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ABSTRACT

Traversal in off-road conditions for Unmanned Ground Vehicles is highly relevant for defence applications, with
an increasing amount of research being put into the field. A central part of the autonomous traversal is path
following, where there currently exist many stable controllers. However, conventional path following controllers
often relies on ideal vehicle models that make assumptions about the terrain that are no longer valid in off-road
conditions. Therefore, research is needed into how conventional controllers are affected by off-road terrain and
if extending the vehicle model with relevant parameters can improve the performance.

In this paper, a controller based on Active Disturbance Rejection Control and a controller based on Instan-
taneous Centre of Rotation are tested against a conventional controller in off-road conditions. Results from
simulations illustrate how the conventional controller is affected by variations in the vehicle’s rotation centre
while the proposed controllers have improved performance when simulating rough terrain conditions. Real world
experiments were conducted in uneven sandy terrain, where all of the controllers showed decent performance,
but the proposed controllers had the lowest cross-track error.

Future Unmanned Ground Vehicle operations can improve performance by using the proposed controllers
when the vehicle is experiencing rough terrain where the Instantaneous Centre of Rotation is considerably shifted
from its ideal location. On the other hand, the conventional controller should produce decent performance in
moderate conditions. Further research is needed to understand what types of real world conditions make the
performance of the conventional controller significantly decrease, thus justifying the use of one of the proposed
controllers.

Keywords: Unmanned Ground Vehicle, path following, autonomous vehicle, mobile robots, active disturbance
rejection control, instantaneous centre of rotation

1. INTRODUCTION

The context of this paper is a research project on autonomy for defence applications carried out by the Norwe-
gian Defence Research Establishment (FFI), where the project entails understanding how autonomous systems
work and how they can be used by the Norwegian Armed Forces. The vehicle used for research by FFI is an
Unmanned Ground Vehicle (UGV) called THeMIS, developed by Milrem Robotics. It is a tracked differential
drive vehicle, specifically designed for military applications and traversal in off-road conditions. There are several
possible applications of this vehicle in defence.1–3 From unmanned reconnaissance missions and on-base logis-
tics to transporting supplies and supporting dismounted troops, where an important requirement is the ability
to traverse varying and rough terrain conditions. Initial development and testing have showcased functioning
autonomous operation of the vehicle using FFIs platform, both in simulation and real world experiments.1

Path following with the UGV is currently performed by a controller based on the unicycle kinematic model,
which assumes no slippage at the tracks and traversal on a planar surface. When driving in off-road conditions,
the vehicle will be subject to slopes and also slippage caused by cohesion and compaction of the soil.4 As a
result, the assumptions in the unicycle model are no longer valid, which can lead to decreased path following
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performance. Therefore, it is of interest to investigate path following approaches that account for the disturbances
caused by off-road driving.

Many approaches exist for designing systems with better ability to handle harsh off-road conditions, regard-
ing both vehicle models and path following controllers. The three main vehicle models in the literature5 are:
geometric model, kinematic model and dynamic model. Geometric models contain minimal amount of infor-
mation, which quickly makes them inaccurate off-road conditions. On the other hand, dynamic models can be
complicated and it may be difficult to obtain terrain-dependent parameters. Therefore, this paper focuses on
kinematic models as they can accurately describe vehicle movement, without being subject to terrain-dependent
parameters.

To account for varying friction in the environment, there have been many approaches considering slip effects
in the kinematic model.6–9 In Ref. 6 they included a simple term relating estimated slip to the kinematic
model. The slip was calculated based on the difference between measured linear velocity of the vehicle and the
measured angular velocity of each track. Improved tracking performance was achieved using this model with a
controller based on feedback linearization.6 In Ref. 9, the slip kinematic methodology was extensively used and
incorporated with several controllers. They used a more extensive model than Ref. 6 and included a novel offset
model to design controllers. Controllers were improved to better tackle uncertainties and disturbances in the
terrain, where they got the best performance using Sliding Mode Control fitted with a Disturbance Observer.
Computer vision10,11 has also been used for estimating slip in terrain conditions as an alternative to comparing
velocity measurements.

The Instantaneous Centre of Rotation (ICR) kinematic model describes the vehicle’s movement related to
the location of its rotation centres, which are known to vary in different types of terrain.12 In Ref. 13, this
was presented for tracked vehicles where the model considers the ICR of each track and the vehicle as a whole.
Estimating ICR locations using an Extended Kalman Filter (EKF)12 is a relevant approach for off-road traversal,
as it obtains estimates in real-time and can therefore account for transitions between different terrain types. In
Ref. 14, researchers mapped the position of a vehicle in the ideal model to a vehicle with tracks on the ICR
locations. In this way, they could in each moment consider the mapped vehicle as an ideal vehicle and use
an ordinary path following controller for the unicycle model. The results showed improvements compared to
using an ideal unicycle model without ICR-locations. There has also been ICR-based models using nonlinear
Lyapunov-based controllers,15 where researchers experimentally tested their approach on a skid-steered wheeled
robot in different terrain types and with higher speed. The controller outperformed Ref. 14 (discussed previously)
and also Ref. 16 which uses a dynamic vehicle model.

