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Abstract: In underwater sensor networks, distributed data fusion may be more efficient than 
centralized fusion because the limited data transmission capacity can make it difficult to 
collect all required sensor information at a centralized fusion centre. In this paper, we 
investigate three distributed fusion techniques applied to a network of passive acoustic 
underwater sensor nodes. We focus on the process of having a node combining its own 
bearing-to-target information with bearing-to-target information received from another node. 
In one of the techniques, we approximate the uncertainty in crossfixes in Cartesian 
coordinates by a Gaussian distribution with their second-order statistics derived from an 
exact distribution. The bearings and covariance matrixes are fed into a Kalman filter for 
tracking. The other methods are a particle filter using an exact distribution, and a distributed 
particle filter using an approximate likelihood representation. The performance of the 
methods is investigated on simulated data as well as on real-world data collected by seafloor 
sensor nodes during a Stockholm Archipelago sea trial in the trilateral collaborative project 
DUSN (Distributed Underwater Sensor Networks) between Canada, Norway, and Sweden. 
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1. INTRODUCTION  

Distributed fusion in underwater sensor networks is a main topic in the trilateral 
collaborative project DUSN (Distributed Underwater Sensor Networks) between Canada, 
Norway, and Sweden. Distributed data fusion may be more efficient than centralized fusion 
because the limited data transmission capacity can make it difficult to collect all required 
sensor information at a centralized fusion centre. 

Small and easily deployable underwater sensor nodes equipped with passive acoustic 
sensors provide bearing-only estimates, with limited accuracy due to small array sizes. In this 
paper we focus on one step of distributed fusion, where a sensor node has received bearing-to-
target information deemed worthy of reporting from another node, and combines it with its 
own bearing-to-target information. We investigate the problem through a case study using 
real-world data, and also using idealized synthetic data for the same scenario. 

2. CASE STUDIES 

2.1. Real-world data 

At a DUSN sea trial in September 2018, underwater sensor nodes from Canada, Norway, 
and Sweden were deployed in an area in the Stockholm archipelago. We here use data from 
the Norwegian NILUS (Networked Intelligent Underwater Sensors) sensor nodes [1][2], 
which are equipped with a tetrahedral hydrophone array and local signal processing [3], 
which enables them to estimate bearing to target(s) and also to produce an estimate of the 
uncertainty in the bearing estimates. 

Fig. 1 (left) shows the case study geometry. In a littoral area, three NILUS nodes were 
deployed on the sea floor in the marked positions. A surface vessel passed through the sensor 
field from North to South along the indicated trajectory.  

Each sensor node estimated at least one bearing and bearing uncertainty every 5 s, as 
shown in Fig. 1 (right). There was also an algorithm running in the sensor nodes determining 
which bearing estimates were worthy of reporting to other nodes, typically in a time interval 
around CPA (closest point of approach). The bearings marked with blue dots were transmitted 
to the other nodes along with their uncertainties. We also see some detections of other targets 
farther away, but these bearings were not transmitted to other nodes. 

We focus on node 1 receiving the “blue” bearings from nodes 2 and/or 3. Node 1 can 
combine bearings from other nodes with all its own bearing estimates, not only the “blue” 
ones. Herein lies a possible benefit of distributed fusion over centralized: In a centralized 
fusion scheme it would put a heavy toll on the communication network to always transmit all 
bearing estimates (and not only the “blue” ones) to the fusion centre, whereas in distributed 
fusion each node’s local fusion processor can also make use of the information it did not find 
worthy of reporting just based on its own knowledge. 

Fig. 2 shows histograms of bearing errors in selected time intervals in the real-world data 
set. Note that the data sets are small, and their uncertainty value σ represents both an 
unknown (local) bias value and variation from sample to sample, therefore they do not fit well 
to an analytical zero-mean probability density function (pdf) with σ as standard deviation. We 
apply the analytical zero-mean von Mises pdf in further tracking, acknowledging that we 
thereby make a coarse approximation. The von Mises distribution [4] is more suitable to 
circular data than the Gauss distribution, and as Fig. 2 shows they are quite similar when we 
do not focus on the tails. 
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Fig. 1: Left: Case study geometry. Crosses denote seafloor sensor nodes, black line shows 

target’s GPS track. Right: Bearing estimates (magenta and blue dots) computed by the three 
nodes. Blue dots show bearings reported to the other nodes. Green dots show bearing 
uncertainty (±1σ) estimated by the nodes. Black lines show actual bearing to target. 

 

 
Fig. 2: Histograms of bearing errors over selected time intervals, along with Gauss and 

von Mises distributions (almost overlapping curves) with the average σ value reported as 
uncertainty over the same intervals. There are also sporadic bearing errors outside the 

plotted x axis limits. 
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2.2. Synthetic data 

To also assess algorithm performance on a cleaner but less realistic data set, we generate 
synthetic data corresponding to the same geometry as the real-world data set, shown in Fig. 1 
(left). We assume each node produces a bearing estimate every 5 s, drawn from a pdf which is 
a mixture between a uniform distribution and a von Mises distribution: 

),(vM)1(),(U)( κµαππαθ −+−=π  [11], where U(a,b) is the uniform distribution from a to 
b, and vM(µ,κ) is the von Mises distribution with mean µ and an equivalent concentration 
parameter κ computed from the standard deviation σ using Eqns. (3.30) and  (4.40) in [4]. 

