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a b s t r a c t 

We investigate the shock-induced flow through random particle arrays using particle-resolved Large Eddy 

Simulations for different incident shock wave Mach numbers, particle volume fractions and particle sizes. 

We analyze trends in mean flow quantities and the unresolved terms in the volume averaged momentum 

equation, as we vary the three parameters. We find that the shock wave attenuation and certain mean 

flow trends can be predicted by the opacity of the particle cloud, which is a function of particle size and 

particle volume fraction. We show that the Reynolds stress field plays an important role in the momen- 

tum balance at the particle cloud edges, and therefore strongly affects the reflected shock wave strength. 

The Reynolds stress was found to be insensitive to particle size, but strongly dependent on particle vol- 

ume fraction. It is in better agreement with results from simulations of flow through particle clouds at 

fixed mean slip Reynolds numbers in the incompressible regime, than with results from other shock wave 

particle cloud studies, which have utilized either inviscid or two-dimensional approaches. We propose an 

algebraic model for the streamwise Reynolds stress based on the observation that the separated flow 

regions are the primary contributions to the Reynolds stress. 

© 2019 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Interaction between shock waves and particle clouds are of in-

terest in a number of different natural phenomena, as well as in-

dustrial applications and safety measures such as shock wave mit-

igation using porous barriers ( Suzuki et al., 20 0 0; Chaudhuri et al.,

2013 ). It also finds applications in heterogeneous explosives ( Zhang

et al., 2006 ) and explosive dissemination of powders and liquids

( Zhang et al., 2001; Milne et al., 2010; Rodriguez et al., 2017 ). In

coal mines, enhanced or secondary explosions due to coal dust is

a major safety concern ( Ugarte et al., 2017; Shimura and Matsuo,

2018 ). Shock wave particle interaction also occurs in a number of

natural phenomena, with volcanic eruptions ( Bower and Woods,

1996 ) as the prime example. There are also astrophysical exam-

ples such as ejection of stellar dust from supernovae ( Silvia et al.,

2012 ). More generally, high-speed multiphase flow has important
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ndustrial applications, such as liquid and solid fuel engines and

uidized beds. Gas-turbines operating in regions with suspensions

f sand particles in the air are subject to substantial degradation

ue to particle deposition on turbine blades ( Hamed et al., 2006 ).

ater injection systems have been used to reduce sound intensity

t rocket launch pads ( Ignatius et al., 2008 ), and it might be possi-

le to utilize similar systems to reduce jet noise ( Krothapalli et al.,

003 ), which is especially important around air-crafts during take-

ff. 

Shock wave interaction with particle clouds has been exten-

ively studied over the last fifty years. The dilute particle cloud and

he granular flow regimes are quite well understood, but the inter-

ediate regime has proven challenging to model ( Theofanous and

hang, 2017 ). The intermediate volume fraction regime is where

articles neither display the same statistical properties as isolated

articles, nor as particles in the granular regime. In Crowe et al.

2011) , flows with particle volume fractions above 0.1% were con-

idered to belong to this regime, while Zhang et al. (2001) used

 lower limit of 1%. The difficulty in modeling these flows stems

rom the complex interaction between the flow field and the
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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article distribution. The particles occupy a volume that is large

nough that their collective nozzle effect is one of the dominating

ynamical effects in the flow ( Mehta et al., 2018b ), but they are

ot close enough that particle collision exclusively determines the

ovement of the particles. Each particle deflects the flow around

t, causing local flow acceleration and deceleration that depends

n the local particle configuration. Additionally, boundary layers

evelop over the particle surface, and the flow separates behind

he particle. When the shock wave passes over a particle there is

 reflection from the front of the particle, and a focusing of the

hock wave behind it ( Tanno et al., 2003 ). The reflected shock in-

eracts with the upstream particles and their wakes, and also with

eflected shocks from other nearby particles. These complex flow

ynamics lead to a large variation in drag forces that depends on

he local particle configuration. 

The intermediate particle volume fraction regime has recently

ecome feasible to study in much greater detail than was previ-

usly possible. In experiments, the short time-scales and the lim-

ted possibility of recording data in the regions of interest have

resented significant difficulties. Recent improvements to exper-

mental techniques have enabled experimentalists to accurately

haracterize the wave system and particle distribution when a

hock wave passes through a curtain of particles ( Wagner et al.,

012; Ling et al., 2012 ). Even more recently, DeMauro et al.

2017) used high speed, time-resolved, particle image velocimetry

o measure velocity fields in front of and behind the particle cur-

ain. The new sets of experimental data have resulted in a renewed

ffort to study these problems using numerical simulations, in par-

icular using the Eulerian–Lagrangian framework ( Houim and Oran,

016; Shallcross and Capecelatro, 2018; Theofanous and Chang,

017 ), but also Eulerian–Eulerian models ( McGrath et al., 2016;

aurel et al., 2017; Utkin, 2017 ). 

Some quantities are very difficult to measure experimentally,

uch as flow field distributions inside the particle cloud and fluc-

uations at the particle scale. Instead, these can be obtained us-

ng particle-resolved numerical simulations. Such simulations are

omputationally expensive, since a large number of particles must

e used to obtain meaningful statistics. A limiting factor is the

ery large scale separation between the dynamically important

article scale physics and the global length scale of the problems.

owever, a number of studies have recently been able to investi-

ate shock-wave particle cloud interaction using two-dimensional

 Regele et al., 2014; Hosseinzadeh-Nik et al., 2018; Sen et al., 2018 )

nd three-dimensional ( Sridharan et al., 2015; Mehta et al., 2016;

018a; 2018b; Theofanous et al., 2018 ) numerical simulations. In

articular, particle resolved simulations can be used to investigate

losures for unresolved terms that appear in Eulerian–Lagrangian

r Eulerian–Eulerian models due to averaging of products of fluc-

uations. Volume averaging is one form of filter used in Large Eddy

imulations, and is also used in the formulation of most Eulerian–

agrangian methods. Volume averaging does not commute with

patial or temporal derivatives. Therefore, the averaging operation

ntroduces new terms in the volume averaged equations, as dis-

ussed in e.g. Schwarzkopf and Horwitz (2015) . Volume averaging

an be applied to data from particle-resolved simulations to inves-

igate the unclosed terms, both the terms that appear in single-

hase models and those that are specific to dispersed flow models.

In the intermediate particle volume fraction regime, the inter-

article distance and the particle size are of the same order. The

patial extent of the flow field fluctuations is comparable to the

nter-particle distance, and we will refer to these as particle scale

uctuations. It is common to divide the flow fluctuations into

seudo-turbulent and turbulent structures, and refer to the kinetic

nergy in these as pseudo-turbulent kinetic energy (PTKE) and tur-

ulent kinetic energy (TKE), respectively. The flow perturbations

nduced by the particles are considered to be pseudo-turbulent ef-
ects. Pseudo-turbulent flow structures might have very different

ime and spatial scales than turbulent structures. For this reason it

s a useful technique for analyses and modeling purposes to distin-

uish between the two ( Mehrabadi et al., 2015 ). In the setting of

hock waves passing through particle clouds, PTKE is caused pri-

arily by three effects. Firstly, shock wave reflection from indi-

idual particles causes very large differences between the region

ffected by the reflected shock and the surrounding regions, with

orrespondingly high PTKE values. Secondly, flow deflection around

articles causes local flow accelerations and decelerations, result-

ng in both streamwise and spanwise fluctuations. In addition, flow

eparation behind particles also causes a significant deviation from

he mean flow speed. This last effect in particular will be dis-

ussed in this paper. As evident from these examples, pseudo-

urbulent flow fluctuations are quite different from classical tur-

ulence. However, pseudo-turbulent fluctuations might themselves 

enerate classical turbulent fluctuations. This is expected to occur

s a result of the strong velocity shear in the particle wakes. The

rocesses generating TKE and PTKE are very different phenomena,

nd should therefore be modeled differently. Both TKE and PTKE

nter the volume averaged momentum equations through a term

hat is analogous to the classical Reynolds stress, and for conve-

ience we will use the term Reynolds stress for this term through-

ut this paper. 

The velocity fluctuations in shock-particle interaction have pre-

iously been examined in two-dimensional flows using both invis-

id ( Regele et al., 2014 ) and viscous simulations ( Hosseinzadeh-Nik

t al., 2018 ). In those flows, the PTKE was found to be slightly

igher in the inviscid simulations, but of the same order as the

ean flow kinetic energy in both cases. Regele et al. (2014) ad-

itionally demonstrated the importance of capturing the PTKE

n volume-averaged simulations in order to obtain correct pres-

ure fields. In contrast, Mehta et al. (2018a) found very low val-

es of PTKE, demonstrating a significant difference between the

wo-dimensional and inviscid three-dimensional simulations. The 

eynolds stress plays an important role in the dynamics around

he particle cloud edges, and in particular it influences the (time-

ependent) strength of the reflected shock wave. Since the incom-

ng flow field is altered by the reflected shock wave, phenomena

uch as particle drag, pressure drop through the particle cloud

nd even the transmitted shock strength depend directly on the

trength of the reflected shock, and therefore also on the Reynolds

tress. 

Recent studies have recognized that an issue for Eulerian–

agrangian methods is that the forces imposed on the continuous

hase by a particle disturbs the flow around the particle. Calcula-

ion of drag by standard drag laws is incorrect if continuous phase

ariables within the disturbed flow region is used, because most

rag-laws are calibrated against undisturbed flow quantities. Meth-

ds for handling this problem exactly in the zero Reynolds number

imit have been proposed and even shown to yield good results

n finite Reynolds number flows ( Horwitz and Mani, 2016; 2018;

alachandar et al., 2019 ). Accounting for how the particle influ-

nces the local flow field was also done in Moore and Balachan-

ar (2018) , who used a linear superposable wake to approximate

ontinuous phase fluctuations within a particle cloud for incom-

ressible flow. So far, no such model has been proposed for the

ompressible flow inside a particle cloud. However, using knowl-

dge about how the particles disturb the flow in their vicinity to

mprove drag computation can be done even in this complex set-

ing, as will be shown. 

In this work we perform three-dimensional, time dependent,

iscous simulations of a shock wave passing through a random

article array. The particles are assumed to be inert and station-

ry. We vary the incident shock wave Mach number between 2.2

nd 3, the particle volume fraction between 0.05 and 0.1, and the
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particle diameter between 50 μm and 100 μm. Preliminary results

from these simulations were reported in Vartdal and Osnes (2018) .