Model Predictive Control (MPC) offers iterative optimisation of control objectives with the ability to satisfy
several constraints. MPC has been applied to path following for UGVs operating in off-road conditions.9,17,18

In Ref. 9, researchers incorporated the slip kinematic model with MPC where the controller was adapted and
robustified to cope with disturbances, resulting in improved path following performance. The ICR kinematic
model has also been used with MPC,17 where researchers proposed a novel method for parameter estimation
using an EKF in order to obtain estimates of the ICR locations. Results from experiments showed the controller
outperforming normal MPC and a Levenberg-Marquardt based approach as well as a classical path follower (pure
pursuit). To account for uncertainties in the system model there have been approaches trying to make MPC
more robust19,20 when applied to path following.

In recent years, Active Disturbance Rejection Control (ADRC) has increasingly been used for path follow-
ing.21–23 ADRC was applied to path following in Ref. 23 for a tracked vehicle in conditions with slippage,
based on an an extended unicycle model where the total disturbance was modelled as scaling and shifting of
the vehicle’s kinematics, which were compensated for in the control law. A simple Proportional Derivative (PD)
controller was used for path following and an EKF was used to estimate the disturbances. Experimental trials
were performed in several terrain conditions showing that when using ADRC, the path following performance was
improved compared to the same controller without ADRC, meaning that the controller was able to compensate
for some of the disturbances from the terrain. A weakness of the testing in this particular paper was that there
were no comparison against other state-of-the-art approaches to path following or terrain modelling.

In this paper two path following controllers based on extended kinematic models were evaluated, and compared
against the current unicycle-based controller.1 This was done to investigate how the ideal unicycle model is

Proc. of SPIE Vol. 12124  1212406-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 22 Jun 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



affected by off-road traversal and if extending the kinematic model with relevant parameters can improve path
following performance. The current controller (Chapter 34.4.2 in Ref. 24), referred to as Morin, is based on the
ideal unicycle model and its implementation is described in Ref. 1. The first proposed controller, denoted HBZ,
is the nonlinear controller from Ref. 15 using the ICR kinematic model, wherein this paper the ICR locations
are estimated in real-time using an EKF.12 The second proposed controller, denoted ADRC, is based on Active
Disturbance Rejection Control using an extended unicycle model23 where the Morin controller is used for path
following.

The reasons for choosing these particular approaches are that they extend the kinematic model with relevant
parameters to increase the accuracy of the vehicle model and additionally have shown improved performance in
their respective papers. Table 1 lists an overview of the controllers, details are presented in Section 2.

Controller Description Source

Morin Nonlinear control based on the ideal unicycle model. Ref. 1, 24

HBZ
Nonlinear control using ICR model with real time
estimates.

Ref. 12,15

ADRC
Extended unicycle model where disturbances are
compensated from the Morin controller.

Ref. 23

Table 1: Controllers with name and description

In the following, Section 2 presents the proposed approaches in detail with theory and equations. Section
3 details the simulation and real world experiments. Then, Section 4 presents results from the experiments,
followed by Section 5 where the results are discussed and interpreted. Finally, Section 6 will contain concluding
remarks from the results in this paper.

2. SIMULATION MODEL AND CONTROLLERS

This chapter starts with presenting the simulation model and follows with each controller and EKF, explaining
their equations and parameters.

2.1 Simulation model

The simulation model is based on the ICR kinematic model,13 which can simulate the vehicle’s motion related
to its rotation centres. These will ideally lie at the centre of each track, but these can move when traversing
varying terrain. By using this model, the purpose is to explicitly vary the rotation centres of the vehicle laterally
and longitudinally to simulate terrain traversal.

Each controller generates control inputs v and ω which are distributed to each track based on ideal ICR-
locations. For the vehicle in this paper, with distance between tracks L = 2.0m, the ideal ICR-locations are
located at yL = 1.0, yR = −1.0 and xc = 0.0. The resulting velocity is at the left track vL = v − ωL

2 and the

right track vR = v + ωL
2 . These can then be sent to the ICR-kinematic model where the ICR-locations of the

vehicle are set to simulate motion in varying terrain.

With the ICR-locations (yL, yR, xc) set, see Figure 1, the motion of the vehicle can be simulated from controller
inputs vL and vR

vx =
vRyL − vLyR
yL − yR

vy =
vL − vR
yL − yR

xc ω = −vL − vR
yL − yR

(1)

Giving motion in the global frame ẋẏ
θ̇

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

vxvy
ω

 (2)

Using this relation, the vehicle’s motion can be simulated from generated control inputs vL and vR resulting in

movement q̇ =
[
ẋ ẏ θ̇

]T
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Figure 1: ICR model for a differential drive vehicle

2.2 Controllers

Here we present the three controllers used in this paper. First is the Morin controller, then the HBZ controller,
and at last the ADRC controller.

