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ABSTRACT

We consider the problem of automatically locating, classifying and identifying an object within a point cloud that
has been acquired by scanning a scene with a ladar. The recent work [E. Bae, Automatic scene understanding
and object identification in point clouds, Proceedings of SPIE Volume 11160, 2019] approached the problem
by first segmenting the point cloud into multiple classes of similar objects, before a more sophisticated and
computationally demanding algorithm attempted to recognize/identify individual objects within the relevant
class. The overall approach could find and identify partially visible objects with high confidence, but has the
potential of failing if the object of interest is placed right next to other objects from the same class, or if the
object in interest is scattered into several disjoint parts due to occlusions or slant view angles. This paper
proposes an improvement of the algorithm that allows it to handle both clustered and scattered scenarios in a
unified way. It proposes an intermediate step between segmentation and recognition that extracts objects from
the relevant class based on similarity between their distance function and the distance function of a reference
shape for different view angles. The similarity measure accounts for occlusions and partial visibility naturally,
and can be expressed analytically in the distance coordinate for azimuth and elevation angles within the field of
view (FOV). This reduces the dimensions for which to search from three to two. Furthermore, calculations can be
limited to parts of the FOV corresponding to the relevant segmented region. In consequence, the computational
efficiency of the algorithm is high and it is possible to match against the reference shape for multiple discrete
view angles. The subsequent recognition step analyzes the extracted objects in more details and avoids suffering
from discretization and conversion errors. The algorithm is demonstrated in various maritime examples.

Keywords: segmentation, object recognition, scene analysis, point cloud, ladar

1. INTRODUCTION

Laser detection and ranging (ladar) is an imaging technique for generating detailed three-dimensional (3D)
information of a scene. Point clouds convey accurate information of the shape and scale of objects in the scene.
This makes them useful for classifying and identifying such objects, either by a human or an algorithm running on
a computer. Algorithms are particularly well-suited for analyzing point clouds due to their ability to accurately
sense relative distance in 3D space. In contrast, the human two-dimensional visual system is more inclined to
suffer from perspective bias when analyzing such 3D point clouds. Ladar imaging have found use cases among a
wide range of applications, such as autonomous automobiles, picking robots, airborne surveillance and satellite
imaging.

Our previous paper ref.1 presented algorithms for locating, segmenting and recognizing objects within point
clouds acquired by ladar in maritime, urban and rural scenes. The point cloud was first segmented into mul-
tiple classes, where one of the classes contained objects with similar characteristics to the object of interest.
Afterwards, individual objects within the relevant class were analyzed by a more computationally demanding
algorithm that utilized the full 3D shape of the object, its simulated shadow and optionally certain intrinsic
reflectance properties. The algorithms were designed for complex point clouds with irregular neighborhood
structures, such as those acquired by the line scanning principle, and were based on solving various minimization
problems over graphs. Although the algorithm works well in most cases, it has two main limitations that will be
dealt with in this paper:
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1. Objects merged with other objects from the same class: If the object of interest is placed in close contact
with one or more objects of the same class, the segmentation step may not be able to separate those objects,
instead regarding them as one single larger object. This may occur, for instance, if two vehicles are placed
right next to each other. Another example is a ship at quay.

2. Objects divided into disjoint parts: Under certain circumstances, the object of interest may be divided
into two or more disjoint parts that are separated in distance and appear scattered in the point cloud.
For instance, if a ship is being observed straight from the front, points will get reflected from the hull
and the area around the bridge, but due to their large distance from each other the hull and bridge will
appear as two different objects in the point cloud. Another example would be an object whose middle part
is occluded from the line of sight. These scenarios make it challenging to determine which object parts
belong together.

This paper proposes improvements that allows the overall algorithm to handle both clustered and scattered scenes
in a unified way. It consists of an intermediate step between segmentation and recognition that extracts objects
from the relevant class based on similarity between their distance function and the distance function of a reference
shape for different view angles. The similarity measure accounts for occlusions and partial visibility naturally,
and is formulated as an optimization problem in the distance coordinate that can be solved analytically for each
azimuth and elevation angle within the field of view (FOV). This implicit handling of the distance coordinate
reduces the dimensions for which one must search from three to two. In consequence, the computational efficiency
of the algorithm is high and it is possible to match against the reference shape for multiple discrete view angles.
Only the parts of the FOV corresponding to the relevant segmented region of the point cloud need to be considered
in the computation. The subsequent recognition step analyzes the extracted objects in more details and avoids
suffering from discretization and conversion errors. The algorithm is demonstrated on some illustrative examples.

There has also been a lot of earlier work on point cloud segmentation and object recognition, although the
above scenarios are common challenges. A closer review will be given in the technical section. The article2

proposed to segment objects in ladar images from the ground plane based on morphological techniques. In the
end, the objects were classified into clutter and human-made objects based on their geometrical structure, and
the human-made objects were further classified based on their dimensions. Another closely related work3 is on
segmentation and recognition of vessels in maritime environments. Their data set was acquired by a flash ladar
and the vessels were first extracted from the sea based on 2D image segmentation techniques. In the end, the
vessels were classified based on their full 3D shape. There has been proposed several approaches for point cloud
segmentation, e.g. ref.4–8 to name a few. Most of them either interprets the point cloud as an image of 2D pixels
or 3D voxels, and applies established image analysis techniques, such of morphological operations. Convolutional
neural networks (deep learning) have recently been applied on point clouds, but they also require a regular 2D
grid ref.9–11 or 3D grid ref.,11,12 as well as a large amount of training data.