We utilize volume averaging to define the mean flow and the fluc-

tuations from that mean. Key flow properties such as mean ve-

locity, pressure and density, as well as the Reynolds stress and its

anisotropy, are examined. 

The purpose of this work is twofold. Firstly, we analyze trends

in mean flow properties over different combinations of volume

fractions and Mach numbers than those that have been reported

previously. In addition, we vary the particle diameter, which has

not been done before. This analysis improves the understanding of

the bulk effect of particle cloud properties on shock wave parti-

cle cloud interaction. The second purpose is to analyze statistics of

the Reynolds stresses and their anisotropy, as well as their impor-

tance in the flow dynamics. To the authors’ knowledge, this has not

yet been investigated for viscous simulations of three-dimensional

random particle arrays. Such data are crucial to the development of

Reynolds stress closure models for shock wave particle cloud inter-

action. 

This paper is organized as follows. In Section 2 we briefly in-

troduce the basic flow patterns occurring when the shock wave

passes over a group of particles. The governing equations and

the volume averaged equations used for analysis are described in

Section 3 . Section 4 describes the computational method and the

set-up of the problems under consideration. Section 5 presents the

simulation results. First the grid-quality is checked by examination

of particle drag and resolution of viscous shear layers. Next, we

discuss the shock wave attenuation as it passes through the par-

ticle layer. We then examine the mean fields, i.e. density, veloc-

ity, pressure and Mach number distributions throughout the par-

ticle layer, and discuss trends as we change particle volume frac-

tions, particle diameters and incident shock wave Mach numbers.

Next we discuss the velocity fluctuations and their anisotropy. We

discuss the momentum balance around the upstream edge of the

particle cloud, to highlight the dynamic importance of the veloc-

ity fluctuations. The discussion of the simulation results is final-

ized by an examination of the particle drag coefficients and the

average particle forces obtained in the different simulations. In

Section 6 we utilize the data from the resolved simulations to pro-

pose models that capture some of the observed properties of the

flow. We provide an algebraic expression for combinations of par-

ticle diameter and particle volume fractions that result in the same

shock wave attenuation. We also propose an algebraic Reynolds

stress model based on the effect of separated flow behind parti-

cles on volume averaged equations, and compare this model to the

streamwise velocity fluctuation intensity obtained in the simula-

tions. Finally, concluding remarks are given in Section 7 . 

2. Shock-induced flow around particles 

In this section, we present a brief overview of the flow dur-

ing and after the shock wave passes over a group of particles. In

Fig. 1 , numerical schlieren images ( Quirk, 1997 ) and instantaneous

streamwise velocities are shown for a time-series in one of the

simulations (case VII) that will be described in Section 4 . The time

sequence covers the shock wave pattern and the subsequent devel-

opment of particle wakes. Initially, a planar shock impacts on the

first particle, and a regular shock reflection is formed at the front

of the particle (first frame). As the shock propagates, a Mach re-

flection is obtained, which can be discerned in the second frame.

During this time, the pressure difference between the front and

the back of the particle is very large. Due to the presence of mul-

tiple particles, the individual reflected shocks coalesce and form

a reflected shock ( Boiko et al., 1997; Wagner et al., 2012 ), which

over time becomes nearly planar and propagates upstream. The

particles also cause shock wave diffraction, as clearly seen by the
urved front in the third frame. Behind each particle, the shock is

ocused and a high-pressure region is created (fourth frame). 

Viscous forces become more important for the flow around par-

icles when the particle Reynolds number is reduced. This is rel-

vant also for shock particle interaction, since smaller particles

orrespond to lower particle Reynolds numbers. Henceforth, “par-

icle Reynolds number” and “Reynolds number” will be used in-

erchangeably. Sun et al. (2005) showed that depending on the

eynolds number, the high-pressure region created by shock focus-

ng can create temporary negative drag-coefficients. This phenom-

na was only observed for particle Reynolds numbers of the order

0 3 . For lower Reynolds numbers, viscous forces counteracted this

ffect, and the total drag-coefficient remained positive. As they var-

ed the particle Reynolds number from 4900 to 49, the importance

f viscous forces increased drastically, and for the lower Reynolds

umber, the late-time viscous forces was almost twice the magni-

ude of the pressure forces. 

The particle Reynolds number is often used to characterize the

ow, and it is typically based on undisturbed flow, or incident flow,

uantities. It is likely that characterization based on incident flow

roperties are less reliable in the shock wave particle cloud set-

ing, due to the generation of a collective reflected shock wave. The

trength of this shock wave determines the properties of the gas

hat enters the particle cloud, and is highly dependent on prop-

rties of the cloud. In addition, particles within the cloud are ex-

osed to the pseudo-turbulent flow induced by upstream particles,

hich is very likely to affect statistical properties of the wake. 

The development of flow separation and particle wakes can be

een in the middle frames in Fig. 1 . Boundary layers develop over

he particle surfaces, and the flow separates. The particle wakes

re highly distorted due to the presence of other particles, even for

he first particles in the cloud. For isolated particles with Reynolds

umbers in the range 50 − 300 , Nagata et al. (2016) found that for

ncreasing Reynolds numbers, the separation line moves forward

long the particle surface. They also found that higher Reynolds

umbers resulted in longer separated flow regions. Within a par-

icle cloud, the length of the separated flow region is significantly

ffected by the presence of other particles, as is the case for the

ake behind the leftmost particle in Fig. 1 . This phenomena cannot

e described solely based on Reynolds number and Mach numbers.

The bottom frame of Fig. 1 shows a snapshot of the flow over

he whole particle cloud. The different effects discussed above

re visible in this frame, occurring at different spatial locations

hroughout the particle cloud. 

. Governing equations 

The gas-dynamic processes considered in this work are gov-

rned by the conservation equations of mass, momentum and en-

rgy. In differential form these are 

 t ρ + ∂ k ( ρu k ) = 0 , (1)

 t ( ρu i ) + ∂ k ( ρu i u k ) = −∂ i p + ∂ j σi j , (2)

 t ( ρE ) + ∂ k ( ρEu k + pu k ) = ∂ j 
(
σi j u i 

)
− ∂ k ( λ∂ k T ) , (3)

here ρ is the mass density, u is the velocity, p is the pressure,

i j = μ(∂ j u i + ∂ i u j − 2 ∂ k u k δi j / 3) is the viscous stress tensor, μ is

he dynamic viscosity, E = ρe + 0 . 5 ρu k u k is the total energy per

nit volume, e is the internal energy per unit mass, λ is the ther-

al conductivity, and T is the temperature. We utilize the ideal

as equation of state, with γ = 1 . 4 , and relate internal energy and

emperature by a constant specific heat capacity. We assume a

ower law dependence of viscosity on temperature, with an expo-
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Fig. 1. Numerical schlieren images (top and bottom row) and streamwise velocities (middle row) in a cut plane, when a shock wave impacts on and passes through a cloud 

of particles. Flow direction is from left to right. Frames are taken at times (t − t 0 ) /τp = 0 . 13 , 0 . 69 , 1 . 25 , 1 . 79 , 2 . 86 , 4 . 81 , 6 . 77 , 8 . 73 , 10 . 63 , 12 . 47 , 26 . 82 . t 0 denotes the 

time when the shock wave is at x = 0 (upstream particle cloud edge) and τ p is defined in Eq. (7) . In the middle frames, the colormap is linear between −900 m/s (black) 

and 900 m/s (white). The red dashed square shows the location of the zoomed view in the upper rows. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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ent of 0.76, and we relate the thermal diffusivity to the viscosity

y assuming a constant Prandtl number of 0.7. 

In the analysis of the results, we consider the volume averaged

quations of motion. These are obtained by applying the volume

veraging operator to Eqs. 1, 2, 3 . We use the notation · for vol-

me averaging, 〈 · 〉 for phase-averaging, and ˜ · for Favre-averaging.

he deviations from the phase-averaged and Favre-averaged values

re denoted by · ′ and · ′′ , respectively. Phase averaging and vol-

me averaging are related by α〈·〉 = ·, where α denotes the gas

hase volume fraction. We use the symbol αp for the particle vol-

me fraction. The problem under consideration is statistically ho-

ogeneous in the y and z directions and therefore the volume av-

raged equations can be expressed in one dimension. The volume

veraged equations are then 

 t ( α〈 ρ〉 ) + ∂ x ( α〈 ρ〉 ̃  u 1 ) = 0 , (4)

∂ t ( α〈 ρ〉 ̃  u 1 ) + ∂ x ( α〈 ρ〉 ̃  u 1 ̃  u 1 + α〈 p〉 ) 
= ∂ x ( α〈 σ 〉 11 ) − ∂ x 

(
α〈 ρ〉 ̃  R 11 

)
+ 

1 

V 

∫ 
S 

pn 1 d S − 1 

V 

∫ 
S 

σ1 k n k d S, (5) 

∂ t 
(
α〈 ρ〉 ̃  E 

)
+ ∂ x 

(
α〈 ρ〉 ̃  E ̃  u 1 + α〈 p〉 ̃  u 1 

)
= ∂ x ( α〈 σ11 〉 ̃  u 1 ) − ∂ x ( α〈 λ∂ x T 〉 ) 

−∂ x 
(
α〈 ρe ′′ u 

′′ 
1 〉 

)
− ∂ x 

(
α〈 ρ〉 ̃  R 11 ̃  u 1 

)
+ D 

u + D 

p + D 

μ + D 

ap + D 

aμ. (6) 

n the equations above, ˜ R 11 = 

˜ u ′′ 
1 

u ′′ 
1 

is a stress due to velocity fluc-

uations, analogous to the classical Reynolds stress and we refer to

his term as Reynolds stress throughout this paper. The continuous

hase boundary is denoted by S, V is the averaging volume, and the

ntegrals represent the forces acting on the particle surfaces. D 

u =
1 / 2 ∂ x (α〈 ρu ′′ 

i 
u ′′ 

i 
u ′′ 

1 
〉 ) is the turbulent diffusion, D 

p = −∂ x ( α〈 p ′ u ′ 
1 
〉 ) is

he pressure diffusion, D 

μ = ∂ x (α〈 u ′ 
j 
σ ′ 

j1 
〉 ) is the turbulent viscous

iffusion, D 

ap = ∂ x ( αa 1 〈 p〉 ) is the pressure-diffusion effect due to the

urbulent mass flux a = 〈 ρ′ u ′ 〉 / 〈 ρ〉 , and D 

aμ = −∂ x ( αa 〈 σ 〉 ) is the
1 11 
nalogous viscous diffusion effect. An investigation of the energy

alance during shock wave particle cloud interaction is outside the

cope of this work, but we include the equation for completeness.

he Reynolds stress appears in both Eqs. (5) and (6) , and the terms

ontaining it represent the forces due to velocity fluctuations and

he work done by those forces, respectively. Those fluctuations can

e both shear turbulence and pseudo-turbulent fluctuations. The

hysical processes represented by the Reynolds stress will be dis-

ussed in this paper in order to guide closure modeling. 

