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Abstract—Emerging applications in the Internet of Things
(IoT) will depend on the accurate location of thousands of
deployed sensors. However, accurate localization of deployed sen-
sors nodes is a classical optimization problem which falls under
NP-hard class of problems. Therefore in this work, we propose
a new distributed localization algorithm using social learning
based particle swarm optimization (SL-PSO) for IoT. With SL-
PSO algorithm, we aim to do precise localization of deployed
sensor nodes and reduce the computational complexity which
will further enhance the lifetime of these resource constrained
IoT sensor nodes. Extensive simulations are carried out to show
the effective performance of SL-PSO algorithm in accurate
localization. Experimental results depict that SL-PSO algorithm
can not only increase convergence rate but also significantly
reduce average localization error compared to traditional particle
swarm optimization (PSO) and its other variants.

I. INTRODUCTION

With the plethora of wireless devices, we are moving
towards the connected world which is the guiding principle
for the internet of things (IoT). IoT is a network of physical
objects such as sensors which are further embedded with
software, electronics and network connectivity that allows
these physical entities to collect and exchange data between
them [1][2]. There are numerous applications of IoT such as
routing, target tracking, monitoring homes, cities, automation,
health monitoring, transportation management and environ-
ment [3]. All these applications of IoT are possible due to
the deployment of sensor nodes which continuously monitor
the surrounding environment and entities, collect and send
sensed data according to the application requirement in IoT.
Accurate localization of sensor nodes is the prerequisite to
run these emerging applications of IoT as it is staggeringly
difficult to differentiate sensed data and employ sensing infor-
mation of the nodes without location information [4]. That’s
why it is often believed that sensing without localization is
meaningless. Besides, accurate localization of sensor nodes
also help to tackle problem such as geographic routing [5],
intrusion detection [6], traffic monitoring [7] and so on.
However, accurate localization of deployed sensors nodes is

a classical optimization problem which falls under NP-hard
class of problems [8].

Using conventional ways, each sensor nodes can be local-
ized by navigation system such as Global Positioning System
(GPS) [9]. Further, it would be difficult to get the location
information of the sensor nodes if it is deployed in urban or
indoor environment where the satellite signal may be severely
affected or blocked [10]. Moreover considering the size, cost
and power consumption constraint of GPS receivers make it
impossible for it’s use on each resource constrained sensor
nodes. It should be noted that these sensor nodes are battery
operated and are deployed in a random fashion over a area
or region. Therefore, conserving the energy consumption of
these sensor nodes will enhance their lifetime operation [11].

An unknown IoT sensor node’s location (X,Y ) can be
estimated if it is in the communication range of at least
three anchor nodes which have a priori knowledge about their
location information as (X1, Y1), (X2, Y2), (X3, Y3) respec-
tively [12]. The process of localization consists of two phases
namely ranging phase and estimation phase. In the ranging
phase, an unknown sensor node estimate their distance based
on Received Signal Strength Identification (RSSI), Time of
Arrival (TOA) of received signal, Time Difference of Arrival
(TDOA) of received signal [13] etc. The results obtained
during the ranging phase is affected by the noise factor and
thus likely to be inaccurate [14]. In the estimation phase,
the position of an unknown sensor node is calculated using
the ranging information from the first phase. This can be
done either by using conventional mathematical optimization
algorithms such as solving a set of simultaneous equations
or by using stochastic optimization algorithms that minimizes
the localization error. The focus of this work is on bio-inspired
stochastic optimization algorithms. For clear representation of
the localization of sensor nodes in the context of IoT, we have
clearly shown it in Fig. 1.

