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Abstract
Modeling and Simulation as a Service (MSaaS) embodies the idea that simulations should be composed quickly for
the task at hand from loosely coupled shared components, simulation services, in a cloud-based environment. These
simulations are then offered, as composed simulation services, to human and technical consumers. Instrumental
to this, is functionality that lets a simulation operator discover and compose simulation services and execute the
composition. We describe this functionality in terms of what we call MSaaS infrastructure capabilities. Following the
idea of stepwise refinement, the discovery and composition of simulation services can be done at design-time using
implementation-independent information about simulation services and at implementation time using implementation-
specific information about simulation services. The execution environment can also be set up at design time and at
implementation time. We therefore describe the MSaaS infrastructure capabilities in terms of how they are used
on both implementation-independent and implementation-specific service information. By doing these elaborations,
we intend to gain greater insight into how to perform simulation service discovery, composition and execution. We
conclude that although much of the required functionality for an MSaaS infrastructure is available through existing
platforms and frameworks, it is necessary to offer this functionality as services, alongside (composed) simulation
services, to fulfill the MSaaS vision.
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1 Introduction

Simulation support to operations, training and exercises
holds much potential, making it possible to support and
augment operational processes and enhance training with
new aspects and with extended exposure1. Simulation
support to defense activities is perceived to become
progressively more important as multinational forces
become more interconnected2.

However, setting up and executing distributed simula-
tions is a lengthy process with various obstacles depending
on the complexities and characteristics of the systems
involved. The process must often be repeated for each
operation or exercise, as system versions and settings may
have been updated or changed in the meantime. Connecting
systems across networks also presents its own set of issues.
All these challenges make it necessary to have skilled tech-
nicians in place at each site during a distributed simulation
life cycle, adding to the already complicated logistics and
sometimes lengthy planning for operations and exercises.

Modeling and Simulation as a Service (MSaaS) – and
the NATO Allied Framework for MSaaS3;4 in particular –

presents a vision that setting up simulations for operations,
exercises and training should be rapid and easy. The
service concept embodies reusability by standardization of
common functionality, and composability through loose
coupling and standardized service descriptions.

The idea is illustrated in Figure 1, where suppliers share
simulation services in a cloud environment. Simulation
operators use a web-based portal to discover and compose
simulation services into a simulation composition to be
executed. Composed simulations can themselves be offered
as services to be reused. The cloud environment facilitates
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Figure 1. Allied Framework for MSaaS with MSaaS portal functionality (discover, compose execute) and MSaaS infrastructure
capabilities for data management, composition and service management and control (SMC).

simulation access “on demand, anywhere”. Indeed, cloud-
based simulations and MSaaS are considered “grand
challenges”, entailing new requirements for simulation
software, and the need for service descriptions, service
discovery and service composition among other things5.

The functionality in the portal to discover, compose
and execute simulations is provided by a collection
of MSaaS infrastructure capabilities, which are divided
into capabilities for data management, composition and
service management and control (SMC) (Figure 1). The
main line of discussion is an elaboration on what these
MSaaS infrastructure capabilities should be; the purpose
being to understand better the essential mechanisms for
handling simulations in a service-oriented environment.
Our elaboration is grounded in earlier experiences with
MSaaS.

In the MSaaS reference architecture4, services are cur-
rently referred to as implementation independent. That is,
services are identified by their implementation-independent
service descriptions, and the reference architecture lists a
number of pertinent services that are particular to mod-
eling and simulation. When implementation-independent
descriptions of services are standardized and expressed in a
machine-readable format, tools can be built to support some

degree of automatic discovery and composition. This sup-
ports the MSaaS vision of rapid simulation deployment, and
further, the vision that simulation operators (Figure 1) may
be non-technical trainers or other operational personnel in
the future.

However, to be useful for developers in the world of
service-oriented standards and simulation protocols, where
each of these standards and protocols may be at different
levels of implementation-specific abstraction, the MSaaS
reference architecture needs to include corresponding levels
of abstraction. Moreover, stepwise refinement principles,
as expressed in the steps from conceptual modeling,
through design, to implementation further motivate a
service concept that holds multiple levels of abstraction.

Therefore, when elaborating the MSaaS infrastructure
capabilities, we do so while considering how these
capabilities operate on several levels of simulation service
abstraction. This gives a better understanding of the
service abstraction levels themselves and how infrastructure
capabilities might be used in stepwise refinement through
these levels of abstraction.

MSaaS relies on cloud infrastructures shared between
nations and organizations in NATO and between civilian
infrastructures. This means that simulation services, their
compositions, as well as the infrastructure capabilities must
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Figure 2. Key roles in service orientation (the SOA triangle
adapted from Erl 17).

be realized in software that is at appropriate levels of
cloud application maturity; see for example the Cloud
Ready, Cloud Friendly, Cloud Resilient, Cloud Native
categorization of Kratzke6;7. However, our focus in this
paper is on understanding infrastructure capabilities at the
functional level (the Service Composition and Application
layers in the Kratzke’s reference model6). Identifying the
appropriate levels of cloud application maturity for MSaaS
is the next important step and is not discussed in this text.

Epistemologically, this work sorts under the building
of what Gregor8 calls Analysis type theories and
Design and Action type theories. The former consists
of conceptualizations of “what is”; where, in our case,
the “what is” is not a physical entity, but is itself a
conceptual entity; namely a reference architecture. The
latter type of theory describes “how to do” things and
includes design principles. Neither type of theory supports
predictions expressed in the theory itself that can be refuted
in the traditional manner. Instead, it can be argued that
they imply meta-predictions by the assumptions that the
conceptualizations and designs are beneficial to various
ends.9 That the conceptualization we present is beneficial
can be verified analytically and empirically by how useful
practitioners and researchers find it10, how well-formed it
is in terms of parsimony11, how interesting it is12 and by
other quality aspects of theories.13;14 This verification must
be done over time by other researchers and practitioners,
in concert with researchers who continuously evolve the
conceptualization.15;16

In Section 2, we recapitulate and elaborate on the
service concept of the MSaaS reference architecture, where
services can be declared – using service descriptions
– at several levels of abstraction; from implementation
independent to implementation specific. We then introduce
the MSaaS infrastructure capabilities in Section 3, and
elaborate on the constituent data, composition and SMC
capabilities in Sections 4, 5 and 6, relating to service
abstraction levels. We conclude in Section 7.

2 The service concept of the MSaaS
reference architecture

The concept of service embodies abstraction, loose
coupling, reusability, composability and discovery17. The
concept underlies old-style “SOA monolith” architecture,
“microservice” architecture and “nanoservice” architecture
(or “serverless architecture” for the notion of Function as a
Service6); all of which are relevant for supporting MSaaS
and the special demands of simulations and specialized
simulation architectures.

2.1 Roles in service orientation
From service-oriented architecture (SOA), we emphasize
three main roles: the Service Provider, the Service
Consumer and the Service Registrar; see Figure 2. In
this discussion, these roles are technical, rather than
organizational. A service provider registers a service it
wishes to provide to the community with a registrar. The
registrar deposits the description in a repository and the
concrete information for run-time binding in a registry.
The consumer consults the registrar for descriptions from
the repository to prepare for service consumption, and the
consumer consults the registrar for binding information
from the registry to an appropriate provider.

2.2 Service description and realization
In this discussion, a service consists of a

• service description for the benefit of consumers of the
service, which consists of

– an interface18 with functional and operational
signatures for syntactic interoperability19,

– a contract 18 with elaborations of what the
functions and operations declared in the
interface do in terms of functional and
operational semantics, for a degree of semantic
interoperability19, as well as a specification of
contractual non-functional requirements,

– a model for simulation services4 of that which
is being simulated in the form of limited infor-
mation (white-box view) on internal workings
of the simulation functionality provided by the
simulation service, necessary for determining
what assumptions in the environment the simu-
lation service uses, for pragmatic interoperabil-
ity19.

• a service realization, in the form of either require-
ments specifications, for the benefit of developers
who will realize the service in software and code
implementations for actual consumption at run time.
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Figure 3. Levels of service abstraction for the simulation domain.

2.3 Service abstraction levels

In line with stepwise refinement and detailing20, we
promote the use of the service concept at various levels of
abstraction. Figure 3 illustrates the idea for the simulation
domain.