This article is organized into four main sections. Section 2 gives a brief review of the segmentation step,
Section 3 presents the new object extraction step and Section 4 gives a brief review of the recognition step.
Experimental results are summarized in Section 5, but are also presented in the other sections.

2. POINT CLOUD SEGMENTATION

The point cloud is initially segmented into different regions containing different classes of objects, according to
our previous work.1 A brief review of the method is given in order to identify some key limitations that will be
dealt with in the next section. The segmentation approach falls within a newer class of methods that process
the 3D points directly on a graph, without first converting them to a regular 2D or 3D grid. Consequently, no
information is lost and situations with depth overlap and motion are naturally handled. The algorithm is based
on solving a so-called variational problem on the graph, which is a recent concept that is known to give very good
solutions to various tasks in pattern recognition. A particularly efficient and robust algorithm was developed
in.13

Assume that we are given the coordinates of N points in 3D space, obtained by a ladar or another similar
imaging technique. The N points will be denoted as p1,p2, ...,pN in the rest of this article. In order to formulate
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(a) graph (b) graph after segmentation

Figure 1: Example of a graph with 2D points as vertices, where each vertex is connected to its two nearest
neighbors. Note that some vertices may still be connected to more than two vertices and the graph need not
be connected, but may consist of several connected components. The images are reproduced from the author’s
previous work13 under the terms of the Creative Commons Attribution Licence.

segmentation of the points as a minimization problem, the points are first organized in an undirected graph. A
graph is a set of vertices, of which 3D points is a special case, together with a pairwise interconnection between
the set of vertices. The set of all vertices is denoted by V . A pair of vertices that are connected is called an
edge in the graph. The set of all edges is denoted by E. Two vertices p and q are connected if and only if their
vertex pair (p,q) is contained in the set of edges E.

Figure 1 depicts a graph where each vertex is a 2D point. The points are visualized as round balls, whose
centers indicate the point coordinates. The edges are visualized as lines connecting two points with each other.
In this work, the graph is constructed such that two points are connected if one of them is among the ”k-nearest”
neighbors of the other. That is, for each point p an edge (p, q) is constructed if q is one of the k closest points
of p. We set k = 20 in experiments. Constructing a k nearest neighbors graph can be achieved efficiently by
exploiting the redundancy between the point coordinates. A common algorithm involves first building a k-d
search tree over the points and then looking for nearest neighbors by traversing the branches of the tree, see
ref.14,15 for details.

A graph that is constructed based on the k nearest neighbors may consist of several ”connected components”.
A connected component is a subset of the graph where any two vertices (points) are connected by a path of
edges, that is, it is possible to travel from one vertex to the other by only moving along the edges. The graph
in Figure 1 contains three such connected components. Vertices in two different connected components are not
connected by a path of edges. Therefore, constructing the graph provides some basic segmentation of the point
cloud, where each connected component can be regarded as a region. Such a segmentation may be meaningful
if the object is completely separated in distance from other points in the point cloud. However, this can only
rarely be expected to be the case.

Our previous papers1,13 explained how to obtain a much finer and more meaningful segmentation by solving
an energy minimization problem over the graph. The main idea is to divide the points into several different
regions based similarity between point pairs and how individual points relate geometrically and statistically
to neighboring points. An illustration is given in Figure 1 (b), where the points are grouped into a region of
low point density (yellow), and regions of high (red), medium (blue) and low (green) correlation between the
coordinates of each point and its neighboring points. A similar segmentation can be constructed for 3D point
clouds, where human-made structures typically have a high degree of correlation between the point coordinates
and vegetation have a low degree of correlation. Individual objects from the segmented point cloud can now be
extracted from the point cloud. For example the red object is separated from the surrounding objects due to
their different class memberships.

Some examples on recorded 3D point clouds are shown in Figure 2. On the left is a land scene that is
segmented into vegetation with leaves (light green), vegetation without leaves (dark green), the ground surface
(brown) and human-made structures (blue). Marked in red is human-made structures with the size of a car.
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Figure 2: Left: Segmentation of point cloud acquired in land scene into vegetation, the ground surface, human-
made structures and vehicles. Right: Segmentation of point cloud acquired in maritime scene into solid objects
and noise.

Since the car is only surrounded by objects from other classes (a bush, a tree and the ground surface) it can be
extracted from the point cloud based on connected component analysis. On the left is a maritime scene that
is segmented into solid objects and noisy points detected from the atmosphere (blue). Marked in red are solid
objects with the size of a ship.

3. OBJECT EXTRACTION IN CLUSTERED AND SCATTERED SCENES

Under most circumstances the segmentation process itself will separate individual objects from the rest of the
point cloud. By removing edges between points that are assigned to different regions (dashed lines in Figure 3),
the graph gets split into several different connected components, each of which can be regarded as a separate
object.

