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Abstract: Over the recent years, there has been an increasing interest in autonomous systems.
Consequently, the problem of avoiding static and dynamic obstacles without human interference
has gained a lot of attention. Avoiding collision, even in completely static environments, is
significantly more challenging when the vehicle is subject to nonholonomic constraints. This
paper presents a reactive algorithm for collision avoidance of dynamic, arbitrarily shaped
obstacles, which is suitable for unicycle-type, nonholonomic vehicles. Unlike most reactive
methods, we consider the exact shape of the obstacle, which allows the vehicle to utilize any space
that is not occupied by the obstacle. This is an advantage over circle and ellipse approximations,
as they can lead to overly conservative maneuvers. We provide explicit conditions under which
collision avoidance is mathematically proven and validate the analysis by numerical simulations.

Keywords: Autonomous vehicles; collision avoidance; nonholonomic constraints; real-time
control; nonlinear dynamical systems

1. INTRODUCTION

Autonomous vehicles are required to venture into unknown
environments, where they may encounter both static and
dynamic obstacles. Collision avoidance algorithms are gen-
erally divided into two categories: global and local. Global
techniques, often used interchangeably with motion plan-
ning, describe algorithms that compute a complete path to
the goal prior to execution and therefore typically require
an extensive world model. In unknown, dynamic environ-
ments, the applicability of planning algorithms is, however,
greatly reduced. Even if some knowledge of the conditions
is possible to obtain, the model is likely erroneous or
incomplete. In any case, it is crucial that the vehicle is
able to deal with unexpected changes in its surroundings,
as the consequences of a collision may be fatal. Hence,
there is need for a local navigation scheme. Local or re-
active methods are based on computing the next control
command using the current, local measurements at each
sampling instance. The vehicle can therefore react quickly
to new information, which is advantageous when ventur-
ing into unpredictable conditions. Reactive algorithms are
easily combined with other goal-reaching behaviour, like
following a global path, but also work well as the sole
navigation method during smaller missions.

? This work was supported by the Research Council of Norway
through the Centres of Excellence funding scheme, project No.
223254 – NTNU AMOS

Today’s obstacle detection systems are highly developed.
For measuring the obstacle shape, computer vision al-
gorithms using one or several cameras are becoming in-
creasingly common. Technology such as radars, lidars, and
ultrasonic sensors can be used for this purpose as well.
Having knowledge of the obstacle shape it is possible to
use this as an advantage when avoiding collision. However,
most methods which consider dynamic obstacles are either
based on approximating the obstacle as a circular domain,
e.g. Savkin and Wang (2013); López et al. (2020); Poon-
ganam et al. (2020), as a point from which the vehicle must
maintain a constant distance such as Moe et al. (2020); Li
and Zheng (2020); Zhang et al. (2013), or require extensive
calculations as in Seder and Petrovic (2007) and can there-
fore not be applied reactively. The circle approximation is
computationally simple, but can yield overly conservative
maneuvers. This particularly occurs when the obstacle size
is considerably greater along one dimension compared to
the other. A more accurate approximation is then the
ellipse (Choi et al., 2006; Zhu et al., 2020), which provides
two parameters that can be adjusted to fit the obstacle
shape. However, this approximation removes some of the
computational advantages of the circle and will still yield
conservative maneuvers if the shape is non-convex.

Some methods do not fall into the above mentioned cat-
egories. The collision cone approach (Chakravarthy and
Ghose, 1998) can handle two objects of arbitrary shape,
which is extended to deforming shapes in Sunkara et al.
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(2019), but assumes the objects to move/deform with
constant velocities. The approach is developed further in
Sunkara and Chakravarthy (2016) to also consider time-
varying velocities of non-deforming objects. A drawback is,
however, that the resulting guidance law contains several
singularities. Furthermore, the method does not account
for nonholonomic constraints, which may make it impos-
sible for the vehicle to implement the given commands.
The method given in Savkin and Wang (2014) represents
a reactive navigation approach based on an integrated
environment representation, which provably ensures vehi-
cle safety in a complex environment with several moving
obstacles. However, the method does not consider the
obstacle velocities and can therefore lead to maneuvers
that are more conservative than necessary when velocity
measurements are available. The approaches given in Zhu
et al. (2012); Masehian and Katebi (2007); Xinyi et al.
(2019) do not provide a mathematical analysis of the algo-
rithm, nor do the methods in Zhu et al. (2012); Masehian
and Katebi (2007) account for nonholonomic constraints.

