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English summary 
This report provides an overview of a set of macro-mechanical models for the effective Young’s 
modulus of short fiber composites. Various models are found in the literature with varying 
complexity, ranging from simple rule of mixtures models to more sophisticated models explicitly 
taking into account the fiber length and the fiber orientation distribution. The models can be used 
as a tool for a better understanding of the material properties and material behavior, and are 
valuable additions to the knowledge obtained from experimental tests. In addition, representative 
and accurate material models are essential in finite element method (FEM) analyses. FEM 
modeling is nowadays applied in the design and development of most complex structures. 
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Sammendrag 
Denne rapporten gir en oversikt over et sett med makromekaniske modeller for den effektive 
verdien av Youngs modul for kortfiberkompositter. Forskjellige modeller med varierende 
kompleksitet finnes i litteraturen, fra enkle mikseregelmodeller til mer sofistikerte modeller som 
har eksplisitte uttrykk for fiberlengde og fiberorientering. Modellene kan brukes som et viktig 
verktøy for bedre å forstå materialenes egenskaper og oppførsel, i tillegg til det som blir observert 
i eksperimentelle forsøk. I tillegg er representative og nøyaktige materialmodeller essensielt i 
elementmetodeanalyser. Elementmetodemodellering er per i dag anvendt i design og utvikling av 
de fleste kompliserte konstruksjoner. 
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1 Introduction 
In this report, a set of mathematical models for describing the effective properties of short-fiber 
composite materials has been investigated. Two categories of mathematical models may be 
defined for this purpose. The first type of models is typically dealing with one fiber embedded in 
a matrix material, using this unit to describe the overall material properties. The aim is then to 
establish expressions for the interface between the fiber and the matrix, and to model the fiber 
stress and the interface shear stress distributions of the fiber. Both analytical expressions and 
numerical simulations are employed. The second type of models are more concerned with finding 
average values for the material, so that the composite can be described macroscopically by an 
isotropic or, more generally, an anisotropic material model. This category typically includes rule 
of mixtures models, as well as more sophisticated variants. In addition, this latter category of 
models distinguishes between aligned and randomly distributed short-fiber composites. A random 
distribution may in many situations be more adequate.  
 
This report is restricted to only considering macro-mechanical models for randomly oriented 
short-fiber composites. Different approaches for describing the effective properties have been 
suggested and presented in the literature. The main interest here is to establish the parameter 
values for describing the elastic properties of the composite material. These values are required 
in, for example, finite element method (FEM) analyses. One main parameter is the modulus of 
elasticity, i.e. Young’s modulus, in the direction of the applied load. In this report, the modeling 
approaches where algebraic expressions are available will be covered. 
 
Some of the models in this survey are implemented in Matlab, showing the elastic properties as a 
function of the fiber volume fraction. For the simplest models, the influence of fiber length and 
fiber orientation is included implicitly. For the more sophisticated models, explicit expressions 
for length variation and fiber orientation are included. Hence, the number of possible parameters 
that can be tuned depends on the complexity of each model.  
 
With the models at hand, we are able to run a lot more test cases than would be feasible 
experimentally. Mathematical modeling hence becomes an additional tool in the analysis. It 
should, however, be mentioned that no experimental tests are performed to verify or support any 
of the mathematical models. Future studies on discontinuous fiber composites will, however, 
naturally include an experimental part.  
 
Parts of the contents of this report has already been presented at the 14th European Conference on 
Composite Materials [1]. Future work, which is also expressed in the conference proceeding 
paper, will investigate whether the short-fiber models are applicable to model nanocomposites. 
For that reason, some references to papers where short-fiber models are applied for 
nanocomposites are included here.   
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2 Mathematical models 

2.1 Rule of mixtures models 

The first type of models for describing the macro-mechanical properties of short-fiber composites 
is based on the assumption that the fibers are randomly oriented, and that the overall material 
properties can be expressed by some weighted sum of the material properties of the constituents 
of the composite material, that is, the fibers and the matrix. If at all included in the model, the 
fiber length variation is assumed to be expressed by some average, or mean, value. This type is 
often referred to as rule of mixtures models.  
 
The final expressions for the composite material are algebraic relations, established from 
experimental tests. The Young’s modulus, and in some cases also the Poisson’s ratio, is given. 
Macroscopically the material is now treated as isotropic. Also, assuming linear elastic properties, 
a linear stress-strain relation can be defined for the composite.  
 
Most expressions are presented for two-dimensional (2D) cases. Due to the microscopic 
anisotropy, it is often more complicated to perform tests for 3D cases. Some of the works found 
in the literature for this model type are, however, also described for 3D cases. Models describing 
the properties and assumptions in more detail will be shown next. 

2.1.1 2D models 

One of the earliest studies on randomly oriented short-fiber composites is found in the paper by 
Cox [2], which considered modeling of cellulose fiber materials, i.e. paper. His theory is often 
referred to as the shear-lag analysis or the paper physics approach, see e.g.  [3]. The paper physics 
approach is based on the fundamental point of calculating the force from fibers crossing an 
arbitrary line in the test specimen. The Young’s modulus is then found from the final expression 
of the force. The paper physics approach is more thoroughly described in Section 2.6. 
 
Based on a discussion of the orientation of the fibers, and by assuming that the material at hand 
macroscopically can be described as isotropic, Cox suggested a very simple model for the 
effective elasticity modulus,  
 

(1 )
3

f f
C f m

V E
E V E= + − . (2.1) 

 
In the above expression, fV is the fiber volume fraction, fE is the Young’s modulus of the fibers, 

and mE is the Young’s modulus of the matrix. From assuming a linear elastic material, and 
knowing the effective shear modulus, CG , of the composite, the Poisson’s ratio may be found 

from 
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1
2

C
C

C

E
G

ν = − , (2.2) 

 
Many later models are based on the pioneer work by Cox.  
 