There are, however, two different scenarios that may cause the previous simple procedure to fail:

• Clustered scenes: If the object of interest is placed in close contact with one or more objects of the same
class, the segmentation step may not be able to separate those objects, instead regarding them as one single
larger object. This may occur, for instance, if two vehicles are placed right next to each other. Another
example is a ship at quay. An illustrative example is shown in Figure 3, where object 1 and object 2 each
belong to the same class. Because of their close vicinity to each other, the segmentation process merges
both objects together as seen in subfigure (b). Since both objects are now connected by a path of edges,
they will be regarded as one single larger object by the simple procedure described in the previous section.
Another example is shown in Figure 4, where the ship at quay gets merged with the surrounding buildings
in the point cloud.
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(a) graph (b) graph after segmentation

Figure 3: (a) Example of a graph where two objects belonging to the same class (object 1 and object 2) are
located in close vicinity to each other. This causes both objects to get connected by a path of edges when
creating the graph. (b) Segmentation of graph of 2D points into regions of low density (yellow), high degree
of statistical correlation of coordinates between neighboring points (red), medium correlation (blue) and low
correlation (green). Due to the similar characteristics or object 1 and object 2, the segmentation algorithm is
unable to separate them from each other.

• Scattered scenes: Under certain circumstances, the object of interest may be divided into two or more
disjoint parts that are separated in distance and appear scattered in the point cloud. From slant view
angles, the horizontal parts of an object may not be visible, and the visible vertical parts may therefore
appear disjoint. Another example would be an object whose middle part is occluded from the line of sight.
These scenarios make it challenging to determine which object parts belong together. See the rightmost
ship in figure 4 for an example. Since the ship is viewed straight from the front, only frontmost parts of
the hull and the bridge is visible. The hull and bridge appear as two different connected components in
the point cloud.

This section describes a more advanced procedure for extracted objects from the relevant segmented region
also under these circumstances. A point P = (p1, p2, p3) can be represented in spherical coordinates as (d, θ, φ),
where θ is the altitude angle, φ is the azimuth angle and d is the distance from the origin to the 3D point. See
Figure 5 for an illustration.

d =
√
p2

1 + p2
2 + p2

3 (1)

θ = arctan(
p2

p1
) (2)

φ = arccos(
p3√

p2
1 + p2

2 + p2
3

) (3)

The discrete set of points in the point cloud P = {pi1, pi2, pi3}mi=1 can be represented in spherical coordinates as
{di, θi, φi}mi=1. We would like to define the distance coordinate d implicitly as a function of the azimuth angle φ
and elevation angle θ. The resulting distance function, called DP (φ, θ), will also approximate the surface that
the 3D points are sampled from between the points and is defined over the entire the field of view (FOV)

FOV = [θmin, θmax]× [φmin, φmax].

It is defined to take the value zero at areas of the FOV where no points are observed. It was explained earlier that
several points may share the same azimuth and elevation angle, for instance if the laser pulse partially penetrates
through leaves, thus reflecting both from the leaves and objects behind. However, under the assumption that
the object of interest is non-transparent, it can in general be assumed that no points should be observed behind
it. In case of ambiguity, we therefore let DP (θ, φ) be the distance to the point farthest away. For computational
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(a) Visual light image

(b) Segmented point cloud (top down view)

(c) Identified ship (at quay): Bastø VI (d) Identified ship viewed from
front: Bastø I

Figure 4: Example of a point cloud that illustrates both a clustered and scattered scene. A top down view of
the point cloud is shown in (b). The leftmost ship is merged together with the quay and the rightmost ship is
separated into two disjoint parts due to the slant view direction straight from the front. The rest of the subfigures
show results of the algorithms to be presented in this paper. The algorithms are able to extract the points on
the ships from the rest of the point cloud and compare them to 3D models, among other features. In subfigures
(c) and (d) the observed points are marked in blue and points of the 3D model are marked in yellow.
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(a) (b) (c)

Figure 5: (a) Representation of the point P = (p1, p2, p3) using spherical coordinates (d, θ, φ). (b) Visualization
of the field of view (FOV). (c) Discretization of the field of view.

purposes, the distance function is defined discretely over a set of ”pixels” which are evenly distributed rectangu-
larly shaped solid angles over the field of view. The azimuth and altitude angles are discretized into the intervals

φi = [φmin + δφ · (i− 1), φmin + δφ · i], i = 1, ...,m (4)

θj = [θmin + δθ · (j − 1), θmin + δθ · j], i = 1, ..., n (5)

(6)

The set of all ”pixels” thus consists of all solid angles

[φi × θj ]i=1,...,m, j=1,...,n

See Figure 5(c) for an illustration. The discrete distance function is defined to take a constant value within solid
angle φi × θj . For notational convenience, we let DP (i, j) denote the value of DP within φi × θj . There are
several ways to compute the value of DP for each solid angle φi× θj , depending on whether the discrete angular
resolution is higher or lower than the sampling resolution. We assume a slightly higher discrete resolution in
most experiments. For solid angles φi × θj where sampling points are observed, we define DP (i, j) to be the
largest distance of those points. Surrounding empty pixels are subsequently interpolated using a second order
polynomial based on information in the filled pixels. At areas of the FOV more than two pixels away from
observed points, DP (i, j) is set to zero.

