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Summary

Piezoelectric impact sensors are designed to trigger an immediate or delayed detonation when they
sense that the projectile impacts a desired target. The initial voltage signal of a piezoelectric element
(PE) in a projectile depends on several conditions: the target (material properties, thickness etc.) and
terminal ballistic parameters (impact speed and impact angle). This report presents a conceptual
study of the PE generated (PEG) charge as function of the impact angle. The PEG charge signal
will be derived in the case when a longitudinal, plane, square-shaped stress pulse enters the PE. A
pulse of that form resembles the simplest form of shock waves, and it will simplify the piezoelectric
equations.

Four factors that reduce the PEG charge and PE voltage as the impact angle increases, are
considered: (1) the collision impulse which generates the stress pulse at impact, (2) the transmission
coefficient, (3) the electric field dependence on the stress pulse’s amplitude and direction as described
by the piezoelectric equations, and (4) the proportion of the PE’s volume effectively being stressed
by the stress pulse that traverses it. Other effects are discussed qualitatively, but are either regarded
as negligible or too complex for this simple analytical study to be included in the final PEG charge
formula.

The derived PEG charge formula is applied to a simple scenario where all the assumptions in
the derivation are true, and where the stress pulse’s incident angle equals the impact angle. Though
this scenario is mainly for conceptual study purposes, it also resembles a special case: when the
side of a (e.g. conically shaped) projectile nose collides with a flat and equally angled target plate
and generates a plane shock wave. The projectile nose shape ensures that a plane, square pulse
is produced at the impact interface and propagates unchanged into a PE made of a PZT material,
where the stress generates an electric field.

In this scenario the relative PEG charge amplitude decreases approximately linearly (though
with a contribution from a cosine factor), as the impact angle increases. The PEG charge at 60°
impact angle is 𝑄(60°) ≈ 0.2 ·𝑄(0°). We also learn that the angle dependency of a closed circuited
PE is quite similar to that of an open circuited PE.

The shape of the PEG charge signal’s rising edge as a stress pulse enters it at an angle, is also
studied. As the transmission angle increases, the rising edge changes from a straight line to an
S-shape.
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Sammendrag

Piezoelektriske anslagssensorer designes for å trigge en øyeblikkelig eller forsinket detonasjon
idet de måler at prosjektilet treffer et ønsket mål. Spenningssignalet initielt fra et piezoelektrisk
element i et prosjektil avhenger av flere forhold: målet (dets materielle egenskaper, tykkelse osv.)
og terminalballistiske parametre (anslagsfart og anslagsvinkel). I denne rapporten presenteres en
konseptuell studie av ladningen generert av (og spenningen over) et piezoelektrisk element som
funksjon av anslagsvinkel. Det piezoelektriske elementets genererte ladningssignal blir utledet for
et tilfelle der en longitudinal, plan og firkantformet trykkpuls entrer det piezoelektriske elementet.
En slik puls ligner på den enkleste formen for sjokkbølger, og benyttes her fordi den forenkler de
piezoelektriske ligningene.

Fire faktorer reduserer den genererte ladningen og spenningen når anslagsvinkelen øker: (1) den
genererte trykkamplituden ved anslag som er gitt av impulsen ved anslag, hvilket er proporsjonalt
med den komponenten av prosjektilets bevegelsesmengde som peker vinkelrett på målplata, (2)
transmisjonskoeffisienten, (3) det elektriske feltets avhengighet av trykkpulsens amplitude og retning
som beskrevet av de piezoelektriske ligningene, og (4) volumandelen av det piezoelektriske elementet
som effektivt sett blir stresset av den kryssende trykkpulsen. Andre effekter er også diskutert
kvalitativt, men er enten neglisjerbare eller for komplekse for denne analytiske studien til å bli
inkludert (kvantitativt) i den fullstendige ligningen for den genererte ladningen i det piezoelektriske
element.

Den utledede formelen for den genererte ladningen blir anvendt på et enkelt scenario der alle ant-
agelsene i utledningen er gjeldende, og der trykkpulsens innkommende vinkel på det piezoelektriske
elementet er lik anslagsvinkelen. Selv om dette scenarioet hovedsakelig studeres for konseptuell
forståelse, så ligner den også på et spesialtilfelle: når en flat, skråstilt målplate og (den eksempelvis
konisk formede) prosjektilnesas like skråstilte sideflate kolliderer med hverandre og genererer en
plan sjokkbølge. Prosjektilnesas form er slik at den produserer en plan, firkantpuls i kollisjonsflaten
som får propagere uforandret frem til det piezoelektriske elementet, hvor stresspulsen genererer et
elektrisk felt.

Scenarioet viser at den relative ladningssamplituden avtar tilnærmet lineært (med et bidrag fra
en cosinusfaktor) etterhvert som anslagsvinkelen øker. Ved 60° anslagsvinkel har ladningen falt til
𝑄(60°) ≈ 0.2 ·𝑄(0°). Vi ser også at vinkelavhengigheten er ganske lik for et piezoelektrisk element
i lukket krets og i åpen krets.

Formen på den stigende flanken i ladningssignalet etter hvert som en stresspuls entrer det
piezoelektriske elementet på skrått, er også studert. Med økende transmisjonsvinkel endrer stignin-
gen seg fra en rett linje til en S-kurve.
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1 Introduction
This report is part of a project where the goal is to understand piezoelectric impact sensors in the
nose of projectiles. A piezoelectric impact sensor consists of a piezoelectric element (PE) and an
electric circuit to trigger detonation or notify when the projectile has hit/impacted an object of
sufficient stiffness and thickness (i.e. desired targets). A PE is an element made of a material that
produces an electric field when mechanically stressed (compressed, stretched or bended), and vice
versa [2].
The PE voltage signal depends on several collision conditions: the target (material properties,

thickness etc.) and terminal ballistic parameters (impact speed and impact angle). In order to detect
desired targets and distinguish them from other targets, the terminal ballistic parameters must be
accounted for. Both the impact speed and impact angle are significant to the PE voltage signal of an
impact sensor. The stress generated at impact is known to increase with increasing impact speed
(in both elastic and inelastic/plastic collisions) [9]. As we shall see, the PE voltage is a function
of the impact angle. The present report is an analytical approach to conceptually study this angle
dependency.
In the present study we will see that four angle dependent factors affect the amount of charge

generated in the PE:
• Impulse: The stress pulse amplitude generated at the impact interface is given by the collision
impulse.

• Transmission coefficient: The proportion of the stress pulse amplitude that is transmitted
into the PE, depends on the angle of the incident stress pulse.

• Piezoelectric effect: The piezoelectric equations relate the stress vector to the electric field.
The stress vector direction is of importance.

• Stressed area coverage: The angle at which the incident stress pulse enters the PE, affects
how much of the PE is effectively stressed.

The following chapters will introduce one factor each. They will bring us along on the stress
pulse’s journey from being generated at the impact interface, to transmission into the PE where it
generates voltage and charge by means of the piezoelectric effect. The last chapter (chapter 6) will
combine all the four factors into one PE generated charge expression as function of impact angle,
and apply it to a simple scenario.
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2 Impulse: Stress generated by impact
In this chapter we will introduce the impact angle and its effect on the generated stress pulse
amplitude during an oblique collision. The stress pulse is generated by an impact impulse. The
momentum is conserved at impact between two slabs of materials as they collide. The impulse is
the change in momentum over time:

Δ(𝑚𝐴®𝑢𝐴 + 𝑚𝐵 ®𝑢𝐵)
Δ𝑡

= 0 (2.1)

This is another way of stating that any force has its counterforce: ®𝐹 = − ®𝐹∗ (Newton’s third law).
The force at impact is orthogonal to the interface between the two materials. When a projectile

impacts a plate at an angle 𝛼 with impact velocity ®𝑢, the force amplitude 𝐹 becomes

®𝐹 = 𝐹𝑛̂ =
d(𝑚 ®𝑢)
d𝑡

𝐹 =
d(𝑚 ®𝑢)
d𝑡

· 𝑛̂ = 𝑚
d(𝑢)
d𝑡
cos𝛼 (2.2)

where 𝑛̂ is the impact interface’s normal vector.
Since stress in the target plate and projectile is generated by the external pressure on the

impacting interface, the stress amplitude 𝜎0(®𝑟, 𝛼) = 𝐹/𝐴 is proportional to cosine of the impact
angle 𝛼. The PE voltage will scale accordingly, as we shall see in chapter 6. Let’s call this scaling
factor

𝐼 =
𝜎0(𝛼)
𝜎0(0)

= cos𝛼 (2.3)

2.1 Generated pulse shape

Different geometries of the impact interface generate different stress pulses. In this study we will
look at a type of stress pulse that simplifies the piezoelectric equations: a pulse with the same stress
vector (i.e. the same stress amplitude and direction) everywhere in the pulse. This is the case for a
plane, square pulse. A plane wave is generated when the impact interface is flat.
A square pulse is a square shaped pulse along the pulse’s propagation direction, as illustrated in

fig. 2.1.
A plane stress pulse (or wave) is a pulse where the stress vectors everywhere in the pulse

point in the same direction and the stress is uniform in the plane perpendicular to the propagation
direction. In other words the stress vector of a plane stress wave that propagates in the z-direction,
is independent of x and y: ®𝜎(®𝑟 (𝑡)) = ®𝜎(𝑧(𝑡)). Equivalently, a plane stress pulse has regions of
equal stress where each region constantly form a plane in three dimensional space, as illustrated in
fig. 2.2. Hence the expression ‘plane pulse’.
A sound wave or a longitudinal shock wave is generated at the impact interface, depending on

the impact impulse relative to the material’s elastic limit [9]. A sound wave is a longitudinal, elastic
wave. ’Longitudinal’ means that the particle velocity and the stress vector point along the wave’s
propagation direction.
A longitudinal, plane, square stress pulse is sketched as a shaded area in fig. 2.3. The stress

vector ®𝜎 = 𝜎0 · 𝑧 is the same everywhere in the pulse. The hat on 𝑧 denotes a unit vector.
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Figure 2.1 A square stress pulse propagating at velocity ®𝑣 along an arbitrary axis ®𝑠. It has
particle velocity ®𝑢 and stress vector ®𝜎 everywhere in the pulse.
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Figure 2.2 A plane sine wave has regions of equal stress (marked with red dots) that form
planes (shaded areas) in three dimensional space. Here the stress wave oscillates
along the x-axis in the xy-plane.

