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Summary

Mechanical vibration and shocks may be devastating, in particular to military equipment. Therefore,
vibration and shock damping are of crucial importance to military hardware. Vibrations can cause
material fatigue. They can also cause emission of sound which can reveal the presence of ships and
vehicles. Silence is crucial for submarine operations.

Shocks from weapons can damage equipment. The ability to survive shocks and protect personnel
and equipment has the highest priority. To achieve adequate protection related to vibration and
shocks, it is important to have good understanding of shock and vibration mechanics and to have
knowledge of the impact of shock and vibration on actual equipment. To reduce the devastating
effects of shock and vibrations, suitable dampers are used.

The focus of the current work, is devoted to shock-response, including a theoretical study of the
effects of the most common models for shock and vibration dampers. The damping quality of four
common rubber damper models is studied.

Here, linear dampers are mostly considered, but in the real world, the assumption of small
amplitudes are not always valid. Therefore a section is devoted to the effect of nonlinear stiffness.
This effect occurs when a damper is compressed to its limit. This leads to extreme accelerations
implying a very high destruction potential.

The report is finalized with a study of the Frahm damper, also called the tuned mass damper and its
effect in a parallel shock damping system.
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Sammendrag

Mekaniske vibrasjoner og sjokk kan være ødeleggende for militært utstyr. Derfor er demping av
vibrasjoner og sjokk av stor relevans for militære systemer. Vibrasjoner kan forårsake
materialtretthet. Vibrasjoner kan også generere lyd som i sin tur kan avsløre tilstedeværelsen av
skip eller kjøretøy. Akustisk “stealth” er en særdeles viktig egenskap for undervannsbåter.

Sjokk fra våpen kan ødelegge militært utstyr. Overlevelsesevnen for sjokk for personell og utstyr har
høyeste prioritet. For å oppnå adekvat beskyttelse relatert til vibrasjoner og sjokk er det viktig å ha
kunskap om sjokk og vibrasjonsmekanikk, og effekten av sjokk og vibrasjoner på aktuelt utstyr. For
å redusere virkningen av sjokk og vibrasjoner, benyttes tilpassede dempere.

Denne studien omfatter en teoretisk studie av effekten av de mest vanlige sjokk- og
vibrasjonsdempere. Demperkvaliteten for fire vanlige gummimodeller blir studert.

Studiet omfatter hovedsakelig lineære modeller, men i den virkelige verden er ikke amplituder alltid
små og antagelsen om linæritet bryter da sammen. Derfor er et avsnitt i rapporten viet effekten av
ikkelineær stivhet. Denne effekten opptrer når en demper presses til grensen. Dette fører til
ekstreme akselerasjoner og et høyt skadepotensial.

Arbeidet avsluttes med et studie av Frahm-demperen som også kalles the tuned mass damper og
dennes effekt. Her diskuteres denne demperen satt inn i et parallelt sjokkdempingsystem.
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1 Introduction
After being inspired at meetings at NDMA Naval Systems Division (FMA-markap), and being
introduced to the needs in the project P6346, a study of shock response was initiated at FFI. Results
of a preliminary study was summarized in [1]. As the collaboration with FMA-markap was
strengthened, a need to study a potential degradation of rubber dampers came up among other
topics. The study presented in this report was initiated as a result of that need.

The initial goal was to come up with a test-plan for rubber-dampers, but that required better
understanding of rubber-dampers in general. A theoretical work on the effect of the most common
rubber-damper models on shock response spectra (SRS) was then started. As far as the author is
aware, such a study has not been previously undertaken or documented in the open literature.

Models of four different dampers, parallel, serial, combined and standard were constructed with a
support motion system representing the shock, see figure (2.1) in section (2). These models consist
of sets of ordinary differential equations, solved numerically. In most cases, the model equations
are linear, but an interesting and relevant case including nonlinear stiffness (shocks involve large
amplitudes) is treated in section (5).

The damper models studied here, involve multi-parameter problems with combinations in
stiffnesses and damping far beyond the scope and limitations of this work. Only the most obvious
parameter settings and combinations are covered. Mostly, the combination where the stiffness
k1 = k2 = k is treated, see comparison in section (4.5), but a case where k1 , k2 is also treated, see
section (4.7). The conclusion is that for kparallel = k1 = k2, the combined and standard damper
models perform close to the parallel damper model, while the serial damper model performs better
in the sense that the accelerations become smaller. But, this implies need for larger retarding space
which may be a drawback. The serial damper is unable to handle static forces which makes it less
useful. It is possible to tune k1 , k2 for better damping, as shown in section(4.7).

The nonlinear damper model treated in section (5) include the effect of nonlinear stiffness.
Nonlinearity in dissipation as occurring for example in van der Pol’s equation
Üx + c(1 − x2) Ûx + x = 0 is appealing to mathematicians but not studied here. Interesting but not
relevant here, nonlinear dissipation can lead to chaotic solutions. For van der Pol’s equation,
chaotic solutions and limit cycles see [6].

