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Relative heading estimation for pedestrians
based on the gravity vector

Vincent Thio, Member, IEEE , Kjetil Bergh Ånonsen, and Jan Kenneth Bekkeng

Abstract— Inertial navigation of pedestrians carrying a smart de-
vice is a core component of many indoor positioning systems.
While infrastructure-based solutions typically depend on an instal-
lation of dedicated hardware, inertial navigation depends only on
sensors embedded in the device itself. A single solution can thus
be applied to a large range of use cases. This work focuses on
one of the main challenges in inertial navigation: user heading
estimation. We describe a complete statistical model for heading
estimation based on the IMU and magnetometer, assuming a fixed
device pose on the pedestrian. Our aim is to provide a stand-alone
solution, suitable for direct implementation into a larger positioning
framework. The method consists of two consecutive parts. The first
focuses on gravity vector estimation based on IMU data. We describe a method for obtaining independent estimates
under dynamic conditions, thereby removing the quasi-static initialization phase required by conventional methods. The
second part combines the gravity vector with gyro and magnetic measurements to estimate user heading. The proposed
method is tested against a motion capture system, and against an alternative method based on attitude. We find that both
methods produce similar results in terms of accuracy.

Index Terms— Accelerometer, Dead Reckoning, Gravity vector, Gyroscope, Heading, IMU, Inertial Navigation, Kalman
Filter, Magnetometer, MEMS, PDR, Smartphones, Wearables

I. INTRODUCTION

HEADING estimation is a fundamental part of inertial
navigation of pedestrians carrying a smart device - a

concept called Pedestrian Dead Reckoning (PDR). PDR is
primarily based on data obtained by the inertial measurement
unit (IMU) embedded in the device. The IMU consists of a
3-axis accelerometer and 3-axis gyroscope, and is sometimes
complemented by a 3-axis magnetometer. Inertial heading esti-
mation models are often described in the form of an Attitude
Heading Reference System (AHRS), where user heading is
derived from an estimated device attitude (e.g., [1] [2] [3]
[4]). A well-constrained device attitude allows for heading
estimation techniques like extracting horizontal rotation [5]
[6] and Principal Component Analysis (PCA) [7]. At the core
of the AHRS is the sensor fusion process. This typically
involves some form of Kalman Filter (KF) implementation,
e.g., Extended Kalman Filter (EKF) [2] [8], Unscented Kalman
Filter (UKF) [9] or Multiplicative Extended Kalman Filter
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(MEKF) [6] [10]. Other methods include a Particle Filter (PF)
[3] [11] or Complimentary Filter (CF) [12].

The attitude estimation process is characterized by three
distinct phases: Initialization of the device attitude, propaga-
tion based on gyro data, and periodical corrections. The latter
is required to correct for accumulated errors due to residual
gyro bias. Attitude propagation is a well-studied problem (e.g.,
[10]) and varies little between studies. Discrepancies arise
in the initialization and correction phases as both depend on
external measurements. A common approach is to use static
periods, e.g., floor contact of a foot-mounted sensor, to obtain
Zero Velocity Updates (ZUPT) [13] [14] [15]. Variations on
ZUPT have been proposed to include quasi-static states of
handheld devices [16] [17]. A (quasi-)static sensor allows
for (re)-calibration of the gyro and direct estimation of the
gravity vector. In addition, the magnetometer is used to obtain
the direction, i.e., the magnetic vector, of the local magnetic
field. Under ideal conditions, this vector is constantly pointing
towards the magnetic North. In practice, however, indoor areas
often contain local magnetic disturbances caused by electronic
devices and metal in building constructions. Different tech-
niques have been proposed to detect local disturbances and fil-
ter out reliable measurements (e.g., [18], [19]). Device attitude
requires a combination of the magnetic and gravity vector to be
properly defined in the local North-East-Down (NED) frame.
While its accuracy thus depends on the accuracy of both these
vectors, their exact estimation methods, including statistical
information, are generally poorly defined. Furthermore, most
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studies require a (quasi-)static state for filter initialization and
corrections (e.g., [2], [20]).