In this paper, we propose a reactive method for avoiding
dynamic obstacles of arbitrary shape, which is suitable
for unicycle-type, nonholonomic vehicles. The proposed
solution adapts the collision cone concept to make the
vehicle avoid potential collisions. We have previously pre-
sented a reactive collision avoidance strategy of circularly
shaped obstacles based on this concept (Haraldsen et al.,
2020), which provably ensures safety of a nonholonomic
vehicle with speed and turning constraints. However, the
obstacle shape cannot always be properly described by a
circle. Indeed, this approximation can cause the obstacle
to occupy considerably more space than necessary. There-
fore, in this work, we improve the algorithm to handle
arbitrarily shaped obstacles which may still be dynamic
and even strictly non-cooperative. In the circular case, the
collision avoidance problem is significantly less complex.
The vehicle must in that case keep a safe distance to
the obstacle center, and the obstacle is thus effectively
modeled as a point mass. To compensate for the obstacle’s
movement, the velocity of the center can be considered
exclusively. For non-circular obstacles, the control problem
instead involves keeping the vehicle a safe distance from
the obstacle boundary. This is a more difficult scenario
for several reasons, e.g. since the velocity of the obstacle
along its boundary differ depending on the distance to its
center of rotation and may be significantly greater than
that of the center. By considering these matters, however,
we are able to find a solution which achieves the desired
vehicle behaviour. The resulting algorithm generates less
conservative maneuvers, which is a major advantage, es-
pecially in crowded environments. Specifically, it allows
the vehicle to stay closer to the boundary of non-circular
objects while still preserving the required minimum safety
distance. Through a rigorous mathematical analysis, the
algorithm is shown to guarantee collision avoidance for a
nonholonomic vehicle which moves at a constant speed and
has an explicitly bounded turning rate.

The paper is organized as follows. Section 2 presents the
system models. In Section 3 we define the conditions under
which collision avoidance of a dynamic, arbitrarily shaped
obstacle is ensured. These conditions are the basis for
the collision avoidance algorithm presented in Section 4.

Numerical simulations are provided in Section 5, before
some concluding remarks are given in Section 6.

2. MATHEMATICAL MODELING

This section presents the mathematical models of a non-
holonomic vehicle and an arbitrarily shaped, dynamic ob-
stacle.

2.1 Vehicle model

We consider the nonholonomic vehicle,

ẋv = uv cos(ψv), (1a)

ẏv = uv sin(ψv), (1b)

ψ̇v = rv, (1c)

where pv , 〈xv, yv〉 are the Cartesian coordinates of the

vehicle, vv , ṗv is the linear velocity, and ψv is the heading
angle. Moreover, uv is the forward speed and rv is the
heading rate.

Assumption 1. The forward speed, uv > 0, is constant.
The turning rate, rv, is directly controlled and bounded
by

rv ∈ [−rv,max, rv,max] , (2)

where rv,max > 0 is a constant parameter.

2.2 Obstacle model

We consider a dynamic obstacle of arbitrary shape, rep-
resented by a moving domain Do. Let o denote the ob-
stacle attached reference frame, which has the position
po , 〈xo, yo〉 and the orientation ψo. The obstacle is
modeled by the following set of equations:

ẋo = uo cos(ψo), (3a)

ẏo = uo sin(ψo), (3b)

ψ̇o = ro, (3c)

u̇o = ao, (3d)

ṙo = αo, (3e)

where uo and ao are the forward speed and acceleration of
the obstacle, respectively, and ro and αo are the angular
velocity and acceleration of the obstacle about po.

