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Summary

Airborne dispersal of toxic substancres in populated regions is a central research topic at the
Norwegian Defence Research Establishment (FFI). Such an event can be the result of accidents in
industrial areas or during transport. Acts of terrorism are also a possible source of such releases.
The ability to model airborne dispersion with sufficient accuracy makes it possible to characterize
the threath such events pose. Such modelling can also be used to be better prepared and respond
appropriately to an event. This report is a part of a research project that aims to improve models for
simulation of dispersal of toxic substances by means of explosive devices. Specifically, this work
is part of a research effort to improve models for computing the movement of solid particles under
shock-wave acceleration.

The purpose of this study is to test a model for velocity fluctuation correlations caused by particle
wakes in simulations of shock particle-cloud interactions. Velocity fluctuations are dynamically
important in such flows, and accurate models for their correlations are therefore necessary. Improved
models for shock wave particle-cloud interaction enable more accurate simulations of various
important applications such as shock wave mitigation, explosive dissemination of powders and
liquids, heterogeneous explosives and liquid/solid fuel combustion systems.

In this work, we have implemented the velocity fluctuation model in an in-house finite-volume
Eulerian-Lagrangian compressible flow solver, which is based on the volume-averaged Navier-Stokes
equations. The model can be expressed

R̃ ≈ ũ2 Csepαp

α − Csepαp
,

where R̃ is the velocity fluctuation correlation, ũ is the mean flow velocity, and αp = 1−α, where α is
the gas volume fraction. The model has one parameter, Csep, which we estimate using the ABC-SMC
algorithm based on results from a particle-resolved simulation of the same system. Application of
the ABC-SMC algorithm for parameter estimation is an interesting approach since the estimated
value is optimal for the specific implementation of the dispersed flow model.

Depending on whether we use an approximate drag law or the actual forces from the particle-
resolved simulations, the parameter is estimated to Csep = 1.4 and Csep = 1.6 respectively. The
physical meaning of these values is that the average volume of the separated flow behind each
particle is 1.4 or 1.6 times larger than the particle volume. The dependence of the estimated
parameter value to the choice of drag law implies that to get a physically meaningful value for Csep,
we need to use a drag law that accurately represents both the transient and quasi-steady forces on
the particles.
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Sammendrag

Luftbåren spredning av trusselstoffer i områder der det befinner seg mennesker er en sentral
problemstilling hos Forsvarets Forskningsinstitutt (FFI). En slik hendelse kan for eksempel være et
resultat av ulykker i industriområder eller ved transport. Terrorhandlinger er også en mulig kilde til
slike utslipp. Dersom man kan modellere luftbåren spredning med tilstrekkelig nøyaktighet vil man
være i stand til å karakterisere trusselen slike hendelser utgjør, og man vil være i bedre stand til
forberede seg, samt respondere på en hensiktsmessig måte, på en hendelse. Denne rapporten er en
del av et arbeid for å utvikle bedre metoder for å beregne spredning av trusselstoffer fra eksplosive
kilder. Spesifikt er denne studien en del av et prosjekt som har som mål å forbedre modeller for å
beregne bevegelsen til faste partikler når de blir aksellerert av en sjokkbølge.

Målet med denne studien er å teste en modell for korellasjon av hastighetsfluktuasjoner skapt av
partikkelvaker i simuleringer av sjokk-partikkelsky interaksjon. Hastighetsfluktuasjoner er viktige for
dynamikken i slike strømninger, og det er derfor nødvendig å ha nøyaktige modeller for korrelasjonene
deres. Forbedrede modeller for sjokk-partikkelsky interaksjon muliggjør nøyaktige beregninger av
forskjellige viktige anvendelser, for eksempel demping av sjokkbølger, eksplosiv spredning av pulver
og væsker, heterogene eksplosiver og forbrenningssystemer med både fast og flytende drivstoff.