The effect of nonlinearity in stiffness is striking. The purpose of this model is to demonstrate what
is going on when a damper is brought into or close to its extreme compression. An increase in
stiffness with compression, in particular a strong increase at extreme compression, is applied for
example in shock absorbers in vehicles. The strong increase in mechanical stiffness is a necessity
for reducing the damage when large amplitude oscillations or shocks occur. On the other hand, the
strong response in acceleration particularly at high frequencies also has a damaging potential. The
effect of increased stiffness with compression has a dramatic impact to the SRS as is demonstrated
in section (5). During the process of designing a shock damping system, it is of the greatest
importance that the dampers are designed in such a way that they will never reach a level of
compression beyond their capability.
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The goal here is to investigate theoretically the quality of dampers through simulated SRS. Single
component dampers are mostly treated, but better damping can potentially be achieved by a
combination of dampers. The work presented here is accomplished by a study of the Frahm
damper or tuned mass damper which consists of an additional mass absorbing energy, see [3] or the
discussion in [5]. (As far as the author is aware, the effect of the tuned mass damper on shocks with
the resulting SRS has not been published anywhere else.) The Frahm damper has successfully been
applied to many vibration problems including stabilizing the Taipei 101 building, see [7]. It is a
passive simple damper which has been applied to systems driven by harmonic forces. Here the
shocks studied consist of a double half-sine pulse which is not harmonic. It is not obvious how the
Frahm damper works on shocks. This study shows that the Frahm damper may reduce the
accelerations in the SRS by a factor of two, see section (6), depending on how it is tuned.

1.1 Presentation of damper models

Dampers are used to isolate and reduce vibrations and shocks for example in vehicles or machine
mountings. Tuned mass dampers are used to damp oscillations in bridges and sky scrapers. An
remarkable and exotic example of its use, is Taipei 101, a 501m high sky scraper built in Taipei in
the hostile environment of Taiwan which is exposed to both earthquakes and typhoons. This mass
damper consists of big dash pots for heat dissipation and a 726 tons spherical pendulum having
0.24% of the total building mass. Due to this damper, Taipei 101 still exists after 18 years of
typhoons and earth-quakes. For details see [7]. The number of applications are enormous.
Dampers are extensively used in military equipment.
Example of dampers are:

• Wire dampers
• Rubber dampers
• Rubber dampers with internal springs
• Hydraulic dampers
• Tuned dampers

The aforementioned dampers are mostly passive and here only passive dampers are considered, but
just to mention it, adaptive/active damper systems exist where feedback loops are used to control
vibration. Such dampers are even used in luxury cars. An introduction of vibration dampers and
active control is given in [4].

Theory of and characterization of rubber and rubber dampers are described in [2]. A variety of
rubber dampers are manufactured by Paulstra-indstry, see [9]. In their product catalog, the dampers
are characterized by natural frequencies, radial and axial, and by amplification factor at resonance
(which is the same as the quality factor Q). For rubber-dampers, typically Q = 5.

There are several damper models covering vibration and shock dampering. In this report, four
linear visco-elastic damper models are considered: The parallel, which in the literature is called the
Voigt damper, the serial also called Maxwell damper and the dampers here called thecombined and
the standard damper. The models treated in this report are presented in table (1.1) and in detail in
figure (2.1), consist of combinations of dashpots and springs. To gain insight into how these
dampers work, simulations or analytic solutions can help.
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Rubber model Geometry Governing equation
Hooke m Üx + k x = 0
Newton m Üx + c Ûx=0

Maxwell (serial) m Üx + m(k/c) Ûx + k x = 0

Voigt (parallel) m Üx + c Ûx + k x = 0

Standard linear mÝx1 + (m(k + K)/c) Üx1 + k Ûx1 + (Kk/c)x1 = 0

Combined linear mÝx1 + (mk/c) Üx1 + (K + k) Ûx1 + (Kk/c)x1 = 0

Table 1.1 Most common damper models

Support excitation through the double half-sine pulse is applied throughout this report. This
pulse-form is mostly applied in naval applications. SRS are calculated for the four models treated
here. In addition, SRS are calculated for the nonlinear model and the Frahm damper model.

It is expected that the damper models behave differently also when they consist of the same
material. The damping behavior depends on the construction of the damper. As an example, the
damping strength vary proportional to the material damping for a parallel damper, while it varies
inversely with the same parameter for the serial damper. The serial damper seems very efficient but
it has no “restoring force”. As a consequence it is of limited use since it can not handle static loads
and does not have the ability to regain its initial state after impact. It could be used to damp
horizontal shocks and vibrations when static load is not an issue and there are other measures to
bring the system back to initial state. The other dampers handle static loads.

When it comes to characterization of dampers, quantities like stiffness k, mass (or equivalent mass)
m, damping parameters c or ζ with quality factor Q = 1/2ζ , are basic parameters that define the
behavior of the damper. These quantities should be derivable for real systems from measurements
for example in shakers, shock machines or from stress-strain test machines. Such tests will be
considered in a later report.