2.2.1 Morin

The controller currently used on the UGV is found in Chapter 34.4.2 in Handbook of Robotics,24 where the
nonlinear controller is expressed by

w2 = −k2vrye − k3|vr| tan(θe) (k2, k3 > 0) (3)

ω = w2 cos2(θe) + ωr (4)

where vr and ωr are the nominal linear and rotational velocity of the reference vehicle and ye and θe are the
cross-track and heading error in the reference vehicle frame. The controller has been shown to give a globally
asymptotically stable system.24 For more details on this controller and its implementation on the UGV, see
Ref. 1.

2.2.2 HBZ

The controller from Ref. 15 uses the ICR kinematic model where the vehicle model is transformed to path
coordinates (Serret-Frenet frame), as seen in Figure 2, using the following transform

qW = pW + RW
F rF (5)

q̇W = ṗW + ṘW
F rF + RW

F ṙF (6)

where W denotes the world frame, F the Serret-Frenet frame on the path and

rW =

[
xe
ye

]
, RW

F ṗ =

ṡ0
0

 , qW =

xy
0


ṙF = RF

W q̇W −RF
W ṗ−RF

WS(ωWF )RW
F rF (7)

The error dynamics of the vehicle using path coordinates can then be expressed as

ẋe = v cos θe + xcω sin θe − ṡ(1− c(s)ye) (8)

ẏe = v sin θe − xcω cos θe − ṡc(s)xe (9)

θ̇e = ω − ṡc(s) (10)
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Figure 2: Geometry of vehicle with path coordinates

Where s is the arc length to the reference point and c(s) is the path curvature at point s. Curvature is defined
as

c(s) =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)
3
2

(11)

Controlling the vehicle is separated into a steering control law and a speed control law.

Steering control law The steering control law controls the change of path coordinate s and the orientation
error θe.

ṡ = v cos θe + xc ω sin θe + k1xe (12)

θ̇e = ψ̇(ye, v) +
| sin(θe − ψ(ye, v))|

sin(θe − ψ(ye, v)) cos(θe − ψ(ye, v))
·(

−σyev sin θe + σye xc ω cos θe − k2(θe − ψ(ye, v))2
)

(13)

where
ψ(ye, v) = −sgn(v)θa tanh ye (14)

and k1, k2, σ and θa are parameters to the controller. For more details on the parameters, see Ref 15.

From the control law it is then possible to find vehicle steering input ω from the relation θ = θe + θr which
gives θ̇ = θ̇e + θ̇r −→ ω = θ̇e + ṡc(s). The controller is proven Lyapunov stable.15

Speed control Based on a measure of deviation (V ) from the path, the speed controller sets an appropriate
velocity. With low deviation, the speed is set high, and when the deviation is high, the speed is set low to correct
the deviation.

Using V = 1
2 (x2e + y2e + 1

σ | sin(θe − ψ(ye, v))|)

ω ≥ 0 : v =

{
−αryLVm

yR−yL
αrVm

1+|yR·c|

V ≥ ε
V < ε

(15)

ω < 0 : v =

{
αlyRVm

yR−yL
αlVm

1+|yL·c|

V ≥ ε
V < ε

(16)

where Vm is the max speed of the vehicle, σl and σr are track parameters and ε is the deviation threshold.
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2.2.3 Estimating ICR-locations with an EKF

The ICR-locations needed for the controller are the lateral ICR-coordinate of the left track yL, the lateral ICR-
coordinate of the right track yR and the longitudinal ICR-coordinate of the vehicle xc. In order to estimate
these using an EKF as in Ref. 12, they are added to the state-vector along with vehicle configuration. Using
measurements of x, y, θ to update the estimate.

Kinematic equations Using the ICR kinematic model

ẋ = vx cos θ − vy sin θ (17)

ẏ = vx sin θ + vy cos θ (18)

θ̇ = ω (19)

where

vx =
vRyL − vLyR
yL − yR

(20)

vy =
vL − vR
yL − yR

xc (21)

ωz = −vL − vR
yL − yR

(22)

Process and measurement equation Discretized using 2nd order Runge-Kutta for configuration and Euler’s
method for ICR locations. The change of ICR locations are seen as pure gaussian noise processes.

xk
yk
θk
yLk

yRk

xck

 =


xk−1 + Vxk−1

∆t+ µ1∆t
yk−1 + Vyk−1

∆t+ µ2∆t
θk−1 + ωk−1∆t+ µ3∆t

yLk−1
+ µ4∆t

yRk−1
+ µ5∆t

xck−1
+ µ6∆t

 (23)