I dette arbeidet har vi implementert modellen for hastighetsfluktuasjoner i FFIs egenutviklede
endelig-volum Euler-Lagrange-løser for kompressibel strømning, som er basert på de volummidlede
Navier-Stokes-ligningene. Modellen kan uttrykkes

R̃ ≈ ũ2 Csepαp

α − Csepαp
,

hvor R̃ er korrelasjonen av hastighetsfluktuasjoner, ũ er middelhastigheten, og αp = 1 − α, hvor α
er volumfraksjonen av gass. Modellen har en parameter, Csep, som vi estimerer med ABC-SMC-
algoritmen, basert på resultatene fra en simulering av samme system hvor vi beregner strømningen i
detalj rundt hver partikkel. Å bruke ABC-SMC-algoritmen for parameterestimering er en interessant
framgangsmåte fordi den estimerte verdien er optimal for den spesifikke implementasjonen av
strømningsløseren.

Avhengig av om vi bruker en tilnærmet luftmotstandsmodell eller partikkelkreftene fra de partikkel-
oppløste simuleringene, blir parameteren estimert til å være henholdsvis Csep = 1,4 og Csep = 1,6.
Den fysiske betydningen av disse verdiene er at det gjennomsnittlige volumet til den separerte
strømningen bak hver partikkel er 1,4 eller 1,6 ganger større enn volumet til partikkelen. At den
estimerte parameterverdien avhenger av valget av drag-lov betyr at for å få en fysisk betydningsfull
verdi for Csep, må vi anvende en drag-lov som nøyaktig representerer både de transiente og de
kvasistødige kreftene på partiklene.
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Preface

This report contains the results from a short study conducted as part of the 2019 summer internship
at the FFI, where the first author has worked at FFI for two months under supervision of the second
author.

Oslo, 17. June, 2020
Bernhard Nornes Lotsberg
Andreas Nygård Osnes
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1 Introduction
Shock-wave particle cloud interaction is a multi-scale flow problem where particle-scale physical
problems are dynamically important. Current models for high-speed dense particle-laden flows that
are applicable to engineering-scale problems require models for particle-scale flow processes. In
models based on the volume-averaged Navier-Stokes equations, the particle-scale flow processes
appear in the equations as unclosed terms. Most models simply set these terms to zero, except for
the terms related to particle drag. In shock-wave particle cloud interaction, neglection of these terms
can lead to erroneous flow predictions, such as particle accumulation near the downstream cloud
edge [11]. It is therefore important to develop accurate models for particle-scale flow processes, so
that reliable engineering-scale computations can be performed.

Velocity fluctuation correlations in particular, are important for shock-wave particle cloud
interaction. Previous studies have investigated these terms in both two-dimensional [3] and three-
dimensional studies [4, 5, 6]. The velocity fluctuation correlations impose effective forces on the
flow through their spatial gradients, and are therefore particularly important around the particle
cloud edges. Flow dynamics in these regions, such as the generation of the reflected shock wave,
can therefore be affected by velocity fluctuations. For shock-wave particle cloud interaction, the
reflected shock wave is important because it determines the conditions of the flow that enters the
particle cloud.

1.1 Goal

In this project, we will test a simple model for fluctuations made by particle wakes in shock particle
interactions. The model was proposed in a recent study based on the results from particle-resolved
simulations [5], and was shown to be reliable over a range of particle sizes and flow conditions [6]. In
the current work, the model is implemented in an Eulerian-Lagrangian dispersed flow model, which
does not resolve the flow around each particle. The goal is to see whether accounting for particle-
scale velocity fluctuations, specifically the effect of particle wakes, improve the predictions by the
Eulerian-Lagrangian model. We especially want to see if the addition of the velocity fluctuation
model improves the prediction of the reflected shock, which the baseline Eulerian-Lagrangian
model predicts to be significantly weaker than that observed in the particle-resolved simulations.

1.2 Motivation

The fluctuation model tested in this project could give us the ability to more accurately simulate
engineering scale, three-dimensional systems with an Eulerian-Lagrangian dispersed flow model.
However, the model quality needs to be tested against accurate reference data.