A similar model as the Cox model for describing the elastic properties of paper has been 
presented by Horio and Onogi [4]. Instead of including the elastic modulus of the fibers and the 
matrix, they applied the elastic modulus in the direction of the paper production machine and in 
the cross direction, that is, E



 and E⊥ , respectively. The elastic mean value through the angular 

distribution is given as, 
 

1/2( )CE E E⊥=


. (2.3) 
 
A slightly more sophisticated model for randomly oriented reinforcements in thin resin films, i.e. 
a 2D orientation distribution, may be established. The elasticity modulus and shear modulus of 
the composite can be expressed by employing a relation containing the material properties of the 
two main constituents of the composite, see e.g. [5-8], 
 

3 5
8 8C L TE E E= + , (2.4) 

 
1 1
8 4C L TG E E= + , (2.5) 

 
where LE and TE are the longitudinal and transverse modulus of an aligned short-fiber 

composite. The moduli can be expressed mathematically, 
 

1 (2 / )
1

L f
L m

L f

l d V
E E

V
η

η
+

=
−

, (2.6) 

 
1 2
1

T f
T m

T f

V
E E

V
η
η

+
=

−
, (2.7) 

 
where 
 

( / ) 1
( / ) 2( / )

f m
L

f m

E E
E E l d

η
−

=
+

, (2.8) 

 
( / ) 1
( / ) 2

f m
T

f m

E E
E E

η
−

=
+

. (2.9) 
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The relations in (2.6) and (2.7) are referred to as the Halpin-Tsai equations for aligned short-fiber 
composites. In the above expressions, fV is the fiber volume fraction, fE is the elastic modulus 

of the fibers, mE  is the elastic modulus of the matrix, l  is the fiber length, and d is the fiber 

diameter. The aspect ratio is defined as the fiber length divided by the fiber diameter ( /l d ). For 
the randomly oriented short-fiber composite under consideration, the fiber aspect ratio and fiber 
volume fraction is the same as in the corresponding aligned short-fiber composite. Furthermore, 
from assuming an isotropic, linear elastic material, the Poisson ratio is given in (2.2). Also, note 
that, in this latter rule of mixtures model, the fiber length and the fiber diameter are both 
explicitly included in the model, and hence the geometric properties of all fibers are assumed 
equal. Typically some kind of average, or mean, value is applied for the fiber length. This may 
not be the case for “real-life” composites. Note that the moduli LE and TE can alternatively be 

determined experimentally, and put directly into (2.4) and (2.5). 
 
The Halpin-Tsai equations have become one of the commonly used models for describing the 
effective properties of randomly oriented short-fiber composites. For example, Fu and Lauke [3] 
employed this model for comparison with their extended laminated analogy approach (LAA) 
model, further described in Section 2.5.3.1. Moreover, these equations have also been used for 
other materials, for instance in the work by Qian et al. [6] for estimating the elasticity modulus of 
a composite consisting of multi-walled carbon nanotubes (MWCNTs) dispersed in a polystyrene 
(PS) matrix. In this case the nanotubes play the role of the fibers, where d is the outer tube 
diameter. As reported in the review paper by Coleman and co-workers [9], the Halpin-Tsai 
equations are known to fit experimental data for low fiber volume fraction composites. For high 
volume fractions the stiffness is, however, underestimated. 
 
Coleman et al. [9] also showed a rule of mixtures model, which is based on the pioneer work by 
Cox [2]. One general expression is established, which include discontinuous fiber composites 
with either aligned fibers or randomly oriented fibers. This rule of mixtures expression is written 
as, 
 

0 1 (1 )C f f f mE E V V Eη η= + − , (2.10) 
 
where  0 1η = for aligned fibers,  0 3 / 8η =  for fibers uniformly distributed in a plane, and 

0 1/ 5η =  for 3D uniformly distribution [10]. Furthermore [11], 

 

1

tanh
1

al
d

al
d

η

 
 
 = −

 
 
 

, (2.11) 
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With 
 

3
2 ln

m

f f

Ea
E V
−

= . (2.12) 

 
In the above expressions, fE and mE is the Young’s modulus of the fiber and the matrix, 

respectively. Moreover, l is the fiber length, d is the diameter, and fV is the fiber volume 

fraction.  
 
A similar model as the previous one, is also shown by Fu and Lauke [12], 
 

1 2 (1 )C f f f mE E V V Eχ χ= + − , (2.13) 
 
where the 1χ and 2χ generally are function expressions for the fiber orientation and the fiber 

length, respectively, but may also be set to constant values. Such functions will be described in 
more detail in later sections. They are often applied in combination with the laminate analogy 
approach, see Section 2.3, where an in-plane fiber orientation is presumed. Moreover, the product 
of the factors, that is, 1 2χ χ , is denoted the fiber efficiency factor.  

 
Christensen and Waals [13] and Christensen [14] presented expressions for the effective stiffness 
for randomly oriented fiber composites based on a geometric average process. In their model, the 
fibers are assumed to have any orientation in a given plane. The short-fibers are assumed to be 
sufficiently long, so that they can be treated as continuous fibers, and such that the end effects 
may be neglected.  For the 2D case, the effective properties can be written as 
 

2 2
1 2

1

2

1

1 ( )C

C

E µ µ
µ
µν
µ

= −

=
 (2.14) 

 
where 
 

2
1 1 23 2312

1 11
23 23

2
1 1 23 2312

2 11
23 23

(3 2 3 )3
8 2 2( )

(1 6 )1
8 2 2( )

G KGE
G K

G KGE
G K

ν νµ

ν νµ

+ +
= + +

+

+ +
= − +

+

 (2.15) 

 
The quantities in the above expressions are based on and taken from the work by Hashin and 
Rosen [15], Hashin [16;17], and Hill [18;19],  
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2

11

1 12

23

( )
(1 ) 4 (1 ) (1 )

1
/ 3 / 3

(1 )( )
/ 3 / 3

(1 ) (1 )
1

/ 3 / 3

13
(1/ 3)(

f m
f f f m f f m

f m f m

f f m m

m m
f f f m

m m f f
f m f f

f m f m

f f m m

fm
m

f m f

E V E V E V V G V G V G
k G k G

G GV V
k G k G

V V V G V G
k G k G

VGK k

k k G G

ν ν

ν ν
ν ν ν ν

 
 − = + − + −

− 
+ + + + 

 
− − −  + + = = − + +

−
+ +

+ +

= + +

− + −

12

23

1
) (4 / 3)

(1 ) (1 )
(1 ) (1 )

1 [ (7 / 3) ](1 )
2( (4 / 3) )

3(1 2 )

3(1 2 )

f

m m m

f f m f
m

f f m f

f
m

m m fm

f m m m

m
m

m

f
f

f

V
k G

G V G V
G G

G V G V

V
G G k G VG

G G k G

Ek

E
k

ν

ν

−
+

+

 + + −
=  

− + +  
 
 
 = +

+ − 
+ − + 

=
−

=
−

 

(2.16) 

 
Note that the expression for the transverse shear modulus, 23G , is a lower bound. An exact value 

is not available. Furthermore, in case the fibers are very stiff compared to the matrix material, the 
expressions in (2.16) may be simplified. Under certain restrictions, given in the referred papers, it 
may be shown that, 
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2

11

1

23

12

23

4 (1 ) ( )
(1 )

1
/ 3

(1 )( )
/ 3

(1 )
1

/ 3
( (4 / 3) )

3 1

(1 )
(1 )

2 ( (4 / 3) )
1

[ (7 / 3) ](1 )

f f m f m
f f f m

f m

m m

m
f f f m

m m
f m f f

f m

m m

f m mm
m

f

f
m

f

f m m
m

m m f

V V G
E V E V E V G

k G

GV V
k G

V V V G
k G

V k GGK k
V

V
G G

V

V k G
G G

k G V

ν ν

ν ν
ν ν ν

− −
≅ + − +

+
+

 
− −  + ≅ − + +

+
+

+
≅ + +

−

+
≅

−

 +
≅ +

+ −


 
 

 

(2.17) 

 
Please note that the expressions in (2.16) and (2.17) also can be applied for 3D cases, see Section 
2.1.2 for more details. 
 