®𝑣®𝜎

𝑧

𝑦

Figure 2.3 A longitudinal, plane, square stress pulse is propagating in the z-direction with
velocity ®𝑣. Its stress vector ®𝜎 is constant everywhere in the pulse (the shaded
area), pointing in the same direction as the pulse’s velocity.
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2.2 Effective target thickness and deformations

As a projectile penetrates a target in an inelastic collision, the generated stress pulse will most likely
change during the course of penetration due to deformations. Deformations will change the size
and shape of the impact interface. The greater the impact interface area, the smaller the pressure.
The size of the impact interface area may vary with the impact angle, but it also depends on the
(initial) shape of the projectile and the target. A flat target may envelop a ball that penetrates it, and
its spherical symmetry makes the impact interface area independent of the impact angle. A rod, on
the other hand, has different surfaces in different directions and will thus be enveloped differently
depending on the angle of impact.
The generated stress pulse also depends on the collision duration and the mass that the projectile

effectively has to accelerate as it penetrates or perforates the target. The amount of mass depends
on the projectile’s impact angle, as the projectile’s line of flight has an effective target thickness in
its path.
These effects are too complex to be quantitatively described in this analytical study, and will

therefore be neglected in the relative PE voltage amplitude that we are deriving, even though they
are likely to be significant during penetration. That being said, these effects may be small at the very
beginning of the collision, because the (plastic) deformations take time to develop and envelop.
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3 Transmission and refraction
This chapter presents the transmission coefficient, Snell’s law for refraction and how the transmission
coefficient depends on the electric circuit that the PE is connected to.

Transmission coefficient

When a stresswave crosses the interface frommaterialA toB, the stress amplitude and the propagation
direction are governed by Newton’s third law and the proposition that the materials/particles at
each side of the interface have equal velocities orthogonally to the interface at all times. The
ratio between transmitted and incident stress is called transmission coefficient 𝑇 . The reflection
coefficient 𝑅 is defined correspondingly.
For an incident longitudinal wave in material A propagating at an angle 𝜃𝐴 relative to the normal

surface vector of material B, the stress transmission ratio is

𝑇 =
2𝑍𝐵/cos 𝜃𝐵

𝑍𝐴/cos 𝜃𝐴 + 𝑍𝐵/cos 𝜃𝐵
(3.1)

= 2
(
𝑍𝐴

𝑍𝐵

cos 𝜃𝐵
cos 𝜃𝐴

+ 1
)−1

𝑅 =
𝑍𝐵 cos 𝜃𝐴 − 𝑍𝐴 cos 𝜃𝐵
𝑍𝐴 cos 𝜃𝐵 + 𝑍𝐵 cos 𝜃𝐴

(3.2)

1 + 𝑅 = 𝑇 (3.3)

where the mechanical impedance 𝑍 𝑗 = 𝜌 𝑗 · 𝑣 𝑗 for longitudinal waves in a material labelled 𝑗 [15].
𝜌 is the mass density. 𝑣 is the stress wave’s speed.
The speed of sound for elastic, longitudinal waves is

𝑣 =
√︁
𝑌/𝜌 (3.4)

where 𝑌 is Young’s modulus. The speed 𝑣 of shock waves is given by the Hugoniot equation
𝑣 = 𝐶 + 𝑠𝑢, where C and s are constants derived from linear regression on empirical data [9]. 𝑢 is
the particle speed.

Refraction

When the wave in medium A is incident at an angle 𝜃𝐴 to the interface’s normal line (illustrated in
fig. 3.1), the transmitted wave refracts and propagates at an angle 𝜃𝐵 into medium B. According to
Snell’s law the angles of transmitted ray 𝜃𝐵 and incoming ray 𝜃𝐴,𝑖 are related as

sin 𝜃𝐴,𝑖
𝑣𝐴

=
sin 𝜃𝐵
𝑣𝐵

(3.5)

where 𝑣𝐴 and 𝑣𝐵 are the stress wave speeds in medium A and B, respectively. The reflected ray has
the same, but negative, angle as the incoming ray: 𝜃𝐴 = 𝜃𝐴,𝑖 = −𝜃𝐴,𝑅. Snell’s law is illustrated in
fig. 3.1.
The maximum transmission angle 𝜃𝐵 is the angle where the incident angle 𝜃𝐴,𝑖 is 90°.

For longitudinal waves transmitted from steel into a PE made of Noliac NCE56, max 𝜃𝐵 =

sin−1(𝑣𝑃𝐸/𝑣𝐴) = 41° for an open circuited PE and 27° for a short circuited PE. The material data
are presented in table 3.1.
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Normal line

Material interface

𝜃𝐴,𝑖

𝜃𝐴,𝑅
𝜃𝐵

A
𝑍𝐴, 𝑣𝐴

B
𝑍𝐵, 𝑣𝐵

Figure 3.1 Snell’s law illustrated. The refraction index for stress waves is the sound of speed
𝑣 in each material.

Material Young’s modulus Mass density Speed of sound
𝑌 𝜌 𝑣

GPa kg/m3 m/s
Steel Ovako SS2541 [4] 210 7800 5189

Noliac NCE56, open circuit (D=0) [3] 92.6 7650 3479
Noliac NCE56, short circuit (E=0) [3] 41.8 7650 2338

Table 3.1 Material properties for PE and steel. Speed of sound is calculated using eq. (3.4).
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3.1 Transmission into an open vs. short circuited PE

A PE’s elasticity depends on its material properties and on the electric circuit of which it is a part.
Strain induces electric fields in PEs by (further) polarising the material [2]. If such polarisation
causes an electric current, some mechanical energy is transferred into the electric circuit, and this
softens the PE. Therefore a PE in an open circuit is stiffer than in a short circuit. The Young’s
modulus ratio between a short circuited and an open circuited PE, is 𝑌𝐸/𝑌𝐷 = (1 − 𝑘233) in the PE’s
polarisation direction1, where 𝑘33 is the electromechanical coupling factor of the PE in that direction
[2]. A closed circuit with some electric impedance causes an elasticity somewhere between the
elasticity of an open and a short circuited PE.
If you want to calculate the stiffness matrix of an open circuited PE from that of a short circuited

PE, or vice versa, take a look at appendix A.
The ratio between transmission into an open and a short circuited PE, is

𝑇𝐷/𝑇𝐸 =
𝑍𝐴 + 𝑍𝑃𝐸,𝐸

𝑍𝐴 + 𝑍𝑃𝐸,𝐷

·
𝑍𝑃𝐸,𝐷

𝑍𝑃𝐸,𝐸

(3.6)

at 0° incident angle. 𝑍𝑃𝐸,𝐷 and 𝑍𝑃𝐸,𝐸 are the mechanical impedances of open and short circuited
PEs, respectively.
The ratio between the refraction angle’s of an open and a short circuited PE, is

sin 𝜃𝐵,𝐷
sin 𝜃𝐵,𝐸

=
𝑣𝐵,𝐷

𝑣𝐵,𝐸
=

√︃
1/(1 − 𝑘233) (3.7)

The transmission of sound from steel into a PE made of Noliac’s PZT material NCE56, is 1.29
times greater in an open circuit than in a short circuit. And the sine of the refraction angle is 1.49
times greater. NCE56 has 𝑘 = 0.74 [3], so (1 − 𝑘233) = 0.45. This is calculated from eq. (3.6) and
eq. (3.7) using data from table 3.1.

PEs are orthotropic

The structure and elasticity of piezoelectric materials are anisotropic (typically orthotropic, like
PZT crystallites [2]). In this report the isotropic transmission coefficient presented in eq. (3.1),
will be used as an approximation. We choose the elasticity component in the PE’s polarisation
direction, since Snell’s law is deduced from the proposition that the particle velocities orthogonal
to the interface, are equal on both sides of the interface. The Young’s modulus in that direction
is 𝑠−133 in datasheets [3], where 𝑠 is the PE material’s elastic compliance matrix. The polarisation
direction is typically indexed as direction 3.

1The annotations: subscript 𝐷 annotates open circuited PEs (where the displacement field ®𝐷 = 0), and 𝐸 annotates
short circuited PEs (where the electric field ®𝐸 = 0).
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4 The piezoelectric effect
In this chapter we will study the expected PE voltage and charge output as a square stress pulse
traverses a PE at an angle 𝜃𝑇 relative to the PE’s polarisation direction. First we study how the
electric field depends on the stress vector’s direction. Then we derive the voltage amplitude for a
line-segment of the PE parallel to its polarisation direction before we integrate all these infinitesimal
line-segments into an expression for the entire PE’s voltage. At last a more general expression of
the charge generated in open, closed and short circuited PEs, is derived.
Piezoelectricity is the material property where electric charge is generated on the material’s

surface when the material is mechanically stressed, and vice versa [2]. Piezoelectric materials are
ferroelectric, which is a class of dielectric materials that can be polarised (dipoles are formed) in the
absence of an electric field [10]. For example in the piezoelectric ceramic made of lead zirconate
titanate (PZT) the lattice can be deformed by electric field or by stress, which moves the centre
atom titanium (Ti) or zirconium (Zr) and generates a dipole. See the lattice cell in fig. 4.1. Due to
the atoms’ different electronegativity, an anisotropic structure is a polarised structure.
Net unpolarised PZT ceramics consist of (grains of) lattice cells with randomly oriented

polarisations [17, p. 248]. The dipole orientation of these cells are aligned in a process called the
poling process by applying a strong electric field to the PE, as sketched in fig. 4.2. This process
results in a permanent, net polarisation when the external electric field is removed [17, p. 248].
An electric field is produced in an open circuited PE when it is stressed, and vice versa. The

relation between the stress and the electric field at an infinitesimal element anywhere in the PE, is
given by the piezoelectric equations.
The linear piezoelectric equations of states have been derived by Haskins and Hickman [12].

