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Automatic scene understanding and object identification in
point clouds

Egil Bae
Norwegian Defence Research Establishment (FFI), P.O. Box 25, 2027 Kjeller, Norway

ABSTRACT

A ladar can acquire a dense set of 3D coordinates of a scene, a so-called point cloud, in sub-second time from
ranges of several kilometers. This paper presents algorithms for segmenting a point cloud into meaningful classes
of similar objects, and for identifying a specific object within its respective class. The segmentation algorithm
incorporates several low level features derived from surface patches of objects from different classes and the
interphases between them. On a mathematical level, it partitions the point cloud in a way that optimally
balances these considerations by finding the global minimizer to a so-called variational problem over a graph,
utilizing recently published results on general high-dimensional data classification. The subsequent recognition
step makes use of higher level features for identifying a particular object, represented by a 3D model, among
the respective class of segmented objects. It measures similarity of shape between the 3D model and each
observed object, considering them as two pieces in a puzzle. The simulated shadow and visibility of the 3D
model are measured for consistency with the point cloud shadows. The recognition step is also formulated as an
optimization problem and solved by mathematically well-founded techniques. Results demonstrate that point
clouds acquired in maritime, urban and rural scenes can be segmented into meaningful object classes and that
individual vessels can be identified with a high confidence.
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1. INTRODUCTION

Laser detection and ranging (ladar) is an imaging technique for generating detailed three-dimensional (3D)
information of a scene. Recent progress in laser and detector technology have made it possible to generate
hundreds of thousands 3D points within seconds at several kilometers distance. There are two main variants of
the ladar principle. The first, often called flash ladar, transmits a single highly divergent laser pulse with high
power that spreads out and reflects from several points in the scene. A 2D array detector concept similar to 2D
digital cameras is used to detect the reflected pulses, such that a distance can be calculated for each cell in the
2D array. The second variant, often called line scanning ladar, involves transmitting more convergent laser pulses
with lower power that are mechanically scanned over the scene. A line scanning ladar has several advantages, for
instance the shape, size and resolution of the area to be imaged can be adjusted with great flexibility. However,
the resulting data sets become more complex, in particular since the points will not normally be aligned in a 2D
array with a simple, regular neighborhood structure.

This paper presents algorithms for segmenting a point cloud into meaningful classes of similar objects, and
for identifying a specific object within its respective class. The algorithms are designed for segmenting complex
point clouds acquired by the line scanning principle in maritime, urban and rural scenes, and for identifying
rigid human-made objects that may only be partially visible, such as ships or vehicles. The algorithms are also
well-suited for point cloud acquired by other ladar principles. The first segmentation step extracts objects of
interest from the full point cloud using properties of the object interior and boundary by an algorithm that can
be executed rather efficiently. The second ”recognition” step proceeds by calculating a recognition confidence
measure for each such interesting object by a more computationally demanding algorithm that utilizes the full
3D shape of the object one is searching for, its simulated shadow and optionally certain intrinsic reflectance
properties.
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Segmentation and recognition of 3D point clouds have already been the subject of a body of research, a closer
review will be given at the start of Section 2 and 3. A usual trick is to first convert the point cloud into a 2D
image, where the depth acts as a function of the azimuth and elevation angle, playing the same role as the image
intensity. Established techniques for 2D image segmentation can then be used to segment the point cloud based
on the depth information. There are, however, a number of limitations to this approach. Unless the point cloud
is acquired by a flash ladar, the points must be converted to a regular 2D grid with uniform distances in the
azimuth and elevation angles, which leads to loss of information. The depth must be described uniquely in terms
of the 2D coordinates, which means that several points cannot share the same azimuth and elevation angle. This
is not true in general if the ladar is in motion or if a single pulse reflects from several points in the scene, for
instance when hitting vegetation and objects behind. Another common approach is to convert the point cloud
to a 3D voxel image and apply image processing techniques in 3D. This avoids issues with non-uniqueness, but
leads to information loss and large data sets.

The proposed segmentation approach falls within a newer class of methods that process the 3D points directly
on a graph, without first converting them to a regular 2D or 3D grid. Consequently, no information is lost and
situations with depth overlap and motion are naturally handled. The algorithm is based on solving a so-called
variational problem on the graph, which is a recent concept that is known to give very good solutions to various
tasks in pattern recognition. The basic idea is to first formulate the desired solution abstractly as the state
of minimum energy of an energy potential. Optimization algorithms can then be designed to find the state of
minimum energy on a computer, that typically iterates from some initial state, moving to a state of smaller
energy in each step. Until recently, such algorithms have not been considered practical for real time applications
due to their high computational demand, and low robustness with respect to initializations. However, recent
progress in computational optimization theory have resulted in optimization algorithms that are a lot faster and
more robust. Combined with the ongoing progress of miniaturized parallel hardware, real time applications are
now getting possible.