Assumption 2. The domain Do is rigid and has a piece-
wise smooth boundary ∂Do.

Assumption 2 implies that the obstacle domain cannot be
deformed and that its boundary is continuous. We now
state some necessary assumptions regarding the model (3).

Assumption 3. The forward speed, uo, and the forward
acceleration, ao, are bounded by

uo ∈ [0, uo,max] , (4)

ao ∈ [−ao,max, ao,max] , (5)

where uo,max ≥ 0 and ao,max ≥ 0 are constant parameters.

Assumption 4. The angular velocity, ro, and the angular
acceleration, αo, are bounded by

ro ∈ [−ro,max, ro,max] , (6)

αo ∈ [−αo,max, αo,max] , (7)

where ro,max ≥ 0 and αo,max ≥ 0 are constant parameters.
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Fig. 1. The angles γ and β, and the distance d.

3. OBSTACLE AVOIDANCE

This section establishes the conditions under which the
vehicle keeps a safe distance to the obstacle boundary,
avoiding a collision by the following definition:

Definition 1. (Collision). A collision occurs between the
vehicle and the obstacle if dvo < dsep, where dsep > 0 is a

minimum separation distance and dvo , min
p∈∂Do

‖pv − p‖.

Lemma 1. Consider an obstacle modeled by (3). Suppose
that the vehicle (1) maintains a velocity satisfying

|ψvp − γv(p)| ≥ βv(p)∀p ∈ ∂Do, (8)

where ψvp , atan2 (vv − ṗ), γv(p) , atan2 (p− pv), and

βv(p) , sin−1
(

dsep
‖pv − p‖

)
, (9)

for all t ≥ t0, and suppose that the vehicle starts in a
collision-free state. Then, the vehicle will avoid a collision
with the obstacle, that is

dvo(t) ≥ dsep ∀ t ≥ t0. (10)

Remark 1. The operation atan2(n), where n , 〈nx, ny〉 ∈
R2, is computed as atan2(ny, nx) following the standard
notation of the atan2 function.

Proof. The geometry of the proof is illustrated in Fig-
ure 1. The vehicle maintains a relative velocity vvp , vv−
ṗ and heading ψvp , atan2 (vv − ṗ) with respect to a
point p ∈ ∂Do on the obstacle boundary. The line-segment
going from the vehicle position, pv, to p has the length
d , ‖pv − p‖ and the orientation γ , γv(p). The time-
derivative of the distance, d, is found geometrically as

ḋ = −‖vvp‖ cos(ψvp − γ). (11)

By (8) and (11), we obtain

ḋ ≥ −‖vvp‖

√
1−

(
dsep
d

)2

, (12)

where we have inserted the expression for β , βv(p) given
by (9). Computing the differential equation (12) yields√

d(t)2 − d2sep −
√
d(t0)2 − d2sep ≥ −

∫ t

t0

‖vvp(τ)‖dτ, (13)

which can be solved for d,

d(t) ≥

√(√
d(t0)2−d2sep−

∫ t

t0

‖vvp(τ)‖dτ
)2

+d2sep. (14)

Since (14) holds for any point on the obstacle boundary,
the vehicle will keep at least a distance dsep to the obstacle.

Fig. 2. The angles ϑ± and the set E(p).

Remark 2. The condition (8) corresponds to the vehicle
maintaining a relative velocity outside of the collision cone,
as demonstrated for a single point in Figure 1, for all points
on the boundary of the obstacle domain.