Ultimately, the system of interest is an explosively dispersed layer of particles, which features
O(109) particles. In this problem, the particle layer is initially compressed by the blast wave, before
being diluted and transitioning through a stage where the particle volume fraction remains in the
dense gas-solid flow regime for an extended period of time. It is this regime where the current
dispersed flow model is applicable, and where existing dispersed flow models has difficulties in
obtaining accurate flow predictions.
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2 Governing equations and numerical method

2.1 Governing equations

For compressible flow in one dimension, the Navier-Stokes equations become

∂t ρ + ∂x (ρu) = 0, (2.1)
∂t (ρu) + ∂x (ρuu + p − σ) + F = 0, (2.2)

∂t (ρE) + ∂x (ρEu + pu) = ∂x (σu) − ∂x (λ∂xT) , (2.3)

where ρ is the mass density, u is the flow velocity, p is the pressure, σ = 4µ∂xu/3 is the viscous
stress tensor, E = e + u2/2 is the total energy per unit mass, where e is the internal energy per unit
mass, λ is the heat conductivity, and T is the temperature. In the current study, we apply the ideal
gas equation of state to relate pressure, density and internal energy, with an adiabatic index γ = 1.4.
The viscosity is governed by the power-law µ = µ0(T/T0)

0.76, and temperature is related to the
internal energy by a constant heat capacity. The heat conductivity and viscosity are related by a
constant Prandtl number of 0.7.

Resolving all relevant scales around each particle in an engineering-scale problem would be too
computationally costly, therefore we will deal with the volume-averaged form of eqs. (2.1) to (2.3).
(2.1). The volume averaged version of eq. (2.1) is

∂t ρ + ∂x (ρu) = 0, (2.4)

where · denotes a volume-averaged variable. We then define some new variables
ρu
ρ
= ũ, (2.5)

ρ = α〈ρ〉. (2.6)

Here, ρ is the volume-averaged density, while 〈ρ〉 is the phase-averaged density. α is the gas volume
fraction, and is related to the particle volume fraction, αp, by α = 1 − αp. Equation (2.4) becomes

∂t (α 〈ρ〉) + ∂x (α 〈ρ〉 ũ) = 0. (2.7)

Applying the same procedure to eqs. (2.2) and (2.3) (see [5]) yields

∂t (α〈ρ〉ũ) + ∂x
(
α 〈ρ〉 ũ2 + α〈p〉 − α〈σ〉 + α〈ρ〉R̃

)
=

1
V

∫
S

pndS −
1
V

∫
S

σndS, (2.8)

and
∂t

(
α〈ρ〉Ẽ

)
+ ∂x

(
α 〈ρ〉 Ẽũ + α 〈p〉 ũ

)
= ∂x (α〈σ〉ũ) − ∂x (α〈λ∂xT〉)

−∂x (α〈ρe′′u′′〉) − ∂x
(
α〈ρ〉R̃ũ

)
+ Du + Dp + Dµ + Dap + Daµ

+
1
V

∫
S

pundS −
1
V

∫
S

σundS +
1
V

∫
S

(λ∂xT) ndS, .

(2.9)

where R̃ = �u′′u′′ denotes the velocity fluctuation correlation, where u′′ = u − ũ. The integral terms
are caused by the presence of the particles, where S denotes the dispersed phase boundary, and
n is the normal vector pointing into the gas phase. The terms labeled D · are diffusive fluctuation
correlation terms, whose definitions can be found in [5]. In the simulations conducted here, they are
set to zero, since their importance in shock-wave particle cloud interaction has not been investigated,
and no appropriate closures exists.
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2.1.1 Fluctuation model

R̃ is a term describing the velocity fluctuation correlation. This is where the proposed

R̃ ≈ ũ2 αsep

α − αsep
(2.10)

is needed [6], where in the current work we take αsep = Csepαp. The parameter Csep is to be
determined with the aid of results from particle resolved, three dimensional simulations of a similar
system.

2.1.2 Drag laws

The drag law we have chosen for our baseline solver is expressed

Cd =
24
Rep

(
1 + 0.15Re0.687

p + 0.0175
(
1 + 4.25 × 104Re−1.16

p

)−1
)
, (2.11)

([10], originally from Clift and Gauvin [1]). Here, Rep = ρuDp/µ, where Dp is the particle
diameter.