Recognition based on matching of 3D shapes has been proposed earlier, e.g. ref.! To the best of our knowledge,
we are the first to construct an approach for partially visible objects that takes into account both the visible
part using 3D shape matching and the invisible part by utilizing the point cloud shadows. The combination of
several such cues is especially useful for preventing false recognition of other scene objects. This makes it possible
to distinguish very similarly looking objects, such as different variants of the same ship, also when occlusions
prevent large parts of the object from being directly observed.

This article is divided into two main sections. Section 2 presents the segmentation step and Section 3 presents
the recognition step. Both sections start by explaining the overall concepts in simple words, then go into more
mathematical details and present experiments in the end.

2. POINT CLOUD SEGMENTATION AS ENERGY MINIMIZATION OVER A
GRAPH

This section is focused on the task of simplifying a 3D point cloud acquired from a ladar by dividing it into two or
several regions, which each represent different classes of objects. The purpose in the context of object recognition
is to separate out ”interesting” objects that share similar characteristics to the object one is searching for. The
ability to distinguish interesting objects from the rest of the scene can be greatly enhanced if one is able to find
good characteristics of the background as well.

If the scene is sufficiently simple, it suffices to segment the point cloud into a foreground region consisting
of the "interesting” objects, and a background region consisting of the remaining objects. This is the case for
most maritime scenarios, as will be explained in more detail in Section 2.3. For the more complicated land
scenarios, the background is much less uniform. For instance, the ground plane and vegetation are both part of
the background, but are geometrically very different from each other. Therefore, it is beneficial to separate the
point cloud into several regions, where only one of the regions contains ”interesting” objects that are similar to
the object one is searching for. There has been proposed several approaches for point cloud segmentation, e.g.
ref.2”7 to name a few. Most of them either interprets the point cloud as an image of 2D pixels or 3D voxels, and
applies established image analysis techniques, such of morphological operations. Convolutional neural networks
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(deep learning) have recently been applied on point clouds, but also require a regular 2D ref.8 1% or 3D ref.1% 1!
grid, as well as a large amount of training data.

This work interprets the point cloud as a weighted graph, which facilitates direct processing of the raw
data without information loss due to preconversion. Graph based approaches for point cloud segmentation have
also appeared in e.g. ref.> 7 in a probabilistic context in the form of "Markov Random Fields”. This work
is instead based on solving a variational problem, where the desired output is mathematically encoded as the
minimum state of an energy potential. Energy minimization methods have over the last two decades shown to
give very good results for various tasks in computer vision and pattern recognition, such as image segmentation,
restoration, scene reconstruction etc. Combined with recent advances in optimization theory, such methods have
now reached a level of maturity where real time applications are possible. Variational approaches on graphs for
data classification and point cloud segmentation have recently appeared in ref.!?> ' In particular, our recent
work ref.'® proposed a robust and efficient algorithm for solving certain variational problems on graphs that
was shown to give very competitive results on some benchmark high-dimensional data classification problems.
The general algorithm could also be applied for segmentation of point clouds acquired in a land environment,
and this was demonstrated in a subsection. Whereas ref.'> was aimed for a technically inclined mathematical
audience, we will here give a more comprehensive and pedagogical presentation of the method, specialized for
the particular application of point cloud segmentation in a land environment. In addition, it will be shown how
the method can be specialized for maritime environments.

2.1 Constructing a graph over the 3D points

Assume that we are given the coordinates of N points in 3D space, obtained by a ladar or another similar
imaging technique. The N points will be denoted as p!,p?,...,pY in the rest of this article. In order to
formulate segmentation of the points as a minimization problem, the points are first organized in an undirected
graph. A graph is a set of vertices, of which 3D points is a special case, together with a pairwise interconnection
between the set of vertices. The set of all vertices is denoted by V. A pair of vertices that are connected is called
an edge in the graph. The set of all edges is denoted by E. Two vertices p and q are connected if and only if
their vertex pair (p,q) is contained in the set of edges E.

Figure 1 depicts a graph where each vertex is a 2D point. The points are visualized as round balls, whose
centers indicate the point coordinates. The edges are visualized as lines connecting two points with each other.
In this work, the graph is constructed such that two points are connected if one of them is among the ”k-nearest”
neighbors of the other. That is, for each point p an edge (p, ¢) is constructed if ¢ is one of the k closest points of p.
We set k = 20 in experiments. Constructing a k nearest neighbors graph can be achieved efficiently by exploiting
the redundancy between the point coordinates. A common algorithm involves first building a k-d search tree over
the points and then looking for nearest neighbors by traversing the branches of the tree, see ref.'%:17 for details.
Both construction of the tree and looking up nearest neighbors can be performed in O(Nlog(N)) complexity. In
practice we found that the whole process took around 0.3 seconds for point clouds with around hundred thousand
points in case of 20 nearest neighbors when implemented on CPU. This could be speeded up further by using a
GPU ref.'8

A graph that is constructed based on the k nearest neighbors may consist of several ”connected components”.
A connected component is a subset of the graph where any two vertices (points) are connected by a path of
edges, that is, it is possible to travel from one vertex to the other by only moving along the edges. The graph
in Figure 1 contains three such connected components. Vertices in two different connected components are not
connected by a path of edges. Therefore, constructing the graph provides some basic segmentation of the point
cloud, where each connected component can be regarded as a region. Such a segmentation may be meaningful
if the object is completely separated in distance from other points in the point cloud. However, this can only
rarely be expected to be the case. The next section explains how to obtain a much finer and more meaningful
segmentation by minimizing an energy potential over the graph.