Another model for 2D cases is presented by Weng and Sun [20]. This model is also referred to 
and applied in the paper by Chon and Sun [21]. In this case, the effective Young’s modulus for 
the composite is computed from  
 

2 2
1 2

2

1

1 ( )C

C

E µ µ
µ
µν
µ

1

= −

=
 (2.18) 

 
where 
 

23
11

23

23
2 11

23

(3 2 3 )3
8 2( )

(1 6 )1
8 2( )

G KGE
G K

G KGE
G K

ν νµ

ν νµ

2
1 1 2312

1
23

2
1 1 2312

23

+ +
= + +

2 +

+ +
= − +

2 +

 (2.19) 
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And 
 

2

11

23

12

23

(1 )
1 (1 )

1 ( / )

1 (1 ) (1 )

113
( ) / 3 4 / 3

(1 ) (1 )
(1 ) (1 )

1 [ (7 / 3)

f f
f m
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f m m f
f m f

f m

fm
m

f

f m f m m m

f f m f
m

f f m f

f
m
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f m

V E R
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E R E
E R E
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V
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G G
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+
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−

+
− + − +

 + + −
=  

− + +  

= +
+

+
−

](1 )
2( (4 / 3) )

3(1 2 )

3(1 2 )

m f

m m

m
m

m

f
f

f

V
k G

Ek

E
k

ν

ν

 
 
 

− 
 + 

=
−

=
−

 

(2.20) 

 
In the above expressions, the modulus 11E  and the Poisson number 1ν  are presented in the paper, 

whereas the other expressions are taken from the paper by Christensen and Waals [13], which 
again is based on the work by Hashin and Rosen [15], Hashin [16;17], and Hill [18;19]. Hence, 
this model is very similar to the Christensen-Waals model. In (2.20), the parameter  
 

1
f

lR
l

≡ − , (2.21) 

 
where f ml l l= + is the sum of the length of the matrix, ml , and the length of the fiber, fl . In their 

model a “unit” is defined, consisting of a cylindrical short-fiber embedded in and surrounded by a 
cylindrically shaped matrix tube. Hence, this theory also takes into account the length of the 
fibers. The rest of the parameters are given earlier. The Weng-Sun model is in their paper [20] 
compared to other models and also experimental results, and is said to be the most suitable model 
for the given experimental data. 
 
For comparison, the rule of mixtures model shown in the paper by Christensen and Waals [13] is 
included, 
 

(1 )C f f f mE V E V E= + − . (2.22) 
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This model may at first be a natural choice. It is, however, stated in their paper that this model 
produces absurd results. It does neither take into account the random orientation nor the fiber-
matrix interaction effects, which is the case for the Cox model and the more sophisticated models. 
A similar expression is also often applied for the Poisson’s ratio of the composite. 
 
Most of the above models for the effective Young’s modulus of randomly distributed short-fiber 
composites have been implemented in Matlab for a varying fiber volume fraction, fV . However, 

only those models where the elastic modulus is a function of the elastic properties of the 
constituent materials, are displayed in the plot, as shown in Figure 2.1. In all cases, 

1000000mE =  and 26.25f mE E= . Moreover, for the Halpin-Tsai model the aspect ratio is set 

to 10. For the (advanced) Christensen-Waals model and the Weng-Sun model, 0.35mν = and 
0.20fν = . Finally, for the Weng-Sun model, 2 fl l= . Please note that because the different 

models require different material parameters, the model results may not be directly comparable. 
For example, by choosing a different value for l in the Weng-Sun model, the curve will change, 
while the remaining models, which do not explicitly depend on this quantity (or have a similar 
input parameter), will not be altered. Nevertheless, from the curves we observe that the Young’s 
modulus when applying the Christensen-Waals rule of mixtures model (in green) gives a much 
steeper increase and higher stiffness compared to the other models. The more sophisticated 
Christensen-Waals model (in red) is very close to the model where the Halpin-Tsai expressions 
(in magenta) are applied. The other models overall predict a lower increase in the Young’s 
modulus as a function of the fiber volume fraction, and lower stiffness values for large fiber 
volume fractions. 
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Figure 2.1 Effective Young’s modulus for the composite material versus fiber volume fraction, 
2D case. All values are normalized with the Young’s modulus of the matrix material. 

2.1.2 3D models 

As described in the previous section, the paper by Cox [2] presents one of the earliest models for 
randomly oriented short-fiber composites. For 3D orientation of the fibers, based on the 
description of the 2D case presented above, he suggested that  
  

(1 )
6

f f
C f m

V E
E V E= + − , (2.23) 

 
where fV , as before, is the fiber volume fraction, fE is the Young’s modulus of the fibers, and  

mE the Young’s modulus of the matrix. In the same way as for the 2D case, the Poisson ratio is 

given in (2.2).  Breton et al. [22] used this model also for estimating the elasticity modulus of 
multi-walled carbon nanotubes (MWCNT)  embedded in an epoxy resin. In this case, the 
MWCNTs take the role of the short-fibers. 
 
Another model for the effective elasticity modulus of short-fiber composites, with a random 
orientation in 3D, have been presented by Lavengood and Goettler [7], 
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1 4
5 5C L TE E E= + . (2.24) 

 
The longitudinal and transverse elasticity moduli in the latter expression can be expressed by the 
Halpin-Tsai expressions in (2.6) and (2.7). In [7], the corresponding shear modulus for 3D cases 
is not explicitly given, neither is the Poisson’s ratio. Hence, the paper does not provide enough 
information for describing all the material properties, especially needed in mathematical and 
numerical modeling. Moreover, Kardos [8] referred to this model in his paper, stating that more 
work need to be done for 3D random orientation to obtain a general format, as is the case for 2D 
cases. 
 
Fidelus et al. [23] have presented a rule of mixtures model for prediction of Young’s modulus for 
3D randomly dispersed carbon nanotube composites, 
 

(1 )C NT NT m NTE E V E Vλ= + − . (2.25) 
 
As Fidelus and co-workers used this model for carbon nanotubes, NTV  in their model refer to the 
volume fraction of the tubes, and NTE  and mE denote the elastic modulus for the nanotubes and 

the matrix, respectively. Moreover, λ  is here the so-called Krenchel’s coefficient, which for 3D 
randomly oriented rods with high aspect ratio, may be set to a constant value. However, a similar 
expression should also be applicable to short-fiber composites. 
 
