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Abstract—The principles outlined by compressed sensing can
permit a sensor to collect reduced amount of data and still
reconstruct an exact outcome. This can for example be used
to generate super-resolution sparse range-Doppler radar images
while emitting a reduced number of pulses within a coherent
processing interval. In this paper, we investigate the use of neural
networks as a mean to solve the sparse reconstruction problem
with specific emphasis towards range-Doppler images. The neural
networks are trained to generate a sparse Doppler profile from
incomplete time domain data in line with traditional sparse Li-
norm minimization. We show that this approach is viable through
fully connected feed forwarding networks and the results closely
mimic sparse recovered range-Doppler maps.
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I. INTRODUCTION

The usage of compressed sensing (CS) and sparse recon-
struction (SR) techniques for various applications have been
studied in great details over the last decade. These methods
can permit a sensor, such as radar, to emit and receive fewer
number of pulses while still being able to recover an exact
result identical to as if all data was available [1], [2], [3], [4],
[5], [6], [7], [8]. An important condition for this to succeed
is the requirement of signal sparsity in some domain. Many
type of radar setups can benefit from a CS approach where
the overall environment may be considered to be sparse; for
example when only a limited number of targets are likely to
be present at a given range and/or angle.

A classical pulsed radar operating mode consists of the
transmission of a number of pulses towards a set direction
and the on-following generation of a range-Doppler map.
In this process, each range bin is treated independently and
the slow-time samples are Fourier transformed to yield a
Doppler profile. Targets exhibiting a constant velocity emerge
concentrated in Doppler and with each range bin containing
a limited number of targets, the Doppler profile can be
considered relative sparse. A radar employing CS techniques
can thus implicitly introduce empty gaps within the data
set and use sparse reconstruction methods to generate sparse
range-Doppler maps. The empty gaps can instead be used
to emit other type of radar pulses in alternative directions
or frequencies. By assuming that additional gaps are located
at the beginning and end of the pulse train the Doppler
resolution can in principle be further enhanced [4], [9], [10],
[11]. Multiple aspects of CS radars have been presented in
previous works where the advantages and disadvantages have
been discussed in details. One particular drawback of SR
methods is that these algorithms are typically iterative and
computationally demanding [12]. The number of iterations
may also vary depending upon the exact data and is a source of

unpredictable latency. This can make it difficult to implement
such algorithms in systems with strict timing requirements.

Contiguous to CS, the usage and application of neural
networks has gained significant hold over the years. Neural
networks have been extensively employed for classification
purposes, however, they have also shown strong adaptability
towards other type of problems [13]. This work investigates the
use of neural networks as a mean to solve the SR problem with
emphasis on generation of range-Doppler maps. The objective
of the neural networks will thus be to determine a sparse
Doppler outcome from incomplete time domain data analogous
to what a sparse recovery algorithm would have returned. This
has been an unexplored area of research and opens up for
new uses of neural networks in a radar context. The training
for such a network is proposed carried out over a set of,
specifically normalized, range-time profiles in conjunction with
outcomes from an L;-norm minimization procedure. We show
that small fully connected feed forwarding neural networks can
be trained to solve this type of problem and although the results
are to a certain extent noise limited, and therefore not strictly
sparse, they can nevertheless closely approximate sparse range-
Doppler maps. The use of a neural network allows the recon-
struction process to run in a determined time frame and may
be implemented on dedicated neural or graphical processing
units; making it a viable option to deploy sparse reconstruction
techniques on practical setups. Some recent works have [14],
[15] tried to link together compressed sensing and machine
learning in other contexts, though a full complex output from
a neural network inheriting a sparse recovered form of discrete
Fourier transform (DFT) has not been presented before.

II. SYSTEM DESIGN
A. Radar model and sparse recovery

In order to have a compressed sensing framework for
the setup, we start by briefly reviewing the basic CS radar
model [6], [11]; for more details on this section the cited
references may be consulted. A pulsed radar is assumed
where a waveform p(t) is transmitted at regular intervals. The
incoming echoes are sampled with a fixed rate and a matched-
filtering operation is performed,

r(t,u) =p*(—t) x (O onp(t — Ap)e’" v + 2(1), (1)

where ¢ = 1,2,...,R. t is the discrete fast-time parameter
corresponding to a time delay and therefore a range cell while
R indirectly refers to the maximum radar range. N such
pulses are transmitted in a coherent processing interval (CPI),
u = 1,..., N (slow-time), and in the incoming target echoes
on and A, point to, respectively, the reflectivity levels and
the delay associated with reflector n. j = y/—1 and e/Vnv is