3.1 Turning requirement

To compensate for the velocity ṗ, we rotate the edges of
the collision cone, depicted in Figure 1, by the angles

ϑ±(p) , sin−1
(
‖ṗ‖
uv

sin
(
η±(p)

))
, (15)

as illustrated in Figure 2, where

η±(p) , γv(p)± βv(p) + π − ψp, (16)

and we denote the orientation of the vector ṗ as ψp ,
atan2(ṗ). The set E(p) ,

(
ξ−(p), ξ+(p)

)
is shown as the

grey, shaded area in Figure 2, where

ξ±(p) , γv(p)± βv(p) + ϑ±(p). (17)

The transformation is derived in Haraldsen et al. (2020).
An equivalent condition to (8) is thus

ψv 6∈ E(p)∀p ∈ ∂Do. (18)

For the purpose of the next lemma, define the distances
from the vehicle heading to this set, given by

∆±(p) , ±ψv ∓ ξ±(p). (19)

The angles, adapted from Lalish et al. (2008), are wrapped
into the domain ∆±(p) ∈ (−2π, 2π] such that the distances
are positive when ψv /∈ E(p) and negative otherwise.
Moreover, the shortest distance is found geometrically as

∆min(p) ,

{
∆+(p) if ψvp − γv(p) ≥ 0,

∆−(p) if ψvp − γv(p) < 0,
(20)

where we map the angular difference to the interval
(
ψvp−

γv(p)
)
∈ (−π, π]. Before stating the next lemma, which

derives a maximum turning requirement, define the con-
stants umax , uo,max + ro,maxdmax and amax , ao,max +

αo,maxdmax, where dmax , max
p∈∂Do

‖po − p‖.

Lemma 2. Let Assumption 1 through 4 hold. Suppose that
the vehicle (1) at some time t1 ≥ t0 satisfies condition (8)
of Lemma 1 and dvo(t1) ≥ dsep. Furthermore, suppose that
the vehicle maintains a turning rate satisfying

∆+
o = 0 =⇒ rv = rv,max

∆−o = 0 =⇒ rv = −rv,max

(21)

for all t ≥ t1, where

∆±o , min
p∈∂Do

∆±(p) (22)
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and the maximum turning rate is lower bounded by

rv,max ≥ ro,max
umax

uv
+

amax√
u2v − u2max

. (23)

Then, under the following assumption:

Assumption 5. The forward speed, uv, is bounded by

uv > umax. (24)

the vehicle will remain out of collision with the obsta-
cle (3), that is dvo(t) ≥ dsep ∀ t ≥ t1.

Proof.

Define ∆± , ∆±(p), γ , γv(p), β , βv(p), and ϑ± ,
ϑ±(p) for conciseness. The time-derivative of ∆± is

∆̇± = ±rv ∓ γ̇ − β̇ ∓ ϑ̇, (25)

by (17). The time-derivative of γ is found geometrically as

γ̇ = −‖vvp‖
d

sin(ψvp − γ), (26)

where d , ‖pv − p‖, and the time-derivative of β is

β̇ =
‖vvp‖
d

cos(ψvp − γ) tan(β), (27)

computed from (9), where we have inserted the expression

for ḋ. The time-derivative of ϑ± is computed from (15) as

ϑ̇± = (−ro + γ̇ ± β̇)F (η±) +
d‖ṗ‖
dt

G(η±), (28)

using that ψ̇p , ro, where η± , η±(p) is defined in (16),
and the following terms are defined for conciseness:

F (x) ,
‖ṗ‖ cos(x)

uv

√
1−

(
‖ṗ‖
uv

)2
sin2(x)

, (29a)

G(x) ,
sin(x)

uv

√
1−

(
‖ṗ‖
uv

)2
sin2(x)

. (29b)

By the above calculations, (25) may be written as

∆̇± =±rv±roF
(
η±
)
∓ d‖ṗ‖

dt
G
(
η±
)
+
(
1+F

(
η±
))

‖vvp‖
d

(± sin (ψvp − γ)− cos (ψvp − γ) tan (β)) .