θrk = θk−1 +
ωk−1∆t

2
(24)

Vxk−1
= vxk−1

cos θrk − vyk−1
sin θrk (25)

Vyk−1
= vxk−1

sin θrk + vyk−1
cos θrk (26)

The filter uses measurements of x, y, θ from navigation system with white additive measurement noise w1−3.z1z2
z3

 =

xk + w1

yk + w2

θk + w3

 (27)

Using

F(xk−1,uk−1) =


xk−1 + Vxk−1

∆t
yk−1 + Vyk−1

∆t
θk−1 + ωk−1∆t

yLk−1

yRk−1

xck−1

 , Γ = ∆t · I6x6, µk =

µ1

...
µ6



H =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 , wk =

w1

w2

w3


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Process and measurement equation can be written in canonical form as

xk = F(xk−1,uk−1) + Γµk (28)

zk = Hxk + wk (29)

x0 ∼ N (0, P̄0) , µk ∼ N (0,Qδkl), wk ∼ N (0,Rδkl)

The initial state x0, process noise µk and measurement noise wk are assumed to be uncorrelated.

With discrete process and measurement equations, the equations for discrete Kalman Filter are used. Since
the process equation contains a nonlinear term F(xk−1,uk−1), it is linearized around the current estimate at
each time step by the Jacobian

Φk−1 =
∂F
∂xT

∣∣∣∣∣
x̂k−1,xk−1

(30)

Φ =


1 0 Φ13 Φ14 Φ15 Φ16

0 1 Φ23 Φ24 Φ25 Φ26

0 0 1 Φ34 Φ35 Φ36

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (31)

Φ13 = (−vx sin θ − vy cos θ)∆t, Φ23 = (vx cos θ − vy sin θ)∆t (32)

Φ14 =
(vLyR − vRyR

(yL − yR)2
cos θ +

vL − vR
(yL − yR)2

xc sin θ
)

∆t (33)

Φ15 =
(vRyL − vLyL

(yL − yR)2
cos θ − vL − vR

(yL − yR)2
xc sin θ

)
∆t (34)

Φ16 =
(
− vL − vR
yL − yR

sin θ
)

∆t (35)

Φ24 =
(vLyR − vRyR

(yL − yR)2
sin θ − vL − vR

(yL − yR)2
xc cos θ

)
∆t (36)

Φ25 =
(vRyL − vLyL

(yL − yR)2
sin θ +

vL − vR
(yL − yR)2

xc cos θ
)

∆t (37)

Φ26 =
(vL − vR
yL − yR

cos θ
)

∆t (38)

Φ34 =
vL − vR

(yL − yR)2
∆t, Φ35 = − vL − vR

(yL − yR)2
∆t, Φ36 = 0 (39)

Prediction State transition with process noise zero

x̄k = F(x̂k−1,uk−1) (40)

Error covariance prediction
P̄k = Φk−1P̂k−1Φ

T
k−1 + Γk−1Qk−1Γ

T
k−1 (41)

Measurement update For the measurement update

Kk = P̄kH
T
k (HkP̄kH

T
k + Rk)−1 (42)

x̂k = x̄k + Kk(zk −Hx̄k) (43)

P̂k = (I−KkHk)P̄k (44)
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2.2.4 ADRC

The control law is implemented as in Ref. 23 where internal and external disturbances are modelled as scaling
and shifting of the unicycle kinematic model with parameters α1−3 and β1−3

ẋ = α1v cos θ + β1 (45)

ẏ = α2v sin θ + β2 (46)

θ̇ = α3ω + β3 (47)

Expressed in matrix form as

Ẋ = ACU + B (48)

where

Ẋ =

ẋẏ
θ̇

 , C =

cos θ 0
sin θ 0

0 1

 , U =

[
v
ω

]

A =

α1 0 0
0 α2 0
0 0 α3

 ,B =

β1β2
β3


Later in this chapter, it will be explained how estimates of the disturbances Â and B̂ can be obtained using an
EKF. The idea is to control the system using the ideal unicycle kinematic model

Ẋ = CU (49)

with the control law currently used on the vehicle,1 and then to compensate for the disturbances A and B. This
is done by transforming the extended model into an ideal model by equating them and choosing the compensating
control law U′.

ÂCU′ + B̂ = CU

ÂCU′ = CU− B̂

U′ = C−1Â−1(CU− B̂)

It is now possible to use a control law U for an ideal unicycle kinematic model and then compensate for the
estimated disturbances using U′ = C−1Â−1(CU− B̂) which will transform the system to an ideal system. The

accuracy of this transformation is highly dependent on meaningful estimates Â and B̂.

An important note is the inversion of matrix C which is not a square matrix. Therefore, the implementation
uses a Moore-Penrose pseudoinverse25 C−1 = (CTC)−1CT . In this case C−1 = CT .