We want to match the distance function DP (i, j) representation of the point cloud against a similarly con-
structed distance function representation of the object shape DM (i, j) for different view angles. DM (i, j) is
constructed by first creating a synthetic point cloud by placing a 3D model of the object in the scene, removing
all points on the 3D model that are occluded from the line of sight, calculating the spherical coordinates of all
points, and then proceeding as described above for constructing the distance function. An illustration of a 3D
model and the resulting distance function is shown in Figure 6. By convention, the 3D model is placed near
the origin of the coordinate system by setting φmin = 0 and θmin = 0 when constructing DM (i, j). We now
consider the issue on how to select the distance of the 3D model from the origin. We assume that relevant
objects are so far away relative to their size that their shapes project orthographically down to the image plane.
In consequence, varying the distance to the 3D model corresponds to enlarging or shrinking the corresponding
distance function while adding or subtracting the shift in distance. To give an example, consider the distance
function of the 3D model calculated from a range of, say, 2000 meters. By shrinking the distance function by
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(a) (b)

Figure 6: (a) Visualization of a point cloud obtained by scanning the ferry Bastø I. (b) the corresponding distance
function.

a half and subtracting 2000 meters, one then obtains the distance function of the same 3D model from a range
4000 m. The size of the distance function varies little between ranges of, say, 4000 m and 4100 m. Consequently,
the distance function at 4100 m can be well approximated by adding 100 m to the distance function at 4000 m.
This is especially true considering that the discretization of the distance function results in discretization errors
that tend to dominate. For the same reason, the orientation of object in the scene and the orientation of the 3D
model do not need to match exactly either, but only approximately. The objective of the object extraction step
is not high precision, but to be able to extract objects of approximately similar shapes to the object of interest
that can be further analyzed by the recognition step.

Assume first that an estimate of the object distance (within 200 meters) and the object orientation (within 10
degrees) is known. Let DM (i, j) be the distance function to the 3D model placed in the scene using the estimated
object distance and orientation. We want to calculate the similarity between DM (i, j) and the distance function
of the observed point cloud DP (i, j) in order to detect and extract possible candidate objects. There are two
sets of unknown parameters:

• A translation of the model DM from its default position by azimuth angle u δφ and altitude angle v δθ,
where u and v are integers. See Figure 5(c) for an illustration. Using the same notational convention as
above, the translated distance function of the model is DM (i+ u, j + v).

• A shift Ds of distance function DM (θ + u, φ+ v) +Ds, where Ds is the difference between the estimated
and real object distance.

We will now focus on several similarity measures with increasing complexity that all handle the parameter Ds

implicitly. Assume first that the translation parameters u, v are known. For notational convenience, the set of
all pixels that contain points from both the translated model and the observed point cloud, i.e. where both their
distance functions DM (i+ u, j + v) and DP (i, j) are non-zero, is defined as

IM,P
u,v =

{
All (i, j) ∈ N2 such that DM (i+ u, j + v) 6= 0 and DP (i, j) 6= 0

}
(7)

A simple way to measure the similarity is by minimizing the 2-norm between DM (i+u, j+v)+Ds and DP (i, j),
weighted by the number of observed points

L2(DM , DP ;u, v) = min
Ds∈R

∑
(i,j)∈IM,Pu,v

∣∣(DM (i+ u, j + v) +Ds
)
−DP (i, j)

∣∣2∑
(i,j)∈IM,Pu,v

1
. (8)

The denominator counts the total number of contributing pixels where both DM and DP are non-zero. To solve
the minimization problem for Ds is particularly easy in this case, as the minimizer is just the mean over non-zero
pixels

Ds = mean(i,j)∈IM,Pu,v

(
DP (i, j)−DM (i+ u, j + v)

)
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(a) Scene image (b) Object model (c) Matching by solving (8) (L2) or
(9) (L1)

(d) Scene image with occlusion (e) Matching by solving (8) (L2) (f) Matching by solving (9) (L1)

(g) Scene image (h) Matching by solving (8) (L2) (i) Matching by solving (9) (L1)

(j) Scene image (k) Matching by solving (8) (L2) (l) Matching by solving (9) (L1)

Figure 7: The object of interest, shown in (b), is matched against the scene images shown in the left columns by
computing the distance shift Ds according to the models (9) (L1) and (8) (L2). Dark red indicate areas where
the object model and scene image overlap exactly. The model (9) (L1) is superior in case the object of interest
is partially occluded or merged with the surroundings.
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An illustration is given in Figure 7. In case the scene object is fully visible, the model gets shifted to the correct
distance as seen in Figure 7(c). However, in case the scene object is partially occluded, the model instead gets
shifted to the mean distance between the occlusion pattern and the scene object as seen in Figure 7(e), (h) and
(k). A similarity measure that is more robust to occlusions can be constructed by instead minimizing the 1-norm
between DM (i+ u, j + v) +Ds and DP (i, j), weighted by the number of observed points

L1(DM , DP ;u, v) = min
Ds∈R

∑
i,j∈IM,Pu,v

∣∣(DM (i+ u, j + v) +Ds
)
−DP (i, j)

∣∣∑
i,j∈IM,Pu,v 1

. (9)

Instead of being shifted to the mean, the minimizer Ds will shift the model distance function in such a way that
it is aligned with the scene distance function for the maximum number of pixels. If at most 50% of the area of
the object is occluded, it will ignore the occlusion pattern and align the model correctly as seen in Figure 7(f),(i)
and (l). The statement will be made more mathematically concise and proved in the following theorem.