The uniformly distributed element of the mixture model corresponds to the possibility of 
detecting other targets or noise instead of the target of interest. We let the distributed fusion 
processor know the standard deviation σ, but let it assume α to be zero. In the real-world data 
set of Fig. 1 (right), we see that α is close to zero when the target of interest is near CPA 
(closest point of approach), but larger elsewhere. We assume that node 2 and 3 send bearings 
to node 1 for the same time intervals as for the real-world data set (blue points in Fig. 1).  

2.3. Communication pattern 

The communication pattern in the scenario described above consists of three messages: 
Node 2 and node 3 each send one message with a series of “blue” bearing estimates1. These 
two messages are received by node 1, which combines with its own bearing estimates, runs a 
tracker on the data, and produces a third message with track information which is transmitted 
further in the network. This is one step of a larger distributed fusion approach, the remainder 
of which is outside the scope of this paper. 

3. TRADITIONAL TRACKING BASED ON SECOND-ORDER STATISTICS 

From the estimates of bearings and bearing uncertainties from the two nodes at a point in 
time, we compute the crossfix and its covariance matrix using Eqns. (8)-(14) in [5]. The 
covariance matrix represents the second-order statistics, which can be represented by 
uncertainty ellipses. This constitutes an approximation, as the actual pdf will be more 
complicated. To compute the actual pdf numerically for comparison, we assume that the 
target position is a priori uniformly distributed on a Cartesian grid, except in regions close to 
a node (to avoid singularities). It can then be shown that, on the supported region, we have 
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where θi and ri are the bearing and distance from node i to each point (x,y), pi(θ) are the 
bearing pdfs, (xi,yi) are the node positions, and |J(x,y)| is the determinant of the Jacobian given 
by Eqns. (12)-(14) in [5]. In Fig. 3 we show an example comparison between the actual pdf 
and the uncertainty ellipses assuming second-order statistics only, where the non-elliptical 
nature of the actual pdf can be clearly seen. 

1 Bearings can be exchanged between nodes more often, but communicating one message for every 5-s time step 
between bearing estimates would probably be too frequent for an underwater acoustic communication network. 
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Fig. 3: Crossfix and pdfs for a point along the target trajectory, assuming von Mises 

distributed bearings with σ=5° (left) and σ=10° (right). The error ellipses shown indicate 
25%, 50% and 75% quantiles if we use second-order statistics only. 

    
Fig. 4: Crossfixes and Kalman filter track computed by node 1. 

Blue(green): Crossfixes by combining own bearings with those received from node 2(3). 
Circles indicate crossfix position and lines indicate position ±1 std.dev. along each direction. 
Red: Track output from Kalman filter. Position not shown; lines indicate position ±1 std.dev. 

along each direction. Black line: Actual target track 
 
We let our node 1 compute crossfixes (x,y) and covariance matrixes R based on its own 

stored bearing estimates (all points for node 1 in Fig. 1) and the estimates received from 
nodes 2 and 3 (blue points in Fig. 1), for pairs of bearings which are sufficiently close in time.  
The crossfixes are used as measurements in a Kalman filter, along with covariance matrices 
representing the measurement uncertainty. Sometimes a bearing from node 2 and a bearing 
from node 3 are matched with the same bearing from node 1. We neglect the fact that these 
two crossfixes are statistically dependent. Sometimes the bearings may not cross or the 
crossfix uncertainty is very large ( >1000 m) in which case they are discarded. 

Fig. 4 shows the result from node 1 crossfixing its own bearings with bearings received 
from nodes 2 and 3, in blue and green, respectively. A state-space model with four states (the 
x- and  y- coordinates and their derivatives) is used together with a constant velocity motion 
model. The output from the Kalman filter tracker is shown in red in Fig. 4. For clarity we do 
not show the track coordinate here, but only the lines that represent the uncertainty. 
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For the real-world data, when comparing the crossfixes to ground truth they are always 
within the reported uncertainty. This uncertainty is larger when the target is farthest from 
node 1 because (a) node 1’s own bearing uncertainty then becomes larger, and (2) the 
geometry becomes more collinear. The tracker output is within the reported uncertainty 
compared to ground truth. For the synthetic data (with parameters α=0.08 and σ=5°), the 
outliers due to non-zero α have too small reported uncertainties, and sometimes confuse the 
tracker. However, it quickly converges towards the correct track again.  