2.3.1 Implementation-independent level. At the highest
level of abstraction, a service consists of a simulation
architecture-independent and implementation-independent
service description that can be used for design-time discov-
ery and composition. At this level, service descriptions can
be written using the terms of an ontology. An ontology pro-
vides a structured and machine-readable domain-specific
but implementation-independent vocabulary for describ-
ing the elements of a domain and relationships between
them. Relevant examples include the C2Sim ontology for
C2Sim interoperability21;22 and simulation ontologies such
as the Trajectory Simulation Ontology23. One can combine
ontologies to obtain the necessary vocabulary.

For simulation services, Base Object Models (BOMs)24,
when written in the vocabulary of an ontology, can be used
at this level for service descriptions that contain aspects
of interface, contract and model. BOM entity descriptions
(expressible in Unified Modeling Language (UML) class
diagrams) can be used for interfaces, patterns of interplay
(expressible in UML sequence diagrams) provide the
aspect of contract that describe intended use of functions
and operations, and BOM state machines (expressible
as UML state diagrams) provide a white-box view of
the service that may express model aspects. When using
ontological reasoning, further semantic information can be
inferred25–27.

Further, at the implementation-independent level
of abstraction, a service consists of implementation-
independent service realizations in the form of
requirements specifications that developers should use
in further detailing and refinement and, ultimately,
implementation in concrete software.

2.3.2 Simulation architecture-specific level. At more
implementation-specific levels of abstraction, a service
consists of architecture-dependent service descriptions. For
simulation services, an ontology-based service descrip-
tion might be refined to simulation-architecture depen-
dent descriptions for, architectures such as the High
Level Architecture (HLA)28, Distributed Interactive Sim-
ulation (DIS)29, Test and Training Enabling Architecture
(TENA)30 or for novel simulation architectures based on
edge and fog computing (e.g., SpatialOS∗). Service realiza-
tions in the form of requirements are then refined in terms
of these architectures.

2.3.3 Service platform-specific level. Further, or other,
levels of de-abstraction are possible. As one example,
service descriptions may be refined into service platform
formats, such as the Web Services Description Language
(WSDL)31 (interface) and WSDL-S32 and SAWSDL33

(contract) for Big Web Services (WS*)34 that send mes-
sages over the Simple Object Access Protocol (SOAP)35,
Web Application Description Language (WADL)36 (inter-
face) and SA-REST (contract) for Representational State
Transfer (REST) style technology37, or emerging leaner

∗https://improbable.io
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formats. Service descriptions at this level should accom-
modate both stateful and stateless micro services, larger
stateful SOA structures (SOA monoliths), and anything in
between.

Service realizations in the form of requirements are then
refined in terms of the chosen formats.

2.3.4 Implementation-specific level. At the
implementation-specific level, service realizations take
the form of code written in coding frameworks or in
plain old Java and C++. Of particular relevance for
cloud technology are virtualization and containerization.
Containers package functionality ready to go, complete
with necessary operating system-level virtualization and
other dependencies in the package. Containers run within
the context of a single operating system whose kernel is
shared by all containers, dispensing with the need for an
infrastructure (hypervisor) for sharing computing resources
between multiple virtual machines running on a host.
This enables lightweight packaging of deployable units
of functionality, whether they be simulation nanoservices,
microservices or SOA-monoliths38.

At this level, there will be descriptions containing tech-
nical details required for containerization or deployment in
virtual machines, such as the required operating system,
libraries, memory, processing, disk and networking, etc.

2.3.5 Significance of levels. In this manner, a single
service declared at an implementation-independent level
has description and realization refinements in various
protocols, service platform formats, and ultimately, in
various coding frameworks. There are related ideas, with
tools for transforming descriptions from one layer to the
next23.

To illustrate, some services will be simulation services
“from the top”, in that every refinement path goes
through a simulation architecture-specific description; such
as a service with only the two left-most refinement
paths in Figure 3. Other services, may have both
simulation architecture-specific refinements and non-
simulation architecture-specific refinements; such as a
service with the three left-most refinement paths in
Figure 3. Examples are terrain analysis services (e.g., for
route planning, line of sight and vantage point services39),
automatic identification system (AIS) services40 and
weapons effects services, which can have simulation
architecture-specific descriptions – and are thus, simulation
services at this level of abstraction, as well as non-
simulation architecture specific descriptions for use, e.g.,
in operations planning in a command and control (C2)
system41. Yet other services (e.g., weather services and
map services) would not have any simulation architecture-
dependent service descriptions.

All three elements of a service description (interface,
contract, model) can exist at the various levels of
abstraction. For example, interfaces can be specified
without regards to any programming language, and models
range from conceptual models at the implementation-
independent and simulation architecture-specific levels, to
executable models at the implementation-specific level, in
line with scenario abstraction levels42.

Although there can be any number service abstraction
levels, the MSaaS reference architecture4 defines three
levels of architecture that reflect the different levels of
service abstraction described above: reference architecture
level (implementation independent), solution/domain archi-
tecture level (simulation architecture specific), and imple-
mentation (implementation specific).

2.4 Service abstraction and the MSaaS
engineering process

The MSaaS engineering process43 is the MSaaS extension
to the Distributed Simulation Engineering and Execution
Process (DSEEP)44 and its Multi-Architecture Overlay
(DMAO)45. The system under development in this process
is what is called a simulation environment (Figure 4).

A simulation environment consists of a number of
simulation software components that adhere to one or
several simulation architecture protocols (HLA, DIS,
TENA or other protocols) in designated enclaves45. In
each enclave, components are organized in different
topologies46; e.g. an event-based topology (such as the
HLA) and a data-centric simulation topology using a shared
state database (such as SpatialOS). In turn, each topology
might adhere to one or several appropriate service platform-
specific styles.

Simulation components in each enclave relate to an
enclave-specific simulation data exchange model44, which
specifies what data is shared between components in an
enclave (e.g., a Protocol Data Unit (PDU) set for DIS, a
Federation Object Model (FOM) for HLA, a Logical Range
Object Model (LROM) for TENA). Together, the enclave-
specific simulation data exchange models constitute the
simulation data exchange model of the entire simulation
environment.

simulation environment agreement

0

enclave

0

enclave

0

enclave

0

enclave

simulation data exchange model

Figure 4. Simulation Environment.
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Figure 5. Simulation service abstraction levels and the MSaaS engineering process.

While the simulation data exchange model gives
syntactic interoperability19, the simulation environment
agreements44 specify the intended meaning of exchanged
data and other semantic information.

The various steps of the MSaaS engineering process
require one to work at different levels of abstraction
(using corresponding architecture artifacts47). In the
presence of service descriptions at relevant levels of
abstraction, this can be formulated as follows; referring
to Figure 5: At the conceptual modeling step (Step
2), one defines a composed simulation service4 by
searching, discovering and composing simulation service
descriptions at the highest level of abstraction independent
of simulation architecture or protocol. The simulation
service descriptions must hold sufficient information to
determine which services can be composed to satisfy the
conceptual model and conceptual scenario. During the
design step (Step 3), one refines the composed simulation
service to a simulation-architecture specific design by using
simulation architecture-specific descriptions of the services
chosen in the previous stage. At this abstraction level,
simulation services are arranged in abstract versions of the
above-mentioned topologies in enclaves, using mediation
services such as gateways to connect enclaves or to provide
translation and transformation services within an enclave.
During the development step (Step 4), the composed
simulation service is refined into a simulation environment,
implemented by choosing appropriate code realizations of
the chosen services. Note that a simulation component may
implement several services, as illustrated in Figure 5 by the
large component implementing two services.

The vision of MSaaS is that the presence of simulation
services with multiabstraction-level descriptions and code

realizations will greatly speed up what presently are
relatively time-consuming DSEEP steps. Of course, in
the interim, services might have to be de-abstracted
and/or implemented; in which case, the requirements
specifications of the simulation services are there to help
developers in that process. And even more typically
today, services will be generated bottom-up from code,
with service description reverse-engineered (hopefully).
Nevertheless, the vision is that the end state, after more or
less chaotic development, has yielded ready-to-use services
as sketched in Figure 3.

Whenever an appropriate service description or service
implementation does not exist, the MSaaS engineering
process states that actual development of a service must be
undertaken; complete with service description and service
implementation(s).

2.5 Strict service interpretation
A service is always a packaging of a service description and
one or several service realizations. Conversely, a service
realization (requirements specification or code) on its own
is never a service.