(30)

The velocity of any point p ∈ ∂Do is computed as

ṗ = vo + doro [− sin(φ) cos(φ)]
>
, (31)

where vo , ṗo, do , ‖po − p‖, and φ , atan2(p −
po). It is straight-forward to verify that ‖ṗ‖ ≤ umax

from (31). Thus, Assumption 5 ensures that the terms (29)
are bounded and that (15) is well-defined. Recalling that

the shortest distance, ∆min , ∆min(p), satisfies (20), we
have ± sin(ψvp− γ) = |sin(ψvp − γ)|. This in combination
with (8) entails ± sin(ψvp − γ)−cos(ψvp − γ) tan(β) ≥ 0.
Thus, seeing that F (η±) ∈ (−1, 1), we may reduce (30) to

∆̇± ≥ ±rv ± roF
(
η±
)
∓ d‖ṗ‖

dt
G
(
η±
)
. (32)

The term d‖ṗ‖
dt can similarly be bounded:

d‖ṗ‖
dt

= ao
(uo + doro sin(ψo − φ))√

u2o + (doro)
2

+ 2dorouo sin(ψo − φ)
+

doαo
(uo sin(ψo − φ) + doro)√

u2o + (doro)
2

+ 2dorouo sin(ψo − φ)
,

(33)

where we employ that φ̇ = ro. It can easily be verified
that amax is an upper bound of (33). The rest of the
terms in (32) are bounded by assumption. It follows that
a turning rate, rv, satisfying (21), where rv,max is lower

bounded by (23), ensures that ∆̇±o ≥ 0, implying that
∆±(p) ≥ ∆±o ≥ 0 for all p ∈ ∂Do by (22), which ensures
that condition (8) of Lemma 1 holds for all t ≥ t1.

4. COLLISION AVOIDANCE ALGORITHM

This section presents the collision avoidance (CA) algo-
rithm. Based on the previous theory, we can strategically
design the algorithm to ensure that collisions are avoided.
Motivated by Wiig et al. (2017), the control system of
the vehicle has two modes: nominal mode and collision
avoidance mode. The control system switches between the
two modes based on a set of safety conditions. An analysis
of the proposed algorithm is given.

4.1 Nominal behaviour

Since obstacle avoidance is the main focus of this paper, we
leave the nominal behaviour of the vehicle unspecified but
assume for convenience that its nominal goal is to reach
some target position pt , 〈xt, yt〉, which requires it to
maintain a heading ψnom. Due to the modular structure
of the algorithm, the nominal behaviour of the vehicle can
easily be replaced with any other desired behaviour.

4.2 Switching conditions

The control system is switched from nominal mode to
collision avoidance mode if the distance to the obstacle
is reduced to a safety distance,

dvo ≤ dsafe, (34)

simultaneously as the desired heading in nominal mode is
unsafe, that is

∃p ∈ ∂Do 3 ψnom ∈ E(p). (35)

The safety distance, dsafe > 0, is a design parameter
but should be chosen large enough to guarantee that a
collision is avoided. We will provide a lower bound of dsafe
in Theorem 1. To avoid oscillations, the vehicle exits CA
mode, and thus resumes its nominal behaviour, only if the
nominal heading is safe to follow once more, that is

ψnom /∈ E(p) ∀p ∈ ∂Do. (36)

4.3 Turning law

In CA mode, it is crucial that the vehicle maintains a safe
heading, as the distance to the obstacle has been reduced
to an undesired distance. The turning direction of the
vehicle is determined as the vehicle enters CA mode and
is held constant throughout the maneuver, chosen as

dir , arg min
j∈{±}

{
∆j

o if ∆±o ≥ 0,

max
p∈∂Do

∣∣∆j(p)
∣∣ otherwise, (37)

where the distances ∆±o are defined in (22). The param-
eter (37) is chosen to satisfy the turning criteria (21) of
Lemma 2 when the vehicle maintains a safe heading by
condition (8). If this is not the case, then the turning
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direction is chosen to make the vehicle take the shortest
turn to a safe heading. The turning rate is moreover chosen
as

rv =

{
±rv,max if ∆±o ≤ ∆safe | dir = ±,
0 otherwise,

(38)

where ∆safe ≥ 0 is a constant design parameter, which can
be interpreted as an angular safety distance.