Once the graph has been constructed, it is possible to define functions over either the vertices or the edges. A
weight function w(p, q) is defined on the edges (p,q) € E and can be used to measure the similarity between the
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Figure 1: Example of a graph with 2D points as vertices, where each vertex is connected to its two nearest
neighbors. Note that some vertices may still be connected to more than two vertices and the graph need not be
connected, but may consist of several connected components.

points p and q. A high value of w(p, q) indicates that p and q are similar and a low value indicates that they
are dissimilar. A popular choice of the weight function for general data classification problems is the Gaussian

_ d(p,:q)2

w(paq) =e ? ) (1)

where d(p, q) is the distance between p and q, for instance the Euclidean distance. In case each point is a 3D
point, the distance between p and q is

d(p,q) = V/(p1 — q1)> + (p2 — 02)* + (ps — 43)°. (2)

In this work, we will both make use of the weight function (1) and design specific weight functions for particular
applications of point cloud segmentation.

2.2 Construction of general energy potential over graph

The problem of segmenting a point cloud into n regions is mathematically the problem of finding a partition of
the set of points V into subsets Vi, ..., V,, that do not overlap with each other. Point cloud segmentation can
be formulated as an energy minimization problem by defining an energy potential that assigns an energy value
to every possible partition Vi,...,V,, of V| and where the desired partition is encoded as the one with lowest
energy. The exact energy minimization problem will differ depending on the applications, but can be formulated
in general form as

i 3 > Dip)+ >, Y, wpa) (3)

=1 i=1peV; i=1 (p,q)€E:
PEVi, q¢Vi
such that U, V; =V, VNV, = 0,Vk#1. (4)

The first line (3) seeks to minimize the energy potential in terms of the subregions Vi, ..., V;,. The functions D;(p)
and w(p, q) can be custom designed for particular applications of point cloud segmentation. Their meaning will
be explained below. The bottom line (4) is just a constraint that imposes there should be no vacuum or overlap
between the subregions V1, ..., V,,.

The first term of the energy potential in (3) is used to encourage region homogeneity. It measures how
well each point fits with each region individually. The region fitting function D;(p) is the contribution to the
energy potential if the point p is assigned to the region V;. It should take a low value if p matches well with
characteristics that are assumed typical of region V;. Such characteristics could for instance be the point density,
orientation of normal vectors, variation in orientation of normal vectors, height, depth etc, and/or different
statistical distributions of the signal intensities. Concrete examples will be given in the following sections.
Figure 2 illustrates a 2D example where the points are grouped into a region of low point density (yellow),
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Figure 2: Example of segmentation of graph of 2D points into regions of low density (yellow), high degree
of statistical correlation of coordinates between neighboring points (red), medium correlation (blue) and low
correlation (green). The image is reproduced from the author’s previous work!® under the terms of the Creative
Commons Attribution Licence.
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and regions of high (red), medium (blue) and low (green) correlation between the coordinates of each point
and its neighboring points. A similar segmentation will be constructed for 3D point clouds, where human-made
structures typically have a high degree of correlation between the point coordinates and vegetation have a low
degree of correlation.

The last term of (3) is used to encourage both spatial grouping of points to the same region and alignment of
the boundary at meaningful locations. It sums together the weights on all edges whose endpoints belong to two
different regions. In order to make this term small, the weights on these edges should be small, indicating that it
is favourable to separate the two points in the point pair into two different regions. In Figure 2, the edges with
ends points in two different regions are visualized as dashed lines. For most of the edges, the distances between
the two end points are large, implying that the weights are small if they are constructed by the formula (1).

Our recent work ref.!> proposed an algorithm for solving general problems of the form (3) that was efficient,

provably convergent and could avoid getting stuck in inferior local minima. Within the same framework it was
also possible to impose certain constraints on the class sizes. However, this concerned the size of the entire
classes and not necessarily individual connected components. In the present work, we found it most practical to
incorporate size information in a post-filtering step, where individual connected components are measured for
consistency with the expected size of objects in the relevant class.

2.3 Basic energy potential in maritime environments

The ocean and sky reflect few of the laser pulses compared to firm objects. If the visibility is clear, the pulses
are transmitted with high energy, and the threshold for detecting the reflected incoming pulses is set high,
just constructing the graph may result in a segmentation of vessels and other firm objects into one connected
component. If the threshold for detecting incoming pulses is set lower, more noisy points may get detected
from the surroundings, but more points may also get detected from the object of interest. This is particularly
beneficial under bad weather conditions and at far distances.