Dette er en postprint-versjon/This is a postprint version. Publisert versjon/Publised version: https://doi.org/10.1109/RADAR42522.2020.9114808



the Doppler shift for each target which for a constant velocity
target is given by vy, o, = Up -1+ %, assuming v, o = 0
and 6, being the radial velocity of target n, PRF the pulse
repetition frequency, f. the radar carrier frequency and c the
speed of propagation [16]. In (1), * specifies convolution and
z(t) is white Gaussian noise. The targets are assumed to
be slowly fluctuating and follow a Swerling one distribution
where the values of o, vary from dwell to dwell with a
given mean signal-to-noise ratio (SNR). After reception of all
pulses the radar constructs a range-Doppler map; the slow-
time domain of r(¢, ) is multiplied with an arbitrary chosen
window function w(u) and thereupon Fourier transformed,
resulting in a range-Doppler representation:

D(t,w) = F w(u) r(t,u), € CV*E, 2

F is the discrete Fourier matrix of size N x N, Fy,; =
exp(—j2mkl/N) while w =1, ..., N.

In the proposed CS radar mode, it is assumed that the radar
does not transmit /N pulses immediately after each other rather
the truncated range-time data matrix T(¢,4) only contains
M < N slow-time measurements, @ = 1,2, ..., M, collected
arbitrary, or quasi-arbitrary, within the coherent interval of NV
pulses. With irregular and incomplete data, a traditional range-
Doppler map will show targets spreading out exceedingly
in Doppler with a reduced peak SNR. A sparse reconstruc-
tion solution should thus interpolate the gaps, and possibly
extrapolate at the edges, to generate a solution in Doppler
domain where the targets have been refocused. For this we
define L to indicate the number of desired output entries in
Doppler and assume that L > N; an L > N signifying
extrapolation in slow-time. For a fixed range bin 7' =1, ..., R,
the reconstruction problem under convex relaxation can be
described as [11]

D(T,&) = argmin |[D(T, &) || 3)
D

subject to
| Fr D(T,&) — w(@) #(T,a) || < er “)

where e is acceptable error limit and @ = 1, ..., L indicates
the Doppler bins. Fr € CM*L s the partial inverse
Fourier matrix constructed from an L x L matrix where rows
corresponding to gaps in time positions have been removed.
Similarly, w(@) is a truncated windowing function of M
entries, from an original length of L, with maxg w(a) < 1.

The reconstructed Doppler profile must maximize sparsity
which is achieved if objects of interest are projected with a
determined velocity and thus become more narrowly confined.
Finding an independent solution over all range bins results in
a range-Doppler map matrix D(¢,&) where any missing data
would effectively have been inter- or extrapolated. Omitting
the indexes, the recovery process may also be specified as
a function on the form d = fsg (¥), CM — C" where
d =D(T,w) for a fixed T

As already pointed out, one can infer that the data beyond
the CPI sampling intervals is also missing. Time domain data at
the edges is often heavily weighted down by tapering functions
before a Fourier transform and an extrapolation on both ends
can therefore aid in improving data utilization. The process
is illustrated in figure 1 where O indicates a position with no
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Fig. 1: Sparse reconstruction with extrapolation

acquired data. By determining an independent L, solution over
a number of signal realizations, a training set can accordingly
be founded where each, normalized and tapered, time-range
profile, with possible gaps, is mapped into a Doppler profile
obtained through sparse reconstruction.

B. Sparse reconstruction with neural networks

The main objective of a trained neural network should be
to approximate the fggr function. A successful outcome is
thus strongly dependent on the network’s ability to learn and
execute a type of DFT. To perform the neural network training
we assume that a large number of varying signal realizations
over various CPIs have been gathered, i.e. the inputs and
outputs of fsr. The main parameters N, M and L are expected
to be known and fixed and the gaps are also to remain
at the same position for a given data set which otherwise
satisfies the requirements for spare reconstruction. For each
realization, ¥(7', @), normalized by pr (as defined later) and the
Doppler profile output from the sparse reconstruction process,
D(T, ), is presumed to have been computed and thus readily
available (figure 1). More specifically, the training database is
constructed on the input and outputs of d = fsr(F/pr).