0

simulation environment

0

simulation environment

Figure 6. Simulation as a Service. Composed simulation
service (left), simulation environment exposed as a service
(right).
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The dynamic discovery mechanism through the Service
Registrar is essential to the loose coupling of service
orientation. Without the discovery mechanism, services
must be known statically, thereby precluding the idea
that services may be created and hosted independently
of specific consumers. In fact, it has been argued that
service orientation in practice often does not include the
discovery mechanism and only involves the lower part of
the SOA triangle48;49. For example, at the implementation-
specific end of the scale, current practices around popular
technologies associated with service orientation, such
as WebSocket50, Advanced Message Queue Protocol
(AMQP)51, JavaScript Object Notation (JSON)52, REST,
etc. usually avoid or omit service descriptions. It is also
common to write WSDLs when using WS* technology but
with no registrar.

Without the discipline of using service descriptions
and service registrars, it is also tempting to revert to
tighter coupling in other areas of the consumer-provider
relationship. For the vision of MSaaS to be realized, it is
essential that service registrars are used and that service
descriptions exist in sufficient amount at appropriate levels
of abstraction.

Finally, other technologies than those mentioned above
commonly associated with service orientation can also be
used for writing service descriptions. Thus, the use of, e.g.,
WS*, REST, etc. is neither sufficient, nor necessary, for
realizing service-oriented architecture.

2.6 Simulation as a Service
The notion of composed simulation service (Section 2.4)
embodies the idea that entire simulations composed as
in Section 2.4 can be exposed as a service. Following
Section 2.5, the composed simulation service itself must
have a service description (Section 2). In practice,
this may be done by one or more of simulation
services exposing certain functionality through its service
description (Figure 6 – leftmost). As an example, consider
interoperating C2 systems with simulations for the purpose
of simulating operations during training and exercises53–56

or for wargaming plans41;57;58. A simulation service offers
functionality to give force structures, and orders and
report structures to the simulation in terms of the Military
Scenario Definition Language (MSDL)59 and the Coalition
Battle Management Language (C-BML)60, and also offers
functionality to receive reports from the simulation.

This notion of simulation as a service then means that
the functionality is not tailored to a specific C2 system and
that the functionality is declared in a service description
that is discoverable by any potential consumers of that
functionality. The simulation environment as a whole is
the provider of the service, where the service is declared
in the service description(s) of the designated simulation

services that expose the relevant simulation functionality as
a service.

It is also meaningful to speak of simulation as a service
even when a simulation is not composed of simulation
services, but are simply made up of conventional simulation
components. This would be the case if one (or several) of
these components has what amounts to a service description
that exposes the simulation as a service in the same manner
as above (Figure 6 – rightmost). We will not discuss this
mode of simulation as a service, but focus on composed
simulation services.

3 MSaaS infrastructure capabilities

The MSaaS infrastructure capabilities we present in the
following represent a systematization of concepts from
ongoing deliberations on MSaaS; in particular from various
MSaaS architecture work4;61–64, from MSaaS prototype and
container-technology studies38;65–69 and from work done in
the Executable Architecture Systems Engineering (EASE)
research activity70.

Apart from a basis for further conceptual development
in terms of understanding how MSaaS must work in
various styles of simulation architecture, our suggestions
are intended as a guide for developing a comprehensive
infrastructure for MSaaS. If developed incrementally,
viable parts of the infrastructure can be tested and validated
to guide further increments. These would then be the first
steps in a more concerted research effort.

We now introduce the MSaaS infrastructure capabilities
that give the functionality for discovering and composing
simulation services and executing the resulting composed
simulation services. These capabilities consist of user-
facing applications and back-end services in the sense
of the NATO Consultation, Command and Control (C3)
Taxonomy71; both of which are loosely coupled pieces of
functionality (front-end or back-end) as expressed in the
service concept of Section 2.

At present, very few MSaaS infrastructure capabilities
exist as loosely coupled applications and services, even
though a lot of functionality that can be used to implement
an MSaaS infrastructure does exist in traditional forms.
Therefore, Sections 4–6 will present a selection of
infrastructure functionality that we argue should be offered
as MSaaS infrastructure capabilities in the future.

Figure 7 shows the MSaaS infrastructure capabilities,
and their relationships, that we discuss in the following
sections. MSaaS infrastructure capabilities consist of data
management capabilities, composition capabilities and
service management and control (SMC) capabilities.
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4 Data management
The MSaaS engineering process Steps 2–4 (Figure 5)
entails significant data management activities. MSaaS
presents engineering challenges and opportunities that
data management services can help mitigate. Data
management services, or simply “data services”, contribute
to enablement and automation of simulation life cycles,
simplification of simulation engineering and execution, and
delivery of simulation services to geographically distributed
points of need.

The selection and composition of simulation services
in, e.g., Step 2 of the MSaaS engineering process
requires the availability of different kinds of data, such
as service descriptions at an implementation-independent
level, stakeholder needs and objectives, authoritative
reference information, and a conceptual model and
conceptual scenarios.

4.1 Simulation data management
applications

Data management user applications are the front-end
user interfaces that simulation operators (Figure 1) use
to inspect conceptual and executable model knowledge
bases (Section 2.3.5), discover simulation services for
composition, and manage data artifacts generated and
maintained throughout the MSaaS engineering life cycle.

4.1.1 Simulation life cycle data management applica-
tion. This user application is for creating and revising data

artifacts through the engineering life cycle, including the
conceptual and executable models for the composed simu-
lation service (and implementing simulation environment)
under development, data models, simulation-environment
design, and managing post-execution data and analyses.

4.1.2 Simulation service discovery application. Exist-
ing either as a stand-alone application or included as part of
other life cycle tools, this user application allows simulation
operators to discover simulation services for composition
at design time. Discovery is based on service descriptions,
which must contain various metadata facets at appropriate
levels of abstraction (Figure 3), including (conceptual)
model entities, properties, and interactions/effects.

4.1.3 Simulation conceptual modeling application. This
user application is for discovering, retrieving, creating,
and managing conceptual and executable model data. This
application must handle behavior and effects representa-
tions (perhaps as process UML activity, sequence, and
state diagrams) and also the management of all manner
of enumerations, such as equipment types, compositions
of parts, environmental feature types, and miscellaneous
reference category codes (perhaps as UML class diagrams
and ontologies). This application is related to the simulation
integration application (Section 5.1.2) via the composi-
tion services, so that the simulation operator can assess
whether the (partial) models in the various simulation
service description align with the target conceptual and

Data Management 
Applications

Composition Services

Simulation Control Services

Service Management and Control Services

Data Management Services,
Registry/Repository Services

Simulation State Data 
Services

M&S Message Oriented 
Middleware Services

Simulation Services M&S Mediation 
Services

Composed Simulation Services with different architecture topologies

Simulation SMC 
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Defines composition

Data Services

Composition Services

Simulation Service Test 
Management Applications 

Provisioning Services

Provides services 
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Figure 7. Relationships between MSaaS infrastructure capabilities.
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executable models of the composed simulation service (and
implementing simulation environment) under development.

4.2 Simulation data management services
What follows is an initial set of data services and
interaction patterns that are pertinent for the discovery,
composition and execution of (composed) simulation
services (Figure 5). These data services are derived from the
MSaaS engineering process and based on lessons learned
in the engineering of several simulation environments. The
data services are organized in two categories:

• Data management across the MSaaS engineering
process: To automate and enable the process depends
on managing inputs and outputs of the MSaaS
engineering process steps. In Figure 7, this service
category is shown as Data Management Services,
including Registry/Repository Services.

• Semantic linking of operational (stakeholder) needs
to simulation solutions: To integrate simulation ser-
vices and the data fusion required by simulation
services depend on the selection and alignment of
simulation services to stakeholder needs and objec-
tives. Semantic knowledge bases can further enable
the MSaaS engineering life cycle data manage-
ment; in particular simulation service composition by
providing domain-specific information that enables
decision making. Semantic knowledge bases relate
entities (e.g., vehicles), composed parts (e.g., sen-
sors, weapons and functional parts), capabilities,
consumption of resources (e.g., fuel, water, food,
ammunition and energy), and interactions with other
entities (e.g., trailers pulled by vehicles, tanks’ ability
to damage a building and vehicle traction on different
terrain). In Figure 7, this service category is shown as
Semantic Knowledgebase Services.