By constructing a special energy potential over the graph, vessels can be separated from the rest of the scene
even if a large amount of points are detected from the surroundings. Vessels can be characterized by a relatively
higher density of points than the ocean and atmosphere. Most basically, one would therefore like to separate the
point cloud into regions of high and low point densities. Once the graph has been constructed, the density p(p)
at each point p can be constructed as a function that is inverse proportional to the distance to the neighboring
points. One way to define the density is

k
q€N(p) d(p,q

p(p) = lpl, VpeV, (5)
> )

which is the inverse of the average distance to the neighboring points, weighted by the depth coordinate p; to

make the density independent of the distance to the ladar. Ni(p) is a notation for all the k nearest neighboring
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(a) scanning area

(b) Segmentation of point cloud, slightly elevated view point

(c¢) Segmentation of point cloud, view point from top

Figure 3: Ladar scan in the Oslo fjord of two overlapping ferries. The ferry ”Bastg IV” is in the front and ”Bastg
IT” is in the back. (b)-(c): Segmentation of point cloud into region of high point density (red) and low point
density (blue).
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points of the point p. In order to separate out ships, vessels and other objects in maritime scenes, the point cloud
is segmented into regions of high and low point density. This can be achieved by defining the region homogeneity
functions in the energy minimization problem (3) as

Di(p) =p(p) —t, Da(p)=t—p(p), VPEV, (6)

where ¢ is a ”threshold level”: if p(p) is larger than ¢ then Ds(p) takes a lower value than D;(p) and if p(p)
is smaller than ¢ then D;(p) takes a lower value than Ds(p). Minimizing (3) without the first term, would
therefore be equivalent to thresholding the density function p at level {. However, including the first term will
favor a stronger grouping of the 3D points by favoring the same class membership for points with close distance
between each other.

Figure 3 shows an example of two ferries recorded from the shore in the Oslo fjord. Red indicates the high
density region while blue indicates the low density region. Points detected on the ferries get correctly separated
from the surrounding noise, and each ferry may be extracted as a single connected component for further analysis.
This example will be continued in Section 3.

2.4 Basic energy potential in land environments

Whereas the segmentation of objects over the ocean is relatively easy and unambiguous, segmentation of objects
in point clouds acquired over land is more complicated and open to interpretations for a number of reasons:

e The ground plane generally reflects as large proportion of points as the object itself and may not be clearly
distinguished from the object

e The object may be partially occluded and/or hidden among vegetation, clutter or other human-made
objects

For scans over land areas, the density of points does not seem to be a good indicator of different regions, since
the density seems to be quite uniformly distributed across different objects. Instead, the orientation of the 3D
points, indicated by their normal vectors, carry a lot of useful information. This information can be used in two
main different ways. First, the direction of the normal vectors themselves can be used as an indicator of certain
regions. For instance, the normal vectors of points at the ground plane are expected to point predominantly
in the upward direction along the y-axis. Secondly, the extent to which the normal vectors varies between
neighboring points can be used to discriminate different regions. Human-made objects, such as vehicles and
houses, consist mostly of straight planes or smooth surfaces. They can therefore be characterized by a low
variance in the normal vectors between neighboring points. In contrast, vegetation and other natural objects
have a more irregular shape. Points sampled from vegetation are expected to have a very random relation to
each other. Thus, the normal vectors estimated from the sampling points are expected to vary a lot between
neighboring points. Information about the normal vectors was used to classify objects separated from the ground
plane into clutter and human-made objects in ref.'® A crucial difference compared to ref.!® is that information
of the normal vectors is incorporated directly in the segmentation algorithm in this work, before it has been
estimated what points constitute an object. This allows one to separate two different objects that appear merged
together in the point cloud into different classes.

Information about the normal vectors can be incorporated in the segmentation model (3) both by defining
appropriate region fitting functions D;, ¢ = 1,...,n, and weight functions w. The most basic segmentation of
point clouds acquired over land involves separating the point cloud into three regions: 1) the ground plane, 2)
vegetation and 3) human-made objects. This is achieved by defining a region fitting function for the region of
human-made objects that is small if the normal vectors at the neighboring points does not vary a lot. In contrast,
the region fitting function for the vegetation region is small if there is large variation in the normal vectors at
the neighboring points. The region fitting function for the ground plane region is small if a number of criteria
are satisfied: The normal vectors should point predominately in the upward direction; The ”height” of the point,
indicated by its y-coordinate, is within some rough local estimate of the height of the ground plane, for instance
smaller than the average height of neighboring points; Like human-made structures, the variation of the normal
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vectors between neighboring points is relatively small. The weight function w is constructed such that points
with close distance between each other is grouped together, but in addition it can be constructed to align the
region boundaries at favorable locations. For instance, w should take a low value at the transition between the
ground plane and objects, which is characterized by sharp convex shaped bends in the scene.

For each point p € V one can define an orientation, or normal vector, which is an estimation of the normal
vector of the underlying surface the points are sampled from. There are several ways of estimating the normal
vectors. In this report, they are estimated from the eigenvectors of the scatter matrix at each point.