2.2.5 Estimating disturbances using EKF

In order to estimate the disturbances α1−3 and β1−3, they are viewed as added states to the system along with
their velocities α̇1−3 and β̇1−3. Using position and orientation measurements from the vehicles navigation system
to estimate the parameters with an EKF.
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Process and measurement equation Discretized using 2nd order Runge Kutta for configuration and Euler’s
method for disturbances (with both the disturbances αi, βi and their velocities α̇i, β̇i in the state vector). Where
µ1 − µ15 are additive white gaussian process noise.

xk = xk−1 + (α1,k−1vk−1 cos θrk + β1,k−1)∆t+ µ1∆t (50)

yk = yk−1 + (α2,k−1vk−1 sin θrk + β2,k−1)∆t+ µ2∆t (51)

θk = θk−1 + (α3,k−1ωk−1 + β3,k−1)∆t+ µ3∆t (52)

αi,k = αi,k−1 + α̇i,k−1∆t+ µ3+i∆t (53)

βi, k = βi,k−1 + β̇i,k−1∆t+ µ6+i∆t (54)

α̇i,k = α̇i,k−1 + µ9+i∆t (55)

β̇i,k = β̇i,k−1 + µ12+i∆t (56)

where

θrk = θk−1 +
ωk−1∆t

2
(57)

Discrete measurements of x, y and θ from navigation system

z1 = xk + w1 (58)

z2 = yk + w2 (59)

z3 = θk + w3 (60)

where w1, w2, w3 are additive white gaussian measurement noise.
Using

F(xk−1,uk−1) =



xk−1 + (α1,k−1vk−1 cos θk−1 + β1,k−1)∆t
yk−1 + (α2,k−1vk−1 sin θk−1 + β2,k−1)∆t

θk−1 + (α3,k−1ωk−1 + β3,k−1)∆t
αi,k−1 + α̇i,k−1∆t

βi,k−1 + β̇i,k−1∆t
α̇i,k−1
β̇i,k−1


(61)

Γ = ∆t · I15x15 , µk =

 µ1

...
µ15


and

H =

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0


3x15

,wk =

w1

w2

w3


the process and measurement equations can be written in canonical form as

xk = F(xk−1,uk−1) + Γµk−1 (62)

zk = Hxk + wk (63)

x0 ∼ N (0, P̄0) , µk ∼ N (0,Qδkl) , wk ∼ N (0,Rδkl) (64)

where the initial state x0, process noise µk and measurement noise wk are assumed to be uncorrelated.

In order to use EKF, the nonlinear function F(xk−1,uk−1) is linearized around the current estimate at each
time step using the Jacobian

Φk−1 =
∂F
∂xT

∣∣∣∣∣
x̂k−1,uk−1

(65)
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Φ =



1 0 a b 0 0 ∆t 0 0 · · · 0
0 1 c 0 d 0 0 ∆t 0 · · · 0

0 0 1 0 0 ω∆t 0 0
. . .

. . .
...

0 0 0 1 0 0 0 0 0
. . . 0

...
...

...
. . .

. . .
...

...
...

...
. . . ∆t

. . . 0
...

...
...

...
...

...
...

...
...

. . .
...

0 0 0 0 0 0 0 0 0 · · · 1


15x15

(66)

a = −α1v sin(θ)∆t, b = v cos(θ)∆t, c = α2v cos(θ)∆t, d = v sin(θ)∆t

The prediction and measurement update equations can now be written for a discrete EKF.

Prediction State transition with process noise zero

x̄k = F(x̂k−1,uk−1) (67)

Error covariance prediction
P̄k = Φk−1P̂k−1Φ

T
k−1 + Γk−1Qk−1Γ

T
k−1 (68)

Measurement update For the measurement update

Kk = P̄kH
T
k (HkP̄kH

T
k + Rk)−1 (69)

x̂k = x̄k + Kk(zk −Hx̄k) (70)

P̂k = (I−KkHk)P̄k (71)

Resulting in estimate x̂k of the vehicle’s configuration and disturbances α1−3 and β1−3.

3. EXPERIMENTS

The controllers were tested in both simulations and real world experiments to investigate how they are affected
by off-road terrain and how their performance compares. Each controller and EKF was tuned to produce optimal
path following in ideal conditions. Then, the tuning parameters were held constant throughout the rest of the
experiments, thus testing how each controller can account for dynamic variations of the terrain without needing
to re-tune its parameters. The parameters used in the experiments can be found in Appendix A.