Note that these data services operate and provide
data artifacts for all the service abstraction levels of
Section 2.3. In particular, the data services must manage
the various service description components (interface,
contract and model) (Section 2.2) at relevant levels of
abstraction according to the steps in the MSaaS engineering
process. When doing this, one must also retrieve the
corresponding conceptual and executable scenario and
model42 specifications for the composed simulation
service (and implementing simulation environment) under
development.

4.2.1 Data management across the MSaaS engineer-
ing process. Every step of the MSaaS engineering process
highlights opportunities for data management, considering
the inputs and outputs, life cycle-related data stored and
retrieved, and external data (not directly pertinent to the

life cycle) to be referenced. In practical simulation life
cycles (e.g., the multinational Viking exercise life cycle
arranged by the Swedish Armed Forces or simulation-based
operational test planning processes), process steps are spe-
cialized and often less sequential, but similar information
management activities occur. With particular regard to the
composition of simulation services, the MSaaS engineering
process Steps 2–4 require management of conceptual anal-
ysis artifacts guiding the selection of simulation services
for composition as well as the composed simulation service
design artifacts:

• Discovery—including search, publish/subscribe noti-
fications based on interest—of (composed) simula-
tion services by service descriptions (Section 2.2).

• Retrieval and delivery of information artifacts essen-
tial to creating composed simulation services (and
implementing simulation environments) such as con-
ceptual and executable model and scenario specifi-
cations, software libraries, descriptive metadata, and
initialization/configuration parameters.

• Publication of new or modified models and composed
simulation services and their implementations in
terms of simulation environment designs, including
version and revision controls.

Of course these abstract services are not unique to MSaaS
– they are ubiquitous constructs, frequently standardized by
communities and organizations to facilitate interoperability.
For MSaaS, we seek to apply these services to improve
simulation-data management, facilitate simulation life
cycle automation, and increase the usability and availability
of composed simulation-services and their implementations
as simulation environments. To that end, we highlight the
following service patterns as pertinent to MSaaS:

• Value-add pipelines, including the provenance trace
of information artifacts produced through each
engineering step. Information products—such as
planning documents, scenarios, federation agree-
ments, and simulation-specific environmental/terrain
datasets—may be produced in a sequential, multi-
step manner. Further, the steps may be performed in
parallel by different stakeholders participating in the
simulation life cycle. Output from one step becomes
input to the next step, and tracking the trail of inputs
and performers (humans and algorithms) can be used
to cue subsequent performers that their inputs are
ready, can contribute to the validity of the simulation,
and can indicate the re-use potential (or not) of an
output.

• Version and revision control of information products
produced iteratively. Planning documents, scenarios,
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conceptual models, and environment design are
examples of information artifacts that are often
produced iteratively by one or more stakeholders to
a simulation. One might consider version control in
this context as a value-add pipeline that loops and
labels products successively as “draft”, “in progress”,
“ready for review”, or “final”.

• Reference data in the simulation life cycle. Presum-
ably every step of an simulation life cycle adds
value, but some steps may be manual—requiring
human action, decision, or intervention—while some
steps may be automated in part or in whole. To
achieve more automation, supporting services may
utilize external reference data. Supporting services
may query for and retrieve reference data—such as
military force structures, entity performance parame-
ters, terrain data sets, country codes, or even elements
from previous simulations—in order to prompt users
with choices, prompt users with recommendations,
or even fully automate the step based on established
logic.

• Extraction and transformation. Steps in a simulation
life cycle may require extraction of data from an
information artifact or transformation of data from
an information artifact. These common integration
patterns that in many cases are readily automatable,
particularly for syntactic transformation; semantic
transformation can sometimes involving a semantic
knowledge base, by way of a reference data set or a
subject matter expert.

4.2.2 Semantic linking of operational need to simulation
solutions. The simulation life cycle depends largely on
our ability to integrate software and data to implement
a conceptual model and fulfill the stakeholder objectives.
And our ability to perform these integrations and
alignments depends on the thoughtful, repetitive alignment
of domain concepts to solutions for simulating those
domain concepts. Consider the thousands of entity types,
associated parts and attributes, states and interactions,
and environmental phenomena that constitute complex
simulation environments; these elements trace from early
objectives through numerous authoritative data sources,
into conceptual models and scenarios, to be realized
by composition of simulation services and subsequent
execution and analysis. Simulation data management
services can help to mitigate the subject-matter knowledge
transfer shortfalls in complex simulation environment
engineering.

Ontological analysis and conceptual modeling are widely
appreciated in the modeling of simulation environment
requirements, but the products of these activities play a

role in automating more of the simulation life cycle. The
following categories stand out as potential knowledge sets
that may be exploited by the simulation life cycle.

• Entity-type catalogs—Entity types such as vehicles,
aircraft, lifeforms, munitions, and environmental
features are frequently the fundamental conceptual
building blocks of simulation environment design.
Entity types involve a wealth of information that
could be captured in more objective, reusable form
rather than the conventional methods of embedding
intrinsic knowledge in software source code or in
simple spreadsheets of enumerations. Entity types are

– often defined with numerous identifiers and
aliases; are defined within multiple taxonomies

– often composed of numerous parts such as
mechanical elements, weapons, sensors, and
other equipment

– related to many categories of characteristic and
performance data

– associated with behaviors, states, potential
interactions, and observables.

• Named-entity catalogs—Simulation life cycles
within any domain may encounter the same entities
often and can benefit from managing information
about those entities. The country of France, the
White House, the Grand Canyon, the mayor of
London, 10th Mountain Division, and Theresa May
are all examples of named entities, about whom
numerous reference datasets may have data one
might need to fuse and integrate for a simulation
purpose, or for which a visual or behavior model
might exist. Named entities are often declared to
be of some entity type, as defined in entity-type
catalogs.

• Event & behavior models—Building upon the entity-
type elements described so far, the actions, events,
processes, states, interactions, and other types of
relationships make up more of the conceptual
model or ontology of a domain. These elements
are often captured in terms of engineering models
for design purposes and captured as information
exchange models (e.g., HLA FOMs), data models, or
embedded in source code during implementation.

• Miscellaneous reference data and code lists – Still
more reference data is used during simulation
environment design, data which can be managed as
knowledge bases and utilized by services enabling
the simulation life cycle. Country codes, language
codes, religion codes, and task lists are some
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examples of domain concepts that are essential to
characterizing the entities in a conceptual model
and to metadata describing simulation services or
datasets.

All of these knowledge sets play a role in the simulation
life cycle and in enabling the discovery and composition of
simulation services. Accessing and utilizing multiple data
sources is cumbersome and unwieldy unless the various
identifiers, aliases, and taxonomies used by those data
sources are available and sufficiently integrated. The same
can be said of fusing and integrating data from multiple
processes and sources, as part of an simulation life cycle.
Similarly, the functional needs of a composed simulation
service (and implementing simulation environment) under
development, as expressed by entity types and named
entities in the conceptual and executable models and
scenarios, cannot be linked to simulation services, 3D
visual models, or other available simulation assets for
composition in an automated way, unless the identifier for
real-world entities are relatable to the simulation assets via
metadata.

Relevant service patterns for service composition:

• Heterogeneous service integration. Not all data
sources, scenario tools, and other data services
use the same identifiers, codes, and definitions
for the force structures, equipment and materiel,
and geospatial features; integrating data across
data producing and consuming services can be a
manual effort unless identifier mappings are managed
and exploited for automation. Knowledge bases of
synonyms, aliases, and identifier mappings can be
used to search multiple heterogeneous external and
internal data stores without the consuming service
(or human user) from having to tailor queries to
different schemes. Similarly, misaligned input and
output formats and semantics among data tools and
simulation services can be mitigated with knowledge
bases of definitions and mapping.

• Design decisions enabled by domain ontology.
Knowledge about the relationships among data
sets can enable applications to prompt users
with smart defaults or informed options. Relating
tasks or behaviors to relevant simulation services
or simulators can simplify decision making an
engineer or operator must make when composing or
employing simulation services. Common scenarios
or past simulation records can be related to the
needs of an engineer or operator by task performed,
operational environment conditions, military unit
type, or equipment types, for example. Knowledge
bases in the form of ontologies enable relating
military unit types to equipment, to vehicles, to

sensors, to weapons, to munitions, and more, for use
by simulation planning tools, simulation environment
design tools, scenario tools, and more.