As mentioned in the previous section, Christensen and Waals [13] and Christensen  [14] 
presented expressions for the effective stiffness of randomly oriented fiber composites, both for 
2D and 3D cases. For the 3D case, the effective properties of the composite can be written as, 
 

2 2
11 1 1 23 11 1 1 23 12 23

2
11 1 1 23 12 23

2
11 1 1 23 12 23

2
11 1 1 23 12 23

[ (4 8 4) ][ (4 4 1) 6( )]
3[2 (8 12 7) 2( )]

(4 16 6) 4( )
4 (16 24 14) 4( )

C

C

E K E K G GE
E K G G

E K G G
E K G G

ν ν ν ν
ν ν

ν νν
ν ν

+ + + + − + + +
=

+ + + + +

+ + + − +
=

+ + + + +

 (2.26) 

 
It can also be shown, see [14], that in this case 
 

2
11 1 23 12 23

2
11 1 23

1 [ (1 2 ) 6( )]
15
1 [ 4(1 ) ]
9

C

C

G E K G G

k E K

ν

ν

= + − + +

= + +
 

 

(2.27) 

The parameters in (2.26) and (2.27) are given in (2.16). In a similar way as in the 2D case, for 
stiff fibers (compared to the matrix), the parameters are given in (2.17). 
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Weng and Sun [20] also presented  a 3D variant for the effective properties of 3D randomly 
oriented short-fiber composites. The expressions for the effective Young’s modulus and Poisson’s 
ratio are taken from the Christensen-Waals model in (2.26). As for the 2D case, described in the 
previous section, the parameters involved are given in (2.20). 
 
Finally, the Coleman model [9] presented in (2.10) may also be applied for 3D uniformly 
distribution. As already mentioned in Section 2.1.1, the only change is that 0η  (now) equals 1/5. 

 
Some of the 3D models for the effective Young’s modulus of randomly distributed short-fiber 
composites have been implemented in Matlab, and plotted as shown in Figure 2.2.  In the same 
way as for the 2D case in the previous section, the different models require different material 
parameters, and hence the model results may not be directly comparable. 
 

 

Figure 2.2 Effective Young’s modulus for the composite material versus fiber volume fraction, 
3D case. All values are normalized with the Young’s modulus of the matrix material. 

2.2 Fiber length and fiber orientation distribution functions 

In the previous section, rule of mixtures models for the effective properties of randomly 
distributed short-fiber composites have been presented. In these models, the composite properties 
are established from assuming that all orientations are equally probable. Moreover, the fiber 
length and diameter, defining the aspect ratio of the fibers, are assumed to be constant. To extend 



 
  
  

 

FFI-rapport 2011/00212 19   
 

this a bit further, functions have been presented in the literature to also include variations in fiber 
length and fiber orientation. The variation in fiber length is denoted the fiber length distribution 
(FLD) function, whereas the variation in fiber orientation is called the fiber orientation 
distribution (FOD) function. Some commonly applied FLD and FOD functions will be presented 
next.  
 
Fu and Lauke [3;24;25] put up a two-parameter Weibull distribution for modeling the FLD, 
 

1( ) ( / )( / ) ex p [( / ) ]m mf l m n l n l n−= − , (2.28) 
 
for 0l > , where n  and m are shape parameters. Another form of the Weibull distribution 
function is the so-called Tung distribution,  
 

1( ) exp( )b bf l abl al−= − , (2.29) 
 
also valid for 0l > . Setting b m=  and ma n−=  into the Tung distribution, gives the Weibull 
distribution function. The cumulative distribution function, can then be given as 
 

0

( ) ( ) 1 exp( )
l

bF l f l dl al= = − −∫ , (2.30) 

 
and the mean fiber length as 
 

1/
mean

0

( ) (1/ 1)bl lf l dl a b
∞

−= = Γ +∫ . (2.31) 

 
The Tung distribution has recently been applied by Fu et al. [26] for analyses of carbon nanotubes 
polymer composites. 
 
For the FOD, Fu and Lauke [3;24;25] used a two-parameter function proposed by Xia et al. [27],  
 

max

min

2 1 2 1

2 1 2 1

{sin( )} {cos( )}( )
{sin( )} {cos( )} d

p q

p q

g θ

θ

θ θθ
θ θ θ

− −

− −

=

∫
. 

(2.32) 

 
The angle θ  is defined as the angle between the fiber direction and the direction of the applied 
load. During production, the fibers are typically distorted, moved, and broken, for example in an 
injection molding process, and hence the fiber length and the orientation of the fibers vary in a 
short-fiber composite. Although considering a 3D distribution, the fiber orientation can, as an 
approximation, still be modeled by the single angle θ describing the direction of the fiber within 
the composite plane. An algebraic expression for the integral of the above FOD function is, 
however, only available for certain fiber orientation ranges.  
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Fu and Lauke [3;28] presented the same probability functions as described in [3;24;25] for 
characterization of the anisotropy of the elastic modulus of misaligned short-fiber reinforced 
polymers (SFRP). In addition to the above two functions, they included another fiber orientation 
distribution function (g φ) , based on the work by Xia et al. [27],  for the variation in another 
direction than considered by the ( )g θ  function in (2.32),  

 

max

min

2 1 2 1

2 1 2 1

{sin( / 2)} {cos( / 2)}( )
{sin( / 2)} {cos( / 2)} d

s t

s t

g φ

φ

φ φφ
φ φ θ

− −

− −

=

∫
. 

(2.33) 

 
While the angle θ  is defined as the angle between the 1-axis (the axis in the direction of the 
externally applied load) and the local fiber axis, the angle φ  is defined as the angle between the 

2-axis and the projection of the fiber on to the 2-3-axes plane. A sketch of the coordinate 
directions is found in [28]. Note that in the latter expression the angle varies from 0 to π .  
Moreover, a similar expression for this angle range can be expressed also for the ( )g θ function in 
(2.32). In that case, to satisfy the periodic conditions, p  must equal q , and s must be equal to t .   

 
Chin et al. [29] presented two possible approaches for modeling the FLD. The first approach was 
the two-parameter Weibull distribution, which is expressed as  
 

1

( ) exp[ ( / ) ]
c

cc lf l l b
b b

−
 = − 
 

. (2.34) 

 
Here, b and c are shape parameters. From this, one may find an expression for the mean fiber 
length, which by definition is equal to the expected fiber length,  
 

mean exp= 1l l b
c
1 = Γ + 

 
, (2.35) 

 
where Γ is the gamma function. The function in (2.34) is, in fact, identical to the function 
presented by Fu and Lauke [3;24;25], given in (2.28), with c m= and b n= . 
 