Relevant data from the experiments were acquired and stored, including navigation data, controller output,
EKF estimates and more. The central metrics used for comparison were the cross-track error (ye) and the orien-
tation error (θe), each expressed in the reference vehicle frame. Some of the experiments were repeated several
times to calculate the mean and variance of the performance over several experiments, which are represented by
the mean Root Mean Square (mRMS) and mean Standard Deviation (mSTD) of cross-track error and orientation
error. mRMS calculates the root mean square over k runs in each point on the vehicle’s path and takes the mean
over time. Thus giving a measure of the error the controller produces over several runs along the path. mSTD
calculates the variation in each point over k runs and takes the mean over all points. Resulting in a measure of
how the error varies over several runs and whether the behaviour is predictable. Equation 72 show the formulas
used for cross-track error, where n is the number of points on the vehicle’s path (for orientation error, ye is
changed to θe).

mRMS =
1

n

n∑
j=1

√√√√1

k

k∑
i=1

ye(i, j)2 ȳe(j) =
1

k

k∑
i=1

ye(i, j) mSTD =
1

n

n∑
j=1

√√√√1

k

k∑
i=1

(ye(i, j)− ȳe(j))2 (72)
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Figure 3: Path used in simulations

3.1 Simulations

Simulations were carried out using the ICR simulation model described in Section 2.1 and implemented in
MATLAB.26 The simulation model makes it possible to vary the vehicle’s rotation centres to simulate effects from
driving in off-road conditions. Shifting the rotation centres laterally and longitudinally can simulate longitudinal
and lateral slip of the vehicle respectively, where the simulation consists of several combinations of moving the
rotation centres. Figure 3 displays the path used in simulations, which is a path with large curvatures, thus
increasing the difficulty for each controller and giving the EKFs relevant terrain data for the estimates.

yL yR xc

Ideal 1.0 m −1.0 m 0.0 m
Outward 5.0 m −5.0 m 0.0 m
Forward 1.0 m −1.0 m 0.3 m

Combined 5.0 m −3.0 m −0.35 m
Table 2: ICR locations used in simulations

All simulated test conditions are listed in Table 2. The ICR of each track is shifted laterally and longitudinally
to simulate different effects from off-road driving. For the outward shift, the vehicle behaves as if the distance
between the tracks is increased from L = 2.0 m to L = 10.0 m, which is a quite large increase, and was chosen to
clearly illustrate the difference between the controllers.

3.2 Real world experiments

For the real world experiments, each controller was implemented on the UGV, which is interfaced using ROS2
(more details on implementation for the UGV in Ref. 1). Testing was performed outdoors in an uneven terrain
consisting of mostly sand (see Figure 4), where three different experiments were conducted. First, each controller
was driven along a 30 m long straight path with an initial lateral offset of 2.0 m to obtain an approximate step
response of each controller. Second, each controller was again driven along a straight path, but with a lower
initial offset of 1.0 m and repeated five times in order to calculate root mean square and standard deviation.
Last, the vehicle was driven along a curved path to investigate how the controllers perform on a more demanding
path.
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Figure 4: Terrain condition when performing real world experiments

Ideal Outward Forward Combined
mRMS mSTD mRMS mSTD mRMS mSTD mRMS mSTD

Morin 0.013 m ≈ 0 m 0.317 m ≈ 0 m 0.092 m ≈ 0 m 0.191 m ≈ 0 m
ADRC 0.016 m ≈ 0 m 0.022 m ≈ 0 m 0.106 m ≈ 0 m 0.097 m 0.055 m
HBZ 0.031 m ≈ 0 m 0.19 m ≈ 0 m 0.129 m ≈ 0 m 0.112 m ≈ 0 m

Table 3: mRMS for cross-track error over k = 5 simulations

4. RESULTS

4.1 Simulations

The evolution of cross-track error for all simulated conditions can be seen in Figure 5. In all of the conditions, it
is evident that HBZ uses longer time to complete the path. This is caused by its separate speed control, which
lowers the speed control output when the vehicle has error in position and orientation.

Table 3 presents performance metrics with mRMS and mSTD of cross-track error for all conditions over
5 simulations each. For most of the conditions, the mSTD was close to zero which indicates low variance in
performance between simulation runs. This predictable behaviour was expected as the simulation model is
completely deterministic.

4.2 Real world experiments

4.2.1 Straight path

Results from driving a straight path with an initial lateral offset of 2.0 m can be seen in Figure 6, with related
estimates from ADRC and HBZ displayed in Figure 7 and 8 respectively. In Table 4, metrics for driving a
straight path with an initial offset of 1.0 m is shown.

