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Abstract—A desirable objective in radar detection theory is the
ability to detect and recognize targets in intricate scenarios such
as in the presence of clutter or multiple closely spaced targets.
Herein we propose the use of artificial neural networks for radar
target detection where Smallest Of (SO)-CFAR detector is used as
the basis for neural network training. The SO-CFAR detector has
exceptional good detectional capabilities, however, suffers from
a very high false alarm rate and has therefore only been given
limited attention in the literature. We show that by appropriately
training a neural network on SO-CFAR detections it is possible
to significantly lower the false alarm rate with only marginal
decrease in probability of detection.

Index Terms—Constant false alarm rate (CFAR), radar, detec-
tion, Swerling targets, neural network

I. INTRODUCTION

The ability to discover targets at a great distance is one of
the key features of radar systems. Disclosing potential objects
in a reliable manner with a high probability of detection (PD)
and a fixed low-false alarm rate (PFA), however, still remains a
challenging and difficult task. A standard technique employed
for target detection is through the use of constant false alarm
rate (CFAR) detectors [1], [2] with many proposed variants.
CFAR detectors provide an adaptive mean to calculate the
detection threshold as fixed thresholds are generally inadequate
in case of complex and dynamic environments. Among the
more popular versions of the CFAR detectors we find the CA
(Cell Averaging) and GO (Greatest Of) detectors while the SO
(Smallest Of)-CFAR detector is another alternative.

Over the last years, the use of machine learning methods have
been discussed in radar settings to perform target detection [3],
[2], [4], [5], [6], [7], [8], [9] using assorted strategies. In [7], [8],
the authors proposed how one can train feedforwarding neural
networks to return the same type of detectional performance
as of cell averaging (CA) or greatest of (GO)-CFAR while
otherwise aiming to reduce the number of false detections. In
the initial study [7] CA-CFAR was considered and the training
and evaluation was carried out on a simple signal model con-
sisting of fluctuating targets in noise only conditions. The basic
idea was later expanded [8] to include clutter and GO-CFAR
was employed as the main training mentor for neural network
training. Both CA- and GO-CFAR are prominent detectors in
radar detection theory and widely applied on practical systems,
however, they do have several issues detecting targets in more
complicated settings [1]. Training a neural network on these
detectors also implies that the positive detectional performance
is upper limited by the original detector’s capability. This can

be observed in [8] where the training methodology was adapted
to improve the PD but which always came with a penalty of
a higher PFA. The previous papers also did not give much
attention to the constant false alarm property which, although
present, was not verified thoroughly. In this paper, we present
a further expansion of the previous works to a more wider
and generic setting which is explored in greater detail. To this
end, the SO-CFAR detector is utilized as the main foundation
for network training with an amended training procedure. The
SO-CFAR detector offers a high PD and has the ability to
detect targets in the vicinity of an one-sided clutter edge and
adjacent closely spaced targets albeit with an excessive PFA.
The main contribution of this paper is accordingly related
to the development of training techniques for neural network
detectors who are able to deliver a detectional performance
recreating SO-CFAR while concurrently curtailing the number
of false positives stemming from SO-CFAR. An extension of
the method to incorporate cells above and below the cell under
test is also proposed.

II. RADAR AND SIGNAL MODEL

To provide a framework for the neural network training and
assessment, we briefly describe the model of a standard pulsed
radar system where a waveform is emitted at regular intervals.
M pulses are assumed transmitted in a coherent processing
interval (CPI) and the targets are assumed to be slowly fluc-
tuating with a Swerling 1 distribution where the values vary
randomly from dwell to dwell but with a given mean signal-to-
noise ratio (SNR). The radar is assumed to construct a standard
range-Doppler map for each CPI represented by an M × R
complex matrix D(t, ω), where t = 1, 2, ..., R. t is the discrete
fast-time parameter corresponding to different time delays and
consequently range cells while ω = 1, ...,M gives the Doppler
bins.