This work adds on to previous studies by giving a complete
statistical derivation for independent gravity and magnetic
vector estimation from raw sensor data. Our methods are valid
under both static and dynamic conditions, thereby removing
the (quasi-)static constraint of conventional methods. Follow-
ing [6], we separate the heading estimation problem into two
consecutive parts: 1) estimating the gravity vector, followed
by 2) extracting the horizontal component of the gyro rate.
This implicitly assumes that the change in device yaw is
equal to the change in user heading. This is generally true
for fixed device positions (e.g., smartwatch attached to wrist,
or phone in pocket). Our work differs from [6] in that we set
the gravity vector itself as Kalman filter state. Furthermore, we
give an explicit description of the filter initialization phase and
periodical corrections under dynamic conditions. Finally, we
use the statistical information of the magnetic vector to detect
local magnetic sources and filter out unreliable estimates.
The methods described here are tested against the method
described in [6] and against ground truth measurements based
on a motion capture system. The overall aim of this study is to
describe a standalone model suitable for direct implementation
into a larger positioning framework.

The rest of the paper is structured as follows: Section
III describes the derivation of the IMU-based gravity vector
estimation method. The estimated gravity vector is used in
Section IV to compute relative user heading with corrections
based on the magnetometer. Experiments and results are given
in Section V. Conclusions and final remarks are given in
Section VI.

II. NOTATIONS AND DEFINITIONS

A. Reference frames

This study distinguishes between three frames of reference.
Raw IMU/magnetometer measurements and gravity/magnetic
unit vectors are given in the sensor frame. A special case of
the sensor frame is the target frame, which is a sensor frame at
zero rotation. Thus, rotation given in a sensor frame describes
its absolute orientation with respect to a particular target frame.
The target frame is used in Section III to rotate a windowed
signal towards a common frame at window midpoint. User
heading and horizontal rotation are given in the local NED
frame, which is a Euclidean space described by local North,
East and Down vectors. The curvature of the Earth is not
considered due to the relatively small scale of typical indoor
positioning problems. The focus of this study is on relative
heading estimation, i.e., estimating heading relative to some
initial value. In the absence of absolute heading information at
initialization, this value is set to zero. Once linked to the NED
frame (e.g., by PCA of the accelerometer [7]) relative heading
becomes an absolute heading. To keep equations concise and
readable, frame labelling is omitted whenever possible. The
particular frame of reference should be clear from the context.

B. Error contributions
Errors are introduced into the system by imperfect sensor

measurements. The main sources contributing to the measure-
ment error are physical limitations of the sensor, sensor mis-
alignment, hard/soft ironing effects and apparent drift. Errors
related to physical limitations are typically described in terms
of noise and bias. Sensor alignment refers to the orthogonality
of the 3-axes of a single sensor, as well as the relative pose of
the individual sensor frames. Sensors are aligned if they share
a single common frame with orthogonal axes. In addition,
magnetic measurements are distorted by magnetic components
(hard ironing) and temporal magnetic variations due to current
fluctuations (soft ironing) of the device containing the sensor
[21]. Errors caused by a fixed bias, misalignment and hard/soft
ironing effects can be reduced by proper sensor calibration. We
assume calibrated sensors throughout this work. Residual gyro
bias is of particular interest in inertial navigation as it causes
attitude drift over time. While negligible in gravity vector
estimation (Section III), it does affect the heading estimation
process described in Section IV. Temporal variations of gyro
bias are beyond the scope of this paper. Instead, filtered
magnetometer measurements are used for periodical heading
corrections.

An additional gyro error source is Earth’s rotation, causing
apparent drift of the attitude. The gyro noise of commercial-
of-the-shelf smart devices is generally larger than the mag-
nitude of the Earth’s rotation. Apparent drift effects are thus
absorbed by the sensor noise and not explicitly modelled.

We assume additive white Gaussian noise for all sensors,
defined by zero mean and standard deviation obtained by
experiment. The sensor noise implicitly contains residual cal-
ibration errors, temporal changes in sensor bias and apparent
drift. Finally, we assume uncorrelated noise between sensors.