Many localization algorithms have been proposed for the
wireless sensor networks (WSN) to surmount the localization
accuracy and increase lifetime of wireless sensor nodes and
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have been documented in the literature [15][16]. A WSN node
localization based on bio-inspired PSO has been proposed
in [17][18]. However, PSO is likely to get trapped in local
minima of the optimization problem. A brief introduction to
PSO will be presented in the next section. Different variants of
the PSO algorithm has been widely researched and proposed in
the literature. A distributed localization for WSN using binary
PSO (BPSO) has been proposed in [19]. The authors showed
the fast computation of the BPSO algorithm on the WSN
sensor node localization process at the expense of increased
localization error. A distributed localization of WSN node
based on differential evolution approach has been proposed
in [20]. The authors demonstrated results for different sce-
narios delimited by walls and tested with inner obstacles
to obtain a suboptimal solution. A recursive shortest path
routing algorithm with it’s application in WSN localization has
been proposed in [21]. Their proposed recursive shortest path
routing algorithm is capable of estimating the shortest distance
between two non-neighbouring sensors in multi-hop wsn. A
localization scheme for IoT has been proposed in [4]. The
authors proposed scheme consists of two phases namely the
partition phase and localization refinement phase. In partition
phase, the target region is first divided into small grids. Then in
localization refinement phase a higher accuracy of localization
can be obtained by applying a compact algorithm which
can easily implement two-dimensional plane localization with
a regular deployment of reference nodes. An effective bio-
inspired cuckoo search algorithm for sensor node localization
in WSN has been proposed in [22]. The author showed the
effective performance of cuckoo search algorithm on reducing
average localization error and increasing convergence rate.
Bio-inspired algorithms are known to be computationally effi-
cient algorithms and are widely used for solving optimization
problems. Out of all proposed bio-inspired algorithms in the
literature so far, PSO is widely chosen optimization algorithm
because of its simplicity and ease of implementation. An
interesting new variant of the PSO algorithm inspired from
social behaviour found in animals, which they called ‘SL-PSO’
has been proposed in [23]. The authors showed the superior
performance of the ‘SL-PSO’ algorithm in solving scalable
optimization problems. This ‘SL-PSO’ algorithm serves as
the basis for our proposed localization algorithm in IoT as
described in more detail in the next section.

The main contribution of this paper can be outlined as:

1) We first surveyed the bio-inspired algorithms, such as
PSO and its variants BPSO and Modified BPSO algo-
rithm, to tackle the distributed localization issue in IoT.

2) We then formulate and propose a new distributed SL-
PSO localization algorithm and show its superiority over
PSO and its variants.

3) We have performed extensive simulation to verify that
the SL-PSO algorithm significantly reduces average
localization error and that it is computationally more
efficient than PSO and its variants.

The rest of the paper is organized as follows. Section II gives
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Fig. 1. Illustration of Localization of Sensor Nodes in Internet of Things

a brief survey of the PSO, BPSO, Modified BPSO and SL-PSO
algorithms. In Section III, we explalin our proposed SL-PSO
localization algorithm for IoT. Simulations and performance
evaluation of the proposed SL-PSO localization algorithm and
comparison with PSO, BPSO, and Modified BPSO localization
algorithms is carried out in Section IV. Conclusion is drawn
in Section V.

II. STANDARD BIO-INSPIRED ALGORITHMS

This section gives a the brief survey of standard bio-inspired
algorithms like PSO, BPSO, Modified BPSO and SL-PSO.

A. Particle Swarm Optimization (PSO)

PSO is a widely used population based stochastic optimiza-
tion algorithm developed by Kennedy and Eberhart in 1995
[24]. PSO is a bio-inspired algorithm, which takes the inspi-
ration from social behaviour of bird flocking or fish schooling.
It should be noted that unlike other genetic algorithms, there
are no evolution operators such as crossover or mutation, and
there are only a few paramenters to adjust, which makes PSO
algorithm easy to implement. The birds or fishes representing
particles in PSO algorithm fly through the problem space by
learning from the current optimum particle to find the optimum
value of the cost or objective function. Here, the cost or
objective function represents the food for birds or fishes that
needs to be found in search/problem space. PSO is initialized
with a group of random particles (solutions) and then searches
for optima by updating the generations. In PSO, each particles
is able to memorize the best position known as the global
best or Gbest found by the whole swarm in history, and the
best position known as the personal best or Pbest that has
been found by each particle. The global optimum solution of
the optimization problem is found by particles learning from
the Gbest and Pbest positions. The learning process of the
standard PSO algorithm can be represented by the following
two equations:
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Vid(t+ 1) = ωVid(t) + c1r1(t)(Pbestid(t)−Xid(t))+

c2r2(t)(Gbestd(t)−Xid(t))
(1)

Xid(t+ 1) = Xid(t) + Vid(t+ 1) (2)

where ω is inertia weight, t is the iteration or generation
number, Vid(t) and Xid(t) are the velocity and position of
ith particle respectively, c1, c2 are the constant weight factors
known as acceleration coefficients, r1(t), r2(t) are the two
randomly generated vectors in the [0, 1] interval, Pbestid(t) is
the personal best of the ith particle and Gbestd(t) is the global
best of the swarm.