Mason [14] deduced higher order piezoelectric equations of states. The adiabatic, linear piezoelectric
equations are:

®𝑆 = 𝑠®𝜎 + 𝑑𝑇 ®𝐸 (4.1)
®𝐷 = 𝑑®𝜎 + 𝜀 ®𝐸 (4.2)

according to the IEEE Standard from 1987 [17]. Strain ®𝑆 and stress ®𝜎 are both 6 × 1 vectors
according to the Voigt notation: ®𝜎 = [𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5, 𝜎6]𝑇 = [𝜎11, 𝜎22, 𝜎33, 𝜎23, 𝜎31, 𝜎12]𝑇 =

[𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 , 𝜎𝑦𝑧 , 𝜎𝑧𝑥 , 𝜎𝑥𝑦]𝑇 and likewise for strain. The last three elements are shear strain/stress

Figure 4.1 The lattice cell structure of (left) isotropic and depolarised PZT and (right)
orthotropic and polarised PZT. It is depolarised above the Curie temperature.
The figure is copied from [2].
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Figure 4.2 The sketched hysteresis loops of (left) polarisation and (right) strain for a PZT
ceramic. The hysteresis loops are induced by loading the PE with a cycling
electric field. The first load start at origin (number 1) and follows the dashed
line until the PE is polarised (the poling process), where the domains of dipoles
are all aligned. Then, when the electric field is reduced, the PE state follows the
curve from (2) to (3) where the PE is permanently polarised and saturated (𝑃𝑠𝑎𝑡 ).
The numbers indicate the different domain states: The dipole orientations are
sketched with arrows in the domain boxes. The figure is copied from [20], based
on measurements by [19].

elements. ®𝐸 = [𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧]𝑇 = [𝐸1, 𝐸2, 𝐸3]𝑇 is the electric field, and ®𝐷 is the corresponding
three-dimensional displacement field vector.
The subscripts denote the directions in the anisotropic PE: 3 means the PE’s polarisation

direction (here oriented in the z-direction) in typical datasheets like from Noliac [3], so 1, 2 and
3 means x-, y- and z-direction, respectively. Superscript 𝑇 denotes that the matrix is transposed.
𝜀 is the permittivity matrix. It is a diagonal matrix with elements 𝜀1, 𝜀2 and 𝜀3. 𝑑 is the 6 × 3
piezoelectric charge matrix and 𝑠 is the 6 × 6 elastic compliance matrix. The elastic compliance
matrix is the inverse stiffness matrix. Linear elasticity is assumed. The diagonal elements 𝑠11, 𝑠22
and 𝑠33 are the inverse Young’s moduli in all three directions. Typical matrices for materials like
PZT ceramics, are

𝑑 =


0 0 0 0 𝑑15 0
0 0 0 𝑑24 0 0
𝑑31 𝑑32 𝑑33 0 0 0

 , 𝑠 =


𝑠11 𝑠12 𝑠13 0 0 0
𝑠21 𝑠22 𝑠23 0 0 0
𝑠31 𝑠32 𝑠33 0 0 0
0 0 0 𝑠44 0 0
0 0 0 0 𝑠55 0
0 0 0 0 0 𝑠66


It is important to note that these linear constitutive equations only hold true in a limited range

for PZT-materials due to hysteresis and creep [2]. They are linear approximations to the non-linear
piezoelectric effect. The hysteresis loops in fig. 4.2 show the non-linear (reverse) piezoelectric
effect.
The definition of the displacement field for dielectric materials is

®𝐷 = 𝜀0 ®𝐸 + ®𝑃 (4.3)

with polarisation ®𝑃 and the permittivity in vacuum 𝜀0. All equivalent combinations of piezoelectric
equations of states can be derived from eq. (4.1), eq. (4.2) and eq. (4.3) [12].
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The charge in a PE can be calculated from eq. (4.2) by Gauss’ law. Gauss’ law states that the
total, free and bound charge inside a closed surface equals the integrated divergence of the electric
field 𝐸 , the displacement field 𝐷 and the polarisation 𝑃, respectively:

𝑄𝑡 =

∮
𝜀0 ®𝐸 d ®𝐴 (4.4)

𝑄 𝑓 =

∮
®𝐷 d ®𝐴 (4.5)

𝑄𝑏 = −
∮

®𝑃 d ®𝐴 (4.6)

The total charge in a system is the sum of the free charge and the bound charge, where the bound
charge is the equivalent charge bound to one of the poles of a dipole. When applying Gauss’ laws
eq. (4.4), (4.5) and eq. (4.6) to eq. (4.3), we get

𝑄𝑡 = 𝑄 𝑓 +𝑄𝑏 (4.7)

There are various electric circuit conditions that affect the PE’s behaviour. In this report we
will only consider a PE in sensor mode, which means that the PE is only polarised by stress, like
for example in a microphone. Another possible mode is the actuator mode, where the PE is only
polarised by applied electric field, like in a speaker. The PE can also be in a combination of
the two modes where both mechanical stress and electric field are applied to the PE, like in an
ultrasound equipment. The PE mode depends on whether there is any voltage sources in the electric
circuit other than the PE. In sensor mode the PE can be in an open, closed (i.e. connected to other
components) or short circuit.

4.1 The free charge in a stressed, short circuited PE

For a short circuited (SC) PE the net electric field ®𝐸 is constantly zero [2]. This is because the
voltage across it instantaneously becomes zero, assuming that the electric impedance in the circuit
is negligible. In that case the displacement field 𝐷 is only a function of the stress according to
eq. (4.2):

®𝐷SC = 𝑑®𝜎 (4.8)

According to Gauss’ law, the corresponding free charge is

𝑄 𝑓 =

∫ 3∑︁
𝑖=1

𝑑3𝑖𝜎𝑖𝑖d𝐴3 (4.9)

in a PE with parallel electrodes that are orthogonal to the polarisation direction. 𝐴3 is a cross section
area in the PE with a normal vector along the polarisation direction (axis 3). The displacement field
flux is integrated over the entire Gaussian surface to find the free charge (on the electrode surfaces)
that the Gaussian surface envelopes, as illustrated in fig. 4.3a.
We should get the same free charge 𝑄 𝑓 in the electrodes from eq. (4.9) regardless of where the

cross section area 𝐴3 is located along the z-axis, i.e. regardless of where the stress is integrated in
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𝜎 ≠ 0

−𝑄𝑏 − −

+𝑄𝑏 + +

®𝑃 ®𝐸 = 0 ®𝐷

®𝐸 = 0

®𝐸 = 0

®𝐷 = 0

®𝐷 = 0

∇ · ®𝐷 ≠ 0
−𝑄 𝑓 − −

+𝑄 𝑓 + +

S

(a) Short circuited PE

𝜎 ≠ 0

−𝑄𝑏 − −

+𝑄𝑏 + +

®𝑃 ®𝐸 ®𝐷

®𝐸 = 0

®𝐸 = 0

®𝐸

®𝐸

®𝐷 = 0

®𝐷 = 0

∇ · ®𝐷 ≠ 0
−𝑄 𝑓 − −

−𝑄 𝑓 − −

+𝑄 𝑓 + +

+𝑄 𝑓 + +

S

(b) Open circuited PE

Figure 4.3 The polarisation ®𝑃, electric field ®𝐸 , displacement field ®𝐷, bound charge 𝑄𝑏 and
free charge 𝑄 𝑓 are presented for (a) a stressed, short circuited PE at voltage
equilibrium and (b) a stressed, open circuited PE at voltage equilibrium. The
piezoelectric material (grey square) is located in between two electrodes (white
squares). A Gaussian surface S that envelopes the bound and free charge, is
drawn as a dashed square.
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the PE. Therefore the local stress at position 𝑧 can be replaced by the average stress 𝜎̄ of the entire
PE:

𝑄 𝑓 = 𝐴𝑒

3∑︁
𝑖=1

𝑑3𝑖𝜎̄𝑖𝑖 (4.10)

𝐴𝑒 is the electrode area.
The bound charge is equal to the negative free charge (𝑄 𝑓 = −𝑄𝑏) in a short circuited PE

because the total charge is zero (𝑄𝑡 = 0) in eq. (4.7). The total charge is zero because the electric
field on the Gaussian surface in eq. (4.4) is zero. The opposite sign in 𝑄 𝑓 = −𝑄𝑏 means that the
electrodes have the opposite polarity of the dipoles in the short circuited PE. The bound charge
attracts free charge to the electrodes.

4.2 The free charge and electric field in a stressed, open circuited
PE

The displacement field ®𝐷 is regarded as constant in time (𝜕𝐷
𝜕𝑡

= 0) in an open circuited (OC) PE
[2], while the stress and electric field may vary in the PE. The free charges (the electrons) in the
highly conducting electrodes immediately respond to any changes in the electric field until voltage
equilibrium is attained. The boundary condition for an open circuited PE is therefore that 𝐸 = 0
and 𝐷 = 0 inside the electrodes at voltage equilibrium, as illustrated in fig. 4.3b.
Inside the piezoelectric material 𝐷 ≠ 0 at voltage equilibrium because 𝐷 = 0 in the electrodes

and the divergence of ®𝐷 is non-zero (∇ · ®𝐷 ≠ 0) at the surface of the electrodes where the free
charge has accumulated. According to eq. (4.2), the electric field inside the open circuited PE is
given by the displacement field and the stress that is present:

®𝐸OC = 𝜀−1 ®𝐷OC − 𝜀−1𝑑®𝜎 (4.11)

The voltage across a homogeneously stressed open circuited PE is therefore a function of two terms:
the stress and the displacement field. The voltage is generally defined as

𝑉PE(𝑡) = −
𝐿∫
0

®𝐸 (®𝑟, 𝑡) d®𝑧 (4.12)

across an element with thickness 𝐿.
It is common practice to set the displacement field ®𝐷 equal to zero inside the piezoelectric

material (and not only in the electrodes) of an open circuited PE [13, 5], so that the electric field
becomes

®𝐸OC = −𝜀−1𝑑®𝜎 (4.13)

and the voltage becomes

𝑉PE(𝑡) =
𝐿∫
0

𝜀−1𝑑®𝜎 d®𝑧 (4.14)

Wang et al. [18] write about PZT ceramics and claim (unfortunately without citation or supporting
data) that the displacement field is approximately zero under open circuit conditions, which simplifies
their PE voltage expression by removing the displacement field term. The common expression
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for the voltage generated by a uniaxial stress along the polarisation direction (axis 3) in an open
circuited PE is

𝑉 = 𝑔33𝜎33𝐿 (4.15)

where 𝑔33 = 𝑑33/𝜀33 is called the piezoelectric voltage constant [5, 7].
If the displacement field is zero ( ®𝐷 = 0) everywhere, both in the electrodes and in the

piezoelectric material, Gauss’ law eq. (4.5) implies that there is no free charge (𝑄 𝑓 = 0) in the
PE’s electrodes or elsewhere for that matter. In the following calculations of the PE voltage
and the free charge present in the PE’s electrodes, the displacement field inside the PE will be
assumed/approximated to be zero even though it contradicts the presence of free charge.
I suspect that ®𝐷 commonly is set to zero in order to reduce the degrees of freedom in the

piezoelectric equation eq. (4.2), which makes it possible to analytically calculate a value for the
stress based solely on measuring the voltage, and vice versa.