For each point p € V, let ', ..., q* denote the set of neighboring points and define for notational convenience
q° = p. Define the normalized vectors ¢’ = q' —mean(q”,q', ...,q*), for i = 0,1, ..., k and construct the matrix

Y = [a°q'q’...q"] (7)

The correlation matrix, or scatter matrix, YY7, indicates how the points in the neighborhood of p are oriented
in relation to each other. Let v!(p), v2(p), v3(p) be the eigenvectors and A\ (p), A?(p), \*>(p) be the eigenvalues
of YYT. The first eigenvector v!(p) points in the direction of least variation between the points g, ...,g* and
the first eigenvalue A!(p) indicates the variation along the direction of v!(p). v!(p) is a discrete estimation of the
normal vector at p and has norm 1. If all the points were laying in a plane, then A!(p) would be zero and v!(p)
would be the normal vector of the plane. Therefore A\!(p) indicates the variation in orientation of the points
around p. Assume one knows an estimation \; of how much the normal vectors vary on average for certain kinds
of objects. For instance one can estimate the average value of M\ (p) for vegetation and human-made objects
from measurements. The region fitting term for region V; should be small at the point p if the value of \!(p)
is close to the estimated value \; of region i, and large otherwise. This can be achieved by incorporating the
following term in the region fitting function D;(p):

(8)

a;| A (p) — )\i|2

It is now described how to design region terms that favour normal vectors that are oriented either parallel
with or perpendicular to a certain direction. In the ground plane region for instance, the normal vectors are
expected to be oriented predominantly in the upward direction. Let n’ be the expected orientation of the points
in region V;. The region fitting term D;(p) for region V; should be small if the normal vector v*(p) is close to
the expected normal vector n’ and big otherwise. This can be achieved by including the following term in D;(p):

Bi [v*(p) - n'(p)|, (9)

where a - b = a1b; + asbs + asbs is the inner product operator and (; is a parameter that should be negative.
If B3; is positive, however, the term (9) will instead favour normal vectors that are oriented within the plane
perpendicular to n’. This concerns for instance walls, if n’ is directed upwards. Using information about the
direction of normal vectors to characterize the ground plane may cause the roofs of vehicles and the roofs of flat
buildings etc. to get incorrectly assigned to the ground plane region. This can be avoided by a more complex
construction of the region terms and the weight function as described below.

By using the standard weight function (1) on the edges in the graph, the energy function (3) will encourage
grouping of points with close distance between each other to the same region. This will to some degree prevent
points on the roofs of vehicles and buildings from being assigned to the ground plane region if such points do not
constitute a large area. However, it is beneficial to modify the weight function such that it is favorable to align
the border between regions at locations where the normal vectors change from pointing upwards to pointing
outwards, i.e. where the scene is convex shaped. On the contrary, locations where the scene is concave, such
as the transition from the side of vehicles to the roof, should be unfavorable for the region boundaries. Such
assumptions can be incorporated in the energy function by modifying the weight function w as follows:

(w,1)2 Ul(')*Ul(f‘:)

w(z,y) = eid = B N s(w,y? SIGN(y1—=1) (10)
Here v{(x) and vi(x) are the first and third components of the vector v!(x), and a coordinate system has been
assumed where the positive 1 axis points outwards from the view direction and the positive x3 axis points
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) Red: edges with high energy
"""""""""" Blue: edges with low energy

% Scanning ™
area

Ground plane

Figure 4: Tlustration of construction of graph to separate ground plane from human-made structures, view point
from the side. The edges are assigned a low energy at convex parts of the scene, marked in light blue, making
it favorable to place the boundary between the regions at such locations. The image is reproduced from the
author’s previous work!® under the terms of the Creative Commons Attribution Licence.

Figure 5: Scan at Kjeller in Norway. The point cloud has been segmented into 3 regions: ground plane (brown),
vegetation (green) and human-made objects (blue).
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Figure 6: Scan at Kjeller in Norway. The point cloud has been segmented into 4 regions: ground plane (brown),
vegetation with leaves (light green) vegetation without leaves (dark green) and human-made objects (blue).
Points marked in red indicate all objects within the region of human-made structures approximately the size of
a car.

upwards. An illustration is given in Figure 4, where edges at convex parts of the scene are given a low energy
value, marked by the color code light blue.

In addition to normal vectors pointing in the upward direction, the ground plane can be characterized by its
height, defined by the p3-coordinate in the point cloud, which is generally lower than the heights of other objects.
The height information must be used with care, since the height of the ground plane may vary across the point
cloud, and to prevent short objects or the lower part of bigger objects from being assigned to the ground plane
region. When used in combination with the other features described above, height information can be useful for
obtaining a good segmentation. Assuming a rough estimate of the local height of the ground plane h*(p) at the
point p is known, the fidelity term (3) can be modified to take into account both normal vectors and height by
incorporating the following terms in D;(p)