There are other variants of PSO such as BPSO and Modified
BPSO which will be explained in the next subsection. It is
interesting to note that in PSO, a particle only learns through
the personal best Pbest solution and the global best Gbest
solution to solve the optimization problem.

B. Binary Particle Swarm Optimization (BPSO)

Simplifying the PSO algorithm was originally suggested by
Kennedy and has been studied extensively in the literature
to increase the optimization performance, such as the accu-
racy and convergence rate. BPSO is another variant of the
PSO algorithm that searches the solution to the optimization
problem in a binary discrete search space [19]. In BPSO, a
sigmoid transformation is applied to the velocity component
of the particles, which forces to take the value between ‘0’
and ‘1’ and squashes the particles position component values
to be either 0’s or 1’s. Basically, BPSO is a slight modification
of the PSO algorithm which differ by the velocity and particle
positions update equation as follows:

First, the velocity is updated by replacing Vid(t) with
sigmoid(Vid(t)) in Eq. (1) of PSO as

sigmoid(Vid(t)) =
1

1 + e−Vid(t)
(3)

Second, the position of each particle is updated by using:

Xid(t) =

{
1, if rand < sigmoid(Vid(t))

0, otherwise
(4)

C. Modified Binary Particle Swarm Optimization (Modified
BPSO)

Modified BPSO is another variant of the PSO algorithm.
It is a slight modification of the basic BPSO algorithm.
Here, all components remain the same except for the sigmoid
transformation function, which is changed as [25]:

sigmoid ′(Vid(t)) = 2× |sigmoid(Vid(t))− 0.5| (5)

Xid(t) =

{
1, if rand < sigmoid ′(vid(t))

0, otherwise
(6)

Algorithm 1 SL-PSO Algorithm Pseudocode
1: Initialize ω, c1, c2 and maximum number of iterations
tmax

2: Initialize the objective/cost function f(x, y)
3: Initialize Xmin, Xmax, Vmin and Vmax
4: Generate the particles for SL-PSO i.e., Total Number of

particles = N
5: for each particle i.e., particle i do
6: for each dimension d, do
7: Initialize learning probability of particles PLid = (1− (i−

1)/N)α.logd
d
N e

8: Initialize Xid randomly: Xmin ≤ Xid ≤ Xmax

9: Initialize Vid randomly: Vmin ≤ Vid ≤ Vmax
10: end for
11: end for
12: Iteration t = 1
13: while (t ≤ tmax) do
14: for each particle i do
15: calculate cost/objective function f(xi, yi)
16: end for

/* Cost/Objective Function Sorting and Ranking */
17: Do sorting and ranking of cost/objective function f(x, y)

for each particles in increasing order of fitness evaluation
/* Behaviour Learning From All Best Particles */

18: for each particle i do
19: for each dimension d, do
20: pid(t) = rand(0, 1);
21: if pid(t) ≤ PLid then
22: calculate velocity Vid(t+ 1) using Eq. (8) & (9)
23: determine position Xid(t+ 1) using Eq. (7)
24: restrict Xid to Xmin ≤ Xid ≤ Xmax

