
Control Plane Performance in Tactical Software
Defined Networks
Joakim Flathagen and Ole Ingar Bentstuen

Norwegian Defence Research Establishment (FFI), Norway
Email: {joakim.flathagen,ole-ingar.bentstuen}@ffi.no

Abstract—Software Defined Networking can be beneficial in
tactical networks to increase flexibility, provide programmability
and to simplify management. The immense dynamics in tactical
communication networks can, however, lead to excessive control
traffic. As capacity in such networks is limited, this is a challenge
that must be resolved. In this paper we investigate the control
traffic overhead and present an analytical model that can predict
the number of control messages for SDN networks with a given
size and packet loss probability. We verify the soundness of the
model using network emulations, and show that there is a good
match between the analytical estimates of control traffic and real
measurements. The tools provide some important insights that
can be used to design and improve tactical SDN networks.

I. INTRODUCTION

Software Defined Networking (SDN) is a game changing
approach to build communication networks that is currently
transforming both networks within data centers and service
provider networks. The tactical environment can also incorpo-
rate several of the benefits from softwarization of networks
such as flexibility, programmability, and management [1].
SDN networks are therefore considered beneficial both to
provide Quality of Service (QoS) at the tactical edge [2] and
to facilitate coalition networks [3]. Tactical networks differ,
however, from traditional networks in a number of aspects
such as their error prone nature and limited capacity. In this
paper, we focus on investigating whether SDN can be applied
to tactical networks given these characteristics.

SDN networks are built on the idea of separating the data
plane and the control plane, as shown in Fig.1. The most
prominent design goal of OpenFlow, which is the de-facto
southbound protocol for SDN, is to keep the data plane simple
and to delegate all control tasks to a centralized SDN controller
[4]. As a result of this, network devices in the data plane have
to consult the controller on how to handle packets and flows,
which can lead to excessive traffic in the control plane. The
limited capacity in a tactical network further complicates the
challenge in implementing a centralized architecture.

In this paper, we tackle this challenge in the following
way: First, we investigate the control overhead of OpenFlow
via experiments with the ONOS (Open Networking Operating
System) SDN controller [5]. Then, we develop an analytical
model that can predetermine the control traffic given a par-
ticular network layout and packet loss probability. Finally, we
verify the analytical model by conducting experiments with
ONOS and the network emulator Mininet with OpenVSwitch
software switches. We also present how the model can be

Fig. 1. SDN architecture.

used to investigate the effectiveness of an alternative topology
discovery method. Before presenting our model and results,
we review the related works.

II. RELATED WORKS

Bianco et al. investigated the amount of control traffic
generated by the default forwarding mechanisms in ONOS
[6]. They found that the control messages in a reactive flow
paradigm can be considerable. One method that contributes to
reduce the control traffic in such networks is Control Message
Quenching [7]. Here the control traffic is reduced for unknown
flows by letting the switch maintain a table with all unique
source-destination pairs.

In the work [8] the authors revealed a number of scala-
bility problems of OpenFlow. Consequently, they proposed
Devoflow to process flow rules more efficiently by managing
short-lived paths in the datapath, while long-lived paths are
handled by the controller. Despite reducing control plane
traffic, both [7] and [8] require modifications of OpenFlow.

The seminal work B4 [9] avoided some of the OpenFlow
overhead by using proactively established flows instead of
reactive flows. They also reduced the flow statistics frequency
and only requested statistics for a smaller number of flows.

One method to improve the scalability and reliability is to
employ multiple controllers. Muqaddas et al. developed some
empirical models to quantify the traffic exchanged among
multiple SDN controllers in ONOS [10]. We don’t consider
multiple controllers in our paper. However, both [10] and [6]
share resemblance to our work considering that we focus on
ONOS.

Pakzad et al. proposed a new topology discovery method
that contributes to reduce some of the control traffic [11].
We analyze the efficiency of this particular method in our
paper. Spencer et al. evaluate the control plane for tactical
networks [12]. They mainly discuss reactive networks and we

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/MILCOM.2018.8599722

thus consider it complementary to our work. However, none of
the above works consider an error-prone data plane subjected
to packet loss, whereas this is the goal of our paper.