To deal with complex input and output values we split
the data in two, a real and an imaginary part and feed them
into the neural network as separate entities. Since the gaps
(including extrapolation gaps) do not shift locations they can
be eliminated from the input stream. The 2M inputs to the
neural networks are normalized by dividing them by the
maximum absolute value, i.e.

pr = max (|R(F)[, [S(F)]). (5)

The largest absolute value for each input will thus equal one
while the lowest figure remains undefined. It turns out that
this normalization plays a key role for successful training of
the network. Other normalization techniques such as min-max
or z-score tend to compress the dynamic range of the data
and do not lead to successful outcomes. As the DFT is a
linear process, a multiplication by pr is to be transacted at the
other end to denormalize but this aspect is retained outside the
neural network and the training procedure. It can be shown that
a single hidden layer is sufficient to make a neural network
perform a DFT. For this extended concept, we propose to use
classical fully connected feed forwarding neural networks with
at least the same number of nodes in each layer as the number
of inputs and at least two hidden layers. Each node utilizing
the tanh activation function. The 2L outputs from the final
layer are combined at the end to form half as many complex
digits. Figure 2 gives a visual depiction the neural network
design.

To obtain network convergence close to sparse recovery
results, a large set of example data is necessary that should
span much of the Doppler space in addition to targets with
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Denormalization.
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Fig. 2: Neural network process

variable magnitudes. This can be achieved if a set of range-
Doppler maps is available where a target, or multiple targets,
are localized at different velocities with alternating power
levels. This must come in addition to noise only profiles
yielding an all empty response from sparse reconstruction.

One particular aspect to be aware of is that the output
solution from an L; optimization problem will contain values
exactly equal to zero. This is probably difficult for a conven-
tional neural network to duplicate where the final nodes are
more likely to return small noise-like figures instead of strictly
zero. These values may therefore tend to further inflate when
denormalized.

III. TRAINING EXAMPLES

With the above remarks in mind, a radar environment
consisting of targets placed at different ranges was simulated.
The pulsed radar processed N = 16 pulses within a dwell
and the targets followed a standard Swerling one model where
the mean varied randomly from CPI to CPI to mirror different
power levels. The targets were further assumed to have two
sidelobes in range on both sides of —20dB and —26dB and
the target velocity was randomly selected for each CPI. The
noise floor was likewise randomly changed and varied between
—100dB to —110dB following a uniform distribution between
CPIs. The PRF was simulated at 3kHz with a carrier frequency
of 3GHz and the Blackman window was put to use for all
Doppler processing.

A neural network training can occur assuming a range
bin contains either only noise or a single target with noise,
however, this will also imply that the network may not adapt
well to the case of multiple targets. This is not necessarily a
problem as sparse reconstruction also requires that the signal to
be recovered should be sparse. Nevertheless, in order to train
the neural network for a slightly more generic case, we model a
particular range bin to contain up to two potential targets with
two randomly selected velocities. With a probability of 50%,
each of these two targets are to follow independent Swerling
one power distribution while for the remaining half the targets
have identical intensity values. If each of the target adhere
to independent fading at all times, then in a large number of
cases, one of the targets will be stronger then the other one
and overpower the weaker target in the optimization process.
It was found that this is alleviated by making sure that both of
the targets have equal magnitude for a number of realizations.

Full data Sparse reconstructed
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Fig. 3: Example of range-Doppler map data used for training

A total of 30000 such range-time data constructions were
generated and in the subsequent range-Doppler maps the target
SNR ended up varying between —40dB and 85dB. To construct
the training database, range bin containing the target and the
sidelobes were extracted in addition to a single range bin
containing noise only. This gives a total of 4 range-time,
r(t,u), profiles per CPI leading to a total of 120000 training
specimens. For all of these samples, two compressed sensing
data collection strategies were selected. The first one consisted
of three gaps (M = 13) placed in slow-time at positions 4, 9
and 11. The second setting increased the number of gaps to six
(M = 10). The time domain data was accordingly maximum
absolute normalized, (T, @)/pr, and a sparse recovery pro-
cedure was performed under the criteria ez < 1-1073/pr for
each T or bin. In the recovery operation, 8 extrapolations on
both ends were incorporated resulting in an output of L = 32
Doppler bins per range bin, corresponding to 64 output values
from the neural network. Fully connected feed forwarding
neural networks of different sizes were considered in this work;
a single layer network of 64 nodes, a network with two hidden
layers each containing 64 nodes, a deeper network with 6
hidden layers and 64 nodes in each layer and a wider type of
network with 192 nodes in two hidden layers. A small network
is generally easier to train and less computationally demanding
while bigger networks may approximate the data better but
may be more prone to overfitting. The training of the defined
networks was executed for up to a million epochs.

A N=16,M =13,L = 32

An example of parts of such a randomly generated range-
Doppler map used for training is provided in figure 3. The left
image, for reference, represents the standard range-Doppler
map assuming all data is available. The middle image shows
the outcome with incomplete data where traditional Doppler
processing has been applied assuming the empty gaps are
set to zero values. As expected, the target spreads out in
frequency and suffers SNR loss. The sparse recovery results
executed on gapped data are given in the figure on the right
side. Sparse reconstruction refocuses the targets while the
introduction of time domain extrapolation aids in amending the
Doppler resolution. The maximum absolute normalized range-
time version of the middle image would constitute the input for
training while the normalized image on the right the output.