Remark 3. The intuition behind (38) comes from the
formulation of ∆±o in (22) and the result of Lemma 2.
If the vehicle maintains a safe heading, i.e. satisfies (8),
then ∆±o ≥ 0 since ∆±(p) ≥ 0 for all p ∈ ∂Do. In that
case, the control input satisfies condition (21) of Lemma 2.
If this is not the case, then we are guaranteed that there
exists at least one point p ∈ ∂Do such that ψv ∈ E(p),
rendering the associated distances negative, ∆±(p) < 0,
and thus the minimum (22) is negative, that is ∆±o < 0.
This ensures by (38) that the vehicle will keep turning
in the chosen direction as long as the vehicle maintains an
unsafe heading. Note that, to generate a smooth trajectory
and avoid chattering at ∆±o = ∆safe, the control input (38)
is implemented as a high-gain, proportional controller.

4.4 Analysis

Theorem 1. Under Assumption 1 through 5, the vehi-
cle (1) following the collision avoidance algorithm, with
the switching rules (34)-(36) and the turning law (38), will
avoid a collision with the obstacle (3), that is

dvo(t) ≥ dsep ∀ t ≥ t0, (39)

provided the initial distance to the obstacle satisfies
dvo(t0) ≥ dsafe, where

dsafe ≥
2uv + πumax

rv,max
+ dsep, (40)

and the following assumption holds:

Assumption 6. The maximum turning rate, rv,max, satis-
fies condition (23) of Lemma 2.

Proof.

If the vehicle is not in collision avoidance (CA) mode, it
follows from the switching rules (34)-(36) that dvo > dsafe
or condition (8) holds. It is obvious that (39) holds in the
first case, and it is implied by Lemma 1 in the second case.

Suppose now that the vehicle enters CA mode at a time
t1 ≥ t0 as dvo(t1) = dsafe. If condition (8) does not hold at
this time, then the vehicle will immediately start turning
at the maximum rate to obtain a safe heading by (38).
In order to obtain a safe heading, the required turn can
at most be π rad since the vehicle takes the shortest turn
by (37). Furthermore, the distance to any point p ∈ ∂Do,
moving with the velocity ṗ, can at most be reduced by

2uv + πumax

rv,max
(41)

during the time it takes for the vehicle to make a π rad
turn, as shown in Wiig et al. (2017). Thus, by (40), there
exists a time t2 > t1 at which the vehicle satisfies (8)
and such that dvo(t) ≥ dsep ∀ t ∈ [t1, t2]. It follows from
Lemma 2 and Assumption 6 that (39) holds thereafter.

Last, suppose that the vehicle enters CA mode at a time
t3 > t0 while dvo(t3) < dsafe. At this time, the vehicle must
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(a) North-East plots from the simulation. The vehicle and obstacle
trajectories are given by the blue and red solid lines, respectively.
The vehicle is the yellow polygon, and the obstacle is the orange
polygon. The red, transparent sector represents the union of the sets
E(p) along the obstacle boundary, with a radius of dsafe. The blue
vector shows ψv , and the target position pt is marked by an ’X’.
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(b) Distance to the obstacle during the simulation.

Fig. 3. Simulation with a non-convex obstacle.

satisfy (8), otherwise the vehicle would have entered CA
mode as dvo = dsafe by the switching criteria. It follows
from the turning law (38), Lemma 2, and Assumption 6
that (39) holds. Thus, by the above reasoning, we can
conclude that the vehicle will remain out of collision.