25: end for
26: end for
27: t = t+ 1
28: end while

D. Social Learning based Particle Swarm Optimization (SL-
PSO)

In the PSO algorithm, as we can see from Eq. (1) and
Eq. (2), the learning process of the particle is updated
through the Pbest and Gbest components only. However,
there may be other better particles in the generated particles
population through which a particle can further learn and
enhance its learning process to find the optimum solution
to an optimization problem. The process of learning and
imitating the behaviour of better individuals in a population is
known as social learning, which can be widely discovered in
social animals. Motivated by this social learning mechanism,
reference [23] proposed an interesting and different variant
of PSO known as the SL-PSO algorithm in which a particle
is able to perform social learning i.e, learning and imitating
the behaviours of any better particles or individuals in the
population. The authors also claimed that their work is one of
the first attempts of its kind to apply a social learning process
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to meta-heuristic stochastic optimization algorithm like PSO.
Without the burden of having individual trial and error by
a particle to find the optimum solution to an optimization
problem, social learning helps the particles to learn from
any better particles. This speeds up the learning rates of the
individual particles. Unlike PSO and its variants - BPSO
and Modified-BPSO where the particles only learn from
historical Pbest and Gbest positions, SL-PSO is executed
on a sorted swarm where a particle in the current swarm
can learn and imitate the behaviour of any better particles
known as demonstrator. Imitators are the particles that learn
or imitate the behaviours of the demonstrators in the current
swarm. A pseudocode of the SL-PSO algorithm is given
in Algorithm 1. In the SL-PSO algorithm, suppose the
sorted swarm according to cost/fitness evaluation and ranking
is Particle1, ..........Particlei, Particlei+1, ....ParticleN ,
where ParticleN is the best particle which will never be
an imitator and it will not be updated and Particle1 is
the worst particle which will never act as demonstrator.
For Particlei, any Particlej which satisfies the constraint
i < j ≤ N can be it’s demonstrators i.e., in sorted swarm, for
Particlei, Particlei+1, Particlei+2....ParticleN will serve
as demonstrator. The social learning process of SL-PSO can
be updated through the following equations [23]:

Xid(t+ 1) =

{
Xid(t) + Vid(t+ 1), if pid(t) ≤ PL

id

Xid(t), otherwise
(7)

Vid(t+ 1) = ωr1(t)Vid(t)+r2(t)Did(t)+c3r3(t)Aid(t) (8)

where {
Did(t) = Xjd −Xid,

Aid(t) = X̄id(t)−Xid(t)
(9)

where c3 = (d/N) ∗ 0.01 is the constant weight factors
known as acceleration coefficients, r1(t), r2(t) and r3(t) are
the randomly generated vectors in [0, 1]. From the SL-PSO
velocity Equation (8), we can see that the velocity update
equation consists of three different components. The first
component is same as the inertia component of general PSO
algorithm. The real difference lies in the second and third
component. As already discussed, instead of only learning
from Pbest like in the general PSO algorithm, a particle i
in the SL-PSO algorithm learns from any of its demonstrators
which is denoted as Did in the second component of Equation
(8). The behaviour vector of Xid corrects its behaviour by
learning from its demonstrator Xjd as shown in Equation (9).
Also in the third component of Equation (8), we can see that,
instead of learning only from the Gbest, a particle i learns
from the mean behaviour of all particles, denoted as Aid in
the third component of Equation (8). The behaviour vector
of Xid correct its behaviour by learning from the collective
mean behaviour of all the particles Aid. In Aid as shown in
Equation (9), the mean behaviour of all particles in a swarm
is represented as X̄id =

∑N
i=1X

d
i

N . Also, as shown in Equation
(7), PLid is imitiating/learning probability. If a particle in the
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Fig. 2. Procedural Flow of the SL-PSO Algorithm for Localization of Sensor
Nodes in Internet of Things

generated swarm has better fitness/objective function value
then it is less likely to learn from other individuals. The
particlei will correct its behaviour only if randomly generated
probability pi satisfies the constaint 0 ≤ pid(t) ≤ PLid =

(1 − i−1
N )α.logd

d
N e ≤ 1 with α.log() being used as smoothen

factor.