. Computational method and set-up 

.1. Computational method 

The simulations in this work are performed using the com-

ressible flow solver “CharLES”, developed by Cascade Technolo-

ies. The governing equations are solved with an entropy-stable

cheme on a Voronoi-mesh ( Bres et al., 2018 ), and a third order

unge–Kutta method for time stepping. A discussion of entropy

table schemes can be found in e.g. Tadmor (2003) ; Chandrashekar

2013) . 

.2. Problem set-up 

We perform numerical simulations of shock waves passing

hrough a fixed cloud of particles, with varying shock wave Mach

umber, particle size and particle volume fraction. Fig. 2 shows a

ketch of the computational domain and the particle distribution.

he particle cloud has length L , and spans the domain in the y

nd z directions. We denote the particle diameter by D p . The par-

icle configuration in the figure is the configuration used for the

imulations with the largest particle diameter. The computational

rid consists of structured grids around each particle, which ex-

end 0.2 D p out from the particle surface, and an approximately

niform Voronoi-grid in the rest of the domain. Within this struc-

ured region, the control volume size increases geometrically with

istance to the particle surface. Fig. 3 provides an impression of
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Fig. 2. Sketch of the computational domain and the particle configuration used 

for the simulations with the largest particles. The particles are located at 0 ≤ x ≤ L , 

where L = 1 . 2 
3 
√ 

4 mm, and the computational domain extends 2 L /3 upstream and 

L /3 downstream of the particle cloud. The axis directions are indicated at the ori- 

gin. The span-wise extent is set to a constant multiple of the particle diameter, so 

that 
y = 
z = 8 
3 
√ 

4 D p , and therefore varies depending on the particle size. 

Fig. 3. Illustration of the mesh around particle, where the faces of each control- 

volume in this cut-plane are shaded according to the direction of their normals. 

There is a structured mesh around each particle extending 0.2 D p out from the par- 

ticle surface, and a Voronoi-grid in the rest of the domain. Note that the control 

volume sizes in this figure are adjusted for illustration purposes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

The different simulations considered in this study and key parame- 

ters. Ma is the incident shock wave Mach number, Re p,IS is the par- 

ticle Reynolds number based on post incident shock values, and n is 

the number density. L s is the sight-length, as defined in Section 5.2 . 

Case Ma L s / L αp Re p,IS n [ mm 

−3 ] D p [ μm] 

I 2.2 0.196 0.1 6160 191.0 100 

II 2.4 0.196 0.1 7091 191.0 100 

III 2.6 0.196 0.1 7927 191.0 100 

IV 2.8 0.196 0.1 8666 191.0 100 

V 3.0 0.196 0.1 9309 191.0 100 

VI 2.6 0.157 0.1 6292 382.0 79.4 

VII 2.6 0.125 0.1 4994 763.9 63.0 

VIII 2.6 0.163 0.075 4537 763.9 57.2 

IX 2.6 0.226 0.05 3964 763.9 50 

X 2.2 0.099 0.1 3080 1528 50 

XI 2.6 0.099 0.1 3964 1528 50 

XII 3.0 0.099 0.1 4654 1528 50 
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the mesh around each particle. The particle positions are drawn

from a uniform random distribution, so that any position within

0 ≤ x / L ≤ 1 has equal probability of containing a particle. We accept

a particle position if it is not closer than 1.5 D p to any other parti-

cle center. This ensures that the structured grids do not overlap,

and that there is a small distance between the structured grids

where the Voronoi-grid can create a smooth transition between

the two structured regions. In addition, we require that structured

grids do not intersect the spanwise domain boundaries. Particles

are drawn in this way until the particle volume fraction reaches

the desired value. For the simulations considered in this study,

the minimal number of particles in any simulation is 586 and the

maximal number is 1173. The size of the control volumes in the

Voronoi part of the mesh matches approximately the outer layer

of the structured grid around each particle, and it is slightly coars-

ened in the regions away from the particle cloud. The total num-

ber of control volumes is roughly 6 × 10 7 for all the simulations

here. On 300 cores, each simulation took roughly 24 hours to com-

plete. The initial condition consists of two homogeneous regions

separated by a shock wave, where the pre-shock conditions are

set to ρ0 = 1 . 2048 kg/m 

3 , u 0 = 0 m/s and p 0 = 1 . 01325 × 10 5 Pa.
he post-shock conditions are determined from the shock wave

trength. Post-shock quantities are used for normalization, and will

e denoted with a subscript IS. For the post-shock gas velocity

e omit the numeric component subscript for notational conve-

ience. The shock wave propagates in the x-direction. The up-

tream boundary is set to the post-shock condition and the down-

tream boundary is set to a zero-gradient outlet. We apply sym-

etry conditions at the y and z boundaries. 

Table 1 provides an overview of the parameter combinations we

imulate. The simulations will be referred to as Case I, II, …, XII.

e vary the incident shock wave Mach number between 2.2 and

, particle size between 50 μm and 100 μm and particle volume

raction between 0.05 and 0.1. 

The analysis is conducted using the volume averaging frame-

ork. We define averaging volumes spanning the domain in the

 and z directions, with a streamwise extent of L /60. These bins

ontain both the gas phase and the particles, and thus the particle

olume fraction within a bin might deviate from the bulk particle

olume fraction. The flow quantities are averaged over these bins,

nd we subsequently compute a moving average with a window of

ve bins to reduce the sensitivity of the results to the local particle

onfiguration. 

We utilize two time-scales to compare the simulation results.

hese are 

L = L 

( 

Ma 

√ 

γ
p 0 

ρ0 

) −1 

, τp = D p 

( 

Ma 

√ 

γ
p 0 

ρ0 

) −1 

, (7)

here τ L is the time it takes for the incident shock wave to travel

 distance equal to the particle cloud length, τ p is the time it

akes for the incident shock wave to pass over a particle and Ma

s the Mach number. Unless otherwise specified, the time-scale is

omputed using the incident shock wave Mach number in each

imulation, so that the time-scales are different for the differ-

nt simulations. We let t 0 denote the time when the shock wave

s at x = 0 . 

. Results 

All simulations considered here feature the same basic flow

attern, which has been reported in a number of previous experi-

ental and numerical studies. The most important features are the

eneration of the reflected shock, the generation of particle wakes,

nd the continuous weakening of the primary shock as it impacts

n particles throughout the layer. It should be noted that the par-

icle layer considered here is not long enough to completely dis-

ipate the shock wave, and therefore a transmitted shock emerges

rom the downstream edge of the particle cloud. After the trans-



A.N. Osnes, M. Vartdal and M.G. Omang et al. / International Journal of Multiphase Flow 114 (2019) 268–286 273 

−2 0 2 4 6 8 10

t/τp

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C
d

N = 492

N = 1002

N = 2252

N = 4842

N = 20252

Fig. 4. Drag coefficient for an isolated particle subjected to a Ma = 2 . 6 shock wave 

with different grid resolutions. Here, N denotes the number of points at the particle 

surface. 
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Fig. 5. Histogram of l + for case VII, with (Ma, αp , D p ) = (2 . 6 , 0 . 1 , 63 μm) , at 

(t − t 0 ) /τL = 1 . 36 . 
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t  
itted shock has moved away from the particle cloud, a flow ex-

ansion region occurs around the downstream edge of the particle

loud, where the flow transitions from subsonic ( Ma ≈ 0 . 5 − 0 . 8 )

o supersonic ( Ma ≈ 1 . 2 − 1 . 6 ). The expansion region is terminated

y a shock wave a short distance downstream of the particle cloud.

.1. Grid resolution 

Previous studies of shock interaction with particle arrays have

stimated grid qualities by examining the drag-coefficient on a sin-

le particle ( Mehta et al., 2016; 2018b; Hosseinzadeh-Nik et al.,

018 ). It is important that the particle forces are well reproduced

n the simulation, since they are central to the problem under in-

estigation. Following the same approach, we conduct simulations

f a single particle with diameter 63 μm , subjected to a Ma = 2 . 6

hock wave with various number of faces at the particle surface.

his parameter combination is chosen because it is in the middle

f the range of Mach numbers and particle sizes we have simu-

ated. Fig. 4 shows the drag coefficient, as defined in Eq. (15) , as

 function of time for five different grid resolutions. The drag-

oefficient with N = 2252 deviates roughly 2% from the highest

esolution, and is a feasible resolution in terms of computational

ost for the particle cloud simulations. Therefore, we apply this

esolution to the simulations considered in this paper. 

In addition to the drag-coefficient, we also examine the grid-

esolution in terms of the parameter 

 

+ = 

3 
√ 

V CV /l viscous , (8) 

hich is the non-dimensional grid-length scale relative to the local

iscous length scale of the flow. Here 3 
√ 

V CV is the length scale of

he control volume, 

 viscous = 

√ 

μ

ρ(2 S i j S i j ) 1 / 2 
, (9) 

s the viscous length scale ( Wingstedt et al., 2017 ) and S i j =
 . 5(∂ j u i + ∂ i u j ) is the strain rate tensor. The viscous length scale

an be interpreted as the smallest length scale of the local shear

ow. Thus, if the grid size is comparable to or smaller than this

ength scale, it is reasonable to assume that the flow is well re-

olved locally. The viscous length scale can be utilized indepen-

ent of the state of the flow (turbulent or laminar). It should be

oted that the values obtained for l depends on the grid-size,
viscous 
nd l + therefore only serves as a post-simulation measure of grid-

uality, as opposed to a value that can be used quantitatively to

efine a mesh. Fig. 5 shows a histogram of the l + values for case

II, with (Ma, αp , D p ) = (2 . 6 , 0 . 1 , 63 μm) , at (t − t 0 ) /τL = 1 . 36 .

he middle 98% of the distribution is located between l + = 30 and

 

+ = 114 . The highest values are located in the shear layer around

ach particle and their wakes. For problems where it is critical to

esolve the turbulent energy cascade, the grid size should be com-

arable to l viscous , or if larger grid sizes are used, the smaller scales

hould be appropriately modeled. In this problem, it is unlikely

hat details of the energy cascade are very important. Therefore

he requirement on l + can probably be slightly relaxed here with-

ut affecting the results considerably. Some phenomena, such as

ake-wake interaction, and shock-wake interaction, might require

ner resolutions than we use. However, it is not the purpose of

his work to explore these phenomena in detail, and it is likely

hat they only have a minor effect on the results presented here. 