C. Notation conventions
Matrices are described by upper case, rotation matrices by

R and covariance matrices by P (e.g., Pf ). The variance of
a scalar (e.g., heading ψ), is described by a 1-by-1 ’variance
matrix’ Pψ for consistency. Vectors are given in bold, where
the distinction is made between a true value f , expected
value f (sometimes referred to as an estimated or predicted
value) and corrected value f̂ . Raw measurements, or values
based directly thereupon, are described by a tilde, f̃ . The s-
superscript indicates a smoothed value, and the r-superscript a
vector representation in the target frame. k-subscripts indicate
timesteps in discrete systems. Error increments δf are either
described by a normal distribution, e.g., δf ∼ N (µf ,σf ), or
in terms of ’lower-level’ errors. The 3-by-3 skew-symmetric
matrix of a vector f is given by [f ]×. Specifics regarding the
quaternion notation are given in the relevant section.

III. GRAVITY VECTOR ESTIMATION

The accelerometer measures the specific force, denoted f ,
over its three axes of acceleration. The specific force is the
sum of the instantaneous user acceleration a and the local
gravity g with an opposite sign, formalized as

f(t) = a(t)− g(t) (1)
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where all vectors are represented in the sensor frame. In the
following derivation, the time dependency t will be dropped.
Separating the local gravity into a magnitude scalar times a
unit directional vector gives

g = g · γ (2)

Where g is the local gravity magnitude, and γ is the local
gravity unit vector to be estimated. Under static conditions,
the user acceleration is zero and the specific force is directly
related to the local gravity by

f = −g and ‖f‖ = g, (3)

which gives the unit gravity vector as

γ(f) = − f

‖f‖
. (4)

The specific force as measured by the accelerometer is
subject to noise. The measured value, denoted f̃ , is thus the
true specific force minus an unknown error δf ,

f̃ = f − δf . (5)

The error is described in terms of the diagonal matrix P̃f ,
defined by the vector σf containing the three uncorrelated
standard deviations of the accelerometer. In a similar way, the
true gravity vector is the sum of its ’measured’ value (i.e.,
directly related to f̃ ), denoted γ̃, plus an unknown error δγ.
The expected value follows directly from (4) by setting f = f̃ .
The relationship between δγ and δf can be approximated by
a first order Taylor expansion,

γ = γ̃ + δγ

≈ γ̃ +Hf̃δf ,
(6)

where Hf̃ is the Jacobian of (4), evaluated at f̃ , given by

H =
∂γ(f)

∂f
=

1

‖f‖

(
I3 −

1

‖f‖2
ffT

)
. (7)

The covariance matrix of the ’measured’ gravity vector can
now be obtained as follows,

P̃γ = Hf̃ P̃fH
T
f̃
. (8)

The general process of IMU-based gravity vector estimation
thus comes down to approximating (4) and (8) by removing
user acceleration and noise from the acceleration signal. For
a pedestrian carrying a phone, the embedded IMU is in a
dynamic state due to the walking motion. This translates into a
periodic IMU signal, approximately repeated every gait cycle
(a gait cycle consists of two steps, i.e., comparable posture at
start and end). The IMU frequency is thus bounded below
by the walking frequency, except during transition periods
(i.e., start of walk), when true acceleration/deceleration occurs.
Note, however, that lower frequencies might still occur due
to slight changes in walking velocity and sensor movements
unrelated to the walking motion.

A. Low-pass filtering of the acceleration signal

A first approach to the gravity vector estimation problem is
thus to apply a low-pass filter to the acceleration signal with
a cut-off frequency well below the walking frequency. This
approach was previously described by [6], who use an Infinite
Impulse Response (IIR) filter with cut-off frequency around
0.3 Hz. Here, a Finite Impulse Response (FIR) filter is used
instead. This is to stay consistent with the extended methods
described later on. Only the discrete version of the filter will
be evaluated here, since measurements typically come in at
discrete intervals. The discrete filter can be formalized as
follows,

fsk =

N/2∑
i=−N/2

bifk+i (9)

where bi is the ith weight of the discretized smoothing window
of size N . The corresponding covariance Pfs

k
can be obtained

by computing the standard deviation over the individual axes
of the windowed signal.