III. DISTRIBUTED IOT SENSOR NODE LOCALIZATION
PROCESS BASED ON SL-PSO ALGORITHM

In this paper, the main objective of the sensor node localiza-
tion in IoT is to accurately estimate the unknown coordinates
of N IoT sensor nodes based on M stationary anchor nodes in
two-dimension (2-D) sensor field i.e., d = 2. The procedural
flow of distributed IoT sensor node localization process based
on SL-PSO algorithm is shown in Fig. 2. As shown in Fig.
2., the distributed localization process of the IoT sensor nodes
mainly involves the following steps:

1) M anchor nodes and N unknown IoT sensor nodes are
randomly deployed in 2-D sensor field with R being the

Dette er en postprint-versjon / This is a postprint version. 
DOI til publisert versjon / DOI to published version: 10.1109/VTCSpring.2018.8417665



communication range for each sensor.
2) The anchor nodes are aware of their location coordi-

nates and transmits/broadcasts their location coordinate
information frequently.

3) An unknown ith IoT sensor node is considered localiz-
able if it is in the communication range of three or more
anchor nodes. Otherwise, the node is not localizable.
Considering the simple implementation, hardware com-
plexity and low cost for the deployment of the sensors,
in this paper, we have assumed RSSI based ranging
approach to estimate the distance between neighbouring
nodes. RSSI signal can be measured without additional
energy consumption which will further benefit the re-
source constrained IoT sensor nodes. Usually RSSI
based distance estimation approaches have ranging error
which follows a zero-mean Gaussian distribution with
variance σ2. If dnm is the actual distance between
nth unknown sensor node whose location coordinate is
(xn, yn) and mth anchor node whose location coordi-
nate is (xm, ym), then the distance dnm which is also
known as Euclidean distance is given as:

dnm =

√
(xn − xm)

2
+ (yn − ym)

2 (10)

As discussed above, due to ranging error i.e., environ-
mental effect, the actual distance dnm is usually different
from the measured distance d̂nm. We have considered
the environmental effect as a Gaussian noise Pn (noise
percentage). Therefore, d̂nm = dnm + Pn.

4) Let us define the cost/objective function. The mean
of square of ranging/localization error between anchor
nodes and unknown sensor node is formulated as the
cost/objective function f(xn, yn) which is given as:

f(xn, yn) =

1

M

M∑
m=1

(

√
(xn − xm)

2
+ (yn − ym)

2 − d̂nm)2
(11)

where M ≥ 3 is the number of anchor nodes within
communication range, an nth unknown sensor node can
estimate its location coordinate (xn, yn) by running the
SL-PSO algorithm which minimizes the cost/objective
function f(xn, yn).

5) At the end of each SL-PSO algorithm iteration, an un-
known node that gets localized will act as an additional
anchors for other unknown sensor nodes in the next
iteration.

6) Step 2 to Step 4 are executed repeatedly until all the
unknown IoT sensor nodes have been localized or the
termination conditions have been reached.

7) Calculating the average localization error EALE . If
(Xn, Yn) is the actual unknown sensor node location
and (xn, yn) is the computed location through SL-PSO
algorithm then the EALE can be given as:

EALE =

∑N
n=1

√
(Xn − xn)

2
+ (Yn − yn)

2

N
(12)

It should be noted that the main objective of the local-
ization algorithm is to reduce EALE to have a better
localization performance.

IV. SIMULATION RESULTS AND PERFORMANCE
EVALUATION

TABLE I
SIMULATION PARAMETERS

Parameter Value

Sensor Field Size 100 x 100 m2

Anchor Nodes, M 10
Unknown Nodes, N 50
Transmission Range, R 25 m
Noise Percentage, Pn 2
Maximum Iteration, tmax 150
Inertia weight, ω 0.7
Acceleration constant, c1, c2 2.0
Acceleration constant, c3 0.002
Random numbers, r1, r2, r3 [0,1]
Particle positions xmin = 0, xmax = 100

For the performance evaluation of our proposed distributed
SL-PSO localization algorithm as compared to PSO and its
variants like BPSO and modified BPSO to tackle the local-
ization issue in IoT, we have designed and carried out our
experiments in MATLAB R2016b. The simulation parameters
for our experiments are listed in Table I. The proposed SL-
PSO algorithm and other localization algorithms were run on
the same PC with an Intel Core i7-6500 2.5 GHz CPU and
Microsoft Windows 7 enterprise edition SP1 64-bit operating
system. Also, for comparison purpose in our experiments, the
deployment of the anchor nodes is kept identical for the SL-
PSO and all other algorithms. The estimated IoT sensor node
localization using our proposed SL-PSO localization algorithm
is shown in Fig. 3. Similarly, the localization error using our
proposed SL-PSO localization algorithm is shown in Fig. 4.
The comparison of localization error for all the algorithms is
shown in Fig. 5. Clearly, we can observe that, our proposed
SL-PSO algorithm has significantly less localization error than
PSO and its other variants BPSO, and Modified BPSO. Hence,
we are able to do localization of sensor nodes more accurately
with the SL-PSO localization algorithm compared to PSO,
BPSO, and Modified BPSO algorithms.