1.2 Example: Differences in action of parallel and serial dampers

Consider a serial and a parallel damper with the same mass m, damping c and stiffness k, see
figure 2.1. Both dampers are excited by an external force. In this case in form of a rectangular
pulse. Results are shown in figure (1.1). The governing equations are

m Üx + c Ûx + k x = F(t), (1.1)
m Üx + (mk/c) Ûx + k x = F(t). (1.2)

These equations have the same form, but there is a radical difference which implies huge impact on
the solutions. Notice that the damping in (1.1) is c, while the damping in (1.2) is mk/c. In
figure (1.1) the solutions for the same c,m and k are shown. The solutions are radically different.
The parallel system shows a gradually decreasing oscillatory behavior while the serial system is
critically damped.
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The governing equations with solutions will be discussed in detail in section (2). Equations (1.1)
and (1.2) can be written in a more convenient form

Üx + 2ζωn Ûx + ω2
nx = f (t), parallel (1.3)

Üx + 2ηωn Ûx + ω2
nx = f (t), serial (1.4)

where the damping parameters ζ and η are introduced, where 2ζωn = c/m and 2ηωn = k/c. Here,
ζ is proportional to c, while η is inversely proportional to c. Particular solutions of equations (1.3)
and (1.4) are of the form

x = e−ζωn teiωn

√
1−ζ2t (1.5)

x = e−ηωn teiωn

√
1−η2t (1.6)

Consider dampers made of the same material (same c,m and k). Low quality factor Q means high
damping. Consider the parallel and serial systems with same c, then
2ζωn = c/m, 2ηωn = k/c, ⇒ 2η · 2ζ = 1. Now Qp = 1/(2ζ), Qs = 1/(2η) ⇒ Qp = 1/Qs.
Clearly Qs and Qp are inversely proportional. The two systems damping is different. The only
exception is Q = 1.

On the other hand let the two systems have the same damping and natural frequency. Then
2ζωn = 2ηωn ⇒ cpcs = km = c2

c/4, where cc is the critical damping parameter. Then they have
in general different damping parameters. The only case of equality is when cp = cs = cc/2.

Figure 1.1 Oscillations exited by a rectangular pulse. Left figure, serial configuration. Right
figure, parallel configuration. Both with same material damping parameter c,
mass m and stiffness k.
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2 Damper models

Figure 2.1 Simple damper models

The theory of rubber is treated among others in [2], but how rubber dampers handle shocks is not
treated there. The shock models handled here are based on systems of support motion expressed
y, Ûy and Üy. Some examples consisting of harmonic support motion, but most effort is devoted to the
double half-sine shock which is defined according to the expressions (3.1), (3.2) and (3.3) in
section (3). The motivation is naval shocks.
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2.1 The parallel damper model

Consider the parallel damper model shown in figure (2.1) upper left. It consists of a spring and
dashpot set up in parallel, following [8], using x = y + z, the sum of forces acting on the mass m are
given by the linear equation

m Üx = −c Ûz − kz ⇒ Üz + (c/m) Ûz + (k/m)z = −Üy, (2.1)

where m is mass, c is the damping coefficient and k is the stiffness of the spring. Introducing
2ζωn = k/c and ω2

n = k/m gives

Üz + 2ζωn Ûz + ω2
nz = −Üy, (2.2)

where ωn is the natural frequency and ζ is the dimensionless damping, ζ = c/
√

mk = c/cc. If
ζ ≥ 1, the oscillations are critically damped. ζ also affects the frequency of the oscillator which is
ω = ωn

√
1 − ζ2.

To get a better feel for the consequences of support motion excitation, harmonic excitation is treated
first. Let y = sinωt, Ûy = ω cosωt, Üy = −ω2 sinωt. In the numerical examples, t ≥ 0. To well
pose the problem, initial conditions are needed.
At t = 0, assume x(0) = 0, Ûx(0) = 0. Since x = y + z, z(0) = 0 and using Ûx = Ûy + Ûz, it follows that
Ûz(0) = −ω. The acceleration is

Üx = −2ζωn Ûz − ω2
nz

implying Üx(0) = 2ζωωn.

Results of harmonic excitation for both parallel and serial systems are shown in figure (2.2). For
matlab implementation see (A.1).

2.2 The serial damper model

The sum of forces acting on m, see figure (2.1) upper right, are m Üx = −kzb = −c Ûza, with
z = za + zb, x = za + zb + y. Using m Üx = −kzb yields

m(Üza + Üzb + Üy) = −kzb, ⇒ Üzb + (k/c) Ûzb + (k/m)zb = −Üy.

Notice the term k/c which imply the counter intuitive result that low viscosity leads to high
damping. The reason for this is as follows. The force on m is directed through the dashpot as
m Üx = −c Ûza, the same force is directed through the spring −kzb. For low viscosity, Ûza is big and the
“compressibility” of the dashpot becomes big, reducing acceleration and implying high damping.
The damping parameter for the serial system is denoted η. (2ηωn = k/c, for the parallel system ζ

given by 2ζωn = c/m). The derivations above lead to the following equation

Üzb + 2ηω2
n Ûzb + ω2

nzb = −Üy. (2.3)

On the other hand, using m Üx = −c Ûza, yields

Üza + 2ηωn Ûza + ω2
nza = −2ηωn Ûy. (2.4)
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Figure 2.2 Comparison parallel and serial harmonic support motion.

Adding equations (2.3) and (2.4) gives

Üz + 2ηωn Ûz + ω2
nz = −( Üy + 2ηωn Ûy), (2.5)

which alternatively can be written

Üz + (k/c) Ûz + (k/m)z = −( Üy + (k/c) Ûy), (2.6)

Compare the parallel and the serial system i.e. equations (2.2) and (2.5). The viscosity appears
differently in the two systems. The force term due to the motion of the support, contains for the
serial system 2ηωn Ûy in addition to Üy. Its contribution is inversely proportional to c. This makes a
difference. Small c ⇒ η large. It is evident from equation (2.5) that Ûz ≈ − Ûy. As the viscosity is
small, the motion of m: Ûx = Ûy + Ûz, is small. Nearly all energy is absorbed in the dashpot.