A. CFAR detector and neural network

A CFAR detector takes the square law range samples of a
range-Doppler map D, D̂(t, ω) = |D(t, ω)|2 ∀ t, ω, and then
processes each individual cell of D̂(t, ω) in order to determine
if conditions for declaring a detection are fulfilled or not. In
this text, we follow an approach where an one dimensional
SO-CFAR detector is engaged with averaging conducted across
the range domain. A sliding window of size 2N + 2G + 1 is
moved across all possible cells, t̂ = 1+N +G, ..., R−N −G
and ω̂ = 1, ..., N excluding potential edges. The 2N + 2G +
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Fig. 1: Neural network detector

1 samples in range specified by the window are extracted in
x(u) = D̂(t̂−N −G : t̂+N +G, ω̂), u = 1, 2, ..., 2N +2G+
1 and the cell in the middle of the window, x(N + G + 1),
cell under test (CUT), is compared against a scaled average.
G number of guard cells immediately to the right and left of
CUT are ignored. The average, γ, in smallest of cell averaging
is computed as the smallest average of either the N reference
cells to the left or right of CUT,

γ = 1
N min (

∑N
k=1 x(k),

∑2N+2G+1
k=N+2G+2 x(k) ).

A detection is declared if

x(u)|u=CUT > γ K, (1)

where K (dB) is a selected threshold. The CUT in SO-CFAR
detector is always compared against the smallest value coming
from the two reference windows which helps to reduce target
masking if multiple targets are present in the CFAR window.
As the detectional performance of SO-CFAR can be considered
rather good, the objective of a neural network should be to
preserve as much as possible while aiming to reduce the number
of false detections.

For the artificial neural network, we consider a setup where
the sliding CFAR window is moved across the range-Doppler
map, as previously; but the selected 2N+2G+1 window values,
including guard cells, are normalized and fed directly into
a fully connected feedforwarding network. The normalization
of the CFAR window is carried out via standard min max
normalization x̂(u) = x(u)−min(x(u))

max(x(u))−min(x(u)) . The output from the
last layer of a neural network, κ = fNN (x̂), returns a single
detection estimate. fNN (x̂) corresponds to the neural network
modeled as a function with an input of the normalized CFAR
window x̂(u). The process is depicted in figure 1. A threshold
test is applied on κ and if exceeded then a detection is declared.

B. Training of neural network detector

The main parameter assumed fixed during training is the
threshold value K. This determines the PD and PFA for the
standard SO-CFAR algorithm and is the performance objective
the network educates around. For training of the network we
assume that a large number of independent range-Doppler maps
have been gathered wherein the targets and their positions are
known precisely. From each realization, representative random
SO-CFAR windows are taken to construct a large training
database. The training objective of the neural network will be
on binary values [7] and the desired output from the network for
each CFAR window of training data is either 0 (no detection)

or 1 if a target is present. Categorically, the neural network’s
last layer trains to return:

κ̂ =


1, SO-CFAR returns a positive detection and

a target is present at CUT.

0, otherwise.

The positive outcome in the above interacts with SO-CFAR for
target detection, however, just as important is the fact that the
network now learns to return a zero output in the absence of
real targets regardless of the CFAR outcome. This forces the
network to evolve an internal mechanism to try to distinguish
between true targets and false CFAR detections. At its best,
such a technique should be able to offer the same type of PD

performance as of the original CFAR method but with a lower
PFA. This is thus ideally suited for SO-CFAR which has a
high PFA and needs to be curtailed for practical purposes. For
clarity, we point out that the condition "target is present at
CUT" must also include neighboring cells if the known target
spreads out in range and/or Doppler due to sidelobes.

The various window samples within the training database can
be split into multiple categories:
• A: target is present in CUT and positive SO-CFAR
• B: clutter environment, false SO-CFAR detection
• C: noise only environment, false SO-CFAR detection
• D: random sample, no SO-CFAR detection.

For each category we denote AN , BN , CN and DN to refer
to the number of samples for that particular set with the
CFAR window samples denoted by x̂A,k, k = 1, ..., AN

for set A and so forth. Other categorizations and a further
refinement is obviously also possible; particularly if there are
certain type of detections or incorrect detections who need
extra detailing. A neural network training on the above database
will in principle be an optimization process with the objective
to minimize the overall error which can be decomposed as,

min fNN |x̂ =

AN∑
k=1

(|fNN (x̂A,k)| − 1)2 +

BN∑
k=1

|fNN (x̂B,k)|2

+

CN∑
k=1

|fNN (x̂C,k)|2 +
DN∑
k=1

|fNN (x̂D,k)|2.