The second function presented by Chin et al. for the FLD is a log-normal distribution function, 
which may be expressed as, 
 

21( ) exp[ (ln / 2 ]
2

f l l s
sl

µ
π

2= − − ) , (2.36) 

 
where s and µ are model parameters, and l is, as before, the fiber length. Note that the fiber 
length, l , in the denominator of the above expression is missing in Equation (7) in [29]; this is 
probably a misprint. 
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In this case, the mean fiber length (and the expected fiber length) may be expressed as, 
 

2

mean exp exp[ ]
2
sl l µ= = + . (2.37) 

 
Moreover, the most probable length (modal length) may be expressed as 
 

2
mod exp[ ]l sµ= − . (2.38) 

 
From rearranging the expressions in (2.37) and (2.38), the model parameters may be expressed as, 
 

mean mod

mean mod

2 (ln ln )
3
ln ln

3

s l l

l lµ

= −

2 +
=

 (2.39) 

 
For the FOD, Chin et al. [29] proposed a modified version of the model by Kacir et al. [30]. To 
be more specific, the probability density function and the cumulative distribution function of Chin 
et al. read 
 

2

2

1
1( )
1

eg
e
eF
e

λθ

π λ

λθ

π λ

λθ

θ

−

−

−

−

( ) =
−
−

=
−

 (2.40) 

 
respectively. It is seen that ( )F θ , which is the accumulated percent of fibers oriented between 

zero and θ± , satisfies the requirement ( ) 1
2

F π
= , which means that the relative probability of the 

fiber angle to be between 0 and / 2π  equals unity.  That is, since all fibers are oriented in the 
range from 0 to / 2π , the cumulative distribution function must equal 100 percent for all values 
of λ .This is, however, not the case for the FOD function proposed by Kacir et al. [30], expressed 
as, 
 

( ) e λθρ θ λ −= . (2.41) 
 
That is, the orientation distribution function is not normalized, and therefore it is only suitable for 
cases where λ is large. 
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The integral of the Chin et al. FOD function in (2.40) is 
 

max max

maxmin

min min 2 2

1( )
1 1

eg d d e e
e e

θ θ λθ
λθλθ

π πλ λ
θ θ

λθ θ θ
−

−−

− −
 = = − 

− −
∫ ∫ . (2.42) 

 
For an angle variation of  θ  from zero to / 2π , the latter integral becomes unity. 
 
To get a better understanding of how the fiber orientation is affected by the values ofλ , the 
probability density function and the cumulative distribution function in (2.40) are plotted in 
Figure 2.3 and Figure 2.4, respectively, for different values ofλ . As can be seen, a large value 
ofλ indicates that the fibers are aligned, whereas a small value of λ indicates a random 
distribution. Similar plots are shown in [29]. 
 

 

Figure 2.3 Orientation density curves for various values ofλ . 
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Figure 2.4 Cumulative distribution of fibers for various values ofλ . 

 
Chen and Cheng [31] used a slightly more complex theory for estimating the elasticity properties 
of a plane and transversely isotropic material case. They adopted the single exponential fiber 
orientation function proposed by Kacir et al. [30], defined by (2.41). In addition to the fiber 
distribution, the elastic moduli of the short-fiber composite were assumed to be a function of the 
elastic moduli of the constituent materials, the fiber volume fraction, and the aspect ratio. 
Different expressions for the components of the stiffness matrix were applied in cases of planar 
orientation of the fibers and transversely isotropic situations. In the latter case, the distribution 
function ρ θ( )  was assumed axisymmetric with respect to one major axis of the test specimen 

considered, and the material then became transversely isotropic in planes normal to this axis. 
Unfortunately, all parameters are not defined in the paper, and hence it is difficult to implement 
this model. 
 
In later sections, some models, where the above distribution functions are applied in estimating 
the effective Young’s modulus for the composite, will be described. 
 



 
  
  
 

 24 FFI-rapport 2011/00212 

 

2.3 The laminate analogy approach (LAA) 

A laminate analogy approach has been employed in many papers for estimating the effective 
elasticity modulus of short-fiber composites. One of the earliest approaches, and probably the 
first, was proposed by Halpin and co-workers [32-34]. In this approach, the short-fiber composite 
is modeled mathematically as a laminated composite. General laminate theory is applied, see e.g. 
[5]. 
 
The effective properties of the quasi-isotropic short-fiber composite can in this model be 
expressed as, 
 

5 1 5

1

4 ( )
C

U U UE
U
−

= , (2.43) 

 
1 5

1

2
C

U U
U

ν −
= , (2.44) 

 
5CG U= . (2.45) 

 
Here, 
 

11 22 12 66
1

11 22 12 66
5

3 3 2 4
8
2 4
8

Q Q Q QU

Q Q Q QU

+ + +
=

+ − +
=

 (2.46) 

 
with 
 

11

22

12

66

1

1

1

L

LT TL

T

LT TL

L TL

LT TL

LT

EQ

EQ

EQ

Q G

ν ν

ν ν
ν

ν ν

=
−

=
−

=
−

=

 (2.47) 

 
In the above expressions, LE is the longitudinal elasticity modulus and TE is the transverse 
elasticity modulus, LTν is the major Poisson’s ratio and TLν is the minor Poisson’s ratio, and 
finally, LTG is the in-plane shear modulus.  



 
  
  

 

FFI-rapport 2011/00212 25   
 

The elasticity moduli and the shear modulus are in this model calculated from the Halpin-Tsai 
expressions, which are expressed as 
 

1 (2 / )
1

L f
L m

L f

l d V
E E

V
η

η
+

=
−

, (2.48) 

 
1 2
1

T f
T m

T f

V
E E

V
η
η

+
=

−
, (2.49) 

 
and 
 

1
1

S f
LT m

S f

V
G G

V
η
η

+
=

−
, (2.50) 

 
 
where 
 

( / ) 1
( / ) 2( / )

f m
L

f m

E E
E E l d

η
−

=
+

, (2.51) 

 
 

( / ) 1
( / ) 2

f m
T

f m

E E
E E

η
−

=
+

, (2.52) 

 
and 
 

( / ) 1
( / ) 1

f m
S

f m

G G
G G

η
−

=
+

. (2.53) 

 
As can be seen, the shear modulus may be expressed in a similar way as the elasticity moduli; for 
convenience, we have repeated the expressions for the elasticity moduli here (already given in 
(2.6) - (2.9)). Moreover, for the longitudinal Poisson’s ratio a rule of mixture expression is used, 
resulting in 
 

(1 )LT f f m fV Vν ν ν= + − . (2.54) 
 
The minor Poisson’s ratio may be expressed as, 
 

LT T
TL

L

E
E

νν = . (2.55) 
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The Halpin et al. model presented in this section and the 3D rule of mixtures models introduced 
in Section 2.1.2 are shown in Figure 2.5. The same set of material parameter values are used for 
all models in the plot. As also mentioned in the discussion of Figure 2.1, the length of the (short) 
fibers are not explicitly included in all the models, and therefore the results are not directly 
comparable. However, as can be seen in the plot, the Halpin et al. model (blue, dashed line) is 
very close to the Halpin-Tsai rule of mixtures model (in magenta). 
 