4.2.2 Curved path

A visualisation of the controllers driving along the curved path is displayed in Figure 9, with the evolution of
the error in Figure 10. Table 5 shows performance metrics when repeating the curved path k = 3 times. As
the controllers did not start in the same initial position for the curved path, calculation of the metrics (mRMS
and mSTD) was done from x = −20.0, which is approximately when all controllers have corrected for the initial
offset from the path.
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Straight path
Cross-track error Orientation error
mRMS mSTD mRMS mSTD

Morin 0.303m 0.149 m 0.047 rad 0.033 rad
ADRC 0.255m 0.121 m 0.030 rad 0.019 rad
HBZ 0.189m 0.061 m 0.060 rad 0.023 rad

Table 4: Metrics for k = 5 runs on the straight path (1.0 m offset)

Curved path
Cross-track error Orientation error
mRMS mSTD mRMS mSTD

Morin 0.230 m 0.045 m 0.122 rad 0.026 rad
ADRC 0.173 m 0.076 m 0.100 rad 0.053 rad
HBZ 0.195 m 0.046 m 0.100 rad 0.030 rad
Table 5: Metrics for k = 3 runs on the curved path

5. DISCUSSION

5.1 Simulations

Ideal conditions The lateral offset of all controllers quickly goes to zero and remains low throughout the
path, and looking at the mRMS in Table 3, it remains low for all controllers. This was expected as the simulated
vehicle is not experiencing any disturbances from the environment, thus confirming the proposed controllers’
ability to follow paths in ideal conditions.

Outward shift When the ICR was shifted outward, Morin was considerably affected with deviations from
the path when turning, where the cross-track error peaks at around 50 cm. The mRMS was also the highest
with 0.317 m. Both ADRC and HBZ improved the performance compared to Morin, with lower deviations while
turning and lower mRMS. ADRC clearly had the best performance, with minimal deviations from the path while
turning and mRMS of 0.022 m. HBZ suppressed the peak deviations to around 20 cm and had a mRMS of 0.19 m,
which is still a considerable improvement over Morin.

Forward shift Results from the forward shift show similar performance of all the controllers. The cross-track
error peaks at around 20 cm for all controllers while turning and the mRMS is around 0.1 m for all the controllers,
where Morin has the lowest with 0.091 m. In this condition, the proposed controllers were not able to improve
the performance over Morin.

Combined shift Combined shift causes Morin to experience large deviations of about 60 cm, which occurs
while turning left. The reason the deviation is largest while turning left is because the ICR of the left track
moves further out than the ICR of the right track, making it harder to turn left. ADRC and HBZ both manage
to suppress the large deviations experienced by Morin and end up with cross-track error peaking at about 20 cm,
which is similar to the results from forward shift. Morin has the highest mRMS with 0.191 m while ADRC and
HBZ has a mRMS of around 0.1 m which is also similar to the condition with forward shift. This can indicate that
the proposed controllers are adequate at compensating for a lateral shift of the rotation centre while struggling
to improve performance when the shift is longitudinal. Anyway, the presented results from outward shift and
combined shift show the proposed controllers’ ability to improve path following performance compared to Morin.

5.2 Real world experiments

Results from driving straight with 2.0 m offset show the error go to zero for all the controllers. Estimates of
the ICR from HBZ in Figure 8 show that the rotation centre of each track stabilises at about yL = 1.3 m and
yR = −1.3 m which means that the controller sees the vehicle as having a larger distance between its tracks -
L = 2.6 m instead of L = 2.0 m. Which can be interpreted as it being harder to rotate the vehicle. A similar
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interpretation can be gained from the disturbance estimates from ADRC in Figure 7, where a3 stabilises at about
0.2, which means it interprets the rotational velocity of the vehicle as scaled by 0.2, thus making it harder to
rotate.

When driving a straight path with 1.0 m initial offset, Table 4 shows ADRC and HBZ both having lower
mRMS of cross-track error compared to Morin. HBZ has the lowest, with 0.189 m, it also has the lowest mSTD
with 0.061 m which means cross-track error is more consistent and its behaviour more predictable when repeating
the same path.

For the curved path, the controllers get some overshoot when going around the sharp corners and then
corrects for the offset. After 3 repetitions Morin gets a mRMS of 0.230 m for cross-track error, while ADRC and
HBZ both improve slightly with 0.173 m and 0.195 m respectively.

6. CONCLUSION

Three path following controllers for differential drive UGVs were investigated and evaluated to gain insight into
their performance in off-road conditions. From simulations, it was shown that the proposed controllers were able
to repress the large deviations during curves that Morin experiences when the ICR is shifted laterally, and most
interesting, ADRC compensated almost completely for the outward shift and had minimal error. For the real
world experiments, estimates from ADRC and HBZ indicated a terrain where the angular velocity of the vehicle
is scaled down, thus making it harder to rotate, and both controllers had lower mRMS for cross-track error than
Morin for straight and curved paths.

In conclusion, the results from this paper show the Morin controller as being robust and reliable in most
conditions, but it is considerably affected by large shifts in the vehicle’s rotation centre. In addition, the
results show that ADRC and HBZ can improve path following performance against rough off-road effects where
Morin’s performance is degraded. They also had on average lower cross-track error in simulations and real world
experiments. These results support the findings in Ref. 23, where ADRC improves path following compared to
an ideal controller, and Ref. 15, where HBZ improves path following compared to two state-of-the-art controllers.