In addition, we want to see whether the choice of drag model affects the estimated fluctuation
constant Csep. To do this, we will use saved force values from the particle-resolved simulation, and
interpolate these. This should give drastically more accurate values for drag forces, and possibly
give us a different Csep. Also, we should then be able to determine the impact of a good fluctuation
model versus a good drag model. In order to avoid unphysical effects such as particles imposing a
force on the gas before there is any relative velocity between the particle and the gas, our interpolated
drag function f (x, t) will return zero until a shock is detected at each particle.

An alternative drag law we also want to use is the one from Parmar [9]. The expression for
the drag-coefficient in Parmar’s drag law is rather lengthy, and will therefore not be stated here.
An advantage in this law over the one described in eq. (2.11), is that it is a function of the Mach
number as well as the Reynolds number.

2.2 Numerical method

To numerically solve (2.7) - (2.9), we use an in-house finite volume Eulerian-Lagrangian code. Two
separate flux schemes are used in this study: A Lax-Friedrich scheme, and the HLLC Riemann
solver [12] which has been modified to solve the volume averaged equations, as in [7]. In both
cases, we apply first-order reconstruction of primitive variables to the control volume faces. A third
order Runge-Kutta scheme is used to advance the solution in time.

The particles are treated as point particles, using an approximate drag law to calculate drag
force. Note that particle-volume is accounted for in the continuous phase equations. To match
the particle-resolved simulations, the particles are locked in place. However, at each step, the
particle velocity is advanced with a backward Euler scheme, while position is advanced with a
Crank-Nicholson scheme, before being reset to their initial values. The change in particle momentum
before the reset, which is related to the drag law, defines the force imposed on the fluid phase, F, c.f.
eq. (2.2).
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Figure 2.1 Illustration of the system under investigation in the study. The Mach 2.6 shock
wave starts 0.1L upstream of the particle cloud, and propagates from the left
to the right. The particle cloud, with a particle volume fraction of αp = 0.1 is
located between 0 ≤ x ≤ L.

2.3 Data

The particle resolved data [6] is an ensemble-averaged dataset of ten separate particle-resolved
simulations, each having the same α, but different positions of the particles. This is to reduce noise
caused by fluctuating α caused by a low number of particles.

2.4 Initial conditions

As seen in figure 2.1, our initial system contains air with a shock wave moving towards a gas
containing particles. These initial conditions are statistically equal to the particle resolved data used
for comparison. The particle cloud has statistically planar upstream and downstream cloud edges.
The incident shock wave has a Mach number, M = 2.6, and propagates into air at atmospheric
conditions. The atmospheric conditions are

ρatm = 1.2048 kg/m3, uatm = 0 m/s, patm = 101.325 kPa, (2.12)

resulting in the post-shock conditions

ρshock = 4.1553 kg/m3, ushock = 633.48 m/s, pshock = 782.23 kPa. (2.13)

The heat capacity ratio is set so that Tatm = 298 K, and the viscosity is µatm = 1.8 × 10−5 kg/(ms).
The particle layer, consisting of particles with diameter Dp = 4−1/3 ×10−4 m, is located between

0 ≤ x ≤ L, where L = 3 · 45/3 Dp.
The total number of control-volumes used in each simulation of this study is 174. This

corresponds exactly to the number of averaging volumes used to process the particle-resolved data,
and their locations and boundaries are also matched. The control-volume widths and heights are set
so that the entire set of particles occupy a volume fraction of 0.1 within 0 ≤ x ≤ L.