4.3 The capacitance of a stressed, open circuited PE

The amount of free charge at the surface of a dielectric medium is described by its capacity to store
free charge at a given voltage across the medium. The capacitance is defined as the ratio of the free
charge in the electrodes to the voltage between the electrodes [11]:

𝐶
def
=

𝑄 𝑓

𝑉
(4.16)

For a PE with parallel plate electrodes the capacitance is

𝐶 = 𝜀𝑟𝜀0
𝐴𝑒

𝐿
+
𝐴𝑒

∑3
𝑖=1 𝑑3𝑖 · 𝜎𝑖𝑖

𝐸𝐿
(4.17)

This is deduced from Gauss’ law eq. (4.5) applied to eq. (4.2), and the voltage eq. (4.12). The
first term is constant and can be recognised as the capacitance of parallel plate capacitors without
piezoelectric properties.
If the electric field in eq. (4.13) (where 𝐷 = 0 is assumed) is entered into eq. (4.17), the

capacitance becomes:
𝐶 = 2𝜀𝑟𝜀0

𝐴𝑒

𝐿
(4.18)

Note that this is an unrealistic, self contradicting result, as the capacitance requires that 𝐷 ≠ 0. The
free charge and the corresponding capacitance is zero when 𝐷 = 0 everywhere.
A different approach to the piezoelectric capacitance is to regard it as a capacitor with varying

thickness and electrode area (assuming of course that the PE is not clamped). Ahmad and Allataifeh
[6] expressed the capacitance like this:

𝐶 = 𝜀𝑟𝜀0
𝐴𝑒 + Δ𝐴𝑒

𝐿 + Δ𝐿
(4.19)

For simplicity, let’s assume from here on that the stress term in eq. (4.17) and correspondingly the
area and thickness variations in eq. (4.19) are negligible, so that the parallel plate PE’s capacitance
becomes constant:

𝐶 = 𝜀𝑟𝜀0
𝐴𝑒

𝐿
(4.20)

Themanufacturer of piezoelectric elements, Noliac [1], presents this expression of the PE capacitance,
but stresses that it is a crude approximation.
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4.4 The electric field in an obliquely stressed, open circuited PE

The electric field in an open circuited PE is

®𝐸OC = −𝜀−1𝑑®𝜎

when we set the displacement field 𝐷 to zero in eq. (4.2).
The electric field component of interest is along the polarisation direction (here: the z-axis)

between the parallel electrodes:

𝐸𝑧 = − 1
𝜀3

3∑︁
𝑖=1

𝑑3𝑖 · 𝜎𝑖𝑖 (4.21)

Note that no shear stress (𝜎𝑖 𝑗 where 𝑖 ≠ 𝑗) is able to produce an electric field along the polarisation
axis. For the deduction of the electric field as function of the strain, see appendix B.
Let’s assume that a stress pulse traverses the PE at a transmission angle 𝜃𝑇 . Its velocity is

®𝑣 = 𝑣 · 𝑣̂ = 𝑣 · (cos 𝜃𝑇 · 𝑧 + sin 𝜃𝑇 · 𝑦̂) (4.22)

and correspondingly the longitudinal stress is directed in the same direction as the propagation
velocity (𝜎̂ = 𝑣̂).2 Let’s also assume that it is a square pulse with amplitude 𝜎0. When this stress
pulse propagates in the yz-plane, it produces the electric field

𝐸𝑧 = − 1
𝜀3

𝜎0 · (𝑑33 cos 𝜃𝑇 + 𝑑32 sin 𝜃𝑇 ) (4.23)

in the PE. 𝜃𝑇 is the angle between the longitudinal stress vector’s direction and the PE’s polarisation
direction. Figure 4.4 plots the relative electric field 𝐸𝑧 (𝜃𝑇 )/𝐸𝑧 (0°) in a PE made of Noliac NCE56,
as function of the transmission angle 𝜃𝑇 .
Equation (4.23) and fig. 4.4 show that there is an angle 𝜃0 where the PE electric field is zero

regardless of the stress amplitude 𝜎0. Let’s call this angle the PE cancellation angle, since the
component 𝜎𝑦 cancels out the contribution from 𝜎𝑧 at that angle.
We find the cancellation angle by setting 𝐸𝑧 = 0 in eq. (4.23):

𝜃0 = arctan
(
− 𝑑33
𝑑32

)
(4.24)

Note that 𝑑32 < 0 always.
The PE cancellation angle is 𝜃0 = 66.7° for Noliac NCE56 [5], where 𝑑31 = 𝑑32 = −250 · 10−12

C/N and 𝑑33 = 580 · 10−12 C/N.

4.5 The voltage across a line-segment of the PE

We will now derive the voltage across a line-segment of a PE before integrating all line-segments in
the next section, to get the entire PE’s voltage. Let’s define a line-segment 𝜉 as a line parallel to the
polarisation direction between the two electrodes, at any position 𝑦. A line-segment is illustrated in
fig. 4.5. The voltage across 𝜉 is

𝑉𝜉 (𝑦, 𝑡) = −
∫ 𝐿

0
®𝐸 (𝑦, 𝑧, 𝑡) d®𝑧 = −

∫ 𝐿

0
𝐸𝑧 (𝑦, 𝑧, 𝑡) d𝑧 (4.25)

2The hat marks unity vectors. E.g. 𝑧 is the unity vector in the z-direction.
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Figure 4.4 The electric field strength decreases with increasing transmission angle 𝜃𝑇 in a
PE. Equation (4.23) is plotted with material constants of Noliac NCE56 [5].
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Figure 4.5 A line-segment 𝜉 (red) is sketched. The PE with thickness 𝐿 is polarised in the
z-direction. The stress pulse (grey region) has pulse length 𝑎 when it is inside the
PE, and propagates at an angle 𝜃𝑇 along the trajectory 𝑠. It entered the PE at an
incident angle 𝜃𝑖 .
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𝐿 is the PE’s thickness. When a square stress pulse with amplitude 𝜎0 traverses the PE at an angle
𝜃𝑇 relative to 𝜉, the line-integral becomes

𝑉𝜉 (𝜃𝑇 , 𝑧(𝑡)) = −
∫ 𝐿

0
𝐸𝑧 d𝑧 = −𝐸𝑧 · 𝑧(𝑡)

=
1
𝜀3

𝜎0 · 𝑧(𝑡) · (𝑑33 cos 𝜃𝑇 + 𝑑32 sin 𝜃𝑇 ) (4.26)

where the pulse covers the proportion 𝑧/𝐿 of the line 𝜉 at time 𝑡. This is derived by entering
eq. (4.23) into eq. (4.25) and assuming constant stress direction 𝜎̂0 and amplitude 𝜎0 along the
entire line 𝜉 (and a correspondingly constant electric field strength 𝐸𝑧). As the stress pulse traverses
the line-segment, its maximum voltage during that time is 𝑉𝜉 (𝑧 = 𝐿) when the stress pulse length
is 𝑎 ≥ 𝑠 = 𝐿 cos 𝜃𝑇 , and 𝑉𝜉 (𝑧 = 𝑎) when 𝑎 < 𝐿 cos 𝜃𝑇 .
The maximum voltage of the line-segment 𝜉 as function of transmission angle 𝜃𝑇 relative to

when 𝜃𝑇 = 0°, is
𝑉max(𝜃𝑇 )
𝑉max(0°)

= (cos 𝜃𝑇 + 𝑑32
𝑑33
sin 𝜃𝑇 ) (4.27)

in the case when 𝑎 > 𝐿. When 𝑎 < 𝐿 cos 𝜃𝑇 , less of the line-segment is stressed when 𝜃𝑇 = 0°
than when 𝜃𝑇 > 0° because we assume an infinitely wide pulse with limited length 𝑎. In that case
the right side of eq. (4.27) must be multiplied by the fraction 𝑧/𝑎 = 1/cos 𝜃𝑇 .

4.6 The voltage across an unevenly stressed PE

Let’s now derive the PE’s voltage 𝑉 (𝑡) based on the voltages 𝑉𝜉 (𝑦, 𝑡) across all its line-segments
𝜉 (𝑦). Each line-segment represents an infinitesimally narrow PE (let’s call them line-PEs). And
these line-PEs are connected in parallel by one common electrode on each side of the PE. When a
stress pulse traverses the PE at an angle, some line-segments are stressed before the others. In other
words the PE is unevenly stressed across its cross section. Immediately after one line-segment is
stressed, a voltage difference occurs between the stressed and the relaxed line-PEs as if they were
disconnected. But any voltage difference is quickly evened out because the voltage difference drives
a current in the electrode.
Figure 4.6 sketches an equivalent circuit to an unevenly stressed PE. Several line-PEs are

initially disconnected to imitate the immediate voltage difference. When the current starts running
between parallel connected line-PEs in the PE, it corresponds to closing the switch. The current
runs until a voltage equilibrium is established between the line-PEs. In the sketch only one line-PE
is initially compressed while the other line-PEs are relaxed. We will now calculate the PE’s voltage
at equilibrium, using the equivalent circuit in fig. 4.6.
The charge in the circuit is conserved when the switch in fig. 4.6 is opened/closed. For 𝑁

capacitors

𝑄𝑖 = 𝑉𝑖,OC · 𝐶𝑖 ∀ 𝑖 = {1, 2, ..., 𝑁} in open circuit (OC) (4.28)

𝑄Total = 𝑉CC

𝑁∑︁
𝑖=1

𝐶𝑖 in closed circuit (CC) at equilibrium (4.29)

where 𝐶𝑖 is the capacitance of each line-PE 𝑖. The equilibrium voltage across all capacitors becomes

𝑉CC =

∑𝑁
𝑖=1𝑉𝑖,OC𝐶𝑖∑𝑁

𝑖=1𝐶𝑖

(4.30)
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Figure 4.6 This circuit with capacitors is equivalent to a set of line-PEs in open circuit (open
switch) and closed circuit (closed switch).