The viscous length scales in this case are distributed between

0 nm and 200 nm. This means that the smallest viscous length

cales are only about an order larger than typical mean free paths

f air molecules. The Knudsen number based on the viscous length

cale is given by 

n = 

l free 

l viscous 

= 

(
k B T √ 

2 π pD p , air 

)
1 

l viscous 

, (10) 

here l free is the mean free path of the molecules, k B is the Boltz-

ann constant and D p , air = 3 . 84 × 10 −10 m is the effective diame-

er of an air molecule. Throughout most of the particle layer, the

nudsen number takes values around 0.1. In the expansion region

t the downstream end of the particle cloud, the Knudsen number

ncreases, and around the very last particles we find values up to

wo. This indicates that the wakes and shear layers around parti-

les at the downstream end of the particle cloud might be influ-

nced by non-continuum effects, but we do not expect those ef-

ects to be very large. 

We conclude that the grid-resolution used in this study is suf-

cient to obtain reliable particle forces, and that it represents the

ocal flow gradients in a satisfactory manner. 

.2. Shock wave attenuation 

As the shock wave passes through the particle cloud, it is at-

enuated by shock reflection from the particles. The amount of
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Fig. 6. Difference between undisturbed shock arrival time, x / u s , where u s denotes 

the incident shock wave speed, and the obtained shock arrival time, t s , as a function 

of position within the particle cloud for an incident Ma = 2 . 6 shock wave. The shock 

arrival time is defined as the time when the average pressure within the bin first 

exceeds 3 bar. 
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Fig. 7. Opacity for the different geometry parameters used in the simulations, as a 

function of distance into the particle cloud. The solid lines are the results for the 

particle drawing method used in this study and the dashed lines are the results 

for distributions without the inter-particle distance restriction. The shaded areas 

indicate the standard deviations for each line. The dotted lines indicate L s for the 

different parameter combinations. 
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attenuation depends on particle size and particle volume fraction,

as well as the regularity of the particle distribution. As will be

shown, the shock wave attenuation and certain mean flow trends

are well characterized by a single parameter depending only on

geometric properties of the particle cloud. 

Fig. 6 shows the shock arrival time as a function of distance

within the particle cloud for the cases with Ma = 2 . 6 . Cases VI and

VIII, with ( αp , D p ) = (0 . 1 , 79 . 4 μm) and (0 . 075 , 57 . 2 μm) re-

spectively, have very similar shock speeds during the passage of

the shocks through the particle clouds. Cases III and IX, with ( αp ,

D p ) = (0 . 1 , 100 μm) and (0 . 05 , 50 μm) respectively, appear quite

similar in this plot, but it can be seen that the difference between

them increases with distance. The shock wave reflection imposes

a strong transient force on the particles, and therefore shock wave

attenuation serves as a measure of the average initial particle drag,

and vice versa. The simulations do indeed show that summing up

the forces on the particles during the first τ p after the shock hits

each particle, yields approximately the same result for cases VI and

VIII. 

The regularity of the particle distribution can affect the shock

attenuation through statistical differences in shock focusing and

particle forces. For this reason, it is necessary to estimate the effect

of our non-random particle distribution. We generate the particle

distributions by drawing random positions satisfying two criteria

that makes the particle distribution slightly more regular than a

completely random distribution, as discussed in Section 4 . To quan-

tify this effect, we examine the area in the y-z plane that is oc-

cluded by the particles as a function of distance. The occluded area

at a streamwise coordinate x is the projection of all particles with

streamwise coordinates less than x , onto a plane, accounting for

overlap between the projections. We refer to the ratio of the non-

occluded area to the total area as opacity, and compute it for the

different geometries that we have used in the numerical simula-

tions. Fig. 7 shows the opacity as a function of position inside the

particle cloud, where each line is the mean of 8192 realizations.

The dashed lines are the corresponding opacities by only requir-

ing that the particles are completely inside the assigned domain.

The opacity for the less restrictive distribution is always slightly

higher than the opacity for our particle distribution. Our particle

distributions are possible realizations of the less restrictive distri-

bution, but as there is not too much overlap between the stan-
ard deviation regions, it is clear that they are very unlikely. Since

ur distribution occludes more of the area over a given distance,

e expect slightly stronger shock reflection and a slightly weaker

ransmitted shock. The effect of the restriction that the particles

hould not overlap the spanwise domain boundaries is examined

n Section 6.1 . The result is that it increases the opacity, and is

ore important than the inter-particle distance. The results within

his work should be interpreted with these effects in mind. Ad-

itionally, it must be emphasized that only a single realization of

he particle distribution is used for the flow simulation for each

arameter combination. We also note that the curves have slight

umps near x = 0 and x/L = 1 , due to the constraints imposed on

he particle distribution. We expect a similar effect for the distri-

ution close to the spanwise domain boundaries. 

The opacities for αp = 0 . 01 , D p = 79 . 4 μm and αp = 0 . 075 ,

 p = 57 . 2 μm are very similar. These parameter combinations also

esulted in a very similar shock wave attenuation, which indi-

ates that the opacity might be used to predict some proper-

ies of shock-wave particle cloud interaction. Since the opacity

urves do not seem to intersect, we use the length at which the

pacity equals 0.5 as a unique number that represents the opac-

ty. We refer to it as the sight-length, and use the symbol L s .

he sight-length for each configuration is given in Table 1 , and

arked in Fig. 7 for the cases with Ma = 2 . 6 . We see that this clas-

ification indicates that the parameter combinations (αp , D p ) =
(0 . 1 , 79 . 4 μm) and (αp , D p ) = (0 . 075 , 57 . 2 μm) should be

ery similar, as we do observe. However, the results would indi-

ate a larger difference between (αp , D p ) = (0 . 1 , 100 μm) and

(αp , D p ) = (0 . 05 , 50 μm) than we observe. It should be noted

hat there is considerable standard deviation in the sight length

ecause of the number of particles we use, so the apparent simi-

arity between the latter two parameter combinations could be ex-

ggerated by the specific particle distributions. A larger number of

articles or an ensemble of simulations could be used to examine

his in greater detail, but that is outside the scope of the current

ork. 

The results indicate that it is possible to characterize some

roperties of shock wave particle cloud interaction using the sight-

ength. For this reason, we provide an algebraic expression that ap-

roximates this quantity in Section 6.1 . 
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Fig. 8. Mean flow velocity with Ma = 2 . 6 and different particle sizes and volume fractions at (t − t 0 ) /τL = 0 . 5 , 1 . 0 , 1 . 5 and 2.0 from left to right. The particle cloud is 

located between 0 ≤ x / L ≤ 1. 
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Fig. 9. Mean flow velocity with D p = 100 μm , αp = 0 . 1 and different incident shock wave Mach numbers at (t − t 0 ) /τL = 2 . 
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.3. Mean flow 

In this section we examine the flow field during and after the

hock has passed through the particle cloud. The flow quantities

re phase-averaged, or Favre-averaged where appropriate, over vol-

mes spanning the domain in the y and z directions. 

Fig. 8 shows the normalized velocity at (t − t 0 ) /τL = 0 . 5 , 1 . 0 ,

 . 5 and 2.0 for the cases with Ma = 2 . 6 . In the first two frames

he shock wave is located inside the particle cloud. The reflected

hock is visible as a sharp drop in velocity slightly before x = 0 ,

nd the recovery shock is present around x/L = 1 . 1 in the last two

rames. For a given particle volume fraction, the reflected shock

ave is stronger for smaller particles. This is expected based on

he behavior of the primary shock discussed above, since there is

 higher attenuation of the shock wave in these cases. At the up-

tream particle cloud edge, the mean flow speed increases rapidly

ver a distance equal to a few particle diameters and then has a

entler slope throughout the central region of the particle cloud.

t the downstream particle cloud edge there is a strong flow ex-

ansion, and the flow speed roughly doubles over 0.9 ≤ x / L ≤ 1.05 at

ate times. As seen in the two rightmost frames, the strength of the

xpansion increases with time after the shock has exited the parti-

le layer. As noted in the discussion of grid-size above, the expan-

ion region might be subject to non-continuum effects due to the

ncreasing mean free path of the air molecules over the expansion
egion. We obtain stronger expansions for higher volume fractions

nd smaller particles. Thus it might be necessary to account for

on-continuum effects if the volume fraction is increased or the

article diameter is decreased. The flow speed varies with volume

raction and particle sizes in the same manner as the shock speed

iscussed above. Again we find that the parameter combinations

(αp , D p ) = (0 . 1 , 79 . 4 μm) and (αp , D p ) = (0 . 075 , 57 . 2 μm) are

pproximately equal, but there are slight differences between these

ases in the region upstream of the particle cloud and within the

xpansion region. 

The variation of the mean velocity with incident shock wave

ach number is shown in Fig. 9 . The normalized flow velocity

ithin the particle layer decreases with increasing Mach number.

owever, the normalized velocity within a few particle diameters

f the shock wave has a very weak dependence on the incident

hock Mach number. The expansion region accelerates the flow

o about 1.2 u IS in all cases, and therefore the relative strength of

he acceleration is larger for stronger incident shock waves. The

eflected shock has a larger jump in normalized velocity with in-

reasing Mach number. We note that the strength of the reflected

hock wave increases with time over the time-frame considered

ere ( Vartdal and Osnes, 2018 ). 