2.5 The ABC-SMC algorithm

We use the ABC-SMC (Approximate Bayesian Computation - Sequential Monte Carlo) algorithm
[2] to calculate the best fitting value for Csep. The algorithm is as follows (with a few modifications,
written in bold):
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1. Set starting tolerance ε0 = ∞ (or any large number).
2. Define how many iterations should be calculated T .
3. For t ∈ [0,T] (This could be a while loop, but we wish to avoid potential infinite looping.)
4. i = 1
5. while i < N + 1 (N being the number of samples per t).
6. If t = 1: Sample candidate parameter C̃ from the prior π(C0)

7. Else: Sample Csample from Ct−1 with weights ωt−1.
8. Perturb Csample via the perturbation kernel Kt , so that: C̃ = Csample + Kt (·|C̃)
9. Run simulation using candidate C̃, getting solution ysim

10. Calculate error ∆(ysim, yactual) =
(usim−uactual)

2

u2
actual

+
(psim−pactual)

2

p2
actual

+
(ρsim−ρactual)

2

ρ2
actual

11. If ∆(ysim, yactual) < ε :
12. i ← i + 1
13. Ct

i = C̃
14. else:
15. return to line 5
16. Reduce ε to a percentile of the candidate errors.
17. if t = 1
18. ω1

i = 1
19. else
20. ωt

i =
π(C t

i )∑N
j=i ω

t−1
i Kt (C

t
i |C

t−1
j )

(Importance sampling)

21. Normalize ωt
i

where subscript "actual" refers to the results of the particle-resolved simulations. In our implement-
ation, each step of the loop in step 5 is run in parallell, meaning for each step t, we have N instances
of the while-loop running (we have chosen to run one sample per thread), only finishing when the
criteria in step 11 is met. We use a Gaussian perturbation kernel, with variance σt = 2Var(Ct ) [2].
The prior π(C) is a known distribution describing all we already know about the parameter Csep
before calculating anything. We have defined our prior as

π(C) =
1
10 , C ∈ [0,10]
0, C < [0,10] . (2.14)

Ct is the parameter the algorithm is estimating at the t’th iteration of the algorithm.

The reason we have chosen to reduce the tolerance by percentiles, which is a rather different
method than statically pre-defining the tolerances and looping over them, which is the usual way to
implement ABC-SMC, is that we do not know what tolerances make sense for our system. Starting
with a very large tolerance and then reducing it by percentiles is a very general method that does
not require any knowledge about the size of the errors. For the problem in this study, this approach
converges quickly, and even more rapid convergence is obtained with the aid of a reasonable prior.
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3 Results
This section presents the results of the numerical simulations. First, results from the baseline
solver with direct application of the fluctuation model, with Csep = 1.17 as found at late time in the
particle-resolved simulations, are presented. Next, we apply the ABC-SMC algorithm to estimate
the best value of Csep, and present the simulation results based on the new value of Csep. Finally, the
sensitivity with respect to the drag-law is shown. Figures 3.1 to 3.3 have common labels, which
refer to the models as described in table 3.1. Time is normalized using a time-scale

t0 = 2.9L/Us, (3.1)

where Us is the shock wave velocity, which is the time it takes for the shock wave to travel a distance
equal to the domain length.

3.1 Directly derived Csep

The value Csep = 1.17, corresponding the value of αsep at late time in the simulations of [6],
yields the results shown in figs. 3.1 to 3.3. The pressure at late time, shown in fig. 3.1 differs
significantly from the results of the particle-resolved simulations, which for the purpose of this
study are considered the correct solution. The reflected shock wave is much weaker in the baseline
solver, yielding too low pressures and too high velocities upstream of and within the particle layer.
This is the case both with the application of the Lax-Friedrich type solver and the HLLC solver. The
inclusion of R̃ in the momentum equation has a significant impact on the flow solution, generating a
stronger reflected shock as well as a stronger expansion region around the downstream cloud edge.
Especially for the Lax-Friedrich solver, this is an important difference, because the baseline version
does not display any overexpansion. For the HLLC solver, the addition of the fluctuation model
leads to numerical artifacts within the cloud, displaying strong spikes throughout the cloud. Similar
observations can be made for the velocity field, shown in fig. 3.2.