 

Figure 2.5 Effective Young’s modulus for the composite material versus fiber volume fraction, 
3D case. All values are normalized with the Young’s modulus of the matrix material. 

2.4 A laminate approximation model with an explicit FOD function 

The LAA described in Section 2.3, which here will be referred to as the original LAA, is based on 
the Halpin-Tsai expressions developed and established from empirical test results. In this model, 
the fiber aspect ratio, i.e. the fiber length divided by the fiber diameter, is set to some constant 
value, and the variation in fiber orientation is implicitly contained in the model. As already 
mentioned, models that explicitly include distribution functions for fiber length and fiber 
orientation have been presented, and a model described by Choy et al. [35], where a FOD 
function is explicitly included, will now be described. 
 
In the Choy et al. model, the material properties are given referred to the local fiber system for 
each ply in a layered composite. These axes generally make angles with respect to the (fixed) 
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global coordinate system for the composite. The relationship between the components of the 
stiffness matrix in the global, or off-axis, system and the local fiber system, can be expressed as 
 

'
11 1 2 3
'
22 1 2 3
'
12 4 3
'
66 5 3

'
16 2 3

'
26 2 3

cos 2 cos 4

cos 2 cos 4

cos 4

cos 4
1 sin 2 sin 4
2
1 sin 2 sin 4
2

Q U U U
Q U U U
Q U U
Q U U

Q U U

Q U U

θ θ

θ θ

θ

θ

θ θ

θ θ

= + +

= − +

= −

= −

= +

= −

 (2.56) 

 
where 
 

11 22 12 66
1

11 22
2

11 22 12 66
3

11 22 12 66
4

1 4
5

3 3 2 4
8

2
2 4
8
6 4
8

2

Q Q Q QU

Q QU

Q Q Q QU

Q Q Q QU

U UU

+ + +
=

−
=

+ − −
=

+ − −
=

−
=

 (2.57) 

 

Please note that the expressions for the components referred to the local fiber system, ijQ , are not 

explicitly given in [35]. However, it may be assumed that the standard laminate theory, as 
described in e.g. [5], and with the components given in (2.47), is applied.  

 

Now, using the syntax in [35], referring to [36;37], a set of modified rule of mixtures expressions 
for unidirectional lamina can be written. The Young’s modulus along the fiber direction, 1E , and 
the longitudinal Poisson’s ratio, 12ν , of the unidirectional composite may be expressed as   

 
1 1

1
1

f f m m

f m

V E V E
E

V V
η

η
+

=
+

, (2.58) 

 
1 12

12
1

f f m m

f m

V V
V V

η ν ν
ν

η
+

=
+

. (2.59) 
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The longitudinal shear modulus, 6G , the transverse shear modulus, 4G , and the plain strain bulk 

modulus, k , may be written 
 

6
6

6

6

f m

f m

f m

V V
G V V

G G

η
η

+
=

+
, 

(2.60) 

 
4

4
4

4

f m

f m
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G V V

G G

η
η

+
=

+
, 

(2.61) 

 
f k m

f k m

f m

V V
k V V

k k

η
η

+
=

+
. 

(2.62) 

 
Finally, the transverse Young’s moduli are related to the above parameters, 
 

4
2 3

4

4kGE E
k mG

= =
+

, (2.63) 

 
where 

2
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1

41 km
E
ν
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Moreover, 
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1
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f

f

V

V
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−
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−
−

, 
(2.65) 

 
with 1/2[2 / ( (1 ))]m f f fG V Eβ ν= − and /l dα = , and 
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In all the above expressions for this model, f refers to the fibers, whereas m refers to the matrix. 

From a stress-strain relation for the laminated composite, the stiffness matrix may be expressed as 
 

/2
' '

/2

1 ,      , 1, 2,6
h

ij ij
h

A Q dh i j
h −

= =∫ , (2.67) 

 

where h is the thickness of the laminate and '
/21

h edh d
e

λθ

λπ

λ θ
−

−=
−

 , with the FOD function 

explicitly included.  
 
Substituting (2.56) into (2.67), we get  
 

11 1 2 1 3 2

22 1 2 1 3 2

12 4 3 2

66 5 3 2

16 26 0

A U U V U V
A U U V U V
A U U V
A U U V
A A

= + +

= − +

= −

= −

= =

 (2.68) 

 
Here,  
 

/2 2 /2
'

1 2 /2
/2

1 (1 )cos 2
( 4)(1 )

h

h

eV dh
h e

λπ

λπ

λθ
λ

−

−
−

+
= =

+ −∫ , (2.69) 

 
and 

/2 2
'

2 2
/2

1 cos 4
16

h

h

V dh
h

λθ
λ−

= =
+∫ . (2.70) 

 
The in-plane elastic moduli can then be calculated from the in-plane stiffness. Moreover, from 
assuming uniform out-of-plane stresses, also the out-of-plane elastic moduli can be calculated 
from the above expressions. More details can be found in the paper. 

2.5 The laminate-plate method 

As an even further development of the laminate approximation approach described in the 
previous sections, the modeling can be extended by also explicitly including a fiber length 
distribution (FLD) function. One such model, which is based on the original laminate analogy 
approach (LAA), is referred to as the laminate-plate method [3;24;25;29]. The real composite is 
in this model, as in the original LAA, replaced by a layered short-fiber model composite. The 
terms set by the authors for the real composite and the model composite will be adopted in this 
report.  
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In the laminate-plate method, it is assumed that the overall fiber orientation can be described by a 
probability function for the in-plane fiber orientation. Hence, in the simulated composite it is 
assumed that no fibers are pointing out of the plane. The loading direction is in the in-plane 
direction. Thus, the out-of-plane direction is perpendicular to the loading plane. The simulated, or 
model, composite is first defined by a set of laminae, each with a given fiber length. Hence, the 
fiber length is constant for each laminate. Second, each laminate with a given fiber length is again 
split up in to a set of laminae, where each laminate has a given fiber orientation. In this way, all 
fibers in each laminate have the same length and orientation. From this, models for aligned short-
fiber composites with a constant fiber length, such as the Halpin-Tsai model, may be applied in 
the modeling, see Section 2.1.1.  A sketch of the simulated composite is shown in Figure 2 in [3]. 
 