Initial conditions, serial damper with harmonic excitation:
As for the parallel system but in addition assuming za = zb = x = 0 at t = 0. Assuming also Ûx = 0,
Ûx = Ûy + Ûz ⇒ Ûz = − Ûy. Since za = zb = 0, and c Ûza = kzb ⇒ Ûza = 0, then Ûzb = − Ûy = −ω at t = 0.

The acceleration for the serial system is:

Üx = −2ηωn Ûx − ω2
nz = −ω2

nzb, ⇒ Üx(0) = 0, (2.7)

which differs from the parallel system.
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Examples of systems excited by harmonic support motion are shown in figures (2.2), (2.3) and (2.4).
For matlab implementation see (A.2)

2.3 The combined damper model

The combined damper model is depicted in figure (2.1), lower left. The sum of forces acting on m is

m Üx = −k2z − k1zb = −k2z − c Ûza,

x = y + za + zb, and c Ûza = k1zb. Substitution gives

Üzb + (k1/c) Ûzb + (k1/m + k2/m)zb = −(k2/m)za − Üyb

which gives the system

Ûza = 2ηω1zb, (2.8)
Üzb + 2ηω1 Ûzb + (ω2

1 + ω
2
2)zb = −Üy − ω

2
2za, (2.9)

where the angular frequencies and damping parameter η are given as
ω2

1 = k1/m, ω2
2 = k2/m, 2ηω1 = k1/c.

Examples of harmonic excitation of the combined model is shown in figures (2.3), (2.4).

Combined model, initial conditions, harmonic excitation:
At t = 0, x(0) = 0 ⇒ z(0) = 0 and assuming zb(0) = 0 ⇒ za(0) = 0, Ûza(0) = 0. Finally
Ûx(0) = 0 ⇒ Ûzb(0) + Ûy(0) = 0 ⇒ Ûzb(0) = −ω.

The initial acceleration is Üx(0) = −(ω2
1 + ω

2
2)zb(0) − ω

2
2za(0) = 0.

The governing equations for the combined model can be written as follows:

Ûza = 2ηω1zb,

Ûzb = ξ,
Ûξ = −2ηω1ξ − (ω2

1 + ω
2
2)zb − ω

2
2za − Üy.

For matlab implementation, see section (A.3).

2.4 The standard damper model

The standard damper model is shown in the lower right panel in figure (2.1). The sum of forces
acting on m is:

m Üx = −k1zb = −(k2za + c Ûza) ⇒

Ûza = (k1/c)zb − (k2/c)za, (2.10)
Üzb + (k1/z) Ûzb + (k1/m − k1k2/c2)zb = −(k2/c)2za − Üy, (2.11)
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where 2η1ω1 = k1/c, 2η2ω2 = k2/c, ω2
1 = k1/m, ω2

2 = k2/m ⇒ η2 = (ω2/ω1)η1 ⇒.

Ûza = 2η1ω1

(
zb − (ω2/ω1)2za

)
, (2.12)

Üzb + 2η1ω1 Ûzb + ω2
1(1 − (2η1ω2/ω1)2)zb = −Üy − ω2

2(2η1ω2/ω1)2za . (2.13)

Standard damper, harmonic forcing:
Assuming initial conditions x = 0, Ûx = 0, y = 0, Ûy = ω, za = zb = 0, since
c Ûza = k1zb − k2za, Ûza = 0, Ûzb = −ω.

Diagnostics:

x = za + zb + y,

Ûx = 2η1ω1(zb − (ω2/ω1)2za) + Ûzb + Ûy,
Üx = −ω2

1zb .

The matlab form of equations for the standard model can be found in (A.4)

Figure 2.3 Results of harmonic excitation of support system for combined damper and for
various Q.
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Figure 2.4 Acceleration of mass caused by harmonic excitation of support system. Combined
damper, parallel damper,various Q.

2.5 Harmonically excited support systems, phase relations

Let y = y0 sinωt, and the response be z = z0 sin(ωt − φ). For the parallel system, substitution into
equation (2.2) gives for the phase

tan φ =
2ζ(ω/ωn)
(1 − (ω/ωn)2

,

For the serial system, substitution into equation (2.5) gives

tan φ =
2η(ωn/ω)

1 − (ω/ωn)2 − (2η)2
.

Notice the inverse ωn/ω in the last expression. At resonance, for the parallel system φ = π/2,
while for the serial system the phase angle depends on the damping, tan φ = −1/(2η) = −Q. A very
simple and interesting result! Since 2ηωn = k/c, Q = ωn(c/k). For small c,
tan φ→ −0, ⇒ φ→ π. In this case, there is no transfer of force between the support and mass.
The support moves as y and y = −z, confirming that φ→ π.
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3 The double half-sine shock
The initial conditions for the shock are x(0) = 0, Ûx(0) = 0. The initial state for the support is
y(0) = 0, Ûy = 0, so since x = y + z, z(0) = 0, Ûz(0) = 0. The shock is designed such that the support
velocity after the shock is zero (

∫ t2
0 Üydt =

∫ t1
0 Üydt +

∫ t2
t1
Üydt = 0). Let A be the amplitude of the

first part of the pulse. The shock used in this report has form as a double half-sine function in
acceleration given as

Üy(t) = A


sin π

t1
t, 0 ≤ t ≤ t1,

− t1
t2−t1 sin π(t−t1)

t2−t1 , t1 < t ≤ t2,
0, t2 < t .