In fig. 3.3, the velocity fluctuations are compared against the particle-resolved data at late time.
At this point, both the LF and HLLC solvers overpredict the fluctuations within the cloud, but the
agreement of the profiles with the particle-resolved data is quite good. Notably, the particle-resolved
data display a non-negligible magnitude of the fluctuations downstream of the cloud edge, which is
not captured by the model. This is expected and in accordance with the derivation of the model,
because the model is only intended to represent particle wakes, which are not present in regions
without particles.

Table 3.1 Description of the models referred to by the legends in figures figs. 3.1 to 3.3

Label Description
"1D" Current simulations
"3D" Three dimensional, particle-resolved simulation

"only rhou fix" R̃ is only applied in the momentum equation (2.8)

"no pressure" R̃ is applied in momentum equation and
energy equation (2.9), but not corrected for in pressure

"full model" R̃ is applied everywhere relevant

12 FFI-RAPPORT 20/00616
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Figure 3.1 The pressure p, solved using both LF (left) and HLLC (right) with varying degrees
of corrections applied.
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Figure 3.2 The flow velocity, ũ, solved using both LF (left) and HLLC (right) with varying
degrees of corrections applied.
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Figure 3.3 Velocity fluctuation correlation model, R̃, solved using both LF and HLLC, and
the velocity fluctuation correlation form the particle-resolved data at t/t0 ≈ 0.92.

3.2 Statistically derived Csep

The results in figs. 3.1 and 3.3 are obtained with Csep = 1.17, which is the value obtained at
a single, late, time-point in the particle-resolved simulations. A more robust estimate can be
obtained by optimizing the value of Csep by comparison of the dispersed flow model against the
particle-resolved data. In order to do this, we apply the ABC-SMC method. Figure 3.4 shows the
estimated distribution of Csep with increasing number of iterations of the ABC-SMC algorithm.
The distribution converges towards the value Csep = 1.4.

Figure 3.5 shows the velocity and pressure at late time from the flow solver with this value
of Csep as well as those obtained with Csep = 1.17. There appears to be only a minor difference
between these values of Csep, indicating that the model is not very sensitive to the exact value of
Csep in the range 1.17 − 1.4. However, the change from 0 − 1.17 has important consequences for
the flow, as discussed above.

3.3 Drag law comparisons

The drag-law is a central part of the Eulerian-Lagrangian dispersed flow model, and it is therefore of
interest to compare the results obtained with different models for particle drag. Figure 3.6 compares
the flow velocities of the particle-resolved simulations with the one-dimensional solutions using the
drag-law of Clift and Gauvin, eq. (2.11), as well as the model of [9], here referred to as the Parmar
drag-law. In addition, we use the particle-forces from the particle-resolved simulations directly, and
consider this to be our best possible model for particle-drag.

Note that the value of Csep is estimated to different values with the ABC-SMC algorithm,
depending on the drag law. When we apply the forces from the particle-resolved simulations, the
estimated Csep is 1.6 as opposed to 1.4 for the Clift and Gauvin drag law. Csep has not been estimated
when using the Parmar drag-law due to time constraints. In comparing the different drag-laws, we
apply a single value of Csep = 1.5, which is in the middle of the interval identified from the Csep
estimates mentioned. The reason for using this value with all the drag laws is that the effect of the
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Figure 3.4 Statistical distribution of Csep using the drag law of Clift and Gauvin.
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Figure 3.5 The velocity (left) and pressure (right), solved using both LF and HLLC with two
different values of Csep. The line colors are the same in both plots, and therefore
the legend has been split to avoid overlapping the lines.

FFI-RAPPORT 20/00616 15



−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x/L

0.2

0.4

0.6

0.8

1.0

1.2

u
/
u
sh

o
c
k

t/t0 = 0.92

3D

Clift & Gauvin

Parmar

Interpolated

Figure 3.6 Flow velocities in the particle-resolved simulations and in the current one-
dimensional simulations, with the drag-law of Clift and Gauvin, as well as the
drag-law by Parmar [9]. Also shown are the results where the particle forces
from the particle-resolved simulations are applied directly in the one-dimensional
simulations. For these simulations, the value Csep = 1.5 has been used.

drag law can be isolated. Additionally, all one-dimensional simulations shown in fig. 3.6 use the
HLLC Riemann solver.