It is of interest to compare the results here to those obtained in

he inviscid simulation in Mehta et al. (2018b) . Fig. 10 shows the

esults from case V, with (Ma, αp , D p ) = (3 . 0 , 0 . 1 , 100 μm) , at
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times. Black lines are the results from the simulations in this work, and orange lines 
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three times and the corresponding results from the inviscid simu-

lations of Mehta et al. (2018b) with the same incident shock wave

Mach number and particle volume fraction. On a qualitative level,

the two simulations agree quite well. However, there appears to be

a non-negligible difference in the reflected shock strength between

the inviscid and viscous simulations, where the viscous simula-

tions feature a stronger reflected shock wave. We emphasize again

that our particle configuration is slightly more regular than that in

Mehta et al. (2018b) , which we expect to affect the reflected shock

strength. This was also observed when comparing the simulations

of the inviscid face-centered cubic array in Mehta et al. (2016) to

the random array. We also expect that the viscous effects increase

the reflected shock strength, since there will be both stronger par-

ticle drag and also a much stronger effect of Reynolds stresses. The

effect of the Reynolds stress will be discussed below. 
0.0

0.5

1.0

1.5

2.0

2.5

3.0

〈p
〉/

p
IS

0.0 0.5 1.0

x/L

0.5

1.0

1.5

2.0

〈ρ
〉/

ρ
IS

0.0 0.5 1.0

x/L

Fig. 11. Mean flow pressure (top) and density (bottom) with Ma = 2 . 6 and different par

right. Line colors are as in Fig. 8 . 
The mean pressure and density profiles are shown for the dif-

erent geometries in Fig. 11 . Both quantities display much the same

ehavior as the velocity field. There is a rapid change around the

pstream particle cloud edge, followed by an approximately mono-

onic decrease throughout most of the particle cloud until quite

lose to the shock wave position. For the cases shown here, the

ressure tends to the same level around the downstream parti-

le cloud edge, but the pressure drop over the expansion region

s significantly smaller for the lowest volume fraction case. The

ensity profiles intersect inside the particle layer, and the config-

rations with higher L s have lower densities at low x and higher

ensities at higher x . It can be seen that the velocity, pressure and

ensity profiles vary predictably with the sight-length. For lower

 s there is a higher mean velocity inside the particle layer, lower

ressure and flatter density profiles. We find that case IX, with

(Ma, αp , D p ) = (2 . 6 , 0 . 05 , 50 μm) , deviates slightly from the

rend observed for the other cases. This might indicate that some

f the trends we observe may be slightly different at low volume

ractions, or it may be an effect of the specific particle distribution.

Fig. 12 shows the local flow Mach number for the cases with

ncident shock wave Mach number 2.6. As we vary the particle vol-

me fraction and particle diameters, we find, as expected, that the

ach number is lower for the cases where we observed a lower

hock wave speed inside the particle layer. The Mach number sta-

ilizes about 0.2 L behind the shock wave, and has a slight posi-

ive gradient over the interior region of the particle cloud. The lo-

al Mach number drops to values around 0.5–0.6 for late times in

hese cases. However, it increases drastically over the expansion

egion, attaining values up to 1.4 in the latest frame shown here.

he transition to supersonic flow happens about one or two parti-

le diameters upstream of the downstream cloud edge. 

Fig. 13 shows the local flow Mach number for the cases with

p = 0 . 1 , D p = 100 μm . When compared using the time-scale

ased on incident shock wave speed, we find that higher incident

hock wave Mach numbers result in higher local Mach numbers

ithin the particle cloud and downstream. The expansion region

s stronger for higher Mach numbers, but it appears to converge

or the highest values. However, when we compare the local Mach

umber at the same physical time, as shown in the lower panels,
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x/L

0.0 0.5 1.0
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ticle sizes and volume fractions at (t − t 0 ) /τL = 0 . 5 , 1 . 0 , 1 . 5 and 2.0 from left to 
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Fig. 12. Local Mach number for different geometries with incident shock wave Mach number 2.6 at (t − t 0 ) /τL = 0 . 5 , 1 . 0 , 1 . 5 and 2.0 from left to right. Line colors are as 

in Fig. 8 . 
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Fig. 13. Local Mach number with varying incident shock wave Mach numbers with αp = 0 . 1 and D p = 100 μm at (t − t 0 ) /τL = 0 . 5 , 1 . 0 , 1 . 5 and 2.0 from left to right (top). 

The bottom panels show the results at the same physical time, corresponding to using the τ L scaling with Ma = 2 . 6 , i.e. the same times as shown in Fig. 12 . Line colors are 

as in Fig. 9 . 
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section. 
e find that after the strong transient following the shock wave

assage at each location, all the simulations attain the same local

ach number. We also see that the reflected shock wave has the

ame jump in Mach number for these simulations. In the expan-

ion region, the results differ, and the increase in Mach number is

uch stronger for higher incident shock wave Mach numbers. 

Regele et al. (2014) reported an average local Mach number

bout 0.4 for their inviscid two-dimensional simulations with a

a = 1 . 67 shock wave and a particle volume fraction of 0.15.

ur results indicate that the local Mach number does not de-

end much on the incident shock wave Mach number, but has

 strong dependence on particle size. The lowest average Mach

umber within the cloud in our cases with Ma = 2 . 6 happens for

= 0 . 1 and D p = 50 μm , where the average value at late time

s 0.55. We expect that, in addition to differences caused by the

wo-dimensionality, the regularity of the particle configuration in
egele et al. (2014) strengthens the reflected shock wave and re-

ults in a lower local Mach number than for a random configura-

ion. 

In summary, we find that within the central part of the particle

loud, variation of mean flow properties with particle volume frac-

ion and particle diameter is well represented by the sight-length,

hich characterizes the area blockage per distance. At the down-

tream edge, we observe a strong flow expansion, and we find that

here is a region around the upstream cloud edge that behaves

ifferently than the central region. In these regions, which have

 streamwise extent of a few particle diameters, the behavior is

ot predicted by the sight-length. This is because the flow field

uctuations are dynamically important in these regions, and they

epend differently on volume fraction and particle diameters than

he mean flow fields. This will be further discussed in the next
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Fig. 14. Normalized streamwise Reynolds stress for different particle sizes and volume fractions at (t − t 0 ) /τL = 0 . 5 , 1 . 0 , 1 . 5 and 2.0 from left to right. Line colors are as in 

Fig. 8 . 
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5.4. Velocity fluctuations 

Fig. 14 shows the Reynolds stresses, ˜ R i j , which are the single-

point, density weighted (Favre averaged), velocity fluctuation cor-

relations, i.e. 

˜ R i j = 

〈 ρu 

′′ 
i 

u 

′′ 
j 
〉 

〈 ρ〉 . (11)

Only the streamwise component of the Reynolds stress enters the

volume averaged momentum balance in this problem, but we plot

the spanwise components as well since these contribute to the

fluctuation kinetic energy. It can be seen that the Reynolds stress

is higher at the upstream edge than in the interior of the parti-

cle cloud. It is also stronger close to the shock wave than further

behind it. Upstream of the particle cloud it is zero as expected, ex-

cept around the location of the reflected shock wave where the

apparent Reynolds stress is an artifact of the volume averaging.

The Reynolds stress is significantly higher at early times than late,

and the relative magnitude does not follow the same trend as the

mean fields. It has a strong dependence on the particle size, but

also on the volume fraction, and it increases with both param-

eters. Notably, it does not vary with L s in the same manner as

the mean flow fields. This suggests that the characterization of the

flow in terms of L s only holds for a limited time, because the fluc-

tuations should eventually affect the flow throughout the domain.

In the two right-most frames, it can be seen that the Reynolds

stress drops sharply over the downstream particle cloud edge. This

is related to the fact that there are no longer any wakes further

downstream, which are the primary contributions to the stream-

wise Reynolds stress in this flow. This will be discussed in more

detail in Section 5.5 and Section 6.2 . Similarly, the spanwise com-

ponents drop because there are no particles to deflect the flow.

While the Reynolds stress drops sharply, it does not vanish com-

pletely. This means that there are flow fluctuations that are ad-

vected downstream from the particle cloud. 

It is worth noting the considerable magnitude of ˜ R 11 . When

scaled by twice the kinetic energy behind the incident shock wave,

it reaches about 0.15 for a particle volume fraction of 0.1 for the

early times, and decays to between 0.05 and 0.1 at the latest times

shown here. The role of the Reynolds stress in the momentum bal-

ance is through streamwise gradients of ˜ R 11 , and as can be seen

in Fig. 14 , the gradients are very sharp around the particle cloud
dges. We thus expect the Reynolds stress to play an important

art of the mean flow dynamics in the regions around the up-

tream and downstream particle cloud edges. 

The magnitudes of the spanwise components are less than

alf of that of the streamwise component. We note that the off-

iagonal components of the Reynolds stress in this problem are

ero since the problem is constructed to have no difference be-

ween the y and z directions, and no dependence on the y and

 coordinates. The velocity fluctuations are therefore statistically

xisymmetric, and the coordinate axes coincide with the princi-

al axes of the fluctuations. Fig. 15 shows the Reynolds stress

nisotropy, 

 i j = 

˜ R i j / ̃  R kk − δi j / 3 . (12)

ince ˜ R 22 = 

˜ R 33 , the anisotropy tensor satisfies b i j = 0 if i 	 = j and

 22 = b 33 = −b 11 / 2 . There is a strong anisotropy throughout the

article cloud, and it increases significantly with time. Where for

he early time we observe that the maximal value of b 11 is about

.3, we find values as high as 0.4 around the upstream parti-

le cloud edge at late times, and roughly 0.225 through most of

he particle cloud. The streamwise fluctuation component increases

aster with distance from the upstream edge than the other com-

onents, which ramp up over a distance of 0.2 L . We notice that the

nisotropy increases towards the downstream particle cloud edge

t late times, which is likely due to the strengthening of the flow

xpansion. This causes the difference between the velocity in the

eparated flow regions behind the particles in this region and the

ean flow to increase, and since the spanwise fluctuations are not

ncreased similarly, the anisotropy increases. 

The importance of particle scale fluctuations in shock-wave

article-cloud interaction was previously examined in two-

imensional configurations using inviscid simulations by Regele

t al. (2014) , and viscous simulations by Hosseinzadeh-Nik et al.