Theorem 3.1. Assume there exists a subset S ⊂ IM,P
u,v , where |S| > 0.5|IM,P

u,v |, such that DM (i+u, j+v)+Ds =

DP (i, j) for all (i, j) ∈ IM,P
u,v for some real number Ds. Then Ds is the unique minimizer of the L1 norm defined

in 9.
Proof: The statement will be proved by contradiction. Assume that for some real non-zero number a ∈ R, Ds+a
is a minimizer of (9). The objective function in (9) can be factored as O(Ds) = E(Ds) 1∑

i,j∈IM,Pu,v 1

, where

E(Ds) =
∑

i,j∈IM,Pu,v

∣∣(DM (i+ u, j + v) +Ds
)
−DP (i, j)

∣∣
and 1∑

i,j∈IM,Pu,v 1

is the normalization factor.

Denote the set S̄ = IM,P
u,v \S. Then E(Ds) can be decomposed as a sum over S and S̄ as

E(Ds) =
∑
i,j∈S

∣∣(DM (i+ u, j + v) +Ds
)
−DP (i, j)

∣∣+
∑
i,j∈S̄

∣∣(DM (i+ u, j + v) +Ds
)
−DP (i, j)

∣∣ (10)

=
∑
i,j∈S̄

∣∣(DM (i+ u, j + v) +Ds
)
−DP (i, j)

∣∣ (11)

where we have used that
∣∣(DM (i+ u, j + v) +Ds

)
−DP (i, j)

∣∣ = 0 for all (i, j) ∈ S. Consider now

E(Ds + a) =
∑
i,j∈S

∣∣(DM (i+ u, j + v) +Ds + a
)
−DP (i, j)

∣∣ (12)

+
∑
i,j∈S̄

∣∣(DM (i+ u, j + v) +Ds + a
)
−DP (i, j)

∣∣ (13)

= |a||S|+
∑
i,j∈S̄

∣∣(DM (i+ u, j + v) +Ds + a
)
−DP (i, j)

∣∣ (14)

≥ |a||S| − |a||S̄| = E(Ds) + |a|(|S| − |S̄|) > E(Ds) (15)

where the last inequality follows by the assumption that |S| > |S̄|. Since E(Ds + a) > E(Ds) then O(Ds + a) >
O(Ds) and this contradicts the assumption that Ds + a is a minimizer of (9). It follows that Ds must be the
unique minimizer of (9). �

In this case, there is also a closed form solution to the minimization problem, which is the median over non-zero
pixels

Ds = median(i,j)∈IM,Pu,v

(
DP (i, j)−DM (i+ u, j + v)

)
(16)

While this approach better handles occlusions, it has two limitations. First, if more than 50% of the projected
area of the scene object is occluded, the shift Ds will be calculated in such a way that the model gets matched
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with the occlusion pattern instead of the scene object. Secondly, the similarity measure L1(DM , DP ;u, v) is
calculated over both the visible and occluded parts of the scene object, which reduces the accuracy.

Motivated by the above results, a similarity measure will be constructed that handles more severe occlusions
and excludes occluded parts of the scene points from calculation. Denote the function

H(i, j) = DM (i+ u, j + v)−DP (i, j)

Hence, the model (9) can be formulated in terms of H(i, j) as

L1(DM , DP ;u, v) = min
Ds∈R

∑
(i,j)∈IM,Pu,v

∣∣H(i, j) +Ds
∣∣∑

(i,j)∈IM,Pu,v
1

(17)

Define the one-dimensional function H̃(k) for k = 1, ...,K as the sort of all non-zero values in H(i, j) in descending
order. Here K =

∑
(i,j)∈IM,Pu,v 1 is the total number of pixels where both DM and DP are non-zero. We use the

algorithm merge-sort, which has a worst case complexity of O(K ∗ log(K)), to efficiently construct H̃ . The
equation (17) can now be written in terms of H̃ as

L1(DM , DP ;u, v) = min
Ds∈R

1

K

K∑
k=1

∣∣H̃(k) +Ds
∣∣ (18)

In case the scene object is partially occluded, the distance to the scene DP (i, j) will be lower over occluded parts
than visible parts of the object. In consequence, the value of H(i, j) will be higher at occluded parts than visible
parts of the object. Since H̃ is a sort of the values of H(i, j) in ascending order, it therefore follows that there
must exist an integer Kvis < K such that H̃(i) for i = 1, 2, ...,Kvis corresponds to the scene object and H̃(i)
for i = Kvis + 1,K2 + 2, ...,K corresponds to the occlusion pattern. We would like to calculate the sum in the
nominator of (18) only over the scene object, i.e. as

∑Kvis

k=1 H̃(k) + Ds. Since Kvis is an unknown variable, we
could make it part of the optimization problem as

min
Kvis

min
Ds∈R

1

Kvis

Kvis∑
k=1

∣∣H̃(k) +Ds
∣∣ (19)

An immediate problem with this approach is its bias towards small objects. In fact, by setting Kvis = 1 and
assuming only one object pixel is visible, the minimum value can always be made zero. In order to avoid the bias
towards small objects, it is necessary to incorporate a factor that reduces the detection confidence in case of few
object pixels and increases the confidence gradually for larger number of visible pixels. The factor is formulated
as a logarithmic function in the number of object pixels logt(Kvis) and will be discussed in more details in the
next chapter on object recognition. By including this factor results in the new model

Lvis
1 (DM , DP ;u, v) = min

Kvis

min
Ds∈R

logt(Kvis)

Kvis

Kvis∑
k=1

∣∣H̃(k) +Ds
∣∣ (20)

Although seemingly complex, the minimization problem (20) can be solved in different ways, where the second
is particularly efficient.