To assess the results from the trained neural networks, a
series of evaluation signals were generated over ¢t = 1, ..., 800
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Fig. 4: Reference range-Doppler maps

Sparse reconstructed

20
10
o
-10
-20
-30
-40
-50
-60
300 400 500 :

Fig. 5: Sparse reconstruction (M = 13, L = 32)

o

NN reconstructed

(b) Incomplete data (M = 13)

Fig. 6: NN (64 x 2) reconstruction (M = 13, L = 32)
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Fig. 7: NN (192 x 2) reconstruction (M = 13, L = 32)
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simulated range bins. A single target was incorporated in each
bin with a sweeping velocity over ¢ with the objective to cover
the full frequency range. The target power was additionally set
to decrease gradually as ¢ increased. For the second half of the
bins, a second target was introduced with increasingly power
level and a sweeping velocity in the opposite direction. To
also evaluate the performance in noise only situations the last
ten range bins were free of any targets and the noise level in
slow-time data was at -70dBm.

The left side image in figure 4 depicts the range-Doppler
map with all available data while the right side shows the
result in case of gapped data. The sparse recovery process
on incomplete data, with L. = 32, returns figure 5 where
the targets are easily identifiable and highly concentrated in
Doppler for all velocities and intensities. This sparse image
establishes a reference point for what a neural network should
aim for.

Feeding the identical incomplete time domain data to
the trained neural networks (NN) results in the two images
shown in figure 6 for the case of the smaller 64 x 2 network
and figure 7 for the wider 192 x 2 neural network. Both
networks are able to identify the main features and localize
the targets who clearly stand out. The primary process behind
transforming data from slow-time to DFT is hence in place.
The reconstruction, particularly with the smaller network, is
obviously not sparse rather a noise floor is evident. The right
region of the image, with two targets, is noisier and more
granular which can be attributed to the fact that there is more
energy present which the network is not able to fully suppress.
The wider network though succeeds much better in reducing
the noise floor to around —70dBm which is very close to
the original noise floor level though inflated noise can still
be observed at range bins with energetic targets. The extreme
right range bins, without any active targets, exhibit a noise floor
of —120dBm for 64 x 2 network and —131dBm for 192 x 2
network.

Test signal

DFT
-20

— <% — SR
NN: 64x2
x NN: 192x2

Magnitude (dBm)

o]
Frequency (rad)

Fig. 8: Signal extraction at range bin 600

To provide further insight, figure 8 details the Doppler
profiles for ¢ = 600 from the maps. The blue curve portrays
the full data DFT response while the red line characterizes the
sparse recovery results from incomplete data which retrieves
three non-zero values for each peak. As already pointed out, a
neural network can not yield exactly zero outcomes, however,
for the case of the bigger network (dotted magenta), the non-
peak values are relative small and either comparable to the
DFT or improve on that. The smaller 64 x 2 network (black)
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also approximates the maxima very well but the noise floor is
more prominent. Both networks manage to improve the peak
SNR and narrow down the target localization reciprocating
sparse recovery reconstruction.

Network | Performance error Relative error on Dynamic
size on training data evaluation image, ;4 | range (dB)
64x1 0.2580 0.2758 138.23
64x2 0.1040 0.1919 141.75
64x6 0.0617 0.1976 144.75
192x2 0.0411 0.1875 156.15

TABLE I: Neural network performance (M = 13, L = 32)

To quantify these results, table I gives numerical error
values where the outcomes from the various sized networks are
compared against the sparse recovery results. The performance
error, on the leftmost column, is defined as the norm error
between the factual and desired network output on training data
at the end of the optimization session. These error rates are
generally low and decrease as the network size increases. The
relative norm error, in the third column, is the error between the
evaluation image formed by the sparse reconstruction process
Wgsr and the neural network output, Wy, where each range
bin is normalized to the peak value of 1, defined as p =
IWnN — Wsrll2/||Wsrl|2- The discrepancy in this across
the networks is rather small implying that the main features
are approximated just as well regardless network size. The last
column of the table gives the dynamic range of the image, i.e.
the difference between the maximum and the smallest value,
excluding the rightmost range bins. For reference, the dynamic
range in the original complete data image is at 146.01dB. The
wider network is able to yield a much better result which is
also very visible. It is noteworthy that a deep network (64 x 6)
only provides marginal improvement over a 64 x 2 network
while increasing the width, with more nodes in each layer,
offers a much more profound impact on the performance. If
the nodes need all available input data to compute the output,
which is indeed the case with a DFT, then this is favorably
attainable with a wider network.