2018) , where the particle volume fraction was 0.15. Both stud-

es featured a Ma = 1 . 67 shock wave, which is significantly weaker

han the shock waves studied here. In the two-dimensional simu-

ations, the intensity of the velocity fluctuations were comparable

o the mean flow. In the inviscid simulations, the pseudo-turbulent

uctuations were approximately isotropic. Viscous effects preferen-

ially reduced the fluctuation magnitude, with a larger reduction

or the spanwise fluctuation component. An anisotropic behavior is

herefore observed in both two-dimensional and three-dimensional



A.N. Osnes, M. Vartdal and M.G. Omang et al. / International Journal of Multiphase Flow 114 (2019) 268–286 279 

0.0 0.5 1.0

x/L

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
b 1

1

0.0 0.5 1.0

x/L

0.0 0.5 1.0

x/L

0.0 0.5 1.0

x/L

Fig. 15. Reynolds stress anisotropy for different particle sizes and volume fractions at (t − t 0 ) /τL = 0 . 5 , 1 . 0 , 1 . 5 and 2.0 from left to right. Line colors are as in Fig. 8 . 
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iscous simulations, but the anisotropy is substantially stronger in

he three-dimensional case. 

The square root of the Reynolds stress, normalized by the mean

ow velocity, is shown in Fig. 16 for both the Mach number vari-

tion and the geometry variation with Ma = 2 . 6 . We note that

e use bins that are longer in the streamwise direction than

hose used in the two-dimensional studies, which should result

n larger velocity fluctuations. The normalized velocity fluctuations

re insensitive to Mach number within the range we have in-

estigated (results not shown). The streamwise fluctuation com-

onent is in addition insensitive to particle size, but the parti-

le volume fraction has a considerable effect on the magnitude

f the normalized fluctuations. By extrapolation of the trend ob-

erved with volume fraction increase, we would obtain normal-

zed streamwise components between 0.5 and 0.6 for αp = 0 . 15

t late times, which is significantly lower than that reported in

osseinzadeh-Nik et al. (2018) . The results here differ from the

revious studies which have examined fluctuations in the shock

ave-particle cloud setting; we find lower fluctuation intensities

han the two-dimensional studies, but significantly higher than re-

orted for three-dimensional inviscid simulations ( Mehta et al.,

018a ). However, our results are quite close to that of Mehrabadi

t al. (2015) , who performed incompressible simulations of flow

hrough particle suspensions up to Reynolds number 300. They re-

orted a ratio of fluctuating to mean kinetic energy just above 0.2

a  
or a particle volume fraction of 0.1 and a Reynolds number of 300.

his ratio is slightly above 0.3 for our simulations at αp = 0 . 1 , and

e also know that it decays in time. In fact, since the local Mach

umbers are not very high after about 1.5 τ L , it is not unreasonable

o assume that the flow within the particle layer is dominated by

ncompressible flow phenomena after the shock-induced transients

ave passed. 

.5. Upstream edge momentum balance 

The reflected shock is generated by the coalescence of the bow

hocks from each particle, but it is sustained and strengthened by

he forces acting on the flow by the particles over time. Capturing

he reflected shock strength is essential for modeling shock wave

article cloud interaction since it determines the incoming flow

eld. If the reflected shock wave is not appropriately captured in

 simulation, the mean flow fields downstream of it become incor-

ect, and properties such as particle drag will be computed from

rroneous mean flow fields. Then only additional errors that can

ield results that approximate experimental results, by introducing

ffects that act opposite the effect of the erroneous reflected shock

ave. This situation is clearly not ideal, and we therefore stress

he importance of the reflected shock wave. As will be shown, the

eynolds stress has an appreciable impact on the momentum bal-

nce around the upstream and downstream particle cloud edges.
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The Reynolds stress has traditionally been neglected in simulations

of particle dispersion by shock waves. The results here indicate

that assuming that the Reynolds stresses are negligible cannot be

justified. 

We investigate the process behind the generation of the re-

flected shock in detail by examining the volume averaged mo-

mentum balance around the front edge of the particle cloud.

Fig. 17 shows the terms in Eq. (5) in a bin centered at x / D p ≈ 2

as a function of time for (Ma, αp , D p ) = (2 . 6 , 0 . 1 , 63 μm) . The

bin size is L /60, but the values are averaged over five bins so the

values presented here are influenced by a volume spanning about

2.5 D p in the streamwise direction. The terms are normalized by 

F 0 = (ρu ) IS /τp . (13)

We choose to show the results for this particular parameter com-

bination because it is in the middle of the range of incident shock

wave Mach numbers and particle sizes we have simulated, and

the observations made for this case are representative of the other

cases. Until (t − t 0 ) /τp ≈ 3 . 5 , the shock is within the region influ-

encing this bin, and during this time, the results are dominated

by artifacts from the averaging method. The most important pro-

cesses occurring during this time are the shock wave reflections
Fig. 18. Numerical schlieren-images on a slice through the middle of the domain for th

16, from left to right. In the fourth image, the red dashed lines show the size and loca

interpretation of the references to colour in this figure legend, the reader is referred to th
y the particles within the bin. Since the reflected shock waves do

ot have time to interact with each other, except where the parti-

les are very close to each other, the resulting flow field is essen-

ially just a superposition of individual shock wave-sphere interac-

ions. After the shock has passed out of the bin, we find that the

omentum-balance can be split into two different time-intervals.

n the first interval there is a transient in the strength and rela-

ive importance of the different terms in the volume averaged mo-

entum equation. The second has a slow decay of the strength of

ll the terms over time. It can be seen that the largest terms are

he pressure gradient and the drag on the particles. The Reynolds

tress contribution is initially quite a bit lower than the particle

rag and pressure gradient, but it decays less over time than the

ther terms. After the strong initial transient it becomes compara-

le to the particle drag. 

An impression of the processes occurring during the first tran-

ient can be obtained using numerical schlieren images, as shown

n Fig. 18 . These images are of an xy-plane through the middle of

he domain at (t − t 0 ) /τp = 2 , 4 , 8 and 16. In the fourth image,

he size and location of the averaging region used in Fig. 17 are

ndicated by the red dashed lines. The first time-interval, in which

he strength of the momentum balance terms change quickly, is

imilar to the time-period spanned by these plots. During this

ime, there are numerous reflected shocks within the averaging

olume, but they are almost completely gone at (t − t 0 ) /τp = 16 .

s the reflected shocks from the particles propagate upstream, the

ressure rapidly builds up upstream of the bin. Subsequently, the

ressure within the bin builds up due to the bow-shocks from par-

icles further downstream. This process causes the rapid change

n pressure gradient around the minimum at (t − t 0 ) /τp ≈ 8 . Over

he same time, the mean flow velocity decreases, and therefore the

agnitudes of the particle forces are reduced. 

The build-up of particle wakes also occurs during this time pe-

iod, as can be seen in Fig. 18 . The particle wakes and the shock

eflections are the main contributions to the velocity fluctuations

ithin each bin, and thus make up the Reynolds stress in the vol-

me averaged equations. Insight into which processes that con-

ribute to the Reynolds stress can be obtained by consideration of

he function f (u ′′ 
1 
) , defined as 

 ρ〉 ̃  R 11 = 

1 

V gas 

N CV ∑ 

i =1 

(
ρu 

′′ 
1 u 

′′ 
1 

)i 
V 

i 
CV ≈

∫ ∞ 

−∞ 

f 
(
u 

′′ 
1 

)
du 

′′ 
1 . (14)

ere V gas is the volume of the gas within the bin, N CV is the num-

er of control volumes in each bin, and the superscript i denotes
e case with (Ma, αp , D p ) = (2 . 6 , 0 . 1 , 63 μm) at times (t − t 0 ) /τp = 2 , 4, 8, and 

tion of one of the averaging volumes used in the analysis of the flow field. (For 

e web version of this article.) 
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Fig. 19. Contour plot of the function f , as defined in Eq. (14) , as a function of ve- 

locity fluctuation and time. The lower panel shows the total contribution to ˜ R 11 by 

positive and negative velocity fluctuations. 
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Fig. 20. Black disks: time-averaged drag-coefficients over the time interval af- 

ter 0.5 τ L after the shock wave has passed each particle in the case with 

(Ma, αp , D p ) = (2 . 6 , 0 . 1 , 63 μm) as a function of position. Solid red line: mean 

flow Mach number at (t − t 0 ) /τL = 2 . (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
ontrol volume number i . This function is the contribution to the

treamwise Reynolds stress by streamwise fluctuations of a certain

agnitude. Contours of f as a function of u ′′ 1 and time are shown

n Fig. 19 . The figure also shows the total contribution to the in-

egral by positive and negative fluctuations. Until (t − t 0 ) /τp ≈ 8

here is a comparable contribution to ˜ R 11 by negative fluctuations

ith magnitudes from 100 m/s to 10 0 0 m/s, due to shock wave

eflection from the particles. There is also a narrow band of pos-

tive fluctuations making up about 30% of ˜ R 11 . Later, the contri-

ution by negative fluctuations are primarily by fluctuations be-

ween −200 m/s and −600 m/s. The very high fluctuation mag-

itudes can only be caused by the particle wakes, since at late

imes there are no longer any shocks within the particle layer. The

ower panel shows that more than 70% of ˜ R 11 can be attributed

o the negative fluctuations, and the percentage increases slowly

ith time. The contribution to ˜ R 11 from positive fluctuations are

redominantly due to two effects. The first of these effects is the

ocal flow acceleration around particles in regions where the lo-

al particle distribution is denser than average. The second effect

s caused by the separation regions behind each particle, which

hen added together amount to quite large regions with very low

ow speeds. These regions shift the average velocity away from the

free” flow velocity. As a consequence, there are very few regions

n the flow which have velocities equal to the mean velocity, and

his results in contributions to ˜ R 11 from regions of smooth “free”

ow. This has consequences for modeling since the mean slip ve-

ocity, if assumed to be equal to the volume-averaged velocity, is

ower than it should be. There is a similarity between this prob-

em and the self-induced flow disturbance problems examined in

 Horwitz and Mani, 2016; Balachandar et al., 2019 ), in the sense

hat flow disturbance induced by the particle, i.e. the separated

ow, affects how particle drag should be calculated. In Section 6.2 ,

e propose a simple model for the Reynolds stress that also pro-

ides a ratio of the average flow speed to the free flow speed. The

ree flow speed is higher than the average flow speed, and it may

e more suitable for calculating particle drag. 

It is clear that the momentum balance around the upstream

article cloud edge has strong contributions from both particle

rag and Reynolds stress. Together these balance about two-thirds

f the pressure gradient. The (time-dependent) strength of the re-

ected shock wave thus depends strongly on the particle forces

nd the velocity fluctuations caused by shock wave reflection and

ow separation. In Eulerian–Lagrangian or Eulerian–Eulerian meth-
ds, these quantities require careful modeling so that the reflected

hock wave, and therefore the incoming flow, is correct. The vis-

ous simulations show fluctuations with much higher magnitudes

han inviscid simulations because of flow separation. Therefore vis-

osity has an appreciable effect on the reflected shock strength. 