Biv'(p)-n'(p) +0; (ps — h*(p)), (11)

where the first term incorporates information about the normal vectors and the last term incorporates infor-
mation about the height. The last term is small if the height coordinate p3 is small in relation to the estimated
height h*(p). The parameter 6; controls to which extent the height plays a role in characterizing the ground
plane in relation to the normal vectors. In practice, we set it to a relatively low positive value compared to |5;],
such that the normal vectors play the predominant role. There are several ways of computing an estimate of the
height h*(p). The article ref.!® described an approach based on morphological operations on a histogram of the
heights as a function of the depth. In this report, h*(p) is simply computed as the average of the height coordi-
nates of all the neighboring points of p. Like human-made structures, the ground plane is also distinguished by
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relatively low variation in the normal vectors between neighboring points. Assuming ); is the expected variation
of the normal vectors, the complete fitting term for the ground plane region can be constructed as

Di(p) = o |M(p) — >\i|2 +B:;v'(p) n'(p) +0; (ps — h*(p)) + &, VpeV. (12)

The parameters oy, 8; and 7; control how large role each feature plays in relation to the others, and the parameter
(; is used for calibration with other classes.

The region terms for the other classes are constructed in the same way (12), but with different values of
the parameters with index ¢. For instance 3; can be set to zero or nearly zero for the vegetation region, since
the direction of their normal vectors are arbitrary (there is a slight bias towards the horizontal plane in our
experience). The parameters should be tuned, or learned from multiple examples, for each particular ladar
instrument to achieve optimal results.

2.4.1 Experiments

Some illustrative experiments are shown in Figure 5 and 6. The ladar has scanned the surrounding scenery at
Kjeller near Oslo in various directions. Some ordinary photographs of the scenes are shown in subfigures (a),
where the red rectangles depict the area that has been scanned by the ladar. In Figure 5 the point clouds have
been segmented into three different regions as described above and the results are visualized by brown color for
points assigned to the ground plane region, green color for points assigned to the vegetation region and blue
color for points assigned to the region of human-made objects. These scenes are particularly challenging because
the ground plane tilts and its height varies a lot across the scene due to the hilly landscape. The top of buildings
get correctly assigned to the region of human-made objects, due to their concave transition from the walls and
due to their locally large height compared to nearby points.

Figure 6 is an interesting example for many reasons. Many different kinds of vegetation are present in the
scene, both leaveless trees, bushes and trees with thick leaves. A car is placed among the bushes and next to a tree
and building. Trees without leaves have an even more irregular structure than trees with leaves, therefore their
normal vectors tend to vary more. We have used two different vegetation regions, where the expected normal
variation \; for the region of leaveless vegetation is larger than for the region of vegetation with leaves. In Figure
6, the region of leaveless vegetation is visualized by dark green and the region with leaves is visualized by light
green. As before, the ground plane and human-made objects are visualized by brown and blue respectively.
On this example, all ”car-sized” objects within the region of human-made objects have been marked by red
points. This makes it possible to distinguish the car located among the bushes and tree into one single connected
component.

3. RECOGNITION OF PARTIALLY VISIBLE OBJECTS IN POINT CLOUDS

The second ”recognition” /”identification” step proceeds by calculating a recognition confidence measure for
relevant objects extracted by the segmentation step by a computationally more demanding algorithms. Earlier
work such as ref.12%2! have proposed to recognize objects in point clouds based on how well they match with
some 3D model. In case the object is only partially visible we have found this approach to be insufficient, because
arbitrary scene objects may too easily match partially with the 3D model and thus get falsely recognized. We
have instead designed a recognition confidence measure that deals naturally with occluded objects by taking into
account both the visible part using 3D shape matching and the invisible part by utilizing the point cloud shadows.
Utilization of the shadows in ladar point clouds has been a surprisingly scarce topic in previous literature as far
as we are aware. Ref.?? analysed shadows in ladar point cloud from a physical perspective and demonstrated
how they can aid in manual object detection, classification and recognition. In ref.2%2* the point cloud shadows
were used for automatic object detection. The recognition confidence measure in this work is based on several
criteria:

(I) How closely can the observed object points be aligned with a 3D model of the object of interest? To answer
this question while also accounting for objects that may only be partially visible, the algorithm rotates
and translates the observed object in such a way that the average distance between each observed point
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and its closest corresponding point on the 3D model becomes as small as possible. Results are depicted in
subplots (a)-(d) of Figures 8 and 9, where observed points are marked in blue and model points are marked
in yellow. The mean point distance is indicated by C in the rest of this article, and is shown below each
figure.

(IT) How well does the 3D model match with the point cloud shadows? Assuming the object of interest is
constructed of non-transparent material, points are not expected to appear behind it along the line of
sight. This criterion is useful for ruling out other scene objects, when searching for an object that may be
partially occluded, or partially non-reflective. In Figures 8 and 9 (e)-(h), dark and red indicate the total
projected area of the simulated shadow of the 3D model from the view point of the ladar. Red indicates
points that are observed within the shadow, violating the non-transparency assumption. The fraction of
the total expected shadow area containing such red violating points is indicated by Cs in the rest of this
article, and is shown below each figure.