(3.1)

Ûy(t) = A
t1
π


1 − cos π

t1
t, 0 ≤ t ≤ t1,

1 + cos π(t−t1)t2−t1 , t1 < t ≤ t2.
0, t2 < t,

(3.2)

y(t) = A
t1
π


t − t1

π sin π
t1

t, 0 ≤ t ≤ t1,
t + t2−t1

π sin π(t−t1)
t2−t1 , t1 < t ≤ t2,

t2, t2 < t .
(3.3)

Figure 3.1 The figure shows a double half-sine pulse defined by A = 2250m/s2, t1 =
0.0029s, t2 = 0.0116s

3.1 Shock excitation: Double half-sine support motion, examples

To get some feel of the four damper models response of the double half-sine excitation, solutions
are plotted for the case Q = 5. In figure (3.2), acceleration, velocity, displacement of mass and
distance between support and mass are shown as function of time. The plots are for the same ω and
damping c. Evidently the models respond differently and the SRS can be expected to be different
for the various models as shown later in this report. Notice that the acceleration of mass is smaller
for the serial damper as the change in distance between support and mass become more larger.
More space is needed to avoid collision between mass and support compared with the other
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dampers. The standard damper also acts different compared with the parallel and combined
dampers. Its dissipation is less that the others.

Figure 3.2 The four models excited by a double half-sine shock. For Q = 5, same ω and c,
acceleration, velocity, displacement and distance between support and mass are
shown as function of time.
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4 Effects of the four damper models on SRS
SRS is calculated by adding a SRS-probe to the system. This is shown in figure (4.1). When
calculating the SRS, it is assumed that the mass of the probe is much smaller than that of the system
to be analyzed, µ = mp/m << 1 and the probes have no influence on the motion of the system to be
analyzed. In this section the equations for arbitrary µ is developed, but when running the
simulations, µ << 1. Matlab forms of the equations are summarized in appendix (A).

Figure 4.1 The figure shows a system with the SRS-probe attached

4.1 Equations for calculation of SRS, parallel model

Consider the forces working on mass mp and m for the parallel system as shown in figures (4.1) and
(2.1). Now x = z + y, xp = x + zp = z + zp + y. Also µ = mp/m, ω2 = k/m, ω2

p = kp/mp, and
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2ζω = c/m, 2ζpωp = cp/mp. The sum of forces on mp and m are

mp Üxp = −kpzp − cp Ûzp, (4.1)
m Üx = −kz − c Ûz + kpzp + cp Ûzp . (4.2)

Equation 4.1 implies
Üzp + 2ζpωp Ûzp + ω2

pzp = − Üx,

which is the equation of a damped oscillator with support motion expressed by Üx. To close the
problem, the interaction between m and mp is taken into consideration which gives the following
equations

Üz + 2ζω Ûz + ω2z − 2ζpωpµ Ûzp − ω2
pµzp = −Üy. (4.3)

Üzp + 2ζpωp(1 + µ) Ûzp + ω2
p(1 + µ)zp − 2ζω Ûz − ω2z = 0, (4.4)

The accelerations become

Üxp = −2ζpωp Ûzp − ω2
pzp, (4.5)

Üx = −2ζω Ûz − ω2z + 2ζpωpµ Ûzp + ω2
pµzp, (4.6)

4.2 Equations for calculation of SRS, serial model

Consider the serial model with the forces acting on mp and m, see figures 4.1 and 2.1. The sum of
forces at the SRS-probe mp is caused by the spring kp and the dashpot cp. The forces acting on
mass m are from mp through the spring kp and dashpot cp, and from the spring k which equals the
force from the dashpot c, so c Ûza = kzb. This implies

m Üx = −kzb + cp Ûzp + kpzp, (4.7)
mp Üxp = −cp Ûzp − kpzp . (4.8)

With xp = x + zp, equation (4.8) implies

Üzp + 2ζpωp Ûzp + ω2
pzp = − Üx,

which shows that mp acts as an SRS probe for the support motion Üx of m.
Now x = za + zb + y ⇒ Üx = Üza + Üzb + Üy, and Üza = (k/c) Ûzb, substitution in equations (4.7) and
(4.8) gives

Üzb +
k
c
Ûzb +

k
m

zb = −Üy +
cp
m
Ûzp +

kp
m

zp, (4.9)

Üzp +
cp
mp
Ûzp +

kp
mp

zp = − Üx = −
(
− k

m
zb +

cp
m
Ûzp +

kp
m

zp
)
. (4.10)

The accelerations can be written

Üx = −ω2zb + 2ζpωpµ Ûzp + ω2
pµzp,

Üxp = −2ζpωp Ûzp − ω2
pzp .
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The governing equations become

Ûza = 2ηωzb, (4.11)
Üzb + 2ηω Ûzb + ω2zb − 2ζpωpµ Ûzp − ω2

pµzp = −Üy, (4.12)
Üzp + 2ζpωp(1 + µ) Ûzp + ω2

p(1 + µ)zp = ω2zb, (4.13)

where µ = mp/m, ω =
√

k/m, ωp =
√

kp/mp, 2ηω = k/c, 2ζpωp = cp/mp.

