families at range 30
families = lb.GetImpulseResponseFamiliesAsArray(30);

%Get one specific family at range 30 and family number 2
[Success, FamilyName, Intensity, MeanArrivalTime, StandardDeviation,
Phase, FirstArrival]...
 = lb.GetImpulseResponseFamily(30,2);

% Used input parameters
modelData = lb.ModelData;

% Release interfaces
env.release; % Environment
mod.release; % Model
sensor.release; % Sonar
lb.delete; % Component

A.4 C++ console application using LybinCom

// TestLybinComConsole.cpp : Defines the entry point for the console
// application.

#include "stdafx.h"

#import "Progid:LybinCom.LybinModelComBin" no_namespace

int _tmain(int argc, _TCHAR* argv[])
{
 //Initialize the application for use with COM objects
 HRESULT hr = CoInitialize(NULL);
 if(FAILED(hr))
 {
 return FALSE;
 }

//
///

 // Using smart pointer
 //

 // Instantiate COM object and get access to interface

// ILybinModelComBin
 ILybinModelComBinPtr ptr("LybinCom.LybinModelComBin");

 52 FFI-rapport 2009/02267

 // Get access to another interface in the object.
 IModelDataPtr model = ptr;
 IEnvironmentPtr environment = ptr;

 // Access a function
 ptr->DoCalculation();

 //
 //Access function with BSTR

 BSTR xmlData;
 ptr->GetCurrentModelData(&xmlData);
 // .. Use string
 SysFreeString(xmlData); // OBS the string must be deallocated

 //Access function with _bstr_t. Destructor will deallocate
 _bstr_t xmlData2;
 ptr->GetCurrentModelData(xmlData2.GetAddress());
 xmlData2 = ptr->ModelData;

 //Access function with CComBSTR. Destructor will deallocate
 CComBSTR xmlData3;
 ptr->GetCurrentModelData(&xmlData3);

 //
 //Access function with VARIANT
 VARIANT bottomProfile;
 ::VariantInit(&bottomProfile);
 environment->get_BottomProfile(&bottomProfile);
 // .. use bottomProfile
 ::VariantClear(&bottomProfile); // OBS the variant must be

 // deallocated or cleared
 CComVariant bottomProfile2;
 environment->get_BottomProfile(&bottomProfile2);

 _variant_t bottomProfile3;
 environment->get_BottomProfile(bottomProfile3.GetAddress());
 bottomProfile3 = environment->BottomProfile;

 //
 // Access a property
 double ii = model->RangeScale;
 model->RangeScale = 1000;

 // Cleanup
 environment = NULL;
 model = NULL;
 ptr = NULL;

 //
 // Using ATL
 //

 //Declare pointers
 CComPtr<ILybinModelComBin> ptrAtl;
 CComPtr<IModelData> modelAtl;

FFI-rapport 2009/02267 53

 CComQIPtr<IModelData> model2Atl;

 // Instantiate COM object and
 // get access to interface ILybinModelComBin
 ptrAtl.CoCreateInstance(CComBSTR("LybinCom.LybinModelComBin");

 // Get access to another interface in the object.
 modelAtl = ptrAtl;
 model2Atl = ptrAtl;

 // Access a function
 hr = ptrAtl->DoCalculation();

 //
 //Access function with BSTR
 BSTR xmlDataAtl;
 ptrAtl->GetCurrentModelData(&xmlDataAtl);
 // .. Use string
 SysFreeString(xmlDataAtl);// OBS the string must be eallocated

 //Access function with _bstr_t. Destructor will deallocate
 _bstr_t xmlDataAtl2;
 ptrAtl->GetCurrentModelData(xmlDataAtl2.GetAddress());
 xmlDataAtl2 = ptrAtl->ModelData; // This is legal because of

 // #Import statment

 //Access function with CComBSTR. Destructor will deallocate
 CComBSTR xmlDataAtl3;
 ptrAtl->GetCurrentModelData(&xmlDataAtl3);

 //
 //Access function with VARIANT will be as in the example in

// smart pointers above
 //

 // Access a property
 double dd;

 hr = modelAtl->get_RangeScale(&dd);
 hr = modelAtl->put_RangeScale(1000);

 hr = model2Atl->get_RangeScale(&dd);
 hr = model2Atl->put_RangeScale(1000);

 // Cleanup
 model2Atl.Release();
 modelAtl = NULL;
 ptrAtl = NULL;

 // Terminate COM access
 CoUninitialize(); //when all COM activity is completed.

 return 0;
}

 54 FFI-rapport 2009/02267

References

[1] S Mjølsnes (2000): LYBIN SGP-180(C) – Model Description, The Royal Norwegian Navy

Materiel Command, Bergen
[2] E Dombestein and K T Hjelmervik (2004): Analysis of the NAT III experiments – Modelling

assumtions, Norwegian Defence Research Institute, FFI/RAPPORT 2004/01083
[3] Teleplan GLOBE, http://www.teleplanglobe.com/index.php?page=maria
[4] A Gjersøe and F Hermansen (2008): Simson Fennikel – Design dokument for Maria add-in

for utvelgelse og visning av data på kart, Norwegian Defence Research Institute,
FFI/RAPPORT 2008/02182

[5] M Bosseng and A Gjersøe (2008): Simson Fennikel – User Manual, Norwegian Defence
Research Institute, FFI/RAPPORT 2008/02183

[6] E Dombestein and S Alsterberg (2006): LYBIN XML grensesnitt versjon 1,
Norwegian Defence Research Institute, FFI/RAPPORT 2006/00266

[7] E Dombestein (2009): LYBIN 5.0 – interface description, Norwegian Defence Research
Institute, FFI/RAPPORT 2009/00188

FFI-rapport 2009/02267 55

Abbreviations

FFI Norwegian Defense Research Institute
NDLO Norwegian Defense Logistic Organization
GFA Government Furnished Assets
LYBIN LYdBane og INtensitetsprogram (acoustic model)
XML Extensible Markup Language
COM Component Object Model

Definitions

Integer 32-bit integer
Double 64-bit floating point
Boolean 16-bit (0: false, -1: true)
String BSTR. Basic string used by COM
Enum 32-bit integer
TravelTimePoint 256-bit struct defined in LybinCom Type library