.6. Particle drag 

The forces acting on the particles are one of the most im-

ortant aspects in modeling of dispersed flows when the particle

elaxation time is large compared to the mean flow time scale.

he initial force history, and the distribution of peak drag coeffi-

ients, in shock wave particle cloud interaction has been charac-

erized in Mehta et al. (2018b) . Theofanous et al. (2018) performed

article-resolved inviscid simulations with an immersed bound-

ry method, and found a dispersive behavior at the downstream

nd of the particle cloud, in agreement with experimental results.

hey also pointed out that the opposite behavior is typically seen

n Eulerian–Lagrangian or Eulerian–Eulerian simulations of shock-

ave particle interaction, i.e. a particle accumulation at the down-

tream edge. Those previous studies both utilized inviscid simula-

ions. It is clear from the discussion above that viscous effects af-

ect the flow field. The particle wakes in particular differ in viscous

nd inviscid simulations, and therefore the particle forces differ af-

er the particle wake has developed. For this reason, we examine

he particle drag during the time where the particle wakes have

eveloped. 

The particle drag coefficient is defined as 

 d = 

∫ 
S i 
(p + σ1 k ) n k dS i 

0 . 5 〈 ρ〉 ̃  u 

2 
1 
A p 

, (15) 

here A p is the projected area of the particle in the direction

f the flow, and S i denotes the surface of the particle. The time-

veraged drag-coefficient, averaged in time starting at 0.5 τ L after

he shock wave has passed, is shown in Fig. 20 for (Ma, αp , D p ) =
(2 . 6 , 0 . 1 , 63 μm) as a function of position. The drag coefficient

ncreases slowly with distance throughout the particle cloud, until

bout x/L = 0 . 9 , where the drag coefficient abruptly increases and

eaches a maximum of 2.25. While the average drag coefficient in-

reases with distance, the averaged particle forces decrease with

istance, because the kinetic energy of the flow decreases with
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Fig. 21. Total force exerted on the particles per unit volume at (t − t 0 ) /τL = 0 . 5 , 1 . 0 , 1 . 5 and 2.0, for Ma = 2 . 6 and the different geometries (top), and different Mach 

numbers for αp = 0 . 1 , D p = 100 μm (bottom). Line colors are as in Figs. 8 and 9 . 
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distance. Similarly, Mehta et al. (2018b) found that the peak par-

ticle forces decrease with distance within the particle cloud. So

for most of the particle layer, the peak acceleration and the av-

eraged forces decrease with distance. There is a slight difference

between the very first particles and those a bit further in, because

the first particles are exposed to the smooth incident flow rather

than the chaotic flow further inside the particle cloud. The abrupt

increase in drag-coefficient around the downstream edge can be

explained by looking at the mean flow Mach number, which is

shown as a red line in Fig. 20 . The increase in drag-coefficient

coincides with an increase in local Mach number as the flow ex-

pands and becomes supersonic. The abrupt increase in drag in the

transonic region is consistent with previous findings that have ex-

amined single-particle drag as a function of Mach number ( Bailey

and Hiatt, 1971; Nagata et al., 2016 ). We obtain significantly higher

drag coefficients than reported in those single-particle studies. The

wide distribution of drag coefficients is caused by the random par-

ticle distribution, which creates local flow acceleration and decel-

eration. However, only the minimal drag coefficients we obtain are

close to those reported in the mentioned studies, so there is a

clear difference between isolated particle drag and the drag within

a particle cloud. However, in Section 6.2 we propose a correction

to the particle drag. Using this correction, the particle drag coeffi-

cients are reduced, which brings them closer to the single particle

drag-coefficients. 

The total streamwise forces exerted on the particles per unit

volume, normalized by post-shock momentum per τ L , i.e. 

F p = 

τL 

V ( ρu ) IS 

∫ 
S 

pn 1 + σ1 k n k dS, (16)

as a function of distance at (t − t 0 ) /τL = 0 . 5 , 1 . 0 , 1 . 5 and 2.0, is

shown in Fig. 21 . The particle force per unit volume increases with

increasing particle volume fraction and with decreasing particle di-

ameter. The variation with particle volume fraction is stronger than

with particle size within the range we have simulated. The parti-

cle force is significantly higher at early times than late. Further-

more, it increases drastically at the downstream cloud edge at late

times. The exception to this trend is the case with (Ma, αp , D p ) =
(2 . 6 , 0 . 05 , 50 μm) . In that case, which has the lowest particle

volume fraction, and the smallest particles, the increase at the
ownstream edge is quite moderate. The variation with incident

hock wave Mach number is shown in the lower panels of Fig. 21 .

s the Mach number is increased, the particle forces increase,

nd when normalized by post-shock momentum and a time-scale

ased on the shock speed, the forces are very similar, especially at

he later times. 

. Modeling 

In this section, we propose two algebraic models based on the

bservations made in the preceding sections. The first model is for

he sight-length, and can be used to estimate combinations of αp 

nd D p that behave similarly. We also use this model to quan-

ify the effect of the regularity of the particle distribution used

n the flow simulations. The second model is an algebraic, single-

arameter expression for the streamwise Reynolds stress. It reliably

redicts the streamwise Reynolds stress intensity over time for

ll the simulations in this work. Accurate Reynolds stress models

re important in Eulerian–Lagrangian and Eulerian–Eulerian mod-

ls for dispersed flow, due to the importance of the fluctuations in

he flow dynamics. 

.1. Sight-length 

Based on the results presented in Section 5.2 , we found that

he shock wave attenuation throughout the particle cloud could

e well characterized by the sight-length. Simulations with simi-

ar sight-lengths had similar shock wave attenuation over a given

istance. Many of the mean flow quantities were also found to be

redictable based on the sight-length. We thus seek an expression

or the sight length in terms of the particle volume fraction and

he particle diameter. To this end, we compute the sight-length for

 range of particle volume fractions between 0.05 and 0.1 and par-

icle sizes between 50 μm and 100 μm, by sampling the particle

istribution 10,240 times for each parameter combination. We fit a

odel on the form 

 s = ( A + B/αp ) D p , (17)

here A and B are the model constants to be fitted to the data.

e do this using a non-linear least squares method. This model



A.N. Osnes, M. Vartdal and M.G. Omang et al. / International Journal of Multiphase Flow 114 (2019) 268–286 283 

Table 2 

Best fit for the constants A and B in Eq. (17) with and without restrictions 

on inter-particle distance and spanwise domain boundaries. 

Restrictions A B 

Inter-particle distance and spanwise boundaries −1 . 012 0.4775 

Inter-particle distance −0 . 5191 0.4098 

Spanwise boundaries −0 . 5313 0.4703 

None −0 . 3317 0.3957 

Fig. 22. Sight-length into the particle cloud for various particle sizes and particle 

volume fractions. The black lines are data contour lines, while the white dashed 

lines are the corresponding contours of Eq. (17) . 

f  

a  

h  

i  

q  

p  

m  

s  

s  

a  

s  

d  

r  

r  

a  

a  

w  

fi  

i  

c  

u  

a  

c  

1  

T  

a  

a  

a  

i  

s  

c  

T  

v  

p

6

 

s  

t  

a

 

l  

T  

t  

q  

t  

a  

g  

v  

t  

r  

a  

I  

s  

g

〈  

H  

i  

p

u

W

R  

i  

t  

i  

t  

t  

s  

a  

i  

0  

n  

w

i  

t  

r  

v  

t  

t  

m  

s  

a  

m  

f  

s  

t  

s  

b  

h  

R  

w  

e  

o  

t  
orm goes to infinity as the particle volume fraction goes to zero,

nd to 0 for a particle volume fraction of αp = | B/A | . The model is

owever not intended for volume fractions outside the range stud-

ed in this work, and so the latter limit is of little consequence. To

uantify the effect of the additional constraints we have put on the

article distribution, we also sample the particle distributions in a

uch larger spanwise domain and compute the sight-length in a

ubset of this larger domain. We refer to this setting as having no

panwise domain boundaries. The width and height of the subset

re 8 
3 
√ 

4 D p , as in the flow simulations. We also remove the re-

triction on the inter-particle distance with and without spanwise

omain boundaries. The best fit for the different combinations of

estrictions are given in Table 2 . Fig. 22 shows a contour plot of the

esulting sight-lengths for the range of particle volume fractions

nd particle diameters we use in the flow simulations. The figure

lso shows the contour lines of Eq. (17) with the model constants

hen all particle distribution restrictions are applied. The model

ts the data with a maximal relative error of 1.5%, and the max-

mal errors occur for low particle volume fraction and low parti-

le diameter. Within the range of volume fractions we have sim-

lated, the longest sight length is obtained with spanwise bound-

ries and no restriction on inter-particle distance. Compared to the

ase without restrictions, the case with spanwise boundaries has

7% longer sight-length at αp = 0 . 05 and 15% longer at αp = 0 . 1 .

he inter-particle distance changes the sight-length with just 1%

t both ends of the volume fraction range. When both restrictions

re combined, the sight-length is increased by 13% at αp = 0 . 05

nd by less than 1% at αp = 0 . 1 . Overall, the effect of the slightly

ncreased regularity of the particle distribution is to increase the

ight-length, but the effect is not very strong. When the parti-

le volume fraction is doubled, the sight-length is almost halved.

herefore, variation of the sight length with changes in particle

olume fraction is much more important than the variation with

article distribution restrictions used here. 
.2. Modeling the streamwise Reynolds stress 

In this section we propose a model for the streamwise Reynolds

tress based on the observations made in Section 5.5 . Most impor-

antly, we found that the Reynolds stress is caused mainly by sep-

rated flow behind the particles. 