Further, in our simulation experiments, the effect of random-
ness of proposed SL-PSO and other localization algorithms
and anchor nodes is eliminated by testing the localization
algorithm with 30 different test network and taking the average
value by repeatedly running the algorithm for 30 times.
To illustrate the effectiveness of the SL-PSO algorithm on
localization, we have used 95% confidence interval (CI) of the
average localization error EALE . A 95% confidence interval
(CI95%) is an indicator of our measurement precision for the
EALE .

The EALE within CI95% range and computation time for
each of these bio-inspired localization algorithms are shown
in Table II and Table III respectively. From Table II., we
can see that the SL-PSO algorithm can significantly reduce
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Fig. 3. Localization Using Social Learning based Particle Swarm Optimiza-
tion (SL-PSO)

TABLE II
COMPARISION OF LOCALIZATION ERROR

Algorithm Average Localization 95% CI 95% CI
Error, EALE (m) Lower Range, Upper Range,

LwrCI (m), UppCI (m)

SL-PSO 0.0024 0.0014 0.0040
PSO 0.0710 0.0674 0.0806
BPSO 0.2494 0.1684 0.3098
Modified BPSO 0.2494 0.1684 0.3098

localization error compared to PSO and its variants BPSO
and Modified-BPSO. BPSO and Modified-BPSO algorithm
have almost identical localization performance. For the com-
putational complexity evaluation of the algorithms, we have
used the tic-toc function of MATLAB. As shown in Table III,
our proposed SL-PSO algorithm takes less computation time
to run the localization algorithm. It is due to the fact that
the SL-PSO algorithm learns from all other better particles
and also learns from the mean value of the particles in
the current swarm which helps to converge to optimization
solution rapidly compared to PSO, BPSO and Modified-BPSO
where the implicit learning process takes through only Pbest
and Gbest vectors. With less computation time, our proposed
SL-PSO algorithm can enhance the lifetime of these resource
constrained and battery operated IoT sensor nodes.

The superior performance i.e., localization accuracy and
convergence rate as shown by computation time of our pro-
posed SL-PSO localization algorithm compared to PSO and
its variants is quite evident from Table 2, Table 3 and Fig. 5.

V. CONCLUSION

Sensor nodes are the main components of IoT which
bring the idea of IoT into reality. Apparently, emerging
applications in IoT will depend on the accurate localization

Fig. 4. Localization Error Using Social Learning based Particle Swarm
Optimization (SL-PSO)

TABLE III
COMPARISION OF COMPUTATION TIME

Algorithm Computation Time (s)

SL-PSO 63.63875
PSO 139.34383
BPSO 100.43645
Modified BPSO 66.65743

of thousands of these deployed sensors which is a classical
optimization problem. Bio-inspired algorithms are known
to be computationally efficient in accurate localization.
Therefore, in this paper, we proposed a new distributed
localization algorithm using SL-PSO for IoT. SL-PSO
algorithm is inspired by the social learning mechanism which
is widely observed in animals. We showed that the implicit
social learning process through any better particles and mean
behaviour of all particles in the current swarm helps SL-PSO
algorithm in reducing localization error significantly and
converge rapidly in finding global optimization solution unlike
PSO algorithm where the implicit learning process is only
through the Pbest and Gbest vectors. Extensive simulations
have been performed to show the effective performance of
SL-PSO algorithm over PSO and its variants like BPSO,
Modified-BPSO on localization accuracy and computation
performance. Simulations results showed that SL-PSO can
outstandingly reduce localization error and further enhance
the lifetime of these resource constrained and battery operated
sensor nodes in IoT.
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