4. PARTICLE FILTER APPROACHES 

4.1. Basic particle filter 

Particle filters are based on the idea of discretizing the probability distribution of the target 
state vector. This enables non-linear measurement equations and non-Gaussian noise to be 
easily included into the framework. This is utilized here to update the particles directly from 
the bearing estimates without estimating the cross-fixes. This enables a more flexible 
utilization of the measurement data with no explicit demand for time alignment of 
measurement data, and allows us to do measurement update even with bearings from a single 
node only (for introduction to particle filters for tracking, see [8]).  We also avoid re-using the 
same bearing as describe above for the Kalman filter. The particle filter used here is similar to 
the basic particle filter of [11]. One difference with [11] is the initialization. Here we initialize 
the particles based on the first measurement in a pie-shaped area assuming a distance from the 
node of 15 to 1500 meters and an azimuth angle distributed according to the von Mises 
distribution. The particles are naturally propagated through the process update equation. The 
update step is done by calculating the likelihood of the latest arrived measurement with 
respect to each particle which is followed by systematic resampling. The likelihood is 
calculated using the von Mises distribution with α=0 and κ obtained from the uncertainty 
estimate of the bearing estimator. 

The particle filter was applied to the real dataset described above. The root-mean squared 
(RMS) error of the Kalman filter was 42.8 m while for the particle filter described here it is 
56.3 m. This is a bit surprising given all the benefits of the particle filter we just described.  
However, this could be due to modelling errors or be unique to this data set.  

 
Fig. 5: Comparison of basic particle filter and Kalman filter on synthetic data.  Both filters 

apply α=0 in all cases, while they are given the correct standard deviation. 
 
To assess our earlier claims of the advantages of particle filters, we did a simulation study 

using the same target track but synthetic bearing data using the mixture model of Sec. 2.2. 
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The results are shown in Fig. 5 for different values of σ and α. The average RMS error over 
ten runs are consistently better for the particle than the Kalman filter except for σ=1° and 
α=0.08. In this case, the particles sometimes get stuck in a point due to uniformly distributed 
bearings – and the filter is unable to recover. Note that even though the average RMS values 
(over ten runs) for the particle filter is better than Kalman, a few runs shows a better 
performance for the Kalman filter.  

4.2. Distributed Particle Filter  

In this section, we investigate a Distributed Particle Filter (DPF) (developed in [6]) and 
assess its performance against the real dataset described in Section 2. This filter falls in the 
category of constraint sufficient statistics (CSS) schemes. Indeed, rather weak constraints 
must be satisfied [7] for approximating the Global Sufficient Statistics (GSS) through the 
computation of Local Sufficient Statistics (LSS). Those local statistics are meant to represent 
the likelihood function as seen by individual nodes. The bootstrap approach [10] is used for 
the Sequential Importance Sampling (SIS) and re-sampling is performed at each time step 
based on the Systemic Resampling algorithm of [8]. Regardless of the number of particles 
used, only the six LSS values need to be communicated to other nodes. Like the basic particle 
filter described above, but unlike the Kalman filter, no bearing measurement is used twice. 

All nodes (including node 1) locally run the DPF algorithm described above. Moreover, we 
assume that all other nodes hear the bearings transmitted by one node. For convenience 
purposes, we here also assume that LSS values are exchanged amongst all nodes at every time 
step. A time-driven approach is taken here, but the approach could also be implemented as 
playback of past data after receiving a series of bearings from another node. In summary, at 
each time step each node receives and only uses: (a) the latest LSS values from other nodes, 
and (b) its own and most recent bearing. In addition to this, a node sometimes receives 
bearings from one or many other nodes. In real applications, LSS values could only be 
transmitted along with new bearing data. 

The proposed approach uses the conventional discrete-time constant velocity (CV) target 
motion developed in [9] along with counter-clockwise coordinated turns (CCT) as proposed 
in [8]. In that setup, the filter state vector is comprised of the estimated target position and 
velocity, in the latitude and longitude space (the other two filters operate in the X-Y space).  

 
Fig. 6: Simulation results of the Distributed Particle Filter with the real dataset. Left: de-

referenced latitude and longitude of both the target and the averaged (over all nodes) target 
position estimate. Right: Time evolution of the root mean squared (RMS) error from node 1. 
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Fig. 6 shows results of applying this DPF to the real dataset with 50,000 particles (using 
1,000 particles only leads to marginally worse results).  The averaged RMS error is 52 m, 
which is comparable to the other two schemes. 

5. CONCLUDING REMARKS 

We have discussed three different techniques of locally fusing measurements in bearing-
only trackers. Moreover, real and synthetic datasets are used for performing an initial 
comparison of their relative performances. The synthetic datasets have bearings based on a 
mixture of uniform and von Mises distributions.  

Even though each tracker has distinct internal processing approaches and use of 
measurement data, they have comparable performance on the real data set. Over synthetic 
datasets, the basic particle filter seems to outperform the Kalman filter in most cases.  

Future work will include analysis of the performance and extensions of the proposed 
bearing-only trackers, and to experimentally validate the present results.    
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