• Creating composed simulation services using con-
ceptual models as metadata. By annotating simula-
tion services by entity type (e.g., M1A1 tank) and
interaction elements from conceptual models (e.g.,
damage states or probability hit/kill), the effort to
catalog, search for, and assess simulation services for
composition can be further simplified and automated.
Semantic knowledge bases of entity types, states, and
interactions provide the foundational vocabulary for
tagging5 and describing simulation services in terms
of conceptual models.

• Simulation asset management. Similar to tagging
simulation services by conceptual model, manage-
ment of other simulation assets can improved in a
similar manner. Scenarios can be tagged by purpose,
3D models can tagged by the entity type portrayed,
renderers (displayed from a sensor) and renderings
(the heat signature of a vehicle through a non-
visual sensor) can all be cataloged by entity types,
behaviors, and observables as defined by a conceptual
models in a knowledge base.

The data services categories above are enablers of greater
automation and availability of simulations through MSaaS.
Integration of simulation planning tools, conceptual
analysis tools, composition tools, simulation services,
authoritative data sources, and post-simulation analysis
tools depends on data management and semantic linking of
concepts and services across the simulation life cycle.

5 Composition
Composition occurs at several levels of abstraction; in
particular in steps 2–4 of the MSaaS engineering process
(Figure 5). Developing a composed simulation service (or
composition for short) therefore requires an understand-
ing of the involved simulation services, the functionality
each simulation service provides, and the way the sim-
ulation services interoperate at various levels of abstrac-
tion (Figure 3): implementation-independent, simulation
architecture-specific and implementation specific. Several
Composition services would therefore use service descrip-
tions at these levels of abstraction to determine which
simulation services to use and how to configure them.

When composing at the simulation architecture-specific
level, more detailed model information is needed, but
also more technical information related to the simulation
architecture itself in order to determine if services will
(technically) fit in the chosen simulation architecture.
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When composing at the implementation-specific level,
composition services will rely on implementation-specific
information in simulation service descriptions that include
details about how the simulation service integrates with
other services, such as protocols, object models, and
pragmatic information such as information publications
frequencies. This also information regarding how services
can be configured and executed and information on the
(technical) orchestration of simulation services.

Composition services also need information about the
available computing resources in the MSaaS infrastructure,
whether they be in a cloud environment, local set of servers,
specific local personal computers or mobile devices. This
information should be provided by the SMC services
(Figure 7). Moreover, compositions may be deployed in
various ways; e.g., in terms of stand-alone, single data
center or multiple data centers62.

Most existing distributed simulation environments
typically have many engineers on staff who must
individually manage each simulation component. This takes
a lot of time and resources and is more susceptible
to errors than an automated process. By using tools to
understand technical, functional, and scenario details about
the available simulation services, the resulting simulation
environment can be deployed, configured, initialized, and
executed with a lesser effort and time. The goal of having
designated composition services is to reduce the time,
errors, and amount of resources required for composing
simulation services within a simulation life cycle.

5.1 Simulation composition applications
These applications are the front-end user interfaces
simulation operators (Figure 1) would use to compose
simulation services.

5.1.1 Simulation supplier applications. This is the
interface used by service suppliers to provide their
service and all the necessary information about that
service during composition activities. Once simulation
suppliers provide the information about their services, the
application should allow the suppliers or the simulation
operators to provide all the necessary metadata required
to compose services correctly based on the goals for the
composed simulation service (Section 5.1.2). This metadata
includes the simulation service descriptions to be used for
composition at the implementation-independent level and
for the benefit of composition services.

The supplier should be able to upload their service
description and service realization in software in multiple
ways as well as provide appropriate registry locations.
Various service realization formats should be permissible
to allow for supplier flexibility: The supplier should be able
to provide (through a link or direct upload) an executable, a
container, or virtual machine. In the cases that the software

needs to be compiled once configuration information is
provided, the supplier should provide a script to do so
rather than relying on the MSaaS components to manage
compilation.

5.1.2 Simulation integration applications. These user
applications allows an integration engineer (a simulation
operator with a more technical focus) to manage simulation
services and their metadata at various levels of resolution
in service descriptions. The metadata managed here
includes information from all four levels of abstraction
(Figure 3). The integration engineer can manage that
metadata within the context of the organization’s taxonomy
and ontologies. In some cases, new services introduced
into the environment by suppliers may require adjustment
to the overarching taxonomy of capabilities and domain
ontologies. For example, when a higher resolution service
is introduced, the capability that it provides may need
more detail within the appropriate ontology. The integration
engineer should be able to visualize and adjust the
operational ontology and link services to the elements
within that ontology.

The integration engineers will also need to verify
accuracy of all other metadata and be the users responsible
for accuracy of the data and how the services are linked
within the overarching MSaaS system.

Finally the simulation integration engineer user appli-
cation should allow the integration engineer to manage
what simulation operators see (Section 5.1.3), so they can
navigate through the MSaaS cloud environment to find
the simulation services they require. The level of detail
seen by simulation operators is important to make the
system easy to use. Simulation operators should only see
simulation services at a level that makes sense to them and
provides descriptive details about what they can execute at
the level of abstraction the simulation operator is currently
working at. For example, when simulation operators are
trying to find simulation services to provide ground units,
they should not have to work through details about the
resolution of the armor on those ground units until required
at lower levels of abstraction.

5.1.3 Simulation scenario applications. Determining
the concrete simulation scenario (in terms of which entities,
events, terrain, etc. are involved) has implications on the
entire simulation environment. In some cases, it may be
appropriate that simulation engineers create and manage
the scenarios and then provide access to them via the
simulation operators. In other cases, a simulation operator
may need the ability to set up the scenarios, in which
case, these user applications should provide an easy to
use scenario creation/editing interface. Every scenario has
engineering-level decisions to make and these decisions are
not trivial requiring decisions about computing resources
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and service responsibility. For example, there may be areas
for high resolution versus low resolution focus within the
spatial or capability specific regions. When scenarios will
be managed by simulation operators, then the user interface
for the simulation integration engineers (Section 5.1.2) will
need to include workflow and user interfaces to see the
scenarios, and build out all the low level functional and
technical details for that scenario to execute prior to the
actual execution.

Note that this discussion deals with handling scenarios,
while the activities of generating scenarios as described in
the SISO guidelines for scenario generation42 sorts under
what the MSaaS reference architecture4 calls “Modelling
Services/Applications” which are outside this article’s
scope. For future deliberations, one should keep in mind
that scenarios are tightly coupled to the applications that
generate them, as each application might operate their
own scenario format, data requirements and modeling
capabilities. There is a need for standardized scenario
formats. In the mean time, composition must accommodate
several possible formats.

5.2 Simulation composition services
Simulation composition services are the back-end to the
simulation composition applications. These services must
use service descriptions for available simulation services
to determine which services should be used, and how
they should be configured to provide the appropriate
functionality and execute the desired simulation. The
composition services then provide the composition to the
SMC services (Section 6) with all the metadata necessary
to deploy and execute the composed simulation service.

Simulation composition services have a formidable job.
They have to use all three elements of service descriptions
at various levels of abstraction (Section 2.3.5) to align the
following cross-cutting interoperability concerns between
simulation services:

Technical interoperability concern refers to syntactic,
semantic and pragmatic interoperability (Section 2.2)
at the implementation-specific level (Figure 3). This
involves the ability for services to communicate over
the network, using a common protocol and Appli-
cation Programmers Interface (API), and with the
same syntax (including encoding/decoding of infor-
mation). This also includes communication agree-
ments such as message frequencies, dead-reckoning
agreements, network optimization strategies such as
Data Distribution Management (DDM)28, and any
details that are specific to the technical implementa-
tion of the simulation environment.

Functional interoperability concern refers to syntactic,
semantic and pragmatic interoperability at the

simulation architecture-specific and implementation-
independent levels (Figure 3). This involves to
assess that the candidate simulation services have the
appropriate functional capabilities; that is, that what
they represent within the simulation environment (the
model part of the service description) aligns well.
This concerns the forces being simulated, the fidelity
(accuracy), the resolution (level of detail), and the
interactions between those entities are suitable.