The gas within a separation region behind a particle has a ve-

ocity about the same as the particle, which in our case is zero.

his is a few hundred m/s lower than the mean flow speed, and

herefore the contribution to ˜ R 11 by separated flow regions will

uickly become very large with increasing volume of the separa-

ion region. A simple model for this effect is the following: We

ssume that the separation region can be approximated as a re-

ion with velocity equal to the particle velocity. The rest of the

olume then contains gas with an average velocity that is higher

han ˜ u , and related to ˜ u by a function of the volume of the sepa-

ated flow. The sum of the volume of separated flow regions within

 bin occupies a fraction of the volume which we denote by αsep .

f the mean velocity in the bin is known, in absence of any other

ources of Reynolds stress, the streamwise velocity correlation is

iven as 

 u 

′′ 
1 u 

′′ 
1 〉 = 

˜ u 

2 
1 

αsep 

α − αsep 
. (18)

ere, αsep is the volume fraction of the separation regions, which

s a function that must be determined. These assumptions also im-

ly that the mean velocity in the rest of the gas volume is 

 free = 

˜ u 1 
α

α − αsep 
. (19) 

e further assume that the triple-correlation part of 

˜ 
 11 = 〈 u 

′′ 
1 u 

′′ 
1 〉 + 〈 ρ ′ u 

′′ 
1 u 

′′ 
1 〉 / 〈 ρ〉 , (20)

s negligible, in line with the principle of receding influence, so

hat ˜ R 11 is directly given by Eq. (18) . We evaluate αsep for the var-

ous simulations at every location between 0.2 ≤ x / L ≤ 0.8, for the

ime interval between 15 τ p after the shock has passed that loca-

ion until the end of the simulation. This time-delay is introduced

o that the shock-induced transient does not affect the results. The

verage separation volume fraction for each simulation is given

n Table 3 . It was found to be insensitive to the location within

.2 ≤ x / L ≤ 0.8, and insensitive to the incident shock wave Mach

umber. It varies slightly with particle diameter and drastically

ith volume fraction, which is to be expected. The ratio αsep / αp 

ncreases significantly as αp is reduced. This is likely caused by

he increasing inter-particle distance, which allows the separation

egions to develop with less disturbances than for higher particle

olume fractions. Fig. 23 shows the normalized Reynolds stress ob-

ained in the simulations, averaged over 0.2 ≤ x / L ≤ 0.8 as a func-

ion of time, and the Reynolds stress computed from Eq. (18) . The

odel captures the magnitude and general trend of the Reynolds

tress well. In each case, there is a transient during and slightly

fter the shock wave passes through the particle cloud that the

odel does not represent. During this time, the shock reflection

rom individual particles comprise a significant portion of the ob-

erved Reynolds stress. Since the Reynolds stress model represents

he effect of particle wakes only, we expect a deficiency when

hock-reflection is still occurring. Fig. 23 does indeed show that

etween 0 . 5 ≤ (t − t 0 ) /τL ≤ 1 . 5 the observed Reynolds stresses are

igher than the model predicts. However a large portion of the

eynolds stress is also captured during this phase, because particle

akes develop for a large number of the particles before the shock

xits the particle cloud. The model also increases too rapidly early

n, since it is directly proportional to the mean velocity, while

he separation regions take some time to develop. This model
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Table 3 

Volume fraction of separated flow, αsep , for the various simulations in this study. 

Case ( Ma , αp , D p ) αsep Case ( Ma , αp , D p ) αsep 

I (2 . 2 , 0 . 1 , 100 μm) 0.152 VII (2 . 6 , 0 . 1 , 63 . 0 μm) 0.142 

II (2 . 4 , 0 . 1 , 100 μm) 0.152 VIII (2 . 6 , 0 . 075 , 57 . 2 μm) 0.131 

III (2 . 6 , 0 . 1 , 100 μm) 0.153 IX (2 . 6 , 0 . 05 , 50 μm) 0.115 

IV (2 . 8 , 0 . 1 , 100 μm) 0.153 X (2 . 2 , 0 . 1 , 50 μm) 0.148 

V (3 . 0 , 0 . 1 , 100 μm) 0.152 XI (2 . 6 , 0 . 1 , 50 μm) 0.148 

VI (2 . 6 , 0 . 1 , 79 . 4 μm) 0.152 XI (3 . 0 , 0 . 1 , 50 μm) 0.148 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

(t − t0)/τL

0.00
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0.04
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1
1
/
(〈

ρ
〉ũ

2 1
) I

S

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

(t − t0)/τL

Fig. 23. Normalized streamwise Reynolds stress averaged over 0 ≤ x / L ≤ 0.8, as a function of time for the simulations with αp = 0 . 1 , D p = 100 μm (left) and Ma = 2 . 6 and 

various geometries (right). Line colors are as in Figs. 8 and 9 . Dashed lines are the corresponding fluctuations computed from Eq. (18) . 
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apparently captures the majority of the Reynolds stress, but it does

not represent flow structures that are not associated with the par-

ticles, such as vortices being advected by the flow. We thus ex-

pect that the volume fractions reported in Table 3 are slightly too

high. Additional models should be used to capture the other phe-

nomena causing velocity fluctuations. The model represents the

velocity fluctuations caused by the separated flow regions behind

each particle, and the additional velocity “fluctuations” that appear

since the averaged flow velocity is shifted away from the free flow

speed. 

As a Reynolds stress model to be used in Eulerian–Lagrangian

simulations of shock particle interaction, the form of Eq. (18) is at-

tractive, since it can be associated with the Lagrangian particles. It

does not involve any gradient operations or additional interpola-

tions than what must be used to compute particle drag. However,

in Eulerian–Lagrangian simulations, the model is limited to situ-

ations where the control volumes are considerably larger than a

single particle. 

The assumptions made about the flow in the immediate prox-

imity of the particles in the derivation of Eq. (18) has implications

for the calculation of particle drag. The model for ˜ R 11 suggested

above showed that between 10% and 15% of the volume could be

considered to belong to separation regions. We assumed that the

average velocity of a separation region was zero. The large volume

in these separated flow regions means that the average velocity

is not the appropriate velocity to use for computing the drag. If

u free is used instead of ˜ u 1 to compute the drag coefficient, it will

be lower than if it is computed directly from ˜ u 1 . The velocity cor-

rection factor is α/ (α − αsep ) , and since the denominator in Eq.

(15) contains ˜ u 2 
1 
, the drag coefficient becomes about 30% lower

when we include this correction. The model also implies a cor-

rection to the free flow Mach number, since the Mach number is

proportional to ˜ u 1 . Standard drag laws correlate the particle forces

to the undisturbed flow quantities, but since the notion of an
ndisturbed flow is meaningless inside a particle cloud, it is still an

pen question how to calculate drag in Eulerian–Lagrangian mod-

ls. However, this model does partly explain why the average drag

oefficients appear to be very high in this flow. 

The Reynolds stress model, based on an assumed separated

ow in the particle wake with a given volume and an aver-

ge velocity of zero, approximates the bulk streamwise Reynolds

tress well. It is easily applicable in both Eulerian–Lagrangian and

ulerian–Eulerian models of dispersed flow, and only needs an es-

imate of αsep , since the other model inputs are already known.

he model implies corrections to mean flow properties, due to the

on-negligible volume fraction of the separated flow. It is clear

hat improvements to this model can be obtained by detailed ex-

mination of the statistical properties of particle wakes in the

hock particle setting, and this is a possible direction for future

ork. 

. Concluding remarks 

In this work, we have investigated the flow fields during the

assage of a shock wave through a random array of particles, using

iscous three-dimensional numerical simulations. The flow field

ariation with different incident shock wave Mach numbers, parti-

le volume fractions and particle diameters was investigated using

he volume averaging framework. It was found that many mean

ow features could be predicted based on the sight-length, which

elates particle volume fractions and particle diameters. Flows at

 given particle volume fraction were found to have many simi-

arities to higher or lower particle volume fractions if the parti-

le diameter was increased or decreased so that the sight-length

emained the same. This characterization was found to work best

ithin the interior of the particle layer. At the upstream and down-

tream particle cloud edges, we found that flow field fluctuations

lay an important role in the mean flow dynamics. The variation of
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he fluctuations was not found to be predicted by the sight-length

arameter. In agreement with this, we observed that the quanti-

ies that varied predictably with sight-length in the interior of the

article cloud did not follow the same variation at the edges. 

The regularity of the particle distribution has a non-negligible

ffect on the flow. This work utilized structured meshes around

ach particle, in order to best facilitate the prediction of the vis-

ous shear layers. For this reason, a slightly increased regularity

f the particle distribution was necessary. In the cases considered

n this work, the regularity increased the sight-length. However,

he change in sight-length due to regularity was found to be small

ompared to the change when the particle volume fraction was

aried. In general, the specific realization of any particle distribu-

ion plays a role in the flow statistics, unless the number of par-

icles in the spanwise directions is very large. Ensemble averaging

an serve as a substitute for large computational domains, and is

herefore recommended for future works. 

We observed that the flow expansion at the downstream edge

f the particle cloud featured an increase in the mean free path

f the air molecules. For the case with a Ma = 2 . 6 incident shock

ave, αp = 0 . 1 and D p = 63 μm , we found that the Knudsen num-

er of the local shear flow attained values above one around the

articles furthest downstream. Different combinations of volume

ractions and particle sizes might result in situations where non-

ontinuum effects become significant, and should be treated care-

ully. 

The Reynolds stress was found to be dynamically important at

he particle cloud edges. The magnitudes of the Reynolds stresses

ere significantly higher than those found in the inviscid simula-

ions of Mehta et al. (2018a) . Since the flow dynamics around the

pstream particle cloud edge affect the reflected shock, this im-

lies that the reflected shock is strengthened due to viscous ef-

ects. Around the particle cloud edges, the Reynolds stress gradi-

nts were of the same order as the particle forces. The Reynolds

tress is caused primarily by shock wave reflection and separated

ow behind the particles. It contains a significant part of the ki-

etic energy of the flow, and it is strongly anisotropic. Based on

hich physical phenomena that are the causes of the Reynolds

tress, we proposed an algebraic Reynolds stress model. It uses the

ean flow speed and the particle volume fraction, in addition to

n estimate of the volume fraction of separated flow. The model

ould predict the magnitude of the Reynolds stress and its evolu-

ion in the interior of the particle cloud fairly well. By comparison

o previous particle-resolved studies, the pseudo-turbulent kinetic

nergy magnitude was found to be more similar to results from in-

ompressible simulations than to the results from previous shock

ave particle cloud simulations. The previous shock wave parti-

le cloud simulations were either inviscid or two-dimensional, and

his has strong implications for the fluctuations within the parti-

le cloud. We also found that the local Mach number was not very

igh within the particle layer after the shock-induced transient had

nded. These observations suggest that the dynamics governing the

ow fluctuations in the interior of the particle cloud are primarily

ncompressible flow phenomena. 
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