(III) How well does the distribution of detected points over the projected area of the 3D model fit with expec-
tations? Occluded parts of the area are not expected to reflect pulses. Over visible parts of the projected
area, the likelyhood of absence of detected points may be estimated rather well from the incidence angle
of the laser beam with the surface of the 3D model, the distance and the strength of other nearby return
pulses. Some knowledge about reflectance properties of the object surface would of course make it possible
to tune this criterion.

(IV) How many object points are observed? The confidence measure is weighted by a function that decreases
(logarithmically) as the number of observed points decreases. This factor counteracts the fact that objects
with few points can more easily match with the 3D model by coincidence.

Criterion II is most useful in land environments where objects are usually imaged against a firm background such
that their shadows become visible. However, in an open sea environment, the scarser set of "noisy” reflection
points in the atmosphere and water also provides a background that actually benefits the recognition algorithm.

3.1 Mathematical details

The confidence that some observed object point cloud O is measured of some object of interest M can be defined
by combining criterion I-IV in the ”probability” function

P(O) = nlog,(|0]) exp(— aCy — BCy — v Cs), (13)

where Cq, Cy and C3 are indicators from criterion I,II and IIT that should be small if O are measured of M.
nlog,(|O|) is a normalized logarithmic function in the number observed object points |O| that implements criterion
IV. The parameters «, § and = should be tuned, or learned from examples, for each particular ladar instrument
in order for P to closely reflect a true probability. Details on how to compute C1, C2, Cs and nlog, are provided
below.

Assume the observed object O contains K points, which are denoted p*, p?, ..., p¥, and the 3D model contains
m points denoted q',q?,...,q™. The mean point distance in criterion I can be expressed as finding a rotation
matrix R and translation vector T that minimizes

K
1 ) )
C = {— min min Rp'+T)—qg’ 2} 14

' K ReRr3#3s.t.R=RT,TeR? — jel,,__,m‘|( p ) — | (14)

The "Tterative Closest Point” (ICP) algorithm?® 2! is used to solve the minimization problem (14). The algorithm
searches for the nearest local minimum of (14) from some initial alignment of the two sets of points. It consists of
two steps that are alternated iteratively until convergence, where the observed points are rotated and translated
incrementally every iteration. The first step searches for the nearest model point for each observed point at the
current iteration. The second step rotates and translates the observed points in such a way that the least squares
distance to the preselected model points is minimized. The observed object is initialized by aligning the axes
along the boundaries of the smallest area bounding box surrounding the set of points.'? 25
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Criterion II can be calculated by comparing the distance map of the point cloud as a function of the azimuth
(az) and elevation (el) angles D, (az,el) with the distance map of the 3D model D, (az, el) after being inserted
into the scene by inverting the transformation from criterion I (q <~ R™'q—R™'T). If D, (az,el) is bigger than
D,(az,el) for some coordinate az, el, that is, if a point is observed behind the 3D model along the line of sight,
criterion II is violated at that point. Construct the indicator functions

)

0 else

if Dp(az,el) > D,(az,el) +¢
else

Ip,»p, (a,el) < (1) . Ipsolazel) ( 1 if Dgy(az,el) >0 )

where € is some small number. Criterion II measures the number of violating points over the total number of
points and can be expressed as

Z ID >Dy az el) (15)

ot Ip,>o(az Ip,~olaz,el)

Criterion III is opposite of 11, it basically says that if some part of the object is not observed along the line of
sight, then one expects to either observe some occluding object in front, i.e. D,(az,el) < Dy(az,el), or that the
corresponding surface of the object reflects poorly. The relevant points are marked by the following indicator
function

Ip,—0,p, —o(az,el) = < é ellie Dp(az, el) = 0 and Dy(az,el) =0 > .

Although different material reflects light differently, as a general rule the power of the return pulses decay
proportionally to the cosine of the incidence angle with the object surface. The ”penalty” for absence of an
observed point can therefore be gradually decreased proportionally with the cosine of the incidence angle:

Cy— Z Ip,—o0,p, —o(az, el)}ng(az,el) -n4(az, el)}

1
Ip,>o0(az,el) ’ (16)

az,el
Here ny(az, el) is the unit vector indicating the light direction and ny(az, €l) is the expected normal vector of the
object surface, estimated by inserting the 3D model in the scene.

nlog, (|O|) suppresses the recognition score proportionally to log(|O]) if less that a certain threshold ¢ of points
are observed

1 else

log(|0]) .
nlog,(|0]) = < log(t) if  D(|O]) > ny ) .

3.2 Experiments

The algorithm is demonstrated on a dataset of ferries traveling across the Oslo fjord in Norway between the
towns of Moss and Horten that were recorded from the shore in 2014. At this time, 5 different ferries that only
differ slightly in sizes and shapes were in operation. The ferries are named Basto I, Bastg 11, Bastg 111, Bastg IV
and Bastg V and some photographs and details about their lengths are provided in Figure 7. Bastg I and II are
sister ships with and can therefore not be distinguished based on their shapes. The figure also shows 3D models
of the ferries that have been constructed by combining ladar scans from different view angels.