4.3 Equations for calculations of SRS, combined model

The combined model with SRS probe is obtained by replacing the box in figure 4.1 with the lower
left panel of figure 2.1. Force balance implies

mp Üxp = −cp Ûzp − kpzp,

m Üx = −k2z − k1zb + cp Ûzp + kpzp = −k2z − c Ûza + cp Ûzp + kpzp .

x = y + z = y + za + zb, xp = x + zp = y + z + zp = y + za + zb + zp,
µ = mp/m, ω2

1 = k1/m, ω2
2 = k2/m, ω2

p = kp/mp , 2ζpωp = cp/mp, 2ηω2 = k2/c, implies

Üxp + 2ζpωp Ûzp + ω2
pzp = 0, ⇒ Üzp + 2ζpωp + ω

2
pzp = − Üx,

showing that m acts as a support system for oscillator mp.

m Üx = −k2z − k1zb + kpzp + cp Ûzp = −k2z − c Ûza + kpzp + cp Ûzp,
mp Üxp = −kpzp − cp Ûzp .

The above equations can be rewritten as

Ûza = 2ηω1zb, (4.14)
Üzb + 2ηω1 Ûzb + (ω2

1 + ω
2
2)zb − 2ζpωpµ Ûzp − ω2

pµzp = −Üy − ω2
2za, (4.15)

Üzp + 2ζpωp(1 + µ) Ûzp + ω2
p(1 + µ)zp = ω2

2za + (ω2
1 + ω

2
2)zb . (4.16)

Accelerations

Üxp = −ω2
pzp − 2ζpωp Ûzp,

Üx = −ω2
2za − (ω2

1 + ω
2
2)zb + ω

2
pµzp + 2ζpωpµ Ûzp .

4.4 Equations for calculations of SRS, standard model

Consider figures 4.1 and the lower right panel of figure 2.1. The forces acting on mp and m are

mp Üxp = −kpzp − cp Ûzp ⇒ mp Üzp + cp Ûzp + kpzp = −mp Üx,
m Üx = −k1zb + cp Ûzp + kpzp = −k2za − c Ûza + cp Ûzp + kpzp,

k1zb = k2za + c Ûza .
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Combining these equations give

Ûza = 2η1ω1

(
zb − (ω2/ω1)2za

)
, (4.17)

Üzb + 2η1ω1 Ûzb + ω2
1(1 − (2η1ω2/ω1)2)zb = −Üy − ω2

2(2η1ω2/ω1)2za + ω2
pµzp + 2ζpωpµ Ûzp,

(4.18)
Üzp + 2ζpωp(1 + µ) Ûzp + ω2

p(1 + µ)zp = ω2
1zb, (4.19)

where µ = mp/m and
ω2

1 = k1/m, ω2
2 = k2/m, ω2

p = kp/mp, 2ζpωp = cp/mp, 2η1ω1 = k1/c, 2η2ω2 = k2/c. Define
α = ω2/ω1 =

√
k2/k1, then η2/η1 = ω2/ω1 = α.

The accelerations are

Üxp = −ω2
pzp − 2ζpωp Ûzp,

Üx = −ω2
1zb + ω2

pµzp + 2ζpωpµ Ûzp .

The probe functions for the SRS calculation is shown in figure (4.2) and (4.3). The resulting SRS
are shown in figure (4.4).
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Figure 4.2 Probe functions for the SRS calculations for the parallel and serial models
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Figure 4.3 Probe functions for the SRS calculations for the combined and standard models
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Figure 4.4 SRS for all models Q=5.
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4.5 Results, comparison of the models, varying dissipation.

To compare the models, the material properties should be the same. The following physical
parameters are involved m, k1, k2, c. For simplicity let m and c be the same for all models. It could
be of interest to investigate the effects of varying k1 and k2, but here the study is limited to the case
k1 = k2 = k. In the parallel model, damping parameter c enters the numerator. In the other models,
c enters the denominator (see equations (4.3), (4.4),(4.11),(4.12),(4.17) and (4.18)).

Matlab scripts are developed and applied to the four damper models, see Appendix (A). As an
example the matlab code for the parallel case is shown in appendix (C). The simulation results are
shown in figures (4.5) through (4.9).

Figure 4.5 SRS for the four damper models, Q = 0.1, parallel merges with base, serial
merges with standard.

Figure 4.6 SRS for the four damper models, Q = 0.4.
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Figure 4.7 SRS for the four damper models, Q = 1

Figure 4.8 SRS for the four damper models, Q = 4.
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Figure 4.9 SRS for the four damper models, Q = 10, parallel merges with combined.
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4.6 Results, soft dampers Q=5, comparison with stiffer dampers.

Here the stiffness of the dampers are reduced so that the eigen-frequency is reduced from
60 − 80Hz to 8 − 16Hz which is a more realistic stiffness for dampers used in real systems. For
comparison the results are show in figure (4.10). The softer dampers need room for nearly twice the
compression compared with the stiffer ones.