III. CONTROL TRAFFIC IN A STEADY-STATE SDN

In this section we evaluate the control traffic in an OpenFlow
SDN controlled by the ONOS SDN controller. The analysis
is based on measuring the control traffic in a set of basic
networks. The networks are based on OpenVSwitch switches
within the Mininet emulator, and the traffic is measured using a
network sniffer between the ONOS controller and the Mininet
nodes. In addition, we have analyzed the ONOS source code
and consulted the OpenFlow documentation. Before presenting
our model, it is worth defining the parameters characterizing
a generalized SDN.

A. Network definition

The data plane of an SDN network can be modeled as a
graph G = (V, E) where V is the set of nodes and E is the
set of links. Given is a set of switches S ⊆ V and a set of
clients (or users) U ⊆ V , where S ∩ U = ∅. We denote the
number of switches N = |S|, and the number of clients n =
|U|. Each switch s ∈ S has a number of ports that can be
connected either to a client or a switch in the data plane. We
define a client-connected port as an external port and a switch-
connected port as an internal port. Let is be the number of
internal ports for switch s and es the corresponding number of
external ports. A link between switches s1 and s2 is denoted
v1, v2, whereas a link between s1 and client u1 is denoted
v1, u1. Finally, we consider a control plane that is logically
and physically separated from the data plane. The control plane
consists of one single controller C that is directly connected
to all switches in S.

B. Model for a steady-state network

Based on the above parameters, we can model the control
plane traffic. We define steady-state as a situation without net-
work dynamics. Hence, the SDN controller utilizes OpenFlow
merely to collect network information and not to install or alter
flows. For the sake of clarity, we consider the steady-state first,
and discuss the dynamic case later in this paper.

The task at hand is to estimate the total number of ex-
changed OpenFlow (OF) messages for a given topology G with
N switches. Table I lists the OF messages that are present in
the control plane and the typical timer intervals used in ONOS.
The default intervals used in ONOS are denoted ”Short”, while
we also explore the effect of prolonged intervals (denoted
”Long”) later in the paper.

Considering a steady-state network, the expected OF packet
rate (i.e., the control plane load) is the sum of the individ-
ual OF message packet rates. A prediction of this rate is
therefore relatively straightforward once the contribution of
each individual rate is understood. Most of the OF message
exchanges between the controller and a switch are of the
request/response type, meaning that two OF messages (one
request and one response) are exchanged over the control

TABLE I
OF MESSAGES BETWEEN A CONTROLLER AND A SWITCH.

OpenFlow message Intensity Interval Short Long
OFPMP PORT STATUS λp tp 5 s 60 s
OFPMP FLOW DESC λf tf 5 s 60 s
OFPMP TABLE STATUS λt tt 5 s 60 s
OFPMP METER λm tm 10 s 60 s
OFPMP GROUP λg tg 10 s 60 s
Link Layer Discovery Protocol λl tl 3 s 60 s
OFPT ECHO REQUEST λe te 5 s 5 s

Fig. 2. LLDP protocol.

channel for each timer interval. Both Port, Flow, Table and
Meter status messages are exchanged in this manner, i.e., given
N switches, the rates for these are (in packets per second):

λp = 2 · N · t−1p pps (1)

λf = 2 · N · t−1f pps (2)

λt = 2 · N · t−1t pps (3)

λm = 2 · N · t−1m pps (4)

Notice that in ONOS, OFPMP FLOW DESC and OF-
PMP TABLE STATUS requests are controlled by the same
timer, i.e., λf = λt. For each tg interval, four messages are
exchanged such that:

λg = 4 · N · t−1g pps (5)

The Link Layer Discovery Protocol (LLDP) is not of the
request-response type as the messages discussed above. In
addition to the interval tl, the LLDP rate depends on the
number of active ports on the switches. For each internal port
of a switch (is) one pkt in and one pkt out are transmitted
over the control channel. For each external port (i.e., port
connected to a host), only one pkt out message is transmitted
(since hosts do not reply to LLDP messages), see Fig. 2. The
rate can be expressed as:

λl =
∑
s∈S

t−1l · (2 · is + es) pps (6)

Echo request messages are initiated by the switches to
verify proper connectivity with the controller. According to the
OpenFlow documentation, the controller can also initiate these
messages, but we have not seen this in ONOS and it is not
considered here. For OpenVSwitch switches, the echo request
interval is typically 5 s, but echo-requests are not transmitted
if other OF messages verify the connection within the interval
te. The rate λe depends, in other words, on the combined
intensity of the other OF message rates. The expected OF
message intensity from the controller λc is:

λc = t−1l + t−1p + t−1f + t−1g + t−1m pps (7)

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/MILCOM.2018.8599722

(a) Network 1 (b) Network 2 (c) Network 3

(d) Network 1 - short timers. (e) Network 2 - short timers. (f) Network 3 - short timers.