It is somewhat unlikely that a neural network, conditioned
by SO-CFAR, can optimize all the different categorizes without
negative influence on another category. If there are uneven
number of samples from the different categories then some cat-
egories may also end up offering poorer performance compared
to others. The number of samples for each set will thus have
a large impact on what type of detections the network will
prioritize to learn and by alternating these parameters different
trade-offs can be achieved. The number of layers and nodes in
the network also play a vital role in the training process. Very
small networks may not converge well over all categories while
more flexibility is achieved with greater number of layers or
with a wider network at the expense of more resource intensive
training. The network is still performance bounded by SO-
CFAR and a bigger network also has a disadvantage in that
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Fig. 2: Simulated range-Doppler map

it may start to optimize too much with regard to given data
and not generalize well. The next section demonstrates how
the various training parameters can be adjusted and how this
impacts the end performance with different trade-offs.

III. SIMULATIONS AND RESULTS

Parts of a pulsed radar system are simulated to train neural
networks under the proposed methodology and then the per-
formance is compared against traditional SO-CFAR and GO-
CFAR detection. The radar is assumed to transmit and receive
M = 16 pulses over 300 simulated range bins. In total, seven
independently fluctuating targets are modeled being placed at
various range bins. The targets’ reflectivity is assumed to follow
a standard Swerling 1 model where the mean is varied randomly
during training to mirror different power levels. The clutter
is modeled using a K-distribution function [6] and covers the
first half of range bins split in two patches. The clutter shape
parameter is randomly selected uniformly for each dwell to be
in the range between v = 0.05 (spiky) and v = 10 (Rayleigh
distributed) and the clutter values are then arbitrary generated.
A random process additionally up or down scales the clutter
to implement more variation in signal-to-clutter ratio from
dwell-to-dwell. To construct the range-Doppler map Hamming
window is put to use. We refer to figure 2 for an example where
all seven targets stand out with high SNR and are designated
from T to Z. Targets T to W are considered to be in a region
with clutter and the target velocity is randomly set between -45
m/s to 45 m/s. The range placement of T and W is randomly
determined to be between 0 to 9 bins to the left or right of
range bins, respectively, 60 or 160. Positive detection samples
will thus experience cases of clutter edge with different distance
from CUT from both sides. Targets X, Y and Z are in the
noise only environment with a random velocity between -60
m/s to 60 m/s. Targets U,V and X,Y are closely spaced targets
with identical velocities and the distance between U and V
or X and Y is randomly set between 3 to 10 range cells on
either side of U or X. With a probability of 0.5 these targets
have correspondingly equal power levels. Closely spaced targets
both with matching and dissimilar energies are thus taken into
account. All targets, with a probability of 0.5 spread across two

Case AN BN CN DN Total training samples
1 200000 0 0 200000 400000
2 200000 20000 20000 200000 440000
3 200000 300000 300000 200000 1000000

TABLE I: Neural network training parameters

range-cells and have a single sidelobe in range of -20dB. If
the target spreads out in range then a neighboring cell follows
an independent Swerling 1 value from the same distribution
before a sidelobe is encountered. The noise floor is also not kept
fixed, rather ranges between −80 dB to −115 dB following a
uniform distribution between CPIs. The variation in the above
setup captures the essence of the wide types of CFAR windows
which should be suitable for training a generic type of detector
aimed toward targets and closely spaced targets in noise and
clutter.

After formation of a range-Doppler map, CFAR tests are
performed and the blocks extracted for the training database, the
SO-CFAR parameters being set as G = 3 guard cells and N =
9 averaging cells on each side and thresholding level of K =
14dB. True and false detections of type A, B and C were taken
into the training database as encountered sequentially while
random samples of type D were only taken with a probability
of 5%. New random range-Doppler maps were generated for as
long as required to fulfill conditions for the training database
under different numbers of AN , BN , CN and DN as defined
in table I.