Figure 4.10 SRS for the four damper models, Q = 5, for different stiffness. Tripartite plots
are shown for comparison. The result of the softer damper systems indicate that
the shock is absorbed over nearly twice the compression compared with the stiff
system. Room must be reserved for this compression.
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4.7 Results, comparison of the models with Q = 5 and selected
values of α, β.

Dampers should be able to keep static equilibrium. In this section the three dampers parallel,
combined and standard are compared. For the parallel and the combined dampers spring k and k2
support the equilibrium. For the combined damper a parameter α = ω1/ω2 and since k2 supports
equilibrium it is natural to define ω2 = 2π · n/T , defining the natural oscillation of the system.
For the standard damper static equilibrium is kept by k, where 1/k = 1/k1 + 1/k2. For this damper
let Ω = 2π · n/T defining the natural oscillation of this system. Now introduce β such that the two
frequencies ω1 = βΩ and ω2 = βΩ/

√
β2 − 1, which requires β > 1. Simulation results with α = β

are shown in the figures (4.11). It is shown that there are combinations of k1 and k2 that give good
shock damping.

Figure 4.11 SRS for the three damper models, Q = 5, for α = β = 1.1, 2.0, 4.0, 8.0, showing
that by letting k1 , k2 it is possible to construct dampers that can handle static
equilibrium and as the same time be good shock dampers.
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5 Nonlinear dampers
The simplest model of a nonlinear damper has increasing stiffness as a function of
contraction/stretching k = k(ξ). In addition it is expected that contraction acts different than
stretching. To avoid collision when the spring is nearly maximally compressed, the spring system
can be designed such that the stiffness progressively increases with compression. This is seen in
some car spring systems where rubber dampers are used to limit the most extreme compression.

Consider a system where the stiffness increases as the damper is compressed while it is constant as it
is being stretched. Assume α > 0 and n a positive and odd integer. The stiffness can then be written

k(ξ) = k0o(z) = k0

{
1, if ξ ≥ 0,
(1 + α(ξ/2ξ0)n), if ξ < 0. (5.1)

The governing equation for the parallel support system is

mÜz + c Ûz + k(z)z = −m Üy. (5.2)

Assuming that the damping parameter c is independent of z, this implies

Üz + 2ζω0 Ûz + ω2(z)z = −Üy. (5.3)

Here ω2
0 = k0/m, 2ζω0 = c/m and ω2(z) = ω2

0o(z). Following the equation for SRS for the
parallel oscillator, we obtain for the nonlinear system

Üz + 2ζω0 Ûz + ω2(z)z − 2ζpωpµ Ûzp − ω2
pzp = −Üy, (5.4)

Üzp + 2ζpωp(1 + µ) Ûzp + ω2
p(1 + µ)zp − 2ζω0 Ûz − ω2(z)z = 0. (5.5)

5.1 Harmonic excitation, nonlinear stiffness

In all cases below, Q = 5.
As an example, consider harmonic forcing with nonlinear response expressed by equation (5.3) with
Üy = −ω2

0 sin(ω0t). The stiffness is given by ko(z), o(z) is shown in figure (5.1), ω2(z) = ω2
0o(z).

By solving equation (5.3) the acceleration Üx is accessed and the results are shown in figure (5.1).

The nonlinear stiffness cause distortions in the wave form with sharp peaks in acceleration Üx. This
is caused by increased stiffness as the compression approaches its maximum. This is seen in
figure (5.1). As z increases, the wave shape approaches normal (compare with the linear wave
shape) until again z goes negative and the same repeats.
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Figure 5.1 Upper panel: The function o(z) = 1 for z ≥ 0 and o(z) = 1+α(z/2z0)n for z < 0,
compression. The stiffness curve is calculated for harmonic forcing.
Lower panel: Nonlinear response to harmonic forcing. The blue curve shows
linear response while the red curve shows the nonlinear response. The black
curve shows the function: o(z).
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Figure 5.2 The function o(z) = 1 for z ≥ 0 and o(z) = 1 + α(z/2z0)n for z < 0. The shock
profile is a double half-sine

5.2 Double half-sine excitation, nonlinear stiffness

Consider now the double half-sine pulse acting at a support system with a parallel damper. In this
case, equation (5.3) is solved with double half-sine excitation as defined previously. The stiffness
profile is shown in figure (5.2).
Acceleration Üx(t) and compression z(t) are shown in figure (5.3).

5.3 Double half-sine excitation, nonlinear stiffness and SRS

Let the support excitation be of the double half-sine form. To calculate the SRS, equations (5.4)
and (5.5) are solved. The probe oscillations used to calculate the SRS are shown in figure (5.4)
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Figure 5.3 Response to a double half-sine pulse showing the difference of linear and nonlinear
responses. Accelerations Üx(t) are shown in the upper plot while compression
z(t) are shown in the lower. The blue curves show linear response while the red
curves show nonlinear response. Evidently the nonlinear compression is smaller
than the linear. The black curves show the nonlinear factor: o(z). The green
curves show the double half-sine pulse.
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Figure 5.4 These plots show sections of the linear and nonlinear probe functions. Upper
plot shows probes for the linear damper model while the lower plot shows the
probes for the nonlinear damper model. The linear and nonlinear oscillations
are shown by the red curves.