Scenario interoperability concern refers to configuring
syntactic, semantic and pragmatic interoperability
to a specific scenario for a given simulation
life cycle at the simulation architecture-specific
and implementation-dependent levels. This involves
the assessing that simulation services are able to
cooperate to represent a specific scenario within
the simulation: Simulation services need to be
synchronized on what the simulated entities will
be doing and aligned on the data sets being
used for those entities. Model responsibilities
need to be delegated across services for reasons
including scaling, visualization, user interaction
(e.g. human players controlling units on specific
workstations), entity capabilities (i.e. tank modeling
services owning tanks while aviation services owning
aircraft). The data sets could also be varied across
different scenarios using different classification of
data, different performance data of the entities, or
automated behaviors.

In order to compose simulation services at the
various abstraction levels, the MSaaS engineering process
(Figure 5) must ensure that the chosen simulation
services are able to interoperate together to achieve the
desired federated capabilities. At the implementation-
dependent level, this boils down to simulation components
interoperating in a simulation environment. In the following
we describe the functionality of composition services
according to what abstraction level of simulation service
description they operate on, taking into account the three
cross-cutting interoperability aspects above. This sheds
light on what information is needed in simulation service
descriptions at the various abstraction levels.

5.2.1 Architecture-agnostic composition services. The
simulation service descriptions (Section 2.2) must hold
enough information to determine which services can be
composed72 to meet the desired conceptual scenario42

and to determine if their abstract interfaces, patterns of
interaction and semantics are compatible. For example a
service providing a sensor capability, will be defined in a
way to show its reliance on other data such as ground truth
information about entities, which are then provided by a
different service. These two services can be provisionally
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composed based on their service descriptions until further
details are examined. This composition is then further
refined at the simulation architecture-specific level.

5.2.2 Architecture-aware composition services. Com-
position services will here need to determine if the ser-
vices chosen above can work together at the architecture-
specific level, given architecture-specific information. This
metadata must include the simulation middleware protocols
used, the object models used, and any pragmatic agree-
ments such as dead reckoning or interest management.
Other information that is related to the architecture, for
example, communication methods, must be available for the
services.

5.2.3 Implementation-aware composition services.
Implementation-specific composition considers the lowest
level details of the service functionality including modeling
details such as the resolution and fidelity details of the
entities and relationships being represented. When two
executable models are integrated, it is important that
the interfaces are appropriate to the desired level of
resolution (detail) in order to avoid data mismatches,
translation errors, and poor assumptions leading to a lack
of interoperability. This level of composition requires
details about the service at the lowest levels. The suppliers
are in the best position to provide this information, but they
must also align that information with the implementation-
independent ontology-based description (Figure 3).

5.2.4 Further architecture and implementation-
dependent metadata. Service descriptions at lower
levels of abstraction must be quite detailed. Necessary
deployment metadata includes all the information required
by SMC to deploy and execute the service. This information
includes operating system, computing footprint, licensing
details, and security constraints73. Configuration metadata
includes all the information regarding how a service can
be configured including both what is being configured
and how those items are being configured. Example
configuration mechanisms include environment variables,
command line parameters, configuration file changes, or
even user interface actions which can be automated with
tools like Sikuli†.

Both deployment and configuration aspects span across
all simulation components including middleware software
(e.g. HLA RTI), gateways, management tools, and after
action review (AAR) tools.

The aspects that can be configured span across technical,
functional, and scenario details. There can be overlap
across those three areas. The scenario responsibilities
of a service have a direct impact on the technical
configuration requirements of the service. For example, the
computational resources would be higher if the number
of entities represented within the scenario is higher. If a

service can execute at varying levels of resolution, then
the computing footprint could differ depending on the
simulation’s functional representation requirements. As the
scenario size changes, the modeling responsibilities of
each service could change requiring different levels of
computing power and memory. The information is quite
often in sets or ranges. For example, a service could run on
multiple operating systems, could use a range of memory
sizes or processing power, and those details could depend
on the capabilities required or the size of the scenario.

Services do not have to have separate service implemen-
tations for each simulation protocol, operating system, code
platform, etc. Instead, services can have can have multiple
modes (that need to be configured) including:

• Multiple protocols for communication (e.g. HLA,
DIS, TENA, DDS, etc.)

• Multiple operating system choices

• Multiple sets of data (force structures, entity
representation variants, data classification, etc.)

• Multiple modes (e.g. representing the entire entity
versus allowing external services to represent
portions of an entity

• Multiple user interface options including running
headless, having a ground truth view, or being a
simulation user station (e.g. virtual interface)

Determining the services required to provide a simulation
capability is based on the functional capabilities of the
components and the hierarchy and relationships of the
functionality.

Breaking down a high level functional capability
into its lower level atomic parts and then representing
the relationships between those atomic parts allows for
components to be mapped to that functional decomposition
and then chosen as the simulation environment goals are
identified in the form of high level functional capabilities.

When a simulation user identifies the functional
capabilities required, they should not presented with low
level considerations unless they choose to go to that depth.
The user will most likely want to focus on high level
capabilities, such as picking the force structure, the terrain
location, and some high level actions. There may be many
choices for which components can be used, each with their
own advantages and disadvantages. The user may care
about some of the functional and scenario options of the
services. This implies that the composition service needs to
provide a user interface based on the functional selection
of services including any options that the user may want to

†http://doc.sikuli.org/
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choose including data, model pedigree, modeling resolution
of certain aspects of the simulation, and other details. In that
case, the available component choices should be available
to be displayed to the user based on the metadata available.

The composition services have the role of providing
service metadata to the SMC services in order to
setup and manage the composed simulation service. The
information required by SMC includes all the details
required to understand service capabilities, requirements,
and execution details.

The descriptive elements for service metadata include:

• Repository location: where to find the service
application (virtual machine, container, executable,
and/or configuration files).

• Version of the service: multiple versions could
exist within the repository, and each could be used
at different times depending on the capabilities
(technical, functional, or scenario).

• Dependencies: there are many dependencies a service
could have including operating system, libraries,
network configuration (e.g. ports open), and anything
required to be there for the service to execute
properly.

• Execution initiation information: how to start the
service including parameters such as environment
variables, command line parameter, or a script to
execute that handles all of the above mentioned
configuration items such as:

– Scenario configuration: force structure, mod-
eling responsibilities, and anything else that
denotes the service’s responsibility during the
simulation and what it should execute regarding
the scenario.

– Technical configuration: the technical imple-
mentation of the service could potentially be
different for varying simulations. The scale
of the service’s responsibilities could differ
between scenarios. The protocols that the ser-
vice uses may differ across simulations that use
different architectures. Any technical informa-
tion that the service requires to run could dif-
fer across simulations and must be configured
accordingly.

• Tags and/or labels for features and capabilities of the
service to be used to find the appropriate service for
each simulation.

• Data artifact information: data generated and
logged/stored from each simulation should be
retrievable after the simulation. The data could be

in any form (e.g. database file, set of files, database
located locally or distributed, graphics created, etc.).
The composition service should record what data will
be generated (metadata), the data type (file, set of
files, etc), its location, and in some cases a script to
execute in order to obtain data

• Streaming mechanism: services may include a
graphical display that needs to be streamed to users
during the simulation, or recorded for viewing after
the simulation. Streaming of the display can be done
generically from a virtual machine configuration
using a streaming program such as VideoLAN
Streaming Solution‡ or Apache Guacamole§.

Service implementations within a distributed simulation
environment should not be limited to be one type of soft-
ware executable. Services could range in implementation to
being a binary executable with accompanying configuration
files that needs to be deployed to a container that can be
deployed using a container management tool like Kuber-
netes¶, a virtual machine that needs to be delivered to and
executed within a hypervisor or virtual machine monitor.
The service implementation details across this range of
execution variations will need to be accounted for in the
metadata provided to SMC. Obviously, simplifications can
be made when using one type of software executable, like
containers.

SMC will be responsible for the deployment, config-
uration, execution, monitoring, and management of the
services using the application details captured within the
composition services. As a part of the systems engineer-
ing and design of a simulation environment, it should be
decided which execution types (virtual machines, contain-
ers, binaries, etc.) can be included and therefore need to be
accounted for within the composition services.

6 Service management and control (SMC)
The NATO C3 Taxonomy defines Service Management
and Control (SMC) as a collection of capabilities to
coherently manage components in a federated service-
enabled information technology infrastructure. In this
definition, SMC concerns policies, human processes and
procedures, as well as computer and information systems
(CIS) capabilities to manage components. This is in
line with IT Service Management (ITSM), a term used
for frameworks such as COBIT (Control Objectives for
Information and related Technology) and ITIL (Information
Technology Infrastructure Library).