The results show that the Parmar drag-law is a considerable improvement over the drag-law
of Clift and Gauvin. Using the Parmar drag-law results in a stronger reflected shock, stronger
shock-wave attenuation and a slightly stronger overexpansion. These changes bring the solution
closer to the results from the particle-resolved simulations. Incidentally, the large spike near
the downstream cloud edge obtained with the Clift and Gauvin drag-law is not present with
Parmar’s drag-law. However, applying the drag from the particle-resolved simulations is yet another
significant improvement over using Parmar’s drag law. This is possibly due to the strong initial
transient following shock-wave impact on each particle. The particle-drag is significantly higher
during the initial interaction with the shock wave than in the later stages where quasi-steady drag is
the dominant contribution to particle-drag.
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4 Discussion

4.1 Validity of model

The statistical analysis gives a nonzeroCsep, meaning the system is more accurate with the fluctuation
model than without it. One concern here is that the best value differs depending on how the drag
forces are calculated, with there being a 0.2 difference between the value obtained with the Clift
and Gauvin drag law and the value obtained with drag forces interpolated from the particle-resolved
data. This probably means that the fluctuation model is being fitted to compensate somewhat for
the errors from estimation of particle drag. This additional compensation is a confounding factor
when it comes to estimating the quality of the velocity fluctuation model. The estimated value of
Csep is however nearly invariant of the flux-scheme, which is encouraging.

4.2 Quality of our ABC-SMC implementation

The way we define our error could influence what result ABC-SMC gives. In addition, the way we
chose to define the standard deviation in the Gaussian perturbation has an effect on the results. If
we were to change the standard deviation, the final distribution would look different. Therefore it is
important to remember that fig. 3.4 may not necessarily be the most "correct" posterior distribution.
We are however, only interested in the most likely value, which is easily extracted from these
distributions.

4.3 Further improvement

The next logical step to improve this fluctuation model is to make it depend on time. In reality, a
wake takes a bit of time to manifest fully. This should ideally be represented in the model via some
gradual increase before the full effect is present. In addition, the current simulation has locked the
particles in place, in order to compare against the particle-resolved simulations. An interesting next
step is therefore to investigate how the model affects the results if the particles are allowed to move.

Including a model for the transient forces during shock-particle interaction is a natural extension
of the current work. A potential model for this interaction can be found in [8].

The ABC-SMC algorithm we used could be improved. Our parallelization scales linearly, but
each t-step has to wait for all samples to be accepted, meaning the thread taking the longest time
will hinder all the others. A way to improve this would be to have every thread sample new values
until there are enough samples, then stopping them all. This would reduce the impact of one thread
taking a lot of time.

4.4 Importance

The addition of the velocity fluctuation model has a significant effect on the results from the
Eulerian-Lagrangian simulations. The improvement is comparable to that obtained going from
the Clift and Gauvin drag-law to the drag-law of Parmar. However, even more sophisticated
drag-laws has the potential to bring the results even closer to the particle-resolved results, as we
have demonstrated by using the particle-forces from the particle resolved simulations directly.
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5 Conclusions
Including the model for velocity fluctuations improves the quality of the Eulerian-Lagrangian
simulations of shock-wave particle cloud interaction. However, further improvements are needed
before we can expect to run an Eulerian-Lagrangian simulation of shock-wave particle cloud
interaction and be confident that the results are representative of the real behavior of such systems.
The current results indicate that improving models for drag has a strong effect on the results, and is
therefore important. The initial transient following shock-wave impact on each particle is likely
important for the generation of the reflected shock, and therefore the flow state within the entire
particle cloud.

Csep was estimated to 1.4 and 1.6, depending on the choice of drag-law. This has the physical
interpretation that the volume of the separated flow behind each particle is 1.4 or 1.6 times larger
than the volume of the particle. The volume of these separation regions can potentially be estimated
from the particle-resolved data directly, and this can serve as an additional test for the fluctuation
model.
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