Define the auxiliary function

E(`) = min
Ds∈R

logt(`)

`

∑̀
k=1

∣∣H̃(k) +Ds
∣∣ (21)

The minimizer Ds is the median of H̃(1), ..., H̃(`), and since H̃ is arranged in ascending order this is just

Ds =

(
H̃((`+ 1)/2) if ` is odd
H̃(`/2)+H̃(`/2+1)

2 if ` is even

)
. (22)
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The first algorithm obtains the minimizer of (20) by computing

Algorithm 1 for solving (20)

Set Etemp
min =∞, E(0) =∞.

For ` = 1 to K

• Compute E(`) from (21) using the formula (16) for Ds

• If E(`) < E(`− 1), set Etemp
min = E(`), `temp

min = `

Output Lvis
1 (DM , DP ;u, v) = Etemp

min , Kvis = `temp
min .

Instead of computing E(`) from scratch for every `, the second algorithm computes E(`) recursively in a very
efficient manner. This is possible due to the observation that Ds can be fixed in advance in a certain way, while
solving the simpler minimization problem

Lvis
1 (DM , DP ;u, v) = min

Kvis

logt(Kvis)

Kvis

Kvis∑
k=1

∣∣H̃(k) +Ds
∣∣ (23)

Note that if the model is perfectly aligned with the scene object along the azimuth and elevation angles, then
the difference DM (i+u, j+ v)−DP (i, j) is equal for every visible pixel (i, j) on the scene object. Consequently,
if n pixels on the object are visible then H̃(1) = H̃(2) = H̃(n), and if n is greater than half of the number of
model pixels then

median(H̃) = percentilep(H̃) (24)

for any percentile p less than or equal to 50. We have now established that if at least 50 percent of the projected
area of the scene object is visible, then Ds = percentilep(H̃) is a solution to the inner minimization problem (20)

for every Kvis >= 2p
100 ∗K. Assume now that less than 50 percent of the projected area of the scene object is

visible, i.e. that some fraction C < 1/2 of the number of object pixels K are visible. Then Ds = percentilep(H̃)
is still a solution to the inner minimization problem (23) for every Kvis ≤ 2 ·C ·K, whereas for Kvis > 2 ·C ·K
it must hold that

Kvis∑
k=1

∣∣H̃(k) + percentilep(H̃)
∣∣ ≥ min

Ds

Kvis∑
k=1

∣∣H̃(k) +Ds
∣∣.

The minimization problem (23) will therefore penalize choices of Kvis greater than the number of visible object
pixels even more than the model (20). In practice, the model will never be aligned perfectly with the scene object
due to inaccuracies caused by the 3D model and the discretization. This may cause some scene points behind
the object to get encompassed within the domain of the model and thus for very small p (24) may be violated.
In practice, we choose p = 10 and set Ds = percentile10(H̃).

Recall the definition of E(`) in (21). By fixing Ds as above, E(`) can now be computed recursively by noting
that

E(`+ 1) =
logt(`+ 1)

`+ 1

( `

logt(`)
E(`) +

∣∣H̃(`+ 1) +Ds
∣∣). (25)

Due to the convexity of the function E(`), if for some `, E(`+ 1) > E(`), then Kvis = ` is the minimizer of (20).

Algorithm 2 for solving (20)

Set ` = 0, E(0) =∞, Ds according to formula (16).
While E(`+ 1) < E(`) and ` < K:
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(a) Scene image

(b) Segmented point cloud (c) Estimated pose of 3D model (red) inserted in seg-
mented point cloud

(d) Extracted object (e) Extracted object aligned
with 3D model (Imperfections
are due to the discretization)

(f) Refined alignment (see next
section) of object with 3D
model of Bastø I. Mean point
distance: 0.47 m

(g) Refined alignment (see next
section) of object with 3D
model of Bastø III, mean point
distance: 0.85 m

Figure 8: Ladar scan of a ferry at quay. The ferry is extracted from the point cloud and identified as Bastø I.
Details will follow in the next sections.
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• Calculate E(`+ 1) according to (25)

• `← `+ 1

Output Lvis
1 (DM , DP ;u, v) = E(`− 1), Kvis = `− 1

Recall that an estimate of the distance to the scene object within 200 meters was assumed to be known in
advance, and the distance function DM to the 3D model was created based on this estimate. We now describe
a procedure to estimate the approximate distance to the scene object automatically. Let DM

r , r = 1, ..., R be
distance functions to the 3D model of the object, created from ranges between some lower and upper ranges,
each of them about 10% farther away than the previous. Define the indicator functions 1DMr (i,j) which take the

value 1 when DM
r (i, j) is positive and 0 otherwise

1DMr
(i, j) =

(
1 if DM

r (i, j) > 0
0 otherwise

)
.