due to charge conservation. This is equivalent to the PE voltage across all parallel connected
line-PEs. Notice that this closed circuit voltage is the weighted average of all the open circuit
voltages. In the case where all capacitors have equal capacitance 𝐶 = 𝐶𝑖 ∀𝑖, the closed circuit
voltage becomes the average of the open circuit voltages:

𝑉CC =
1
𝑁

𝑁∑︁
𝑖=1

𝑉𝑖,OC (4.31)

Further, since the line-PEs are infinitesimally narrow (with width d𝑦), the amount of line-PEs 𝑁
across the entire PE (width B) becomes 𝑁 = 𝐵/Δ𝑦 → 𝐵/d𝑦 and calculus gives that

𝑉𝑃𝐸 (𝑡) = lim
𝑁→∞
Δ𝑦→d𝑦

𝑉CC = lim
Δ𝑦→d𝑦

1
𝐵

𝐵/Δ𝑦∑︁
𝑖=1

𝑉𝑖,OCΔ𝑦 =
1
𝐵

∫ 𝐵

0
𝑉 (𝑦, 𝑡)d𝑦 (4.32)

Equilibrium is reached approximately immediately in a PE, even though the line-PEs are stressed
unequally, because there is negligible resistance in the electrode.
The voltage 𝑉PE for the entire PE is

𝑉PE(𝑡) =
1
𝐵

∫ 𝐵

0
𝑉 (𝑦, 𝑡) d𝑦

= − 1
𝐵

𝐵∫
0

𝐿∫
0

𝐸𝑧 (®𝑟, 𝑡) d𝑧 d𝑦

=
1

𝐵𝜀3

𝐵∫
0

𝐿∫
0

3∑︁
𝑖=1

𝑑3𝑖 · 𝜎𝑖𝑖 (®𝑟, 𝑡) d𝑧 d𝑦

=
1

𝐵𝜀3

𝐵∫
0

𝐿∫
0

𝑑32 · 𝜎𝑦𝑦 (®𝑟, 𝑡) + 𝑑33 · 𝜎𝑧𝑧 (®𝑟, 𝑡) d𝑧 d𝑦

=
𝐿

𝜀3
(𝑑32 · 𝜎̄𝑦𝑦 (𝑡) + 𝑑33 · 𝜎̄𝑧𝑧 (𝑡)) (4.33)
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when an arbitrary stress pulse propagates in the yz-plane through an open circuited PE. It is deduced
from eq. (4.21) and eq. (4.32). 𝜎̄𝑦𝑦 and 𝜎̄𝑧𝑧 are the average stress components, averaged across the
entire PE. The PE has thickness 𝐿 in the polarisation direction along the z-axis, and width 𝐵 along
the y-axis. The PE dimensions 𝐿 and 𝐵 are assumed to be constant: any changes to the thickness
and width due to the compression or tension, are neglected.
The corresponding free charge that the open circuited PE has capacity to contain, is

𝑄 𝑓 = 𝐶PE · 𝑉PE,OC (4.34)

=
𝐶PE𝐿

𝜀3
(𝑑32 · 𝜎̄𝑦𝑦 (𝑡) + 𝑑33 · 𝜎̄𝑧𝑧 (𝑡))

This is what the free charge converges towards as 𝐷 → 0. If the PE has parallel electrodes, the
generated PE charge becomes

𝑄 𝑓 = 𝐴𝑒 · (𝑑32 · 𝜎̄𝑦𝑦 (𝑡) + 𝑑33 · 𝜎̄𝑧𝑧 (𝑡)) (4.35)

where 𝐴𝑒 is the electrode area. The approximate capacitance in eq. (4.20) was entered. Remember
that the stress contribution to the PE capacitance in eq. (4.17) has been neglected here.

4.7 The charge generated in open, closed and short circuited PEs

An open and a short circuited PE generate approximately the same amount of free charge if they are
equally stressed. The equations eq. (4.10) and eq. (4.35) for short circuited and open circuited PE,
respectively, have the same expression for the free charge as function of the stress.
The free charge generated in a stressed PE in a closed circuit with other electrical components

(as long as none of them are voltage sources), is equal to the free charge in an open circuited PE if
they are equally stressed. The PE is polarised only by stress in this scenario. The circuit in fig. 4.6
sketches capacitors in parallel with a PE. The stressed PE becomes a part of a closed circuit when
the switch is closed. The bound charge generated in the PE attracts free charge from elsewhere
in the circuit until voltage equilibrium is reached, and the bound charge is generated only by the
stress in the PE. Thus the generated free charge is the same for equally stressed PEs regardless of
the parallel capacitance that the free charge is distributed to. The extreme cases of short circuited
PEs and open circuited PEs correspond to cases where the parallel capacitance goes to infinity and
to zero, respectively.
Technically and theoretically speaking, an open circuited PE with electrodes is a PE connected

in parallel to a capacitor with a very small capacitance. The outer surfaces of the PE electrodes act
as one capacitor.
The general expression for the free charge generated in open, closed and short circuited PEs

with parallel electrodes, is

𝑄 = 𝑄 𝑓 = 𝐴𝑒

3∑︁
𝑖=1

𝑑3𝑖 · 𝜎̄𝑖𝑖 (𝑡)) (4.36)

when PEs are polarised only by the stress (i.e. a PE in sensor mode). 𝐴𝑒 is the electrode area. As
mentioned in section 4.2 and section 4.3, this equation is only a crude approximation of the free
charge for open circuited PEs.
Note that eq. (4.36) is true only for small stress levels where the linear approximation to the

piezoelectric effect holds true; the piezoelectric charge matrix 𝑑 is independent of the stress and the
electric field.
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For a longitudinal, plane, square stress pulse propagating in the yz-plane (𝜎𝑥𝑥 = 0) through the
PE at an angle 𝜃𝑇 relative to its polarisation direction, the PE generates the free charge

𝑄 =
𝐶PE
𝐵𝜀3

(𝑑33 cos 𝜃𝑇 + 𝑑32 sin 𝜃𝑇 )
𝐵∫
0

𝐿∫
0

𝜎0(®𝑟 (𝑡) ) d𝑧 d𝑦 (4.37)

From here on 𝑄 will be called the PE generated (PEG) charge. It is the charge that is generated
by the PE and distributed across the electric circuit. It must not to be confused with the PE charge,
which is the charge (left) in the PE electrodes.
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5 Stressed area coverage
The area that is affected by the stress pulse as it traverses the PE, depends on the pulse’s propagation
direction. In this chapter we derive the maximum area being stressed by a traversing pulse in the PE
as function of the transmission angle 𝜃𝑇 . How the shape of the PEG charge signal’s rising edge (as
the stress pulse enters the PE) depends on 𝜃𝑇 , will also be studied.
The PEG charge signal is given by the integration of the stress pulse inside the PE at a given

time. It is a volume integral, but in case of a plane wave symmetry we can look at the stressed area.
Equation (4.37) implies that the charge produced by a square pulse that propagates in the yz-plane,
is proportional to the stressed area 𝐴(𝑡) at any given time 𝑡:

𝑄 ∝
𝐵∫
0

𝐿∫
0

𝜎0(®𝑟 (𝑡) ) d𝑧 d𝑦 = 𝜎0

𝑦1 (𝑡)∫
0

𝑧1 (𝑦,𝑡)∫
0

d𝑧 d𝑦 = 𝜎0 · 𝐴(𝑡) (5.1)

5.1 A PE charged by a square pulse via its front entrance

In the case where the PE is not in contact with any ductile material on the side, like in fig. 5.1, the
stress pulse enters only at the PE’s front.

A PE

Air

𝜃𝑇
𝜎 > 0

𝜃𝑖

𝑣𝐴

𝑣𝑃𝐸

𝜃𝑖

Figure 5.1 Material A and the PE are in contact only at the PE’s front. A stress pulse (bright
grey area) propagates in material A and is refracted as it’s transmitted into the
PE due to the difference in mechanical impedance. An area with an expanding
stress pulse front (dark grey area) will appear between the refracted plane pulse
front’s edge and the PE’s bottom surface. It spreads out as if from a point source
at the corner of the PE, according to Huygens’ principle.

The pulse front becomes expansive at the edge because the wave spreads out as if from a
point source at the corner of the PE, according to Huygens’ principle. This is sketched in fig. 5.1.
The stress direction is changed for the expanding pulse front in that region, always pointing in
the propagation direction (which is normal to the pulse front). And the energy is conserved in
the expansion. The stress amplitude will therefore be smaller there than in the area of the plane
wave. At small angles the contribution to the piezoelectric effect from the expanding stress pulse
can be neglected. We will neglect this effect even for greater transmission angles, to simplify the
calculations. In that case the entire pulse is assumed to propagate in one direction: the refracted
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𝑧
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(a) Partially stressed PE
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Transmission angle 𝜃𝑇

𝑄max (𝜃𝑇 )
𝑄max (0) , Eq. (5.5)
𝑃𝑧 (𝜃𝑇 )
𝑃𝑧 (0) , Eq. (5.4)
𝐴max (𝜃𝑇 )
𝐴max (0) , Eq. (5.2)

(b) Dimensions of the PE: L=2 mm,B=4 mm. Material data used:
Noliac NCE56 [5].