The gravity vector derived this way diverts from its true
value due to residual user acceleration, sensor noise and
’short-term’ rotation of the sensor. Residual acceleration and
noise effects can be reduced by increasing the window size,
effectively lowering the cut-off frequency. Short-term rotation
refers to the dynamics occurring within the time interval of the
smoothing window. These are primarily related to the walking
motion. This in contrast to ’long-term’ dynamics, e.g., gradual
changes in user heading. The short-term rotation effects derive
from the implicit assumption that the sensor does not rotate
during the smoothing process, i.e., the direction of gravity is
equal for all timesteps in the window. In practice, the sensor
rotates at approximately the walking frequency.

This constitutes a trade-off problem: reducing the window
size reduces the dynamic effects, but also reduces the effec-
tiveness of the low-pass filter. A way to mitigate the short-
term rotation effects is by using the rotation rate, obtained
from the gyroscope, to rotate the windowed signal towards a
single common frame. This ’rotation-adjusted’ method will be
discussed next.

B. Adjusting for short-term rotation

The orientation, or attitude, of the sensor if often described
in the form of a quaternion to ensure a non-singular represen-
tation. The quaternion, denoted q(t), is defined by

q(t) =
[
qw, q

T
v

]T
(10)

where qw is the scalar and qTv the vector part. The quaternion
is related to the rotation rate by the kinematic equation,

d

dt
q(t) =

1

2
Ω(ω(t)) · q(t) (11)

where ω(t) is the rotation rate represented in the sensor frame
and Ω is defined by

Ω(ω(t)) =

[
0 −ω(t)T

ω(t) − [ω(t)]×

]
. (12)
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Assuming a constant rotation rate between gyro measure-
ments ωk, the discretized closed-form solution to (11) be-
comes (see e.g., [6], [10]),

qk+1 = ∆qk ⊗ qk (13)

where ⊗ denotes the quaternion product and

∆qk = q(ωk∆t) =

[
cos(α)

βsin(α)

]
(14)

with
α = ‖ωk‖∆t/2, β =

ωk
‖ωk‖

(15)

constitutes the rotation between tk and tk+1. The rotation
action is based on the rotation matrix, denoted R, which is
related to the quaternion by

R(q) = (q2
w − qTv qv)I + 2qvq

T
v + 2qw [qv]× (16)

Rotation of a vector, e.g. an acceleration measurement f(t),
then follows from direct matrix-vector multiplication,

fr(t) = R(q(t))f(t) (17)

where fr(t) is the representation of f(t) in the target (rotation
free) frame. The opposite rotation, i.e., representing a ’target
frame’-vector in the sensor frame, can be achieved by applying
the quaternion conjugate q∗ =

[
qw,−qTv

]T
. This is equal to

taking the transpose of the rotation matrix.
The ’low-pass filter’ method can now be extended by

applying local rotation to the windowed signal. The extended
version of the discrete low-pass filter (9) becomes,

frsk =

N/2∑
i=−N/2

biR(qk,k+i)fk+i (18)

where qk,k+i denotes the rotation between tk and tk+i. This
rotation results from repeated application of (13),

qk,k+i =



i∏
j=0

q(ωk+j∆t), for i > 0

i∏
j=0

q∗(ωk+j∆t), for i < 0

[1, 0, 0, 0]
T
, for i = 0

(19)

where
∏

denotes the repeated quaternion product. The covari-
ance matrix Pfrs

k
follows from the standard deviations of the

individual axes after adjustment for rotation.
The ’rotation-adjusted’ method provides an independent

gravity vector estimate at any point in time, similar to the ’low-
pass filter’ method but with reduced dynamic effects. Since
the short-term rotation effects are actively integrated into the
solution, the trade-off problem of the previous method is no
longer present. While the rotation adjustment step does add an
additional error source in the form of gyro noise, its effects
are limited to the length of the window. For window sizes up
to a couple of seconds, as used in this study, the gyro noise
effects are considered negligible.

The rotation-adjusted gravity vector estimates are indepen-
dent, i.e., each estimate places a full weight on its own
value. The next step is to include information from previous

estimates. This is particularly useful when going from a static
state, yielding high-accuracy estimates, into a dynamic state.
This ’fusion-based’ approach is described next.