We remark that the vast majority of false detections in the
presented setup are likely to come from the clutter region in
contrast to noise only arenas. To force the networks to have
interchangeable false alarm rate performance, false detections
from clutter and non-clutter regions are taken in equal measure,
i.e. BN = CN was required. Exceptionally, training case 1 only
trains on category A and D type results and such a network
should ideally converge to the base case of SO-CFAR. As false
detections are introduced, the network should start learning to
identify incorrect SO-CFAR detections and be able to improve
upon the false alarm rate of SO-CFAR, at possible expense of
a lower probability of detection. To train, a fully connected
feedforwarding networks with 2 hidden layers and 75 nodes
in each layer were utilized, each node using the hyperbolic
tangent as the activation function, for up to 1 million epochs.
Wider networks generally offer better detectional performance
[8], [9] and the number of nodes in each layer was set to three
times the number of inputs.

With the initial training process completed, a new larger
set of 6400 range-Doppler maps was generated using the
same described principles but now with a set mean power
value for the targets. Each resulting map was in full evaluated
through SO-CFAR, GO-CFAR and the trained neural network
to build up performance statistics. The neural network detection
thresholds utilized were κ > 0.5, κ > 0.8 and κ > 0.95. This
process was repeated with varying average target power levels
to obtain probability of detection and false alarm rate curves
with respect to mean target signal-to-clutter plus noise ratio
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Fig. 3: Case 1: PD and PFA
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Fig. 4: Case 2: PD and PFA

(SCNR). PD was calculated as the number of correctly detected
targets relative to the total number of simulated targets while
PFA as the number of incorrectly detected targets in relation
to total number of tests (27.5 millions per SCNR).

Figures 3 to 5 depict the PD and PFA results from the
three trained networks. As can be seen in figure 3, training
with BN = CN = 0 results in a very close match against
standard SO-CFAR shown in red. Setting a low threshold of
κ = 0.5 (blue curve) can give a slight improvement in PD but
otherwise the network is acting similar as to the original SO-
CFAR detector. Although the PD is good, the PFA is much
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Fig. 5: Case 3: PD and PFA

degraded compared to GO-CFAR (magenta).
By training the network mutually on 10% incorrect detec-

tions, split equally across clutter and noise regions, the curves
deviate moderately from SO-CFAR (figure 4). The PD curve is
now a bit lower than SO-CFAR with the thresholds of κ = 0.95
(green) or κ = 0.8 (black) while with κ = 0.5 it is still
comparable to the SO-CFAR performance. The main benefit,
nevertheless, stems from the PFA curves which are now situ-
ated in-between SO-CFAR and GO-CFAR. They enhancement
in PFA is relatively much greater than the marginal decrease
in PD. We remark that the PFA curves are also all relatively
flat. The third training case with greater emphasis on false
detections returns figure 5 on evaluated data. The PD curves are
now further shifted downwards, though the performance is still
favorable, and is for all the three threshold values still above
GO-CFAR. Impressively, the PFA from the neural networks is
now more on par with, or lower than, GO-CFAR. The trained
network can thus roughly approximate SO-CFAR detectional
performance with GO-CFAR false detection rate.

To further evaluate the performance of case 3 trained neural
network, detailed simulations were carried out with different
target and clutter settings. Only a few selected targets were
included in the simulations to assess specific detectional capa-
bilities. For these simulations, the SCNR was randomly varied,
as in the described model; and the PD and PFA results are
provided in tables II and III. The top three simulation settings
do not include any clutter and thus evaluate the neural network
performance in noise only setup while the remaining cases also
incorporate clutter. The false alarm rate performance from both
SO and GO detectors is quite satisfactory as long as no clutter
is considered at which it starts to suffer considerably either in
PD or PFA or both. The trained neural network exhibits a more
consistent performance throughout but also obtains the highest
PD rate either with a single target or closely spaced targets
in noise only environment (targets T,W,Z or targets U,V and
X,Y). When only a single target (U) is present in the clutter
region then the lowest PD results is obtained. Evidently, the

Targets NN κ>0.5 NN κ>0.8 NN κ>0.95 SO GO
All, no clutter 0.83 0.78 0.69 0.76 0.40
T, W, Z, no c. 0.82 0.79 0.74 0.81 0.78