Figure 5.2 The sketched area in (a) is the area traversed by a plane, square stress wave
that propagated obliquely from the PE’s left side. This area is plotted in (b)
as function of the transmission angle 𝜃𝑇 , which is described by eq. (5.2) with
𝜃𝑇 < arctan(𝐵/𝐿) = 63°. The relative polarisation (see eq. (5.4)) is also plotted.
Their product is the curve 𝑄max (𝜃𝑇 )

𝑄max (0) , according to eq. (5.5).

direction, and leaves an unstressed region (in the shape of a triangle) where the expanding pulse
front would have been. Remember that eq. (5.1) assumes unidirectional stress, like in a plane wave.
The maximum area to be covered by an obliquely propagating stress pulse, is sketched in

fig. 5.2a. The square pulse is assumed to have an infinite width (or at least wider than the PE), and a
finite pulse length 𝑎 > 𝐿𝑐𝑜𝑠𝜃𝑇 . It propagates at a transmission angle 𝜃𝑇 relative to the z-axis. It
covers the area

𝐴max(𝜃𝑇 ) =
{
𝐵𝐿 − 1

2𝐿
2 tan 𝜃𝑇 , when 𝐿 tan 𝜃𝑇 < 𝐵

𝐵2

2 tan 𝜃𝑇 , when 𝐿 tan 𝜃𝑇 ≥ 𝐵
(5.2)

𝐵 is the PE width, and 𝐿 is its thickness in the z-direction. The maximum stressed area becomes a
triangle when the angle 𝜃𝑇 is greater than tan−1 (𝐵/𝐿).
By rewriting the eq. (4.37), the relative maximum PEG charge produced by a longitudinal,

plane, square stress pulse becomes

𝑄max(𝜃𝑇 )
𝑄max(0)

=
𝐴max(𝜃𝑇 )
𝐴max(0)

· 𝑃𝑧 (𝜃𝑇 )
𝑃𝑧 (0)

(5.3)

where
𝑃𝑧 (𝜃𝑇 )
𝑃𝑧 (0)

= (cos 𝜃𝑇 + 𝑑32
𝑑33
sin 𝜃𝑇 ) (5.4)

Equation (5.3) takes into account two angle dependent factors: the effect of the maximum area
stressed in eq. (5.2), and the PE’s angle dependent polarisation 𝑃. Note that the relative polarisation
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is equal to the relative electric field in an open circuited PE, 𝑃𝑧 (𝜃𝑇 )
𝑃𝑧 (0) =

𝐸𝑧,OC (𝜃𝑇 )
𝐸𝑧,OC (0) , which was plotted

in fig. 4.4.
When 𝐿 tan 𝜃𝑇 < 𝐵 the charge becomes

𝑄max(𝜃𝑇 )
𝑄max(0)

= (1 − 𝐿

2𝐵
tan 𝜃𝑇 ) (cos 𝜃𝑇 + 𝑑32

𝑑33
sin 𝜃𝑇 ) (5.5)

as plotted in fig. 5.2b.

The charge signal’s shape

The rising edge of the PEG charge signal depends on the increasing PE volume that a stress pulse
covers when it enters from one side and traverses the PE. We will continue to assume a plane pulse
propagating in the yz-plane. Due to symmetry we only have to consider the area in the yz-plane
that the pulse covers. The covered PE area increases in time (the stress pulse enters at 𝑡 = 0):

𝐴(𝑡) =


𝐴1(𝑡), 𝑡 ∈ [0, 𝑡1 = 𝐵 sin 𝜃𝑇

𝑣
]

𝐴1(𝑡1) + 𝐴2(𝑡 − 𝑡1), 𝑡 ∈ [𝑡1, 𝑡2 = 𝐿
𝑣 cos 𝜃𝑇 ]

𝐴1(𝑡1) + 𝐴2(𝑡2 − 𝑡1) + 𝐴3(𝑡 − 𝑡2), 𝑡 ∈ [𝑡2, 𝑡2 + 1𝑣 (𝐵 − 𝐿 tan 𝜃𝑇 ) sin 𝜃𝑇 ]
(5.6)

where

𝐴1(𝑡) =
(𝑣𝑡)2
2 tan 𝜃𝑇

𝐴2(𝑡) =
(
𝐵 cos 𝜃𝑇 − 𝑣𝑡 tan 𝜃𝑇

2

)
· 𝑣𝑡

𝐴3(𝑡) =
(𝐵 − 𝐿 tan 𝜃𝑇
cos 𝜃𝑇

− 𝑣𝑡 (tan 𝜃𝑇 + 1/tan 𝜃𝑇 )
2

)
· 𝑣𝑡

Here it is assumed that the stress pulse front reaches the PE’s upper left corner (in fig. 5.3a)
before it reaches the rear side of the PE. Or put in mathematical terms: 𝑡1 = 𝐵 sin 𝜃𝑇

𝑣
≤ 𝐿

𝑣 cos 𝜃𝑇 = 𝑡2

is assumed. This is equivalent to sin 2𝜃𝑇 ≤ 2𝐿
𝐵
. The opposite case (sin 2𝜃𝑇 > 2𝐿

𝐵
) causes a slightly

different stressed area function. In that case the pulse front reaches the rear side before it reaches
the upper left corner (0, 𝐵): 𝐴′

2(𝑡) =
𝐿

sin 𝜃𝑇 · 𝑣𝑡. 𝐴′
2(𝑡) is a parallelogram with increasing height 𝑣𝑡.

The assumption tan 𝜃𝑇 < 𝐵
𝐿
is also made in eq. (5.6). If 𝐿 tan 𝜃𝑇 > 𝐵, then stage 3 with area 𝐴3(𝑡)

disappears.
In this section we have seen how the start of the charge signal is shaped as a stress pulse front

traverses the PE at an angle. For comparison, the next section presents the shape of the PEG charge
signal due to a stress pulse traversing at zero degree (transmission) angle.

The charge signal of a square stress pulse incident at 0°

The PE charge signal shape is given by the shape, speed and transmission angle 𝜃𝑇 of the traversing
stress pulse. For a plane, square pulse traversing the PE at 𝜃𝑇 =0°, the PEG charge signal 𝑄(𝑧(𝑡))
becomes a trapezoid, as shown in fig. 5.4. The resulting PEG charge signals of three different pulse
lengths 𝑎, are presented in the figure: 𝑎 > 𝐿, 𝑎 = 𝐿 and 𝑎 < 𝐿. The stress pulse length and duration
𝑡𝑎 are related by the propagation speed 𝑣PE in the PE: 𝑎 = 𝑣PE · 𝑡𝑎.
The charge signal’s rise time is the stress pulse front’s transit time3 through the PE, when 𝑎 > 𝐿.

When 𝑎 < 𝐿 the rise time is the pulse duration 𝑡𝑎.

3Transit time is the time to travel through something.
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(b) Equation (5.6) is plotted for 𝐿 =2mm, 𝐵 =4mm and 𝜃𝑇 = 20°.

Figure 5.3 The three shaded areas in the PE in (a) are accumulated in the plot in (b) as the
stress pulse traverses the PE at an angle 𝜃𝑇 .

The PEG charge for any stress pulse entering at 0° incident angle is

𝑄 = 𝐶PE · 𝑔33
∫ 𝐿

0
𝜎(𝑧, 𝑡) d𝑧 (5.7)

derived for a uniaxial stress (𝜎𝑧 ≠ 0, 𝜎𝑥 = 𝜎𝑦 = 0) from eq. (4.37). 𝑔33 = 𝑑33
𝜀3
is the piezoelectric

voltage constant in the polarisation direction (denoted with index 3). One may notice that eq. (5.7) is
equivalent to the cross-correlation between the square pulse and a fixed square function representing
the PE with width equal to the PE thickness and with unit amplitude.

5.2 Surface waves contribute to the PE via the free surface

In this study (for simplicity) we neglected the effect of the surface wave that forms on the A-to-air
interface when a compressive wave in material A impacts the free surface. This phenomenon is
sketched in fig. 5.5. Surface waves in solids are also called Rayleigh waves [16, p. 28]. This surface
wave will propagate towards the PE and cause a compressive wave in the PE in addition to the
longitudinal wavefront that enters the PE directly. Think of it as a trampoline: Jumping in the centre
causes a surface wave to propagate along the sheet out to the sturdy legs at the periphery. The legs
are thus pushed down (compressed) by that surface wave. The PE will be compressed by the surface
wave just like the legs on a trampoline.
The Rayleigh wave arrives at the PE after the direct longitudinal wave. The Rayleigh wave has

to travel farther (i.e. the hypotenuse of a triangle) than the longitudinal wave that created it, and it
propagates slower. Rayleigh waves typically propagates slower than shear waves, which are slower
than longitudinal waves.[16, p. 40] For example: in steel the Rayleigh wave propagates at 57 % of
the longitudinal wave’s speed. This is based on the data and equations found in [16, p. 41] and [4].
In addition the creation of the Rayleigh wave as the longitudinal wave hits the free surface, also

takes a bit of time.
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Figure 5.4 The integration of the square stress pulse that propagates through the PE with
thickness 𝐿, produces one of the charge signals seen below it, depending on the
pulse’s length 𝑎: 𝑎 > 𝐿, 𝑎 = 𝐿 or 𝑎 < 𝐿. The charge signal duration is 𝑎+𝐿

𝑣𝑃𝐸
for

all three cases. The dashed line marks the Gaussian surface S.
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σ > 0

PE

Air

vA
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Figure 5.5 A surface wave arises when a longitudinal stress wave in material A impacts the
free surface (i.e. the interface to air). The surface wave is going to propagate
towards the PE and compress it.
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6 The PE generated charge as function of impact angle:
A product of the four factors

The previous chapters have presented four angle dependent factors each that affect the charge
amplitude of the piezoelectric impact sensor. Now it is time to combine the factors into the product
that connects the stress pulse generated at the impact interface, to the PEG charge.
The formula for the relative PEG charge amplitude generated by a longitudinal, plane, square

stress pulse, is:

𝑄max(𝜃𝑇 , 𝛼)
𝑄max(0, 0)

= 𝐼 · 𝑇
𝑇0

· 𝐴

𝐴0
· 𝑃𝑧

𝑃𝑧,0
(6.1)

𝐼 = cos𝛼

𝑇

𝑇0
=

𝑍𝐴

𝑍𝑃𝐸
+ 1

𝑍𝐴

𝑍𝑃𝐸

cos 𝜃𝑇
cos 𝜃𝑖 + 1

𝐴

𝐴0
= 1 − 𝐿

2𝐵
tan 𝜃𝑇

𝑃𝑧

𝑃𝑧,0
= cos 𝜃𝑇 + 𝑑32

𝑑33
sin 𝜃𝑇

𝜃𝑖 = sin−1
( 𝑣𝐴

𝑣𝑃𝐸

sin 𝜃𝑇
)