C. Fusion based estimation
A detailed description of an MEKF setup for IMU-driven

systems is given by [10]. The basic idea of the MEKF
is to compute an unconstrained estimate of the three error
components, and use them to update the predicted (and unit
normalized) four-component quaternion. This provides a glob-
ally non-singular attitude representation where the a posteriori
updated quaternion is a unit vector within first order. A brute
force normalization is typically applied after the measurement
update equation. An MEKF setup focusing specifically on
gravity vector estimation was previously described by [6]. The
MEKF is a relatively complex way of estimating the gravity
vector from IMU data. An alternative method, presented be-
low, is to replace the MEKF by a simpler EKF and setting the
gravity vector itself as filter state. In addition, gravity vector
estimates based on the ’rotation-adjusted’ method provide peri-
odical state corrections. To ensure independent measurements,
the time between measurements should be equal or larger
than the window size N . The periodical corrections remove
the quasi-static period constraint typically required for filter
initialization. The EKF setup is described as follows:

a) initialization: The filter initializes after N timesteps
with an independent measurement γ̃0 and associated covari-
ance matrix P̃γ0

:

γ̂0 = γ̃0, P̂γ0 = P̃γ0
(20)

b) propagation: Incoming gyro measurements are inte-
grated into a rotation matrix and the gravity vector is rotated
accordingly. The statistical information of the unknown gyro
error, δω, cannot be added directly to P̂γ . Instead, the rotation
matrix is separated into its expected value and an error
component. Using the residual of the second term of the Taylor
expansion for the error, we get

R(ωk∆t) = R((ω̃k + δωk)∆t)

≈ R(ω̃k∆t) + [δωk∆t]×
(21)

where R(ωk∆t) = R(∆qk), ω̃ is the measured rotation and
δω the unknown error based on the gyro noise. From this, the
expected value becomes

γk+1 = R(ω̃k∆t)γ̂k. (22)

The propagation of the covariance matrix is given by

P γk+1
= R(ω̃k∆t)P̂γkR(ω̃k∆t)T + [γ̂k]×Q[γ̂k]T× (23)

where the diagonal matrix Q contains the uncorrelated gyro
variances integrated over time (i.e., σ2

ω∆t2).
c) correction: The state correction, based on a gravity

vector measurement γ̃k with P̃γk
, is a straightforward process.

The standard Kalman filter equations apply with H = I3,

Kk = P γk(P γk + P̃γk)−1

γ̂k = γk +Kk(γ̃k − γk)

P̂γk = (I3 −Kk)P γk(I3 −Kk)T +KkP̃γkK
T
k

(24)
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where γk and P γk are the a priori, and γ̂k and P̂γk the a
posteriori state estimates. The gravity vector should be re-
normalized after correction due to errors introduced by the
approximation step of (21) and rounding errors.

IV. HEADING ESTIMATION

A well-constrained gravity vector allows for decomposition
of any vector in the sensor frame into its NED horizontal and
vertical components. Thus, given a current relative or absolute
heading estimate ψk, the updated heading ψk+1 becomes

ψk+1 = ψk + γTkωk∆t (25)

where γk is the gravity vector and ωk the rotation rate at time
tk. The expected value of ψk+1 follows directly from (25) by
substituting ψ̂k, γ̂k and ω̃k. The heading error δψ relates to
the errors in gravity vector and rotation rate as follows,

ψk+1 = ψk + (γ̂k + δγk)T (ω̃k + δωk)∆t (26)

where ψ = ψ + δψ. This gives the variance of ψk+1 as

P̄ψk+1
= P̂ψk

+ γ̂TkQγ̂k + ω̃Tk P̂γk
ω̃k∆t2 (27)

where Q contains the integrated gyro noise and P̂γk
is the

covariance matrix of the gravity vector.

A. Heading corrections based on the magnetometer
The 3-axis magnetometer measures the magnetic field flux

density (MFFD), denoted B, in the sensor frame. The direction
of B is given by a unit vector µ, from hereon referred to
as the magnetic vector. The magnetic vector is derived from
raw magnetometer measurements following a similar process
as described in Section III. This gives a mean value µk and
covariance matrix Pk of the magnetic vector at time tk. The
magnetic vector indicates the horizontal orientation, or yaw,
of the phone with respect to the NED frame. It is, however,
not a direct measurement of the user heading itself. Instead,
two sets of measurements, taken at t1 and after some time at
t2, can be used to estimate the change in heading ∆ψ over
that time interval. The process is summarized as follows.