(g) Network 1 - long timers. (h) Network 2 - long timers. (i) Network 3 - long timers.

Fig. 3. Control traffic (in packets per second) for three different network configurations

Notice that tt is omitted as λt is controlled by tf in ONOS.
Now, λc can be modeled as a Poisson process. The probability
for a switch transmitting an echo request is equal to the
probability of receiving no OF messages within the interval te,
which is P(T > te) = e−λc t. The intensity of echo messages
in the control plane is hence:

λe =
2 · N · e−λc·te

te
pps (8)

Finally, the steady-state OF rate is the sum of the individual
message rate components defined above:

λss = λp + λf + λr + λm + λg + λl + λe pps (9)

C. Verification of the model
The model presented in Eq. 9 can be used to investigate

the specific contribution each OF message has on the total
control overhead for a particular network configuration. To
verify the model, let’s consider three different networks with
varying number of nodes and interconnections. The three
configurations are shown in the Figures 3a, 3b and 3c. Here
N is 1, 6 and 6 for the three different configurations, and the
corresponding numbers of links |E| are 2, 8 and 12.

The estimates for the individual packet rate intensities are
calculated for each of the three networks. For each of the
networks, we consider both the default ONOS timers (short),
which are presented in the Figures 3d, 3e and 3f, and an
alternative setup using long timers, presented in the Figures
3g, 3h and 3i. We refer to Table I for the values employed.

For each of the six combinations presented in Fig. 3, the
estimates are verified by corresponding network emulations.
We used ONOS 1.10 and Mininet with OpenVSwitch v 2.8.0
switches. The OpenFlow version is 1.3. The OpenFlow packets
are measured on the control plane interface between ONOS
and Mininet using Wireshark. For each setup, we ran 10
individual experiments. The average OF intensity λss (in
packets per second) and the standard deviation is given in the
figures (denoted as ”REAL”), is comparable with the estimated
”TOTAL”. The results show that the model can exactly predict
the rate of OF messages in steady-state.

D. Application of the model

The model can be applied to carefully adjust network
timers to a particular network configuration. In our examples,
it is interesting to observe that for short timers, the echo
message rate is negligible as the overall OF rate leads to
λe ≈ 0, whereas for long timers, the echo rate contributes
to a substantial amount of the total OF rate. This leads us
to the intermediate conclusion that for a narrowband tactical
network, merely adjusting OF timers is not sufficient. It might
be necessary to alter, for example the echo protocol, in order
to utilize the control channel effectively.

One possible application of the model could be to investi-
gate the effect of various control message reduction schemes
found in the literature. One such example is the mechanism
proposed in [11], which optimizes the LLDP protocol. Instead
of creating a unique LLDP packet for each port of each switch,

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/MILCOM.2018.8599722

and sending each such packet to the corresponding switch via
a separate OpenFlow Packet-In message as shown in Fig. 2,
the method sends only a single LLDP packet to each switch.
Using this method, es is now irrelevant and Eq. 6 can therefore
be reduced to λl =

∑
s∈S t

−1
l (1 + is) pps.

By applying this modification to our model and recalculat-
ing the estimates for the six networks shown in Fig. 3, we
can evaluate the effectiveness of the proposal. In Fig. 4 we
see that the modified LLDP is most efficient in network with
many interconnections and short timers.

Fig. 4. Efficiency gain in applying the Topology discovery method in [11]
for three different network configurations with short and long OF timers.

Other proposals involving packet quenching [7] or other
bandwidth saving techniques can be applied to the model in a
similar manner.

IV. CONTROL TRAFFIC DURING FLOW GENERATION

The flow generation method is ignored in the steady-state
OF rate presented above. Although this is a simplification, the
model is applicable as long as the network is stable. However,
a tactical network is dynamic, and we therefore need to con-
sider the overhead of the flow generation method. In particular
we need to determine the number of OF messages exchanged
for each new flow installed in the network. In the following,
we discuss two alternative methods that functionality-wise
implements a large distributed switch; first a reactive approach
as used by ONOS Reactive Forwarding (fwd), and a proactive
approach, as used in the ONOS Intent framework.