This is the result of combining the equations for the angle dependent factors: the relative impulse
𝐼 expressed by eq. (2.3), the isotropic transmission coefficient 𝑇 expressed by eq. (3.1), the
piezoelectric effect that causes polarisation 𝑃𝑧 of the PE according to eq. (5.4), and the area 𝐴
(expressed by eq. (5.2)) that the stress pulse covers as it traverses the PE. The last equation above is
Snell’s law. Snell’s law relates the incident angle 𝜃𝑖 in material A to the transmission angle in the
PE. 𝑍 𝑗 and 𝑣 𝑗 are the mechanical impedance and the stress pulse’s speed in the indexed material 𝑗 ,
respectively. 𝑑32 and 𝑑33 are two of the piezoelectric charge constants of the PE. The reference
charge 𝑄max(0, 0) is the charge amplitude at 0° impact angle 𝛼 and 0° transmission angle 𝜃𝑇 .
Equation (6.1) is true for open, closed and short circuited PEs. It describes the relative bound

charge generated in the PE, which corresponds to the relative polarisation. When the PE is open
circuited, eq. (6.1) is equal to the relative PE voltage amplitude. When the PE is short circuited,
eq. (6.1) is equal to the free charge that flows in the current to the PE in order to counter the bound
charge and cancel out the electric field that the bound charge causes.
There are several assumptions behind eq. (6.1) that makes it look as simple as it does. The stress

pulse being considered is a longitudinal, plane, square shaped pulse with a pulse length and pulse
width so great that it can cover the entire PE. A plane wave is an important assumption because it
means that the stress is directed in the same direction everywhere in the wave or pulse. And the
square shape implies that the same stress amplitude 𝜎0 is everywhere in the square. In case of
non-square pulses the PEG charge amplitude will vary with the portion of the stress pulse that is
inside the PE, and is not dividable by a stress amplitude 𝜎0 and its corresponding reference charge
𝑄max(0, 0). (It may however be approximated as such, specially if the pulse stress gradient is small,
i.e. the pulse comprise of long wavelengths.)
Some effects were neglected when deriving eq. (6.1): The expanding part of the wavefront as

discussed in section 5.1, and the contribution of the surface wave generated at the free surface next
to the PE (see section 5.2).
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The maybe most crucial errors in the approximation given by eq. (6.1) are to neglect the effective
target thickness in the projectile’s direction of flight and the deformation of the impact interface
during penetration. As briefly mentioned in chapter 2, these effects are most likely important,
but too complex and case dependent to prioritise a quantitative description of it in this analytical,
conceptual study. Equation (6.1) is therefore at best valid for the initial pulse before deformation
has had time to reshape the projectile and target noticeably. The effective target thickness may be
neglected in cases where the target is extremely thick; so thick that the projectile won’t perforate it.
Any absorbed energy (due to plastic deformations etc.) in the projectile nose as the pulse

traverses it, has not been considered in this study because it is assumed to be an angle independent
factor. If the absolute PEG charge amplitude is of interest, the absorbed energy must be taken into
account.
Equation (6.1) is also applicable to geometries where the pulse may propagate with incident

angle 𝜃𝑖 different from the impact angle 𝛼. For projectile nose geometries that generate an expanding
longitudinal wave, the equation may approximate the PEG charge amplitude as long as the curvature
of the expanding wavefront is small. For instance this is the case for a spherically propagating wave
that enters the PE far from its origin. It can be approximated as a plane wave in the PE. The pulse
may still have to be square shaped or at least a pulse with minor variations in stress amplitude (like
a sound wave with long wavelength), if the eq. (6.1) is expected to make a good approximation of
the PEG charge amplitude.
More complex projectile geometries cause more complex waves where the longitudinal stress

may point in all directions and vary significantly in amplitude. These situations will most likely
have a more complicated relative PEG charge than eq. (6.1). Simulation tools are recommended for
those cases, where eq. (4.33) can be applied to the average stress of the simulated PE. Remember to
adjust the PE’s elasticity according to the electric circuit it is thought to be connected to.

6.1 Applying the analytic solution to a real-world example

We will now take a look at a simple scenario designed to fulfil all the assumptions of the derived
PEG charge in eq. (6.1). The projectile and target are designed to ensure that the stress pulse stays
plane and square throughout the entire journey from the impact interface to and through the PE.
This scenario mainly demonstrates the derived PEG charge expression to gain understanding

of how impact sensors work. However, it also resembles the specific, real impact case where the
straight side of a conically shaped projectile nose tangents a flat surface (like the top of a tank) and
generates a shock wave given that the impact is hard enough.
Shock waves only appear at stress levels above the material’s elastic limit (also known as yield

strength in metals) [9]. As presented in chapter 2, the stress is proportional to the impulse and the
area of impact. For a given target and projectile, the projectile is shocked above a certain impact
velocity.
A shock wave can be approximated as a square stress pulse, as argued in more detail in

appendix C. A shock wave is defined by the steepness of its wavefront. Its front is almost vertical
(strain rate ' 107 s−1 [16, p. 325]), thus shocking the material. (When shocked, the material’s state
jumps to a higher energy state without following the curve of its equilibrium states [9].)
In fig. 6.1 a longitudinal, plane, square stress pulse is produced at the flat impact interface and

propagates towards the PE, where it generates a charge with the relative amplitude as presented
in fig. 6.2. The projectile’s "tilted square" shape ensures that the stress pulse is unchanged as it
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propagates from the impact interface to the PE.4 Hence it enters the PE in a longitudinal, plane and
square shape. The wavefront enters the PE at the same angle as the impact angle: 𝛼 = 𝜃𝑖 . The PE is
polarised in the z-direction.
The mechanical constants used in this scenario for material A (steel) and the PE (Noliac NCE56),

are found in table 3.1. The piezoelectric constants of Noliac NCE56 are found in [3].
The curves in fig. 6.2 present the relative PE charge amplitude for (a) an open and (b) a short

circuited PE made of Noliac’s NCE56 material. The relative charge for a closed circuited PE will
lie somewhere between those curves, depending on the electric impedance of the closed circuit.
The difference between the curves (a) and (b) is caused by the relative transmission coefficient

𝑇
𝑇0
and most of all the refraction sin 𝜃𝑖sin 𝜃𝑇 , as they depend on the PE’s elasticity. A short circuited PE is

softer than an open circuited PE, due to different electric fields. This is deduced in appendix A.
Hence an open and a closed circuited PE are stressed differently and therefore generate different
amounts of charge.
Piezoelectric elements are anisotropic (typically orthotropic). The isotropic transmission

coefficient used in eq. (6.1) therefore introduces an error. However, when the Young’s modulus in
all directions are approximately equal (𝑌1 = 𝑌2 ≈ 𝑌3), the error can be neglected. In this example
Noliac NCE56 is applied as PE material. Its Young’s moduli are related as 𝑌3/𝑌1 = 0.9 [3].

4Cerv et al. [8] calculated the elastic waves in two, colliding infinite rods with cylinder symmetry. According to their
calculations the wavefront is plane in those rods, but there are trailing waves that initially are spherical. Far into the (thin)
rods these trailing waves will converge into a plane wavefront.
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Figure 6.1 An oblique impact situation generating a longitudinal, plane stress pulse: The
tilted square shaped projectile nose impacts a target plate at an angle 𝛼. ®𝑢 is the
projectile velocity prior to impact. The projectile nose A is a square rotated at an
angle 𝜃𝑖 = 𝛼 in order to generate a plane wave at the plane impact interface, and
to have orthogonal walls that lead the pulse unchanged to the PE.
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Figure 6.2 The relative PE generated charge amplitude of the scenario sketched in fig. 6.1 is
plotted, which is described by eq. (6.1) with 𝛼 = 𝜃𝑖. Material A is steel and the
PE is NCE56. See table 3.1 for mechanical constants. The PE’s dimensions: L=2
mm, B=4 mm. The piezoelectric charge constants used, are 𝑑33 = 580 ·10−12m/V
and 𝑑31 = −250 · 10−12m/V [3].
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7 Conclusion
The PE generated charge depends on both the stress amplitude and propagation direction through it.
A general expression has been derived for the free charge generated by an incoming stress pulse in
a PE with parallel plate electrodes: eq. (4.36). It makes no assumption about the characteristics
of the stress pulse that enters the PE. The equation (4.36) applies to unevenly stressed PEs in an
open, closed or short circuit. However, it is a crude approximation for open circuited PEs because
the displacement field is assumed to be negligible when calculating the voltage, and the stress
contribution to the PE capacitance is neglected. These assumptions are discussed in section 4.2
and section 4.3. The voltage across an unevenly stressed, open circuited PE was also deduced (see
eq. (4.33)) based on that same displacement field assumption.
The impact angle dependency of the PE generated charge amplitude has been derived (see

eq. (6.1)), where the PE was traversed by a longitudinal, plane, square stress pulse. The equation
was applied to a conceptual impact scenario that was designed so that the assumptions of the derived
equation were (approximately) true. The resulting relative PE charge amplitude as function of the
impact angle, was presented in fig. 6.2. It decreases with increasing impact angle. The relative PE
charge amplitude for an open and a closed circuited PE, are quite similar. At 60° impact angle the
PE charge amplitude is 𝑄max(60°) ≈ 0.2 · 𝑄max(0°). At 90° it is zero.
Four factors were taken into consideration when deriving the relative PE charge and voltage

amplitude as function of impact angle, each presented in their own chapter. These factors are:
the impact impulse, the transmission coefficient, the proportion of the PE volume that effectively
is stressed by the pulse, and the piezoelectric effect which depends on the pulse’s amplitude and
propagation direction through the PE.
Some effects were disregarded when deriving the relative PE charge amplitude. It should be

noted that two of them were not considered negligible to the impact angle dependency of the
PE charge amplitude, only too complex and too case specific to be quantified in this analytical,
conceptual study. These two effects were the effective target thickness and the size of the impact
interface area as function of impact angle. The stress’ effect on the capacitance of piezoelectric
elements was also neglected, but should be considered in future work when calculating the free
charge generated by open and closed circuited PEs.
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A The relation between an open and a short circuited
PE’s stiffness matrix

In PE datasheets two types of elastic compliance coefficients are usually presented: Open (𝑠𝐷) and
short (𝑠𝐸 ) circuit. The annotations mean: Displacement field ®𝐷 = 0 in open circuit PEs, while the
electric field ®𝐸 = 0 in short circuited PEs.
When the displacement field 𝐷 is zero, eq. (4.2) can be rewritten as

®𝐸 = −𝜀−1𝑑®𝜎 (A.1)

We get the constitutive relation between stress and strain in an open circuit case by replacing the
electric field 𝐸 in eq. (4.1) with eq. (A.1):

®𝑆 = 𝑠®𝜎 + 𝑑𝑇 ®𝐸
= (𝑠 − 𝑑𝑇 𝜀−1𝑑) ®𝜎
= 𝑠

𝐷
®𝜎

The relation between the elastic compliance matrix of an open and a short circuited PE, is

𝑠𝐷 = 𝑠
𝐸
− 𝑑𝑇 𝜀−1𝑑. (A.2)

It is defined according to [2], which allegedly follows the European standard EN-50324-2. For the
three first diagonal elements in the matrix (𝑠𝑖𝑖 ∀ 𝑖 = {1, 2, 3}) the electromechanical coupling factor
𝑘 can be used to relate the open and closed circuit: 𝑠𝐷,𝑖𝑖/𝑠𝐸,𝑖𝑖 = (1 − 𝑘2

𝑖𝑖
).