By utilizing the hat shaped function G(i, j) =
∑R
r=1 1DMr

(i, j), the distance can be estimated as the weighted
mean

r∗ =

∑
i,j G(i+ u, j + v)DP (i, j)∑

i,j G(i+ u, j + v)

Instead of creating a new distance function, using the estimated range r∗, the one of the precomputed distance
function DM

r (i, j) with range closest to r∗ is used for efficiency.

We want to find the translation (u, v) and orientation (ψ) of the distance function of the 3D model that gives
the best similarity with the scene image DP . For each (u, v) we let Dψ

r (i+ u, j + v) denote distance function to
the 3D model using the estimated range, rounded to the nearest precomputed range r as described above. The
set of possible translations are restricted to the points where there is an overlap between the 3D model and the
scene image, i.e. the set

Jψ,P =
{

all (u, v) ∈ N2 such that there exists (i, j) ∈ N2 whereDM (i+ u, j + v) 6= 0 andDP (i) 6= 0
}

For every such translation (u, v) ∈ Jψ,P and every discrete view angle ψ Algorithm 2 is used to compute

Lvis
1 (DMψ

, DP ;u, v) defined in (23).

Locations (u, v) where Lvis
1 (DMψ

, DP ;u, v) is lower than a given threshold indicate potential locations of the
scene object. The 3D model can now be inserted in the point cloud by converting the spherical coordinates
(φmin + uδφ, θmin + vδθ, d), where d is the estimated distance to the scene object, into Euclidean coordinates,
using the estimated orientation ψ. Points within the relevant class of the segmented point cloud that are within
a certain distance to the 3D model are extracted and regarded as a single object to be further analyzed in the
next step.

4. IDENTIFICATION OF EXTRACTED OBJECTS

The final ”recognition”/”identification” step proceeds by calculating a recognition confidence measure for relevant
objects extracted by the previous step by a more computationally demanding algorithm. The object extraction
step gives an approximate pose of the object 3D model in the scene, but suffers from reduced precision due
to discretization of the point cloud distance function and the orientation of the 3D model. The recognition
step refines the alignment between the extracted object and 3D model, by using the estimated pose of the 3D
model as initial condition. See Figure 8 (c) for an illustration. The algorithm also utilizes other criteria, such
as the consistency between the shadows of the observed point cloud and of the 3D model, in order to create a
recognition confidence measure for various objects. Extended mathematical details were given in our previous
paper.1 Here we provide a brief summary of those criteria:
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(a) 2D point cloud and shape of the object of interest (b) Criterion II is violated

(c) Less likely to be the object by criterion III (d) All criteria I-III are fulfilled

Figure 9: Illustration of recognition criterion I-IV. Shown in (a) is a dense two-dimensional point cloud obtained
by scanning the scene by a ladar in the indicated view direction. Imagine for example that the ladar has scanned
a single line across the scene. We wish to find and recognize the red object under (a) within the point cloud.
(b)-(d) analyzes various scene objects in terms of the recognition criteria.

(I) How closely can the observed object points be aligned with a 3D model of the object of interest? To answer
this question while also accounting for objects that may only be partially visible, the algorithm rotates and
translates the observed object in such a way that the average distance between each observed point and
its closest corresponding point on the 3D model becomes as small as possible. The algorithm processes the
observed 3D points directly, and measures their distance to the nearest triangle on the 3D model. Results
are depicted in subplots (d)-(e) of Figures 11, 12 and subplots (c) and (d) of Figure 4, where observed
points are marked in blue and model points are marked in yellow. The mean point distance is indicated
by C1 in the rest of this article, and is shown below each figure.

(II) How well does the 3D model match with the point cloud shadows? Assuming the object of interest is
constructed of non-transparent material, points are not expected to appear behind it along the line of
sight. This criterion is useful for ruling out other scene objects, when searching for an object that may be
partially occluded, or partially non-reflective. In Figures 11 and 12 (f)-(g), dark and red indicate the total
projected area of the simulated shadow of the 3D model from the view point of the ladar. Red indicates
points that are observed within the shadow, violating the non-transparency assumption. The fraction of
the total expected shadow area containing such red violating points is indicated by C2 in the rest of this
article, and is shown below each figure.

(III) How well does the distribution of detected points over the projected area of the 3D model fit with expec-
tations? Occluded parts of the area are not expected to reflect pulses. Over visible parts of the projected
area, the likelihood of absence of detected points may be estimated rather well from the incidence angle
of the laser beam with the surface of the 3D model, the distance and the strength of other nearby return
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Bastø I, length:
109 m

Bastø II, length:
109 m

Bastø III, length:
116 m

Bastø IV, length:
86 m

Bastø V, length:
92 m

Bastø VI, length:
148 m

Bastø I, 3D model Bastø II, 3D model Bastø III, 3D
model

Bastø IV, 3D
model

Bastø V, 3D model Bastø VI, 3D
model

Figure 10: The six Bastø ferries and their 3D models obtained by mixing the point clouds acquired by ladar
scans from different view angles. Bastø I and II are sister ships with the same shape and will be regarded as the
same ship.

pulses. Some knowledge about reflectance properties of the object surface would of course make it possible
to tune this criterion. This criterion is optional and will not be utilized in the experiments of this paper.