Figure 8 and 9 present the result of the recognition step on two of the most difficult data sets. Figure 8
is a continuation of the segmentation example shown earlier in Figure 3 where two of the ferries, Bastg II and
Bastg IV, are crossing each other such that Bastg II in the background is only partially visible. The two ferries
are still clearly distinguished in the point cloud because of their different distances. Figure 8 illustrates the 3D
matching step, where the observed points, marked in blue, have been optimally aligned with the points on the
3D model, marked in yellow, and the simulated shadow of the 3D model is measured for consistency with the
point cloud shadows. Even though Bastg II in the background is only partially visible, the algorithm correctly
leads to the best match for Bastg I/IT (P = 0.972) followed by Bastg III (P = 0.763). The ship in the front is
correctly recognized as Bastg IV (P = 0.989), with Bastg V giving the second best match (P = 0.786). Figure
9 presents a case with even more overlap, where only about 1/3 of the ship in the background is visible. The
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. . RSN ke

Bastg I, length: 109 m Bastg II, length: 109 mBastg I11, length: 116 m Bastg IV, length: 86 m Bast;a Vv, length 92 m

Bastg I, point cloud Bastg II, point cloud Bastg III, point cloud Bastg IV, point cloud Bastg V, point cloud

Figure 7: The five Bastg ferries and their 3D models obtained by mixing the point clouds acquired by ladar
scans from different view points.

[

(a) Match Bastg IV (best), av-(b) Match Bastg V (2nd best),(c) Match Bastg I/II (best), (d) Match Bastg III (2nd
erage point distance: mean point distance: mean point distance: best), mean point distance:
0.64 m 1.18 m 0.64 m 0.85 m

il i, il i,

(e) Bastg IV shadow inconsis-(f) Bastg V shadow inconsis-(g) Bastg I/I1 shadow incon-(h) Bastg V shadow inconsis-
tency (C2): 0.009 tency (C2): 0.100 sistency (C2): 0.026 tency (C2): 0.120

Figure 8: Continuation of segmentation experiment shown in Figure 3. Each ferry segmented from the point
cloud is matched against the 5 Bastg ferry 3D models. The best and second best match for the frontmost ferry
(Bastg IV) is shown in (a)-(b) and for the partially visible backmost ferry (Bastg II) in (c)-(d). Criterion II, the
point cloud shadow inconsistency, is shown in (e)-(h) in the same order.
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(a) scanning area

(b) Segmentation of point cloud, slightly elevated view point

(¢) Match Bastg I/II (best):(d) Match Bastg III (2nd(e) Match Bastg I/II (best): (f) Match Bastg III (2nd
mean point distance (C1):  best): mean point distancemean point distance (C1): best): mean point distance
0.59 m (Ch): 0.58 m (Ch):

0.97 m 1.16 m

TV .

(g) Bastg I/II shadow incon-(h) Bastg III shadow inconsis-(i) Bastg I/II shadow inconsis-(j) Bastg III shadow inconsis-
sistency (C2): 0.040 tency (C2): 0.136 tency (C2): 0.011 tency (C2): 0.062

Figure 9: Ladar scan in the Oslo Fjord. The ferry Bastg [ is in front and Baste II is in the back. (b) Segmentation
of point cloud into region of high point density (red) and low point density (blue). Best and second best 3D
matches (criterion I) of the frontmost ferry (c)-(d) and backmost ferry (e)-(f). Criterion II, the point cloud
shadow inconsistency, is shown in (g)-(h).
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algorithm is yet able to recognize the backmost ship as Bastg I/IT (P = 0.968), with Bastg III resulting in the
second best match (P = 0.743). The correct ferry gets consistently a significantly better recognition value then
other ferries in even the most challenging cases. Observe also that the values of C; cluster around 0.55-0.65 for
the correct ferry and is significantly higher for the others. It can therefore rightfully be said that the ferries get
identified with high confidence.

4. CONCLUSIONS

This paper has presented algorithms for segmenting a point cloud acquired by a ladar into several meaningful
classes of objects and for recognizing a particular rigid object within its respective class. The algorithms were
designed to preserve information by processing the raw data directly without relying on a preconversion step.
The algorithms exploited a novel hierarchy of features, starting with low level properties of the interior and
boundary of objects in the segmentation step, before taking into account information of the full 3D shape and
point cloud shadow map in the recognition step. The segmentation step utilized a recent algorithm for solving
certain variational problems on graphs, which has proven to give high quality of results in other data classification
applications. Its application to point cloud segmentation in a land environment was further elaborated in this
work, and a novel application to maritime scenarios was described. The recognition step optimized a recognition
confidence measure that dealt naturally with occluded objects by taking into account both the visible part using
3D shape matching and the invisible part by utilizing the point cloud shadows. Experiments demonstrated that
land scenes could be segmented into regions of vegetation, ground, buildings and vehicles. Ships in maritime
scenes could be accurately segmented from the surroundings and be identified within a class of very similar ships.
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