‡https://www.videolan.org/vlc/streaming.html
§https://guacamole.apache.org/
¶https://kubernetes.io/
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For MSaaS, the policy and procedure side of SMC
is to some extent addressed by the MSaaS Governance
Policies74, the MSaaS Operational Concept75, and the
MSaaS engineering process43. Our focus here is on CIS
capabilities.

In the following, we elaborate on SMC to manage
simulation services and composed simulation services in
an MSaaS infrastructure. The focus will be on the Execute
capabilities of the MSaaS portal (Figure 1); that is, the
means to start and stop composed simulation services
(compositions), to monitor compositions, and to test if
compositions function as required. The capabilities are
described at an implementation-independent level as SMC
Applications and SMC Services, and several concrete
examples of such services are provided.

6.1 Simulation SMC user applications
Simulation SMC user applications are the front-end user
interface of the Simulation Operators (Figure 1) to the back-
end SMC Services. The main SMC capabilities provided
are Simulation Service Test Management, and Simulation
SMC; recall Figure 7.

6.1.1 Simulation Service Test Management user appli-
cations. These user applications enable the Simulation
Operator to ensure that the various (simulation) services
function properly; that is, with compliance to agreed service
interfaces and contracts. The correct functioning of a (com-
posed) simulation service is tested before it is entered in
the service registry, but testing typically occurs throughout
the service lifetime; for example, for particular training
exercises.

Service testing can be performed at various steps of the
MSaaS engineering process (Figure 5) and corresponding
levels of service abstraction (Figure 3).

At the implementation-independent level, (composed)
simulation services can be tested using, for example,
a framework that provides methods, techniques and
tool support for verifying composability at a syntactic
and semantic level of simulation interoperability72. The
proposed framework describes a verification process for
model composition and uses BOMs with several semantic
extensions.

At the simulation architecture-specific level there are
several applications available for testing. Examples of such
applications are the NATO Integration Verification and
Certification Tool (IVCT)‖ and the Joint Exercise Control
Suite (JECS)∗∗. The NATO IVCT is an application to
test the interoperability capabilities of HLA simulation
components and to support the integration of distributed
simulations. The application consists of several software
components, including a web-based front-end with several
back-end components (i.e., test services; see Section 6.2.4)

such as a test case execution engine and a set of executable
test cases for (NATO Education and Training Network)
NETN FOM modules76. The test case engine provides an
API for adding in additional test cases. The tool is open
source and was provided to NATO as an Initial Operational
Capability (IOC) for HLA certification in 2017. JECS
supports the testing of, among others, Joint Live Virtual
and Constructive (JLVC) training events. JECS includes
several tools such as the Joint Simulation Protocol Analyzer
(JSPA) and Joint Master Enumeration Manager (JMEM)
and the Joint Analysis Workstation (JAWS). JSPA manages
data flows among simulation components to support trouble
shooting during exercise test and execution. JMEM checks
platform names, weapon effects and sensor codes (i.e.,
entity type values) used by the simulation components
to support consistent communication exchanges among
the various components. JAWS provides a replay of
interactions among simulation components.

To enable a greater degree of automated service testing,
simulation services need to be consistently described
(Section 2.2), preferably in a machine readable format. For
example, the BOM format24 mentioned earlier caters for
several aspects of service descriptions; in particular patterns
of interplay with other simulation services. The information
in the BOM is input to the construction of test models
for testing simulation services at a simulation-architecture
specific level77. Although the construction of test models is,
in practice, a largely manual step, more automation may be
possible in the future through Model Based Testing Tools.

Simulation Service Test Management user applications
are described as a separate capability, and current
implementations are often dedicated applications for
particular simulation technology. However, our vision is
that these applications should become more integrated
with the MSaaS portal and the Simulation SMC user
applications, described in the next subsection.

6.1.2 Simulation SMC user applications. These user
applications enable the simulation operator to view
available composed simulation services (i.e. compositions)
that meet certain objectives; to select an appropriate
composition for execution; to reserve resources for the
execution of a composition; to provide input parameters and
start a selected composition; and to monitor, manage and
control previously started compositions. Each composition
may be implemented with different simulation technologies
and use different simulation architecture topologies.

When the simulation operator determines the composi-
tion he wants to execute, some follow-up choices should
be presented to inform the application of when and how

‖https://www.mscoe.org/nato-hla-certification-ivct/
∗∗JECS is a trademark of Knight Federal Solutions
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MSaaS

Figure 8. Kubernetes search and discovery user interface for Helm Chart repositories.

the composition should be deployed and executed. The
simulation operator should be able to schedule the execu-
tion for any time he chooses, albeit there could be some
resource contention issues. When resources are reserved,
they should become unavailable for other users, and that
information should be displayed to the simulation operator.
Other information that a simulation operator should be
able to provide, is a description for other users to see for
the purposes of reuse, privacy information (who should
have access to the composition and resulting data), and
use case/organization-specific information. For example,
when used for training, the user application may provide
information on unit availability and a workflow for scenario
generation/changes.

These applications provide, among other, functionality
to start and stop (composed) simulation services, discover
available services, provide reports on service and resource
usage, provide dashboards and statistics charts, manage
exceptions and manage service metadata. The applications
interact with the underlying technical services to provision
(virtualized) resources and to obtain the required perfor-
mance data, services metadata, composition data, and so
on. In large part, this category of application exposes to
simulation operators the service execution capability of the
envisioned MSaaS portal.

It has already been noted38 that when using container
technology, the required functionality for Simulation SMC

user applications can largely be provided by current
container orchestration environments such as Kubernetes.
Kubernetes is an open source product for automating
deployment, scaling and management of containerized
applications; in our case, (composed) simulation services.
The Kubernetes user interface is a web based front-end
for back-end SMC functionality. The Simulation Service
Test Management user applications described above may
be deployed using the same container orchestration
environment used for the regular (composed) simulation
services. For example, the NATO IVCT is available in the
form of Docker†† container images and can be deployed
in such a container orchestration environment, thereby
becoming part of the MSaaS portal together with the
simulation services. This way a (composed) simulation
service can be tested in the same environment as where
it is used. Compositions can be started and stopped via a
dashboard; for example, Monocular‡‡; see Figure 8 where
each icon on the dashboard represents a composition in
the form of a Kubernetes Helm Chart§§, stored in a (Git)
repository.

††https://www.docker.com/
‡‡https://github.com/helm/monocular
§§https://helm.sh/
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6.2 Simulation SMC Services

Simulation SMC Services are the back-end services of the
front-end Simulation SMC Applications (Figure 7). We
distinguish between SMC services that need to be aware of
the simulation architecture of a particular composition, and
services that function regardless of the selected simulation
architecture. We start with architecture-agnostic services.

6.2.1 Architecture-agnostic simulation monitoring,
metering and logging services. In terms of Section 2.3
applied to infrastructure services, this entails that the
implementation-independent service descriptions of these
services do not need a simulation architecture-dependent

refinement and do not follow the path of implementation-
specificity of simulation services. However, they would
have other architecture- or implementation-specific service
description refinements on their path to implementations.
We use three terms to characterize this kind of service:

• Monitoring. Monitoring Services monitor service
communication based on service calls and message
exchanges to identify performance issues and
determine current availability. Examples are the rate
at which DIS entity state PDUs are exchanged,
the occurrence of specific events such as weapon
fire and munition detonation events in an entity

Table 1. Potential implementations of some Monitoring, Metering and Logging Services

Monitoring Datadog https://hub.docker.com/r/datadog/agent
Monitoring Graphite https://github.com/graphite-project/graphite-web
Monitoring Scout https://scoutapp.com
Monitoring Prometheus https://hub.docker.com/r/prom/Prometheus
Monitoring Grafana https://hub.docker.com/r/grafana/Grafana
Monitoring EFK = Elasticsearch + FluentBit + Kibana https://docs.fluentd.org/v0.12/articles/docker-logging-efk-compose
Monitoring ELK = Elasticsearch + Logstash + Kibana https://hub.docker.com/r/sebp/elk
Monitoring Graylog https://hub.docker.com/r/graylog/graylog
Monitoring Grafana https://hub.docker.com/r/grafana/grafana
Metering Collectd https://collectd.org
Metering Telegraf https://hub.docker.com/\_/telegraf
Metering cAdvisor https://github.com/google/cadvisor
Metering Influxdb https://hub.docker.com/_/influxdb
Metering Sensu https://sensu.io
Metering Sematext https://sematext.com
Logging Syslog (standard Linux tool)
Logging Fluentd https://hub.docker.com/r/fluent/fluentd
Logging Filebeat https://hub.docker.com/r/elastic/filebeat
Logging Fluent-bit https://hub.docker.com/r/fluent/fluent-bit
Logging Metricbeat https://hub.docker.com/r/elastic/metricbeat

Figure 9. Kubernetes cluster, node and service monitoring using Prometheus and Grafana.
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level engagement simulation, or events that indicate
simulation execution state changes.