Future autonomous operation of UGVs can significantly improve robustness and performance by using ADRC
or HBZ in environments where there is a large lateral ICR shift of the tracks. In less severe conditions, Morin
will probably have decent performance. Further research should investigate what types of terrain are too rough
for Morin and therefore justifies using ADRC or HBZ, and also investigate how the proposed controllers handle
transitions between different terrain types.

REFERENCES

[1] Mathiassen, K., Baksaas, M., Græe, S. A., Mentzoni, E. A., and Nielsen, N. H., “Making the milrem themis
UGV ready for autonomous operations,” in [Unmanned Systems Technology XXIII ], Muench, P. L., Nguyen,
H. G., and Skibba, B. K., eds., SPIE (4 2021).

[2] Mathiassen, K., Hyndøy, J. I., Østevold, E., Valaker, S., Danielsen, T., Baksaas, M., Olsen, L. E., Thoresen,
M., Ruud, E.-L., Selv̊ag, J., and Sandrib, J., “Base defence demonstration at trident juncture 2018 –
tact unmanned systems for base and force protection,” (2019). FFI-Report 19/00807, Norwegian Defence
Research Establishment.

[3] Larsen, E., Mathiassen, K., Landmark, L., Larsen, M. V., and Øivind Kure, “Autonomous sensors and
communications infrastructure,” (2019). FFI-Report 19/00808, Norwegian Defence Research Establishment.
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APPENDIX A. TUNING

Simulation
k1 = 1.0 k2 = 5.0 k3 = 4.0

Real world experiment
k1 = 0.0 k2 = 0.1 k3 = 0.7

Table 6: Tuning of the Morin controller

Simulation
k1 = 1.0 σ = 1.0 Vm = 5m/s αl = 1.0
k2 = 100.0 θa = π

4 ε = 0.15 αr = 1.0

Real world experiment
k1 = 1.0 σ = 1.0 Vm = 1m/s αl = 1.0
k2 = 1.2 θa = π

4 ε = 0.5 αr = 1.0
Table 7: Tuning of the HBZ controller
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Simulation

R = diag(0.012, 0.012,
(
π

180

)2
)

P̂0(1, 1→ 3, 3) = diag(0.012, 0.012,
(
π

180

)2
)

P̂0(4, 4→ 6, 6) = diag(0.012, 0.012, 0.012)

Q(1, 1→ 3, 3) = diag(0.12, 0.12,
(

5π
180

)2
)

Q(4, 4→ 6, 6) = diag(0.12, 0.12, 0.12)

Real world experiment

R = diag(0.012, 0.012,
(
π

180

)2
)

P̂0(1, 1→ 3, 3) = diag(1.02, 1.02,
(
π
2

)2
)

P̂0(4, 4→ 6, 6) = diag(0.12, 0.12, 0.12)

Q(1, 1→ 3, 3) = diag(0.52, 0.52,
(
15π
180

)2
)

Q(4, 4→ 6, 6) = diag(0.012, 0.012, 0.012)
Table 8: Tuning of the EKF used by HBZ

Simulation

R = diag(0.012, 0.012,
(
π

180

)2
)

P̂0(1, 1→ 3, 3) = diag(0.012, 0.012,
(
π

180

)2
)

P̂0(4, 4→ 15, 15) = diag(0.12, 0.12, ..., 0.12)

Q(1, 1→ 3, 3) = diag(0.12, 0.12,
(

5π
180

)2
)

Q(4, 4→ 15, 15) = diag(0.12, 0.12, ..., 0.12)

Real world experiment

R = diag(0.012, 0.012,
(
π

180

)2
)

P̂0(1, 1→ 3, 3) = diag(1.02, 1.02,
(
π
2

)2
)

P̂0(4, 4→ 5, 5) = diag(0.12, 0.12)

P̂0(6, 6) = 0.22

P̂0(7, 7→ 15, 15) = diag(0.012, 0.012, ..., 0.012)

Q(1, 1→ 3, 3) = diag(0.52, 0.52,
(

5π
180

)2
)

Q(4, 4→ 5, 5) = diag(0.012, 0.012)

Q(6, 6) =
(

5π
180

)2
Q(7, 7→ 15, 15) = diag(0.012, 0.012, ..., 0.012)

Table 9: Tuning of the EKF used by ADRC

APPENDIX B. RESULT FIGURES
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(b) Outward ICR-shift
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(c) Forward ICR-shift
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Figure 5: Cross track error from simulations
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(a) Morin

(b) ADRC

(c) HBZ

Figure 6: Real world experiment results from driving a straight path with 2.0 m initial lateral offset
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Figure 7: Disturbance estimates used by ADRC when driving a straight path with 2.0 m initial lateral offset

Figure 8: ICR estimates used by HBZ when driving a straight path with 2.0 m initial lateral offset
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Figure 9: Real world experiment result from driving a curved path
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(a) Morin

(b) ADRC

(c) HBZ

Figure 10: Real world experiment results from driving a curved path
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