The first step is to compute the vector normal to the plane
described by the magnetic/gravity vector set (µi,γi), at ti=1

and ti=2. This vector, denoted ei, is given by

ei = γi × µi (28)

and lies in the horizontal plane of the NED-frame in approx-
imate Eastward direction. Substituting γi = γ̂i and µi = µ̃i
yields the ’measured’ value ẽi. The corresponding covariance
matrix of e is given by

P̃ei = [γ̂i]×P̃µi
[γ̂i]

T
× + [µ̃i]×P̂γi

[µ̃i]
T
×. (29)

Since both e1 and e2 lie in the horizontal plane, ∆ψ is equal
to the angle between the two vectors,

±∆ψ = cos

(
eT1 e2

‖e1‖ · ‖e2‖

)
, (30)

where we select the solution closest to the value obtained by
the estimation step (25). The ’measured’ value of ∆ψ follows

directly from (30) by substituting ẽ1 and ẽ2, giving ∆ψ̃. The
covariance of ∆ψ can be approximated using a first-order
Taylor expansion,

∆ψ = ∆ψ̃ + δψ

≈ ∆ψ̃ +Hẽaδe
a

(31)

where ea is an augmented vector containing both e-vectors
and Hẽa is the Jacobian of ∆ψ evaluated at ẽa. The Jacobian
can be computed by applying the chain rule,

H =
∂∆ψ

∂ea
=

∂∆ψ

∂f(ea)

∂f(ea)

∂ea
(32)

where

f(ea) =
eT1 e2

‖e1‖ · ‖e2‖
. (33)

The first component of (32), a scalar, is given by the cosine
derivative. The second component is a vector described by

∂f(ea)

∂ea
= f(ea)

[
e1
eT1 e2

− e2
‖e1‖

e2
eT1 e2

− e1
‖e2‖

]
. (34)

Substituting (32)-(34) into (31), the variance of ∆ψ̃ becomes

P̃∆ψ = HT
ẽa P̃eaHẽa (35)

where P̃ea is the covariance matrix of the augmented vector
ẽa. The magnetometer-based heading measurement at t2 be-
comes

ψ̃2 = ψ̃1 + ∆ψ̃1,2

P̃ψ2 = P̃ψ1 + P̃∆ψ1,2

(36)

where the 1, 2-subscript indicates the dependence on gravity
and magnetic vector measurements at t1 and t2. Finally, the
heading correction is computed from the weighted average of
the magnetometer-based heading measurement (36) and the
IMU-based heading prediction (25)-(27), where the weights
are determined by the variances.

The magnetic vector measurement model is based on an
undisturbed magnetic field. That is, it is assumed that the
magnetic vector points towards the same direction in the
NED frame at t1 and t2. This condition requires a filtering
procedure to ensure only measurements with relatively low
magnetic disturbance are considered. We set the following two
conditions:
• Condition I - a magnitude check,

abs(B̃ −Bc) > εm (37)

Where B̃ is the measured MFFD value, Bc the expected
value based on an external model (e.g., World Magnetic
Model) and ε a tolerance parameter based on magnetome-
ter and model errors. The measurement is rejected if it
exceeds the tolerance parameter. This is the standard and
straightforward method to remove clear outliers.

• Condition II - A motion/variance check. Applying the
’rotation-adjusted’ method to the magnetometer yields a
vector mean and variance. In the absence of local mag-
netic sources, the variance is small regardless of device
motion. The variance is also small in the presence of a
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local magnetic source if the device is static. If, however,
the device is in motion, then a local magnetic source
results in a large variance. This concept is demonstrated
more clearly in the third experiment of Section V.