(IV) How many object points are observed? The confidence measure is weighted by a function that decreases
(logarithmically) as the number of observed points decreases. This factor counteracts the fact that objects
with few points can more easily match with the 3D model by coincidence.

An illustration of criterion I-IV is given in figure 9. Earlier work such as ref.3,16,17 have proposed to recognize
objects in point clouds based on how well they match with some 3D model. Utilization of the shadows in ladar
point clouds has been a surprisingly scarce topic in previous literature as far as we are aware. Ref.18 analyzed
shadows in ladar point cloud from a physical perspective and demonstrated how they can aid in manual object
detection, classification and recognition. In ref.19,20 the point cloud shadows were used for automatic object
detection.

5. EXPERIMENTS

This section presents some sample experimental results on some datasets recorded of the Bastø ferries that travel
across the Oslo fjord in Norway. There are a total of 4 different ferries in operation, and 2 additional ferries that
have recently been phased out. All the 6 ferries have rather similar shapes and sizes and are shown in Figure 10,
together with 3D models that have been constructed by merging several ladar scans from different view angles.

Given a ladar scan of the scene, we would like to test the ability of the algorithm to estimate if and where
a Bastø ferry is located, and identify the ferry among all the Bastø ferries. Results were shown in our previous
paper1 in an open sea environment. Here we focus on challenging cases where the ferries are at quay or observed
straight from the front. The point clouds are only segmented into two classes: solid objects (dark blue) and
noise (light blue). This will challenge the object extraction method the most. Figure 11 shows a ladar scan of
the ferry Bastø VI at quay while also being partially occluded by the nearby building. As one can see in (b),
the ferry, quay and building appear as one large object in the point cloud. The object extraction step proposed
in this paper is able to extract the 3D points on the ferry from the surrounding objects. In subfigure (d) the
alignment of the observed object with the 3D model of Bastø VI according to criterion I is shown. The mean
point distance (C1) between the observed object and 3D model is 0.527. For comparison, the second best match
is with the ferry Bastø III and is shown in subfigure (d), resulting in a significantly worse mean point distance
of 1.58 m. Subfigures (e) and (f) show the inconsistencies between the point cloud shadows and the simulated
shadow of each of the 3D models when inserted in the scene. Bastø VI gives only 1.9 percent inconsistences,
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(a) Visual light image

(b) Segmented point cloud (top down view)

(c) Estimated pose of 3D model (red) inserted in segmented point cloud

(d) Identified ship: Bastø VI, mean point distance :
0.527 m

(e) 2nd best match: Bastø II, mean point distance
: 1.584 m

(f) Bastø VI, shadow inconsistency :
1.88 percent

(g) Bastø II, shadow inconsistency :
35.3 percent

Figure 11: Extraction and identification of a Bastø ferry at quay.
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(a) Visual light image

(b) Segmented point cloud (top down view)

(c) Estimated pose of 3D model (red) inserted in segmented point cloud

(d) Identified ship Bastø VI, mean
point distance: 0.627 m

(e) Bastø III, mean point distance:
1.913 m

(f) Bastø VI, shadow consistency:
2.30 percent

(g) Bastø II, shadow inconsistency:
43.4 percent

Figure 12: Extraction and identification of a Bastø ferry at quay.
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which is significantly less than Bastø III. In spite of the relatively fewer observed points due to the occlusion
pattern, the object gets identified as Bastø VI with high confidence according to the recognition confidence
measure. A similar result is shown in Figure 12 from another view point, in which case the ferry is identified
with high confidence. The results are consistent with our previous paper,1 which indicated that a mean point
distance below 0.6 and shadow inconsistency below 4 percent are excellent for objects of this size.

Further results were shown in Figure 4, where Bastø VI is at quay and Bastø I is scattered into two pieces
due to the view direction straight from the front, and in Figure 8 where Bastø I is observed at the quay. The
ferries get correctly identified in all cases.

6. CONCLUSIONS

This paper proposed an algorithm for locating and identifying objects in points clouds acquired by a ladar in
clustered or scattered environments. Our previous work approached object detection and recognition by first
segmenting the point cloud into multiple classes of similar objects, before a more sophisticated and computa-
tionally demanding algorithm attempted to recognize/identify individual objects within the relevant class. This
approach has limitations in case the object of interest is placed within a cluster of objects from the same class,
or in case the object of interest is divided into several disjoint parts due, for instance, to slant view angles. An
intermediate step between segmentation and recognition was proposed that extracted objects from the relevant
class based on similarity between their distance function and the distance function of a reference shape for dif-
ferent view angles. The similarity measure accounted for occlusions and partial visibility naturally, and could
be expressed analytically in the distance coordinate for azimuth and elevation angles within the field of view
(FOV). This reduced the dimensions for which to search from three to two, which was a crucial property for
maintaining a high computational efficiency of the overall algorithm. Experimental results showed that partially
occluded ships at quay and ships observed straight from the front could be identified with a high confidence.
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