U, V, X, Y, no c. 0.83 0.77 0.66 0.81 0.16
All w/clutter 0.79 0.73 0.65 0.78 0.41
U w/clutter 0.70 0.67 0.62 0.70 0.66

U, V w/clutter 0.74 0.68 0.57 0.72 0.15
T w/clutter 0.76 0.72 0.66 0.78 0.65

TABLE II: Performance comparison, PD

Targets NNκ>0.5 NNκ>0.8 NNκ>0.95 SO GO
All, no clut. 1.13·10−4 3.25·10−5 1.79·10−5 9.39·10−6 7.69·10−8

T, W, Z, " 2.85·10−4 1.11·10−5 7.42·10−6 1.12·10−5 3.71·10−8

U, V, X, Y," 8.75·10−5 2.89·10−5 1.70·10−5 1.19·10−5 3.74·10−8

All w/clut. 1.90·10−4 6.95·10−5 3.72·10−5 5.08·10−3 6.39·10−5

U, " 1.34·10−4 6.49·10−5 3.82·10−5 5.96·10−3 6.98·10−5

U, V, " 1.55·10−4 6.90·10−5 4.17·10−5 6.00·10−3 6.29·10−5

T, " 1.00·10−4 4.95·10−5 2.92·10−5 4.97·10−3 6.88·10−5

TABLE III: Performance comparison, PFA
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last situation is only indirectly simulated during training when
it is assumed that the closely spaced targets have independent
fading with a probability of 0.5. Explicit training on a single
target in clutter could therefore be carried out if there is a desire
for further improvement. The same two cases with highest PD

also return the lowest PFA where the values are otherwise very
equivalent. The main exception here is the GO-CFAR detector,
which performs competently for a single target in noise and
generally has a low PFA but is, notably, not able to detect
many closely spaced targets.

A. Doppler 2D extension

In a range-Doppler map, targets are not necessarily located
at a single point but will often exhibit some spread in Doppler.
The extend of this will depend on several factors such as the
applied window function. It can nevertheless be beneficial to
also provide the Doppler sidelobe bins to the neural network
for training and detection purposes even though the CFAR test
and training criteria remains restricted to the range domain. To
investigate this aspect, the 2 Doppler cells above and below
the CUT were taken account of, in a circular manner, and fed
alongside the standard CFAR window into the neural network.
Keeping the other parameters fixed with G = 3 guard cells and
N = 9 averaging cells this increases the number of samples for
each test to 29. For a fair comparison, the same neural network
structure of 2 hidden layers and 75 nodes in each layer was
utilized. The training process was otherwise identical.

The final results on the same evaluation data are shown in
figures 6 and 7. Comparing figure 3 to figure 6 and figure
4 to figure 7, the limited extension to two dimensions is not
able to improve much upon the PD. This can be expected,
as the SO-CFAR test for positive detection is unchanged but
the extra information can still aid in recognizing cases where
a false SO-CFAR detection may occur. This can be observed
in the plots where the false alarm rate curves show a clear
improvement for the same SCNR compared to the previous
plots. The enhancement is noticeable but small for case 1
when no training is carried out on false detections but is more
apparent for case 2. Particularly with κ = 0.8, the PD loss
compared to SO-CFAR is only 1-2dB while the PFA is just
slightly worst off compared to GO-CFAR. A neural network can
easily be extended to consider such additional factors requiring
few extra resources while these aspect would be rather difficult
to administer via conventional means.

IV. CONCLUSION

In this paper, artificial neural networks were considered as
replacement for traditional CFAR detectors. A new training
scheme based on SO-CFAR was proposed on how to efficiently
train such networks. The scheme can be used to obtain a
desired trade-off between probability of detection and false
alarm rate. The neural network improvement is most noticeably
linked to a lower false alarm rate which can be attributed to
the networks’ ability to recognize cases where SO-CFAR can
erroneously return a false detection. This proposed approach
allows the network to preserve basic features of the CFAR
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Fig. 6: Case 1: PD and PFA, 2D extension
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Fig. 7: Case 2: PD and PFA, 2D extension

detection process being able to identify closely spaced targets
and take account of clutter edges while concurrently providing
an easy to implement training methodology.
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