A. Reactive flow generation
Flow generation with the fwd application is previously

studied extensively by Bianco et al [6], and we base the
reasoning in this section on their paper. Lets consider a simple
network similar to the one in Fig. 2 consisting of two hosts H1

and H2 and two switches S1 and S2. Upon communication
between the two hosts, the flow is reactively established
using ARP as outlined in Table II. Notice that some of these
messages could be omitted (O), if proxy ARP is employed.
But to simplify, we assume that proxy ARP is disabled.

The process shown in Table II consists of three stages. First
the discovery stage, then a stage where some IP-packets are
forwarded in the control plane, before the third stage where
the flows are installed. The number of OF messages exchanged
for setting up a bidirectional path between two hosts u1, u2 is
given by [6] as:

NOFr ∈ (17 · d(u1, u2), 2 · L+N + 15 · d(u1, u2)) (10)

TABLE II
PACKET SEQUENCE DURING FLOW SETUP. R DENOTES REACTIVE FLOW
SETUP, WHERE O MEANS THAT THE MESSAGE CAN BE OMITTED WITH

PROXY ARP. P DENOTES PROACTIVE SETUP.

Stage Comment Direction Packet
1 R H1 → S1 ARP-REQ:H2?
1 R S1 → C pkt in (ARP-REQ:H2?)
1 R,O C → S1 pkt out (ARP-REQ:H2?):flood
1 R,O S1 → S2 ARP-REQ:H2?
1 R,O S2 → C pkt in (ARP-REQ:H2?)
1 R,O C → S2 pkt out (ARP-REQ:H2?):flood
1 R,O S2 → H2 ARP-REQ:H2?
1 R,O H2 → S2 ARP-REP:H2

1 R,O S2 → C pkt in (ARP-REP:H2)
1 R C → S1 pkt out (ARP-REP:H2):port 1
1 R S1 → H1 ARP-REP:H2?
2 R . . . Initial IP packets H1 → H2 via C
3 R,P C → S1 flow mod(H1 → H2)
3 R,P C → S1 barrier request
3 R,P S1 → C barrier reply
3 R,P C → S2 flow mod(H1 → H2)
3 R,P C → S2 barrier request
3 R,P S2 → C barrier reply
3 R,P C → S1 flow mod(H2 → H1)
3 R,P C → S1 barrier request
3 R,P S1 → C barrier reply
3 R,P C → S2 flow mod(H2 → H1)
3 R,P C → S2 barrier request
3 R,P S2 → C barrier reply

The above shows the lower and upper bound for the number
of OF messages. We have defined (is) as the number of
internal ports for switch s. L refers to the number of links
connecting the switches, which is L =

∑
s∈S is/2. For our

evaluation, it is more practical to use the average shortest path
in the network, Dsp. This is defined as Dsp = 1/(n · (n−1)) ·∑
i6=j d(ui, uj), where d(ui, uj) denote the shortest distance

between i and j. We define the number of switches in Dsp as
Ssp and the number of OF managed links as Lsp.

B. Intent based proactive flow generation

An alternative to the reactive scheme is to use the intent
framework. It provides a way to generate flows in a proactive
manner. Let us again relate to a network of two hosts and
two switches and the flow setup sequence in Table II. For
such a proactive scheme, only stage 3 is relevant since no
ARP messages are flooded. Instead of ARP discovery, an intent
(i.e., an end to end flow) must be proactively determined by a
network administrator. Methods to establish intents reactively
exist [6], but are not considered here.

From Table II we can derive that the number of OF mes-
sages exchanged for setting up a bidirectional path between
two hosts u1, u2 is:

NOFi = 6 · (d(u1, u2)− 1) ≈ 6 · Ssp (11)

Notice that the third sequence shown in Table II can
be optimized by the controller by concatenating flow mod
messages and barrier requests. The minimum number of OF
messages per flow setup (or pairwise connection) is in this
case reduced to four OF messages per switch. This is also the
case for stage 3 in reactive forwarding. Since this behavior

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/MILCOM.2018.8599722

is not deterministic, we use 6 OF messages in the following
discussion.