Note that the elastic compliance 𝑠𝐷 relates strain to stress in open circuited PEs. 𝑠𝐷 is not the 𝑠
in eq. (4.1) with annotation added.While 𝑠 = 𝑠𝐸 in eq. (4.1) because the index 𝐸 means that ®𝐸 = 0.
For closed circuits with some resistance (not short circuit), the PE’s elasticity will lie somewhere

between 𝑠𝐸 and 𝑠𝐷 .
Equation (A.2) shows that an open circuited PE is stiffer than in a short circuited PE: 𝑌𝐷,𝑖 =

1/𝑠𝐷,𝑖𝑖 > 𝑌𝐸,𝑖 = 1/𝑠𝐸,𝑖𝑖∀ 𝑖 = {1, 2, 3}. Young’s moduli 𝑌𝑖 are the three first diagonal elements of
an inversed elastic compliance matrix (𝑠−1). The permittivity 𝜀 is positive, and so are the diagonal
elements of the elastic compliance matrices 𝑠𝐸 and 𝑠𝐷 .

38 FFI-RAPPORT 21/00110



B PE voltage as function of strain
An alternative to calculating the piezoelectric field from stress (see eq. (4.33)), is to calculate it
from strain.
The strain is related directly to electric field in the piezo as

𝐸3

( 3∑︁
𝑘=1

3∑︁
𝑖=1

𝑑3𝑖 · (𝑠−1)𝑖𝑘 · 𝑑3𝑘 − 𝜀33

)
=

3∑︁
𝑗=1

3∑︁
𝑖=1

𝑑3𝑖 · (𝑠−1)𝑖 𝑗 · 𝑆 𝑗 (B.1)

This is deduced from the piezoelectric equations and assuming that displacement field ®𝐷 = 0 (open
circuit):

®𝑆 = 𝑠®𝜎 + 𝑑𝑇 ®𝐸
−𝜀 ®𝐸 = 𝑑®𝜎

By rewriting these equations and solving for strain and electric field, the result becomes

𝑑𝑠−1 ®𝑆 = 𝑑®𝜎 + 𝑑𝑠−1𝑑𝑇 ®𝐸 = −𝜀 ®𝐸 + 𝑑𝑠−1𝑑𝑇 ®𝐸 = (−𝜀 + 𝑑𝑠−1𝑑𝑇 ) ®𝐸 (B.2)

Strain ®𝑆 and stress ®𝜎 are both 6 × 1 vectors according to the Voigt notation:
®𝜎 = [𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5, 𝜎6]𝑇 = [𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 , 𝜎𝑦𝑧 , 𝜎𝑧𝑥 , 𝜎𝑥𝑦]𝑇 and likewise for strain. The last three
elements are shear elements. The electric field ®𝐸 = [𝐸1, 𝐸2, 𝐸3]𝑇 = [𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧]𝑇 , where 𝐸3 is
oriented along the PE’s polarisation.
Sirohi and Chopra [17] presents typical matrices for piezoelectric elements (IEEE Standard,

1987). The permittivity matrix 𝜀 is a diagonal matrix with 𝜀1, 𝜀2 and 𝜀3 as entries. For piezoelectric
elements like PZT, the piezoelectric charge constant matrix 𝑑 is

𝑑 =


0 0 0 0 𝑑15 0
0 0 0 𝑑24 0 0
𝑑31 𝑑32 𝑑33 0 0 0

 (B.3)

Elastic compliance matrix5

𝑠 =



𝑠11 𝑠12 𝑠13 0 0 0
𝑠21 𝑠22 𝑠23 0 0 0
𝑠31 𝑠32 𝑠33 0 0 0
0 0 0 𝑠44 0 0
0 0 0 0 𝑠55 0
0 0 0 0 0 𝑠66


(B.4)

First we derive the right-hand side of eq. (B.1). When multiplying eq. (B.3) by the inverse of 𝑠
in eq. (B.4), we get

𝑑 𝑠−1 =


0 0 0 0 𝑑15 · 𝑠−155 0
0 0 0 𝑑24 · 𝑠−144 0 0∑3

𝑖=1 𝑑3𝑖 · (𝑠−1)𝑖1
∑3

𝑖=1 𝑑3𝑖 · (𝑠−1)𝑖2
∑3

𝑖=1 𝑑3𝑖 · (𝑠−1)𝑖3 0 0 0


(B.5)

5Elastic compliance matrix is the inverse stiffness matrix, so linear elasticity is assumed. The diagonal elements
𝑠11, 𝑠22 and 𝑠33 are the inverse Young’s moduli in three directions.
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We further multiply it by the strain vector ®𝑆 and the third element of the vector is the right-hand
side of eq. (B.1):

𝑑 𝑠−1 ®𝑆 = [𝑑15 · (𝑠−1)55 · 𝑆5, 𝑑24 · (𝑠−1)44 · 𝑆4,
3∑︁
𝑗=1

3∑︁
𝑖=1

𝑑3𝑖 · (𝑠−1)𝑖 𝑗𝑆 𝑗]𝑇 (B.6)

=


𝑑15 · 𝑠−155 · 𝑆5
𝑑24 · 𝑠−144 · 𝑆4∑3

𝑗=1
∑3

𝑖=1 𝑑3𝑖 · (𝑠−1)𝑖 𝑗 · 𝑆 𝑗

 (B.7)

Now, let’s derive the left-hand side of eq. (B.1). We first multiply eq. (B.5) by the transposed 𝑑
in eq. (B.3):

𝑑 𝑠−1 𝑑𝑇 =


𝑑215(𝑠

−1)55 0 0
0 𝑑224(𝑠

−1)44 0
0 0

∑3
𝑘=1

∑3
𝑖=1 𝑑3𝑖 · (𝑠−1)𝑖𝑘 · 𝑑3𝑘

 (B.8)

When further multiply it by the electric field, we get the left-hand side of eq. (B.1):

𝑑 𝑠−1 𝑑𝑇 · ®𝐸 = (B.9)
𝑑215𝑠

−1
55 · 𝐸1

𝑑224𝑠
−1
44 · 𝐸2∑3

𝑘=1
∑3

𝑖=1 𝑑3𝑖 · (𝑠−1)𝑖𝑘 · 𝑑3𝑘 · 𝐸3

 (B.10)

If we enter eq. (B.9) and eq. (B.6) into eq. (B.2), the third element on both sides of the equation is
eq. (B.1). Q.E.D.

Uniaxial, elastic stress

In case of a uniaxial, elastic stress, the PE voltage as function of the axial strain 𝑆 becomes

𝑉 = 𝐸33𝐿 =

∑3
𝑗=1

∑3
𝑖=1 𝑑3𝑖 · (𝑠−1)𝑖 𝑗 · (−𝑟)1−𝛿3 𝑗

(∑3𝑘=1∑3𝑖=1 𝑑3𝑖 · (𝑠−1)𝑖𝑘 · 𝑑3𝑘) − 𝜀33
· 𝑆3 · 𝐿 (B.11)

𝑟 = −𝑆1/𝑆3 is the Poisson ratio, and the elasticity is assumed to be orthotropic (𝑠31 = 𝑠32 ≠ 𝑠33).
𝑠−1
𝑖 𝑗
is the ij-th element in the inverse elastic compliance matrix 𝑠−1. 𝛿𝑘 𝑗 is the Kronecker delta.

Note that 𝐸3 is the electric field in the polarisation direction. Stiffness matrix is the inverse elastic
compliance matrix. Young’s modulus 𝑌 = 𝑠−1

𝑖𝑖
for 𝑖 = {1, 2, 3}.

40 FFI-RAPPORT 21/00110



C Shock waves are approximately square pulses
The shock wave can be approximated as a square pulse as long as it is close to the free surface
where the pulse’s rear edge originated. The shock wavefront is always regarded as vertical as a
square pulse front, while the rear edge’s slope declines as the shock wave propagates.
A shock wavefront is by definition approximately vertical. Estimated strain rates for shock

fronts (in solids) are in the order of [107, 109] s−1 [16, p. 325]. Shock waves in solids appear above
the material’s elastic limit (also known as yield strength in metals). The upper limit of the expected
rise time for a passing shock wavefront can be calculated based on the strain at the elastic limit.
For example: the strain at the yield strength of steel SS2541 is 𝜀yield = 𝜎yield/𝑌 = 4.3mm/m [4].
As a result the rise time of a shock wavefront is shorter than 𝜀/ ¤𝜀 =

4.3mm/m
107 s−1 = 0.43 ns and the

corresponding "rise length" at the order of 1µm.6
The rear edge of a shock pulse is called the relief wave [9]. The material is relieved from

compressed (or stretched) state in that relief wave. The relief process from a shocked state follows
the Hugoniot-Rankine equation of (equilibrium) states (EOS), while the shocking process is a jump
between two states in this EOS. The different locations or phases in the relief wave have different
wave velocities because they are in different states. Therefore the relief wave will become wider in
time. Over time the slope becomes gentler. Close to the origin of the relief wave (typically free
surfaces where stress can be relieved), the slope is still steep, and the rear edge can be approximated
as vertical.
The relief wave will catch up with the shock wavefront after some time [9]. It propagates slightly

faster than the shock wave. In this report the PE voltage amplitude due to a square stress pulse,
is investigated. The PE must be located close enough to the impact interface (or more precisely:
close to the target’s free surface) in order to approximate a shock wave as a square pulse. However,
when deriving the PE voltage amplitude as function of impact angle, the pulse is only required to
cover the PE with the proportion of the pulse that has constant amplitude. The derived PE voltage
amplitude in present report may therefore apply to a shock wave as long as the shock wavefront
leaves the PE before the relief wave enters it.

6The length of a shock wavefront in steel SS2541 is shorter than 5.2 km/s · 0.43 ns = 2.2µm.
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