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the described methods by
experiment. The setup consists of a ground truth reference
system based on motion capture by Qualysis [22], calibration
of the ’real’ data source (iPhone 8), and determination of
the model parameters (e.g., filter type, sensor standard devia-
tions). In the first experiment we evaluate the gravity vector
estimation process for three common phone positions. The
most challenging phone position (phone in pocket) is used
in the second experiment to estimate user heading. Finally,
we use simulated local magnetic sources to demonstrate the
effectiveness of the magnetometer filtering method.

A. Data acquisition

1) Ground Truth measurements: The MoCap system con-
sists of 24 cameras (Miqus M3) covering an area of approxi-
mately 60 m2 at a tracking rate of 300 Hz. The system uses
optical tracking to obtain positions of individual reflectors
in the local NED frame. Reflectors placed on three distinct
corners of the phone facilitate rigid body tracking (Fig. 1).
This gave a 97% coverage and near-continuous tracking of the
6-DoF of the phone at sub-millimeter accuracy. During post-
processing, the ground truth measurements were converted into
simulated phone attitude, IMU data and user heading. Time
synchronization between the MoCap system and iPhone is
based on cross-correlation between simulated and real IMU
data.

2) Phone measurements: Accelerometer, gyroscope and
magnetometer data were gathered using an iPhone 8 at a
measurement rate of 100 Hz. A preliminary recording, made
under static conditions, was used to quantify the noise levels
of the individual sensors. The noise is described by a single
standard deviation per sensor (i.e., independent of sensor axis)
for the accelerometer (1e-3 g), gyroscope (2e-3 rad/s) and
magnetometer (0.2 µT ).

B. Experiment I: Gravity vector estimation

The first experiment evaluates the gravity vector estimation
process for three common phone positions, i.e., ’Calling’,
’Navigating’ and ’Pocket’ (Fig. 1). A fourth scenario, ’fast
pace’ with phone in the pocket, was added in addition. Each
scenario consists of 10 seconds of walking. The gravity vector
is estimated using four different methods: ’low-pass filtered’
(LPF, see Section III-A), ’rotation-adjusted’ (RA, see Section
III-B), ’gravity vector-based KF’ (GKF, see Section III-C) and
’attitude-based KF’ (AKF, taken from [6]). The window size
was set to N = 200 to approximate a low-pass filter with
∼ 0.3 Hz cut-off frequency, following [6]. The periodical
correction interval of the KF methods is thus two seconds. The
accuracy of the individual methods is quantified by computing

the norm of the difference between the estimated (γe) and
ground truth (γgt) gravity vector as follows,

ε = ‖γe − γgt‖. (38)

where ε is the error norm.
The results, given in terms of ε, are shown in Fig. 2. The

’Calling’ and ’Navigating’ scenarios produce similar results
for all methods, and generally better than both ’Pocket’
scenarios. Holding the phone in hand reduces the effect of
the walking motion on the phone, which results in a relative
constant gravity vector. The walking motion has a significant
effect, however, on a phone in the pocket. The benefit of the
RA and KF methods becomes clear in this scenario, where
the walking motion is clearly visible in the LPF results. Errors
increase when walking at a faster pace, which may be due to
increased user acceleration.

Differences between the RA, GKF and AKF methods are
small. Note, however, that the AKF method was initialized
using a ’perfect’ gravity vector estimate based on the MoCap
system, whereas the initial value of the GKF method is based
on real IMU data. The ’Pocket’ scenario is used in the next
experiments since it is the most challenging scenario.

C. Experiment II: User heading

The second experiment focuses on heading estimation based
on Section IV. The experiment consists of a phone in a pocket
for a walking trajectory of 40 seconds including multiple 180
degrees turns (Fig. 3). The accuracy of the estimated heading
profile for each gravity vector estimation method is quantified
as the difference between the estimated heading and ground
truth heading. The results are shown in Fig. 4. As shown,
all methods perform similarly with the exception of the LPF
method.

D. Experiment III: Filtering magnetic data

The test area did not contain significant magnetic sources.
Heading based on the magnetometer thus produced low errors
(< 1o) along the entire walking trajectory. To simulate the
effect of local disturbances, four virtual magnetic sources were
introduced into the test area, shown in grey in Fig. 3. The
magnetic disturbances were added to the raw magnetometer
measurements to obtain a ’disturbed’ signal.