An initial comparison of the two flow setup paradigms can
be performed. Since NOFr at the lower bound is 17Dsp and
NOFi is 6 (Dsp−1) we can immediately derive that the latter
is more effective than the former for flow setup. Notice also
that a reactive paradigm immediately removes flow rules for
inactive flows. Considering that the average length of a flow
in the Internet is very short, around 20 packets per flow [8],
the number of control packets can very likely exceed the
number of data packets per flow. For an intent based proactive
paradigm, this issue is mitigated, since flows rules are active
until a network manager deletes them. The number of pre-
installed flows can, however, reach Fmax = n(n− 1), which
equals the maximum number of pairwise connections in G.
This means that the number of active flows to maintain can be
overwhelming. A few available methods can be used to reduce
the number of flows in a proactive network, for example by
grouping clients using Virtual Private LAN Service (VPLS)
and making associated flow rules for the VPLSs. This can
make the intent-based scheme very attractive for a tactical
SDN. Based on the above reasoning, we only investigate the
intent-based case for the remaining of this paper.

V. FLOW GENERATION IN AN ERROR-PRONE NETWORK

We have now determined the steady-state load and the flow
setup cost. In this section we study the above features in a
network with packet loss. Although the packet loss can be
caused by weak radio signals, on-air collisions, full buffers
etc, we do not distinguish on cause in this section.

A. Prediction model

The LLDP protocol is used in SDNs to discover network
neighbors and the potential loss of such a neighbor using the
notion of links. A link i, j ∈ E and is said to be available
if i and j are directly connected and can communicate with
each other. If no LLDP messages are received over the link
i, j within the time interval t, the link is defined as ”down”.
Considering a packet loss probability of pij and an LLDP
probe interval of tl, the probability for determining a link (ij)
as ”down” is:

p

⌊
t
tl

⌋
ij (12)

Assume that packet loss probabilities for all (i, j) ∈ E is
p. For an intent-based scheme, the probability that an end-
to-end flow between clients u1 and u2 is considered ”down”
within the time interval t is equal to the probability that a
fault is discovered in any of the links constituting the flow
path. This is equal to one minus the probability that no faults
is discovered within the time interval:

P(x > 0) = 1− P(0) = 1− (1− p
⌊

t
tl

⌋
)Lsp (13)

If one of the links in a path is broken, the controller removes
all flows in the path before reinstalling them using an available
and alternative path. We have already estimated the number
of OF messages required to install bidirectional flows on one

Fig. 5. Network configuration using ten clients and six switches.

switch. The flow removal process is also similar. Given that all
end-to-end flows (or intents) are represented in F , the rate of
control messages caused by link losses (λp) can be estimated:

λp =
1

t

∑
fuu∈F

1− (1− p
⌊

t
tl

⌋
)Lsp · 2 ·NOFi pps (14)

In a proactive network, we assume that there exist intents
between all node pairs, i.e., that F includes all possible client-
to-client combinations. By substituting NOFi with Eq.11 we
get:

λp =
6n(n− 1)

t
· Ssp · 1− (1− p

⌊
t
tl

⌋
)Lsp pps (15)

The expected OF intensity λ = λss + λp. Notice that λl in
Eq. 6 is also affected by packet loss in the data plane such
that:

λl =
∑
s∈S

t−1l · (2 · (1− p)is + es) pps (16)

B. Evaluation

We evaluate the above prediction model using a network of
ten clients and six switches as shown in Fig. 5. The number of
interconnections (intents) are here 50. We consider the default
(short) ONOS timers for OpenFlow as presented in Table
I. One method to improve the network’s ability to adapt to
dynamics (for example persistent packet loss) is to reduce the
LLDP interval tl. However, this will also lead to increased
OF intensity. An alternative method is to reduce t, i.e., the
tolerance to lose LLDP packets. We investigate the default
setting of t = 10 s and an alternative setting of t = 7 s in the
following experiments.

In Fig. 6a the predicted OF intensity λ is presented varying
on packet loss probability p as in Eq. 15 while using t = 10.
In Fig. 6b, the prediction is plotted for t = 7. The predictions
are verified by network emulations with ONOS and Mininet,
conducted as previously described. Five separate emulations of
300 s each are performed for p = {0.1, 0.2, 0.3}. The standard
deviation is presented in the figures.

We see a good match between the measurements and the
prediction model. The downward trend between (0, 0.1) in
Fig. 6a is due to loss of LLDP packets in the data plane (Eq.
16) which again reduces the number of pkt-in LLDP packets
in the control plane. At the same time the loss is not high
enough to foster flow reinstallment as with an increased p.
The model has a slight tendency to underestimate the packet
rate, but overall, the measurements show that the prediction
model show sufficient accuracy for its intended purpose.

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/MILCOM.2018.8599722

(a) t = 10

(b) t = 7

Fig. 6. Comparison of analytic model prediction and real measurements for
intent-based flow generation with packet loss in the data plane.