5. SIMULATION EXAMPLE

To demonstrate the algorithm and verify the mathematical
analysis, we present a simulation of the vehicle (1) moving
towards a static target, chosen as pt = 〈130, 0〉 m, in
the presence of an obstacle modeled as a moving, rigid
domain with the dynamics given by (3). The vehicle has
a forward speed of uv = 2 m/s and a maximum turning
rate of rv,max = 0.4 rad/s. We choose ∆safe = 0.1 rad and
dsep = 10 m. The obstacle is represented by the simple

polygon P = {〈21.5, 6〉 , 〈18.5, 9〉 ,
〈
0, 1.5

√
2
〉
, 〈−18.5, 9〉 ,

〈−21.5, 6〉 , 〈0, −1.5〉}, given in meters with respect to the
origin po. The obstacle bounds are ao,max = 0.1 m/s2,
uo,max = 1.5 m/s, ro,max = 0.02 rad/s, and αo,max =
0 rad/s2. We choose dsafe = 36 m to satisfy (40).

The trajectories of the vehicle and the obstacle are shown
in Figure 3a. At t = 16 s, the vehicle is closing in at
the target as the obstacle approaches from the left. The
vehicle enters CA mode in accordance with the switching
rules (34)-(35) as dvo = dsafe and immediately turns right
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by (37), in order to avoid a collision. The vehicle proceeds
in this direction for some time by the turning law (38)
while the obstacle moves towards it at high speed. The
vehicle is eventually able to circumvent the obstacle and
proceed to the target, as seen in the bottom two plots of
Figure 3a. We can verify by Figure 3b that the distance,
dvo, remains above dsep at all times, supporting the result
of Theorem 1.

6. CONCLUSION

In this paper, we have presented a reactive algorithm
for collision avoidance of a dynamic obstacle of arbitrary
shape. The proposed method provably ensures avoidance
of an obstacle that is able to change both its speed and di-
rection at any instant, under explicit conditions derived by
an analysis of the closed-loop system. The algorithm has
the potential to generate less conservative vehicle maneu-
vers compared to methods that approximate the obstacle
shape by a circle or an ellipse, especially when avoiding
obstacles that are not well represented by such shapes,
e.g. non-convex domains. As many physical systems are
subject to kinematic constraints, which may limit their
abilities to avoid collision, we apply the algorithm to a
nonholonomic vehicle that is restricted to maintain a con-
stant forward speed and has a bounded turning rate. Even
under these constraints, we show that collision avoidance
of a dynamic, arbitrarily shaped obstacle is guaranteed,
provided the speed and maximum turning rate of the vehi-
cle are sufficiently large. To verify the theoretical analysis,
we provided a simulation of the vehicle moving towards a
static target in the presence of a dynamic obstacle shaped
as a non-convex polygon, confirming safety of the vehicle.

REFERENCES

Chakravarthy, A. and Ghose, D. (1998). Obstacle avoid-
ance in a dynamic environment: a collision cone ap-
proach. IEEE Transactions on Systems, Man, and Cy-
bernetics, 28(5), 562–574. doi:10.1109/3468.709600.

Choi, Y., Wang, W., Liu, Y., and Kim, M. (2006). Con-
tinuous collision detection for two moving elliptic disks.
IEEE Transactions on Robotics, 22(2), 213–224. doi:
10.1109/TRO.2005.862479.

Haraldsen, A., Wiig, M.S., and Pettersen, K.Y. (2020).
Vehicle safety of the velocity obstacle algorithm. In 59th
IEEE Conference on Decision and Control, 5340–5347.
doi:10.1109/CDC42340.2020.9304208.

Lalish, E., Morgansen, K.A., and Tsukamaki, T. (2008).
Decentralized reactive collision avoidance for multiple
unicycle-type vehicles. In American Control Conference,
5055–5061. doi:10.1109/ACC.2008.4587295.

Li, Y. and Zheng, J. (2020). Real-time collision avoidance
planning for unmanned surface vessels based on field
theory. ISA Transactions, 106, 233–242. doi:https://
doi.org/10.1016/j.isatra.2020.07.018.
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