B. N=16,M =10,L = 32

To verify that the neural networks are adaptable also for
more demanding scenarios, the same type of sparse recov-
ery and optimization process was executed with the second
CS data collection strategy leading to a further reduction
in gathered data. Six pulse gaps were therefore introduced
at dwell positions 2, 4, 9, 11, 14 and 15; with acceptable
performance, this would imply that a radar could operate with a
limited set of only M = 10 emitting pulses without noticeable
degradation as compared to a radar emitting 16 pulses. The
evaluation image was otherwise kept identical to the previous
case. The left side image in figure 9 shows the compressed
data range-Doppler map while the right side demonstrates the
result with sparse reconstruction. The sparse outcome is still
of very high quality and can distinguish the two targets easily.
The outcomes from the trained neural network are given in
figure 10 where the images, like preceding cases, are not
fully sparse though the level of noise is on par with earlier
results. Importantly, the trained networks manage to identify
and separate the two targets adequately. A numerical evaluation
is given in table II. Comparing table II to table I, having a
greater number of gaps slightly increases the error rates and

reduces the dynamic range by 2-3dB though still augmenting
the standard complete data range-Doppler map.
Compressed data

dBm Sparse reconstructed

Frequency (rad)
Frequency (rad)

100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800
t t

(a) Incomplete data (b) Sparse reconstruction

Fig. 9: Range-Doppler maps (M = 10, L = 32)
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(a) 64 x 2 (b) 192 x 2
Fig. 10: NN reconstruction (M = 10, L = 32)

C. Additional targets

The neural networks above have been all been trained on
the presumption of up to two potential targets in a given
range bin. Sparse reconstruction also places bounds on the
required sparsity level for perfect recovery, nevertheless, it can
be interesting to examine how the networks react if additional
targets are introduced even though no explicit training for
this has been carried out. A different set of simulated signals
were therefore generated over the simulated range bins. Two
sweeping targets were introduced with increasing/decreasing
power and an additional third one with a fixed zero Doppler
and incriminating return. The left image in figure 11 depicts
the standard gapped range-Doppler map with M = 13 while
the right image demonstrates the use of sparse recovery on
this scenario. The recovery process manages to bring forth all
three targets albeit the reconstruction is not fully sparse with
certain combinations causing velocity ambiguities.

The neural network results, from the previously trained
networks for M = 13, are given in figure 12. Notice that

Network | Performance error Relative error on Dynamic
size on training data evaluation image, ;v | range (dB)
64x2 0.1420 0.2490 136.74
192x2 ‘ 0.0574 ‘ 0.2165 ‘ 153.50

TABLE II: Neural network performance (M = 10, L = 32)
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Fig. 11: Range-Doppler maps (M = 13, L = 32)

(b) Sparse reconstruction

the lower axis bound is now set at —50dBm to overlook the
noise floor. It is particularly with the smaller network, on the
left, where all three targets clearly stand out and are easy to
identify. The wider network (right image) is more favorable
with respect to noise reduction but does not manage to resolve
the weaker targets. This network has presumably specialized
itself a greater extend to identify only up to two targets and
does not develop as well under different circumstances.

This does demonstrate that the networks have not simply
memorized the different cases but are performing a more
generic process to evaluate Doppler profiles from gapped data.
A neural network can thus be trained to generate range-
Doppler maps and to some extent replace the sparse recov-
ery process in data collected through compressed sensing
approaches subject to a perceptible noise floor. To obtain fully
sparse profiles, one may operate with a threshold limit on the
output from the final nodes or alternatively other type of neural
network designs could be implemented.

IV. CONCLUSION

Compressed sensing allows a pulsed radar to introduce
gaps in slow-time data and utilize sparse recovery to re-
construct high resolution range-Doppler maps. A generic
framework on how this recovery process can be trained and
implemented via neural networks was presented. The training
for such a network was carried out over maximum absolute
normalized versions of range-time profiles containing fluctu-
ating targets and noise. The desired output was determined
by a sparse recovery procedure. The results show that a fully
connected neural network can indeed learn to return Fourier
profiles from incomplete slow-time data and thus function as a
replacement for sparse recovery algorithms. The output from
smaller neural networks tend to have a low dynamic range
though this can be mitigated by employing wider networks.
This makes it viable to execute the sparse reconstruction
process in a fixed time frame without relying on computational
algorithms.
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