Fig. 5 shows the MFFD (top) and magnetic vector variance
norm (bottom) for the undisturbed and disturbed signals. The
MFFD plot shows minor differences between the signals,
which means that the local sources have little effect on the
magnitude of the magnetic field. Condition I (Section IV-A)
would thus be insufficient to filter out local magnetic sources.
The magnetic variance plot, on the other hand, clearly indi-
cates proximity to local magnetic sources. The local sources
thus have a strong effect on the local direction of the magnetic
field. These local directional changes are filtered out based on
Condition II.
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‘Navigating’

‘Pocket’

‘Calling’

reflectors

Fig. 1. The three fixed phone positions considered in this study. The
’Pocket’ position is heavily influenced by short-term rotations related
to the walking motion, whereas the ’Calling’ and ’Navigating’ positions
are relatively stable. The ’Pocket’ position is thus the more challenging
scenario (see also Fig. 2). Rigid body tracking is based on the three
reflectors in the corners of the phone.

TABLE I
GRAVITY VECTOR ERRORS MEAN AND STD

LPF RA GKF AKF
Calling 0.08 (0.05) 0.06 (0.03) 0.04 (0.02) 0.04 (0.02)

Navigating 0.06 (0.03) 0.05 (0.03) 0.03 (0.01) 0.04 (0.02)

Pocket 0.28 (0.13) 0.12 (0.08) 0.09 (0.06) 0.1 (0.06)

Fast pace 0.22 (0.1) 0.15 (0.08) 0.14 (0.07) 0.14 (0.07)
Mean and std (brackets) of the four scenarios presented in Fig. 2.

VI. CONCLUSIONS

This study describes a complete statistical model for head-
ing estimation based on the IMU and magnetometer. It in-
cludes a detailed description of the derivation of the gravity
and magnetic vector estimates, including statistical informa-
tion, from raw sensor data under dynamic conditions. The
model consists of two consecutive steps, 1) gravity vector
estimation, followed by 2) extraction and integration of the
horizontal component of the rotation rate. The first step uses
either the latest gravity vector estimate (RA method) or all
estimates up to that point using an EKF setup (GKF method).
Experimental results show that the accuracy of both methods
are similar to those obtained by an attitude-based (AKF)
method described by [6]. The RA method is of particular
interest as it does not require a Kalman filter setup and is
thus better suited for low-performance devices. In addition, we
apply the statistical information of the magnetic vector to de-
tect local magnetic disturbances, filter out unreliable magnetic
measurements, and correct the (relative) user heading. The
proposed method is validated by experiment using simulated
local magnetic sources. For a pedestrian in motion, we find that
the proposed method clearly detects areas with local magnetic
disturbances.
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Fig. 2. Calculated gravity vector error norm for the three phone
positions, plus a ’fast pace’ experiment with the phone in the pocket, over
a 10 second walking period. Details per method given in the relevant
sections. All methods yield relatively small errors for the ’Calling’ and
’Navigating’ phone positions. The ’Pocket’ position, which is strongly
affected by the walking motion, shows that applying short-term rotation
adjustment reduces the error significantly. Walking at a faster pace
reduces the effect of applying short-term rotations, which may be due
to increases in the user acceleration.
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Fig. 3. 40 seconds walking trajectory as recorded by the MoCap
system (blue). In black the four simulated local magnetic sources with
associated MFFD field in grey scale. The orange symbol represents
largest magnetic vector variance along the trajectory, see also Fig. 5.
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Fig. 4. Heading error computed as the absolute difference between
estimated heading and ground truth heading. Ground truth heading
based on simulated phone attitude and gravity vector.
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Fig. 5. Magnetic Field Flux Density (top) and computed magnetic vector
variance (bottom) along the walking trajectory. ’Undisturbed’ signals
(blue) based on the magnetometer only, whereas ’disturbed’ signals
include simulated magnetic sources. Orange line indicates largest vari-
ance. The results show the benefit of using magnetic vector variance
over MFFD. Local magnetic sources may change the orientation of the
magnetic field without explicitly changing the overall magnitude. The
variance method clearly indicates proximity to local magnetic sources
at 10 and 29 seconds.
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