VI. DISCUSSION

In this paper, we have investigated the rate of OpenFlow
messages in the control plane. Based on our model and
experiments, we can derive some conclusions and discuss
a few directions for future research that can be helpful in
designing tactical SDNs.

First, the various OpenFlow timers used by the SDN con-
troller must be fine-tuned and carefully adjusted to balance
OF overhead and the ability to tackle network dynamics.

Second, methods to replace the typical request response
nature of OpenFlow should be investigated. The OF rate
in steady state λss can be considered pure overhead, and
a publish/subscribe scheme that informs the controller only
upon changes in the data plane can reduce this overhead
considerably. One way could be to exchange switch state
information piggybacked on Hello-messages.

Third, the ability for a switch to perform local repair of
some flow-rules can be beneficial. The intent-based framework
studied in this paper requires that the complete end-to-end
intent is recompiled upon link break. A mechanism that dele-
gates some of the flow computation to the switches could be
beneficial in a tactical network, since this will increase agility
and reduce the flow setup overhead. Fourth, a reduction in the

number of installed flow rules can be conducted by grouping
clients in VPLS. This makes the network more scalable, and
it is simpler for an administrator to proactively determine
clients-to-VPLS memberships and associated flow rules than
to implement client-to-client flow rules for all possible client
combinations.

The effect of implementing the above improvements or
modifications can be predicted for a given network topology
with the tools presented in this paper.

VII. CONCLUSION

This paper has provided tools to investigate the control plane
load in tactical OpenFlow based SDNs. The soundness of these
tools are verified with network emulations proving a good
match between the analytical estimates of OpenFlow traffic
and real measurements. The knowledge provided by these
tools provides some important insights that can be used to
design and improve tactical SDNs. Although we use ONOS in
our work, the methods can be applied to other SDN controllers.

The methods consider a separate control plane and data
plane. This assumption can’t be guaranteed in a tactical
network. Although the conclusions derived from the methods
can still be useful in such networks, future work should include
extending the model to an unreliable and in-band control
channel.

REFERENCES

[1] J. Nobre, D. Rosario, C. Both, E. Cerqueira, and M. Gerla, “Toward
software-defined battlefield networking,” IEEE Communications Maga-
zine, vol. 54, no. 10, pp. 152–157, 2016.

[2] K. Phemius, J. Seddar, M. Bouet, H. Khalifé, and V. Conan, “Bringing
SDN to the edge of tactical networks,” in MILCOM. IEEE, 2016, pp.
1047–1052.

[3] V. Mishra, D. Verma, and C. Williams, “Leveraging SDN for Cyber
Situational Awareness in Coalition Tactical Networks,” in IST-148, 2016.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” ACM SIGCOMM, vol. 38, no. 2, pp. 69–74, 2008.

[5] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “ONOS: towards
an open, distributed SDN OS,” in HotSDN. ACM, 2014, pp. 1–6.

[6] A. Bianco, P. Giaccone, R. Mashayekhi, M. Ullio, and V. Vercellone,
“Scalability of ONOS reactive forwarding applications in ISP networks,”
Computer Communications, vol. 102, pp. 130–138, 2017.

[7] T. Luo, H.-P. Tan, P. C. Quan, Y. W. Law, and J. Jin, “Enhancing
responsiveness and scalability for OpenFlow networks via control-
message quenching,” in ICTC. IEEE, 2012, pp. 348–353.

[8] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “DevoFlow: scaling flow management for high-performance
networks,” in SIGCOMM, vol. 41, no. 4. ACM, 2011, pp. 254–265.

[9] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a
globally-deployed software defined WAN,” in ACM SIGCOMM, vol. 43,
no. 4. ACM, 2013, pp. 3–14.

[10] A. S. Muqaddas, P. Giaccone, A. Bianco, and G. Maier, “Inter-controller
Traffic to Support Consistency in ONOS Clusters,” IEEE Trans. on
Network and Service Management, vol. 14, no. 4, pp. 1018–1031, 2017.

[11] F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska, “Efficient topology
discovery in Openflow-based Software Defined Networks,” Computer
Communications, vol. 77, pp. 52–61, 2016.

[12] J. Spencer, R. Taylor, and R. Hancock, “Evaluation of software-defined
networking control plane performance in deployed military communi-
cations systems,” in ICMCIS. IEEE, 2017, pp. 1–7.

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/MILCOM.2018.8599722