A laminate-plate model, very similar to the one just described, has also been presented by Xia et 
al. [27]. In their model, the laminate is build up of a core layer and two (outer) skin layers. The 
skin layers are split up into layers with fibers of equal length and with in-plane fiber orientation. 
Each layer is then again split up into a set of laminae with in-plane unidirectional fiber 
orientation. The core layer, on the other hand, is first split up into a set of laminae, with a given 
fiber length for each laminate, but with out-of-plane fiber orientation. Next, each laminate is 
again split up into laminae with unidirectional fiber orientation projected onto the in-plane plane. 
A sketch of the model composite in this case is shown in Figure 2 in [27]. This particular model 
will, however, not be further discussed in this report. 
 
In the next section, general expressions are given for estimating the effective Young’s modulus 
using the laminated-plate method in [3;24;25;29]. These expressions contain the longitudinal 
elasticity modulus, as well as a fiber length distribution function (FLD) and a fiber orientation 
distribution function (FOD). The expressions applied for the longitudinal elasticity modulus will 
be given in Section 2.5.2. The expressions for the distribution functions are already given in 
Section 2.2. To recapitulate, the FLD and FOD functions given in (2.29) and (2.32), respectively, 
are applied by Fu and Lauke [3;24;25] in estimating the Young’s modulus of a misaligned short-
fiber composite. If including these probability functions, the fiber length and the fiber orientation 
can explicitly be taken into account. Similarly, the FLD and FOD functions from (2.36) and 
(2.40), respectively, are employed by Chin et al. [29] for the same purpose; Kacir et al. [30] used 
the same FLD, but the FOD was replaced by the function in (2.41). The laminate-plate method 
may hence be seen as an extension of the models for the effective properties of a randomly 
oriented short-fiber composite described in sections 2.1, 2.3, and 2.4. 

2.5.1 General expressions for the effective properties of the composite 

In the same way as described in Section 2.4, material properties are given referred to the local 
fiber system for each ply in a layered composite. These axes generally make angles with respect 
to the global coordinate system for the complete composite.  
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The relationship between the components of the stiffness matrix in the global, or off-axis, system 
and the local fiber system, can be expressed as [5], 
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. (2.71) 

 
Here, cosm θ= and sinn θ= , and the components of the right hand side vector ijQ are given in 

(2.47).  
 
From the simulated composite, the overall stiffness properties are found by summing the 
contribution from each layer, where the layer material properties are multiplied by the layer 
thickness. However, when introducing continuous distribution functions for the variation in fiber 
length and fiber orientation, the overall stiffness matrix is expressed by an integral, that is [3], 
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where min max0 l l l≤ ≤ ≤ < ∞ , and min max0 / 2θ θ θ π≤ ≤ ≤ ≤ .  

 
Inserting the expressions in (2.71) into (2.72), the integrand of each component of the stiffness 
matrix, ijA , can be written as a product of a fiber length dependent function and a fiber orientation 

dependent function. This yields, 
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The stiffness components above are applicable to different longitudinal elasticity modulus 
functions, as well as various fiber length and fiber orientation distribution functions.  
Furthermore, the effective composite engineering tensile properties are given by [3] 
 

2
11 22 12

11
22

A A AE
A
−

= , (2.77) 

 
2

11 22 12
22

11

A A AE
A
−

= , (2.78) 

 

12 66G A= , (2.79) 
 

12 12
12 11 2

11 22 12 22

A AE
A A A A

ν = =
−

. (2.80) 

 
As an extension of the integral expression in (2.72), Fu and Lauke [28] included an additional 
function for the fiber orientation distribution, see Section 2.2. In this case, the stiffness matrix for 
the composite is expressed as  
 

max max max

min min min

' ( ) ( ) ( )
l

ij ij
l

A Q f l g g dld d
θ φ

θ φ

θ φ θ φ= ∫ ∫ ∫ , (2.81) 

 
with ( , )Θ Φ being the loading direction, or the direction of the measurement. This latter model is 

discussed no further in this report, but more details can be found in the referred paper [3]. 

2.5.2 The longitudinal Young’s modulus 

As indicated in the previous section, the two first components of the right hand side vector,Q , in 
(2.71) contain the longitudinal elasticity modulus, LE . Furthermore, the LE is generally a function 

of the fiber length, and must therefore be kept within the integral expression for the composite 
stiffness matrix. The other material parameters for a unidirectional layer do not depend on the 
fiber length. Different expressions for the longitudinal Young’s modulus are found in the 
literature, and two of them will be described in the following.  
 
An often employed approach for modeling the longitudinal elasticity modulus is using the Halpin-
Tsai expression, given in (2.6).  A second approach is applying the shear-lag model by Cox [2], 
referred to in [3], 
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, (2.82) 
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where  fV is the fiber volume fraction, fE is the elasticity modulus of the fibers, mE is the 

modulus of the matrix, as before, and  
 

1/2

2

2
( ) ln( / )

m

f f f

G
E r R r

πβ
π

 
=  
  

, (2.83) 

 
where mG is the shear modulus of the matrix, and R is a parameter for the mean separation of the 

fibers to their length. For a hexagonal packing of the fibers, the logarithmic factor in the 
denominator can be expressed by 
 

1 2ln ln
2 3f f

R
r V

π  
=         

, (2.84) 

 
while a square packing of the fibers leads to 
 

1ln ln
2f f

R
r V

π   
=      

   
. (2.85) 

 
These two model approaches for the longitudinal elasticity modulus will be applied in the 
following. 

2.5.3 Three model cases 

With the above general expressions and models for calculating the effective Young’s modulus, 
we now describe three models, namely the Fu-Lauke model [3;24;25], the Chin et al. model [29], 
and the Kacir et al. [30] model. In each case, the distribution functions for the fiber length and the 
fiber orientation define the model. Furthermore, for each model the expression for the 
longitudinal Young’s modulus applied may be varied.  
 
Two variants have been described in the previous section, that is, the Halpin-Tsai expression and 
the Cox shear-lag expression. Also, taking into account that the shear-lag model includes two 
different ways of packing the fibers, we then end up with three different expressions for each 
model, resulting in three different integral expressions for the stiffness matrix. In addition to this, 
diverse assumptions are made for the solution of the integral. 

2.5.3.1 The Fu-Lauke model 

The FLD and FOD functions applied in the Fu-Lauke model [3;24;25] are given in (2.29) and 
(2.32), respectively. These functions are substituted into the expressions for the components of 
the stiffness matrix in (2.73) to (2.76). Due to the cutting process (from a fiber tow) and the 
production process of the short-fiber composite, the fiber length is assumed to be in the range 
from minl  to the cut length of the fibers, maxl . For the fiber length dependent integral, an explicit 

expression for the solution is, however, not available. This is at least the case for Matlab, which is 
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applied for the calculations; both the FLD function and the longitudinal Young’s modulus are 
generally depending on the fiber length. Moreover, for the fiber orientation dependent integral, a 
solution is not available for all ranges of fiber orientations. From assuming that the orientation of 
the fibers are in the range from zero to / 2π , i.e. min max0 / 2θ θ θ π= ≤ ≤ = , the solution of this 

integral can be explicitly expressed by the Γ function. 
 