• Metering. Metering Services measure levels of
resource utilization by individual simulation services
such as the number of HLA-RTI calls and callbacks,
number of DIS messages received or sent, number
of get/set operations on a simulation state database,
number of simulation entities managed/owned by a
service, etc. The measured values can be used to
determine if sufficient resources are allocated to run
the service.

• Logging. Logging Services provide functionality for
capturing, filtering and writing the data collected
through monitoring and metering. The resulting logs
can be used for auditing purposes, troubleshooting,
performance optimizations, etc. The data should be
combined with metrics from Core Services71, such
as memory and CPU usage.

Often these capabilities are mixed and service implemen-
tations may provide several or all of the services; see
Table 1 for examples. Most of these tools provide both
containerized and non-containerized installation options for
different platforms, and are suitable for use in an MSaaS
infrastructure. Figure 9 shows an example of a Prometheus
and Grafana¶¶ dashboard for Kubernetes cluster moni-
toring. Via this dashboard the whole cluster, nodes, or
individual services can be monitored (e.g. memory usage,
disk space usage, network usage). This is an example of
an architecture-agnostic service, since it is not aware of the
simulation architecture used in the compositions(s) that run
in the cluster. For more information about what is happen-
ing inside a composition we need simulation architecture-
aware SMC Services.

6.2.2 Architecture-aware simulation monitoring, meter-
ing and logging services. These services mimic the
similarly-named architecture-agnostic services, but are
aware of the simulation architecture used in a composition
in order to collect simulation data from the composition.
Architecture awareness is achieved through the provision-
ing of specific adapters that can hook into a composition
and collect the data. Examples of simulation architecture-
aware logging services are HLA or DIS data recording ser-
vices. Also several of the tools listed in Table 1 provide the
possibility to add simulation architecture specific adapters.

In some instances the monitoring, metering and logging
services may be part of the composition itself. This entails
that the service description abstraction levels of these
simulation SMC services follow the service description
abstraction levels of the composed simulation services
on which they operate. Following Section 2.3 also for
infrastructure services, the simulation SMC services would

have service descriptions at the implementation-agnostic
level, but since they need to be simulation architecture
aware, they would also have simulation architecture-
dependent descriptions.

6.2.3 Architecture-aware simulation control services.
These services provide the capability to control the sim-
ulation execution state of a (composed) simulation ser-
vice. Similarly to the Monitoring, Metering and Logging
services, the Simulation Control Services may be simula-
tion architecture-aware and possibly part of the simulation
composition, rather than an architecture-independent SMC
Service in the MSaaS infrastructure. Simulation Control
Services also provide the capability to orchestrate the ini-
tiation and termination of the simulation services within
a composition. A few examples of Simulation Control
Services can be found in literature70;78–80.

6.2.4 Architecture-aware simulation test services.
These services are the back-end technical services of the
Simulation Service Test Management User Applications
(Figure 7). These services are simulation architecture-
aware, and they test if compositions comply with agreed
service interfaces and contracts. Monitoring, Metering and
Logging Services may be needed to assist the Test Services
in collecting data; for example metrics on HLA-RTI
interface usage. Simulation Control Services can also be
used to orchestrate the initiation and termination of Test
Services.

In case of the NATO IVCT, the Test Services are provided
by a single back-end (containerized) component, the IVCT
Test Case Runner. The IVCT Test Case Runner executes the
configured test cases against the system under test. In the
context of MSaaS, this can be a non-cloud based simulation
component or environment, or a (composed) simulation
service located in the MSaaS infrastructure. Test cases are
packaged in Docker container images and provided to the
Test Case Runner for execution. The Test Case Runner is
operated via a web-based front-end (Section 6.1.1).

6.2.5 Provisioning Services. Provisioning Services
manage the instantiation, runtime management and disposal
of dynamically scalable and virtualized infrastructure
resources. Provisioning Services use the results of the
Composition Services to create the declared resources
as defined in the composition description. To do this,
the description of a composition must contain sufficient
technical information for the provisioning and deployment
of resources (see Section 5 for more information). In the
example of a container orchestration environment such
as Kubernetes or Docker, the virtualized infrastructure
resources are containers, overlay networks and data

¶¶https://prometheus.io/docs/visualization/grafana/
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volumes, and the provisioning information is provided as
a Helm Chart in Kubernetes or Docker Compose file in
Docker. Provisioning services are simulation architecture
agnostic.

6.2.6 Service Discovery Services. These services pro-
vide information about (composed) simulation services
currently executing, and information about composed simu-
lation services available for execution in the MSaaS infras-
tructure. This deals with run-time discovery as opposed
to design-time discovery (Section 4.1.2). To continue the
example with Kubernetes, the status of executing composi-
tions can be inspected via the Kubernetes Dashboard, and
available compositions can be queried via Monocular, a
web-based application that enables the search and discovery
of Helm Charts from multiple Helm Chart repositories.
These services are simulation architecture agnostic.

6.2.7 Other applications and services relevant to SMC.
The sections above elaborated on a number of simulation
SMC Applications and Services relevant to MSaaS. An
MSaaS infrastructure will generally rely on further non
simulation-particular capabilities to those discussed here.
Examples would be Storage Services, Database Services,
Infrastructure Providing Services; many of which are at the
level of infrastructure as a service (IaaS) and platform as a
service (PaaS).

7 Final remarks
Earlier discussions81 have remarked that the notion of
“reference architecture” should be reserved for blueprint
architectures that contain more detail than what is
perhaps commonly the case for many so-called reference
architectures. The efforts in the preceding discussion should
contribute to making the MSaaS reference architecture4

more specific and useful to developers, service providers
and service consumers than it is in its current form, which
is more in the form of an overarching architecture81.

By elaborating on the essential MSaaS infrastructure
capabilities; that is, simulation data management capabil-
ities, simulation composition capabilities and simulation
service management and control capabilities, we hope to
shed light on how simulation services and composed simu-
lation services can be discovered, composed and executed
in practice, using implementation-independent simulation
service descriptions at design time and implementation-
specific service description at implementation time.

The functionality needed for the MSaaS infrastructure
is, in many cases, provided by existing platforms and
frameworks. However, as the elaborations on MSaaS
infrastructure capabilities in this article indicate, it is
necessary to offer that functionality as services to
fulfill the MSaaS vision and to provide the MSaaS
portal functionality on various platforms. Infrastructure

functionality as services entails that one uses the same
principles of service description abstraction levels as we put
forth for simulation services.

We also found that MSaaS infrastructure services
in some instances are simulation services and become
part of a composed simulation service. Then, these
infrastructure services would have the same service
description abstraction levels that (composed) simulation
services have. However, in other instances, MSaaS
infrastructure services are supporting services that do not
adhere to simulation architecture. In the latter case, they
would have a different service description abstraction
structure from that of simulation services. Further, such
infrastructure services might not need to be designed to
be composed rapidly and readily to the same extent as
simulation services. Indeed, it may not even be necessary to
formulate that functionality in terms of services. However,
to conform with other frameworks, such as the NATO
Consultation, Command and Control (C3) Taxonomy,
the MSaaS reference architecture does formulate this
more stable functionality as services. Understanding the
distinction between these different types of infrastructure
service should help to prioritize what infrastructure
functionality to provide as services first.

Future work will elaborate further on MSaaS infrastruc-
ture capabilities. In particular, it is essential to understand
how infrastructure services differ in content and roles as
expressed in topologies for different simulation architec-
tures. Indeed, the contents and roles of MSaaS infras-
tructure services might to some degree define the various
simulation architectures. This is especially interesting when
investigating newer edge and fog architectures applied to
simulations.
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