Due to the challenges of solving the fiber length dependent integral, LE  is, as a first 

approximation, assumed to be constant. In this way, we can move the term containing the 
material parameters outside the integral, and limit the integration to the FLD function. An 
analytical expression for the integral of the FLD function alone is available, and given in Section 
2.2. 
 
The fiber length in the expression for the constant longitudinal elasticity modulus is set to either 
the mean fiber length or the modal fiber length. In the Fu-Lauke model, the mean fiber length is 
calculated from 
 

1/
mean

0

( ) (1/ 1)bl lf l dl a b
∞

−= = Γ +∫ . (2.86) 

Moreover, the most probable fiber length, i.e. modal length, can be found from setting 0df
dl

= , 

giving 
 

1/

mod
1 1 b

l
a ab
 = −  

. (2.87) 

 
In the above expressions the shape parameters a and b  are tuned such that the modal and mean 
values are within the fiber length interval, i.e. larger than or equal to minl , and smaller than, or 
equal to, maxl . From these assumptions, the components of the laminate stiffness matrix can be 

written as 
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 (2.88) 
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 (2.91) 

 
In the second case, the elasticity modulus is assumed to be a function of the fiber length, and can 
hence not be moved outside the integral. Because no analytical solution of the fiber length 
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dependent integral is available, numerical integration is used.  One solution is employing the 
Simpson’s rule, which reads, 
 

( ) ( ) 4 ( )
6 2

b

a

b a a bf x dx f a f f b−  +  = + +    
∫ . (2.92) 

 
Please note that for the Fu-Lauke model, only the effective Young’s modulus in (2.77) is valid for 
the real composite, whereas the rest of the expressions are valid for the model composite.  

2.5.3.2 The Chin et al model 

In the Chin et al. [29] model case,  the FLD and FOD functions employed are given in (2.36) and 
(2.40), respectively. For the same reasons as described for the Fu-Lauke model, see Section 
2.5.3.1, we assume that the orientation of the fibers are in the range from zero to / 2π , i.e. 

min max0 / 2θ θ θ π= ≤ ≤ = . In this way, an explicit solution of the integral is available.  Also, no 

explicit solution of the fiber length dependent integral is available. 
 
As for the Fu-Lauke model in the previous section, we first apply a constant value for LE , such 

that the material parameters can be put outside the integral expression. An analytical solution of 
the integral of the FLD function is given in Section 2.2. For the calculations, the modal and mean 
fiber length is taken from the Fu-Lauke model. These values are applied in the expression for the 
longitudinal elasticity modulus, as well as for the parameters for the log-normal distribution 
function. Hence, the values of a and b are equal to the values in the Fu-Lauke modeling.  
 
From these assumptions, the components of the stiffness matrix in this case become, 
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(2.93) 
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(2.96) 

 
Instead of applying a constant value for the longitudinal elasticity modulus, which is calculated 
by inserting the modal or the mean fiber length, one may find an averaged modulus where the 
FLD function is included. Chin et al. [29] suggest that the mean longitudinal elasticity modulus 
could be calculated from 
 

0

0

( ) ( )
( )

( )

L

L

E l f l dl
E L

f l dl

∞

∞=
∫

∫
. (2.97) 

 
This approach has, however, not been studied further in this report. 
 
A third approach is applying numerical integration for the fiber length dependent part, in the same 
way as described for the Fu-Lauke model.  

2.5.3.3 The Kacir et al model 

The model by Kacir et al. [30] is implemented in almost the same way as the Chin et al. model. 

The only difference is the lack of the constant factor 2(1 )e
π λ−

−  in the denominator of the FOD 
function. Because the exponential term is approaching zero for 10λ ≥ , which is the value 
typically applied for getting the main fiber orientation in the direction of the applied load, the two 
models produce the same result for the effective Young’s modulus for the composite.   
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2.6 The paper physics approach (PPA) 

Cox conducted a pioneer work on what is commonly referred to as the paper physics approach 
(PPA) [2]. Several others have later applied and referred to this approach, see e.g. [3;38] and the 
references therein. 
 
In the PPA, the key point is calculating the force across a scan line in the test specimen. This 
involves first calculating the number of fibers with length l and orientation θ  that crosses this 
(imaginary) scan line. Second, the axial force in a fiber of length l  and orientationθ  is 
calculated, and the load-direction component of this force is found. Third, the calculated load-
direction axial force is multiplied by the number of fibers crossing the scan line. Finally, this 
quantity is integrated over the fiber length and fiber orientation distribution, to calculate the total 
force sustained by the fibers crossing the scan line. 
 
According to Fu and Lauke [3], which refer to the paper by Jayaraman and Kortschot [38], the 
elastic modulus of the short-fiber composite in the load direction can, in the context of the PPA, 
be expressed as, 
 

_

11 1 2 (1 )f f m fE E V E Vχ χ= + − . (2.98) 

 
In this expression, χ1  and 2χ  are fiber length and fiber orientation factors, respectively, and 

given as, 
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and 
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θ

χ θ ν θ θ θ θ2  = − ∫ , (2.100) 

 
where min max0 l l l≤ ≤ ≤ ≤ ∞  and min max0 / 2θ θ θ π≤ ≤ ≤ ≤ .  

 
For illustration and for relating to the laminate-plate method in Section 2.5, we apply the same 
FLD and FOD functions for the PPA. In the first case, inserting the distributions functions of the 
Fu-Lauke model in (2.29) and (2.32), the integral expressions in (2.99) and (2.100) become 
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and 
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where the latter expression is based on the fact that min max0 / 2θ θ θ π= ≤ ≤ = , as also assumed 

for the Fu-Lauke model, see Section 2.5.3.1.   
 
In the second case, applying the Chin et al. model in Section 2.5.3.2, the distribution functions 
becomes, 
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 (2.104) 

 
where the latter expression again is based on the fact that min max0 / 2θ θ θ π= ≤ ≤ = .  

 
Both models include the Cox shear-lag function, where the value of β  depends on the packing of 

the fibers.  
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3 Summary and future work 
In this report, different models are described for calculating the effective modulus of randomly 
oriented short-fiber reinforced composite materials. The survey is not at all complete, but gives 
some examples on possible modeling approaches. 
 
The overall purpose of this study is to establish a fundament for further research within the field 
of discontinuous fiber composites. The next step will be to apply the short-fiber model 
expressions to nanocomposites.  If required, adjusted variants, or new models, will be established. 
   
At this point in the study of discontinuous fiber composites, sufficient experimental tests have not 
been performed. This will be included in later studies. 
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