Tripartite plots depend on linearity to be valid. In the nonlinear case, there is not a simple relation
between acceleration, pseudo velocity and pseudo displacement and these quantities become
meaningless. Spectra of velocity and displacement must be calculated independently as
max(abs( Ûx)) and max(abs(x)). SRS based on acceleration for the current nonlinear damper
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Figure 5.5 Comparison of SRS of a linear and a nonlinear damper. The blue curve shows
the SRS for the linear damper while the red curve shows the SRS for the nonlinear
damper. The black curve shows the SRS of the double half-sine base motion. These
spectra are based on acceleration. Note the high values in the high frequency tail
in the spectrum of the nonlinear damper.

described in this section is shown in figure (5.5). A plot of pseudo-velocity pv( f ) = a( f )/(π f ) for
the linear and the nonlinear case, shows that the results deviate from the calculated SRS from
velocity and displacement-data separate. The deviations are in particular big for the high frequency
part of the spectrum, see figure (5.5)
SRS based on velocity Ûx and displacement x can be calculated from the algorithms for both the
linear and nonlinear dampers. The results are shown in figure (5.6) and (5.7). Since shock criteria
for naval applications in many cases are presented as tripartite plots, the comparison with velocity
and displacement SRS deserves more attention. This is beyond the scope of this report.
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Figure 5.6 The upper plot shows the SRS for linear, nonlinear dampers and the base
calculated from velocity Ûx. The lower plot shown the SRS based on displacement
x.
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Figure 5.7 The plot shows a “tripartite” plot of the SRS for linear and nonlinear dampers.
In tripartite plots pseudo velocity v( f ) = a( f )/(2π f ) is plotted. Compared with
the previous plots, where SRS are calculated based on velocity and displacement
there are rather large deviations. That happens even for the linear case!
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6 The Frahm damper and its effect on SRS
Consider a parallel damper model. Add to it a probe oscillator and a Frahm damper mass as shown
in figure (6.1). The simulations show that the Frahm damper element when added to the main
damper, enhances the damping. The Frahm damper has shown to be an efficient damper when the
oscillations are harmonic. This is not obvious when it comes to shocks which are not harmonic.

Simulations here show that in fact the Frahm damper will have some effect on shock damping. The
extra mass md will be able to absorb energy from the shock. Obviously more efficient with
increasing mass and dissipation. Some results are shown in figure 6.2. Evidently as long as the
frequency ωd is close to the frequency ω, the damper is most efficient. The black curves show the
SRS for the damper without the Frahm damper element. The other curves show the results when
the Frahm damper is turned on. For Qd = 2.5, there is damping at nearly all frequencies. At
Qd = 10, the damping occurs except in the parts of wings of the of the resonance frequency, where
some amplification may occur. The latter is a known effect of the Frahm damper when applied to
harmonic oscillations.

Figure 6.1 The parallel damper model with a SRS probe and a Frahm damper element

Let xp = x + zp = y + z+ zp, xd = x + zd = y + z+ zd and ω2 = k/m, ω2
p = kp/mp, ω

2
d
= kd/md,

µp = mp/m, µd = md/m, 2ζω = c/m, 2ζpωp = cp/mp, 2ζdωd = cd/md. The equations below
are derived for arbitrary masses, stiffness and dissipation, but when 0 < mp << 1 it is used as a
probe. The tunable mass is md. Finally

mp Üxp = −kpzp − cp Ûzp, (6.1)
md Üxd = −kdzd − cd Ûzd, (6.2)

m Üx = −kz − c Ûz + kpzp + cp Ûzp + kdzd + cd Ûzd, (6.3)
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implying

Üz + 2ζω Ûz + ω2z = ω2
pµpzp + 2ζpωpµp Ûzp + ω2

dµdzd + 2ζdωdµd Ûzd, (6.4)
Üzp + 2ζpωp(1 + µp) + ω2

pzp = ω2z + 2ζω Ûz − ω2
dµdzd − 2ζdωdµd Ûzd, (6.5)

Üzd + 2ζdωd(1 + µd) + ω2
dzd = ω2z + 2ζω Ûz − ω2

pµpzp − 2ζpωpµp Ûzp . (6.6)

The accelerations are

Üx = −omega2z − 2ζω Ûz + ω2
pzp + 2ζpωp Ûzp + ω2

dzd + 2ζdωd Ûzd,
Üxp = −ω2

pzp − 2ζpωp Ûzp,
Üxd = −ω2

dzd − 2ζdωdd Ûzd .
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Figure 6.2 The left plot shows the SRS for a system based on a parallel damper with Q = 10
and with a tuned mass damper attached for selected mass fractions µd and
Qd = 10. The right panel shows the same but with Qd = 2.5. The frequency of
the Frahm damper is ωd = ω
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7 Conclusion
The motivation for this report was to study damper models, in particular models for rubber dampers
and their impact to shock response. Dampers play an important role in military equipment by
reducing the potentially devastating impacts of vibration and shock. The study was initiated by the
need to characterize rubber dampers used in naval vessels. Characterization of dampers requires a
good understanding on how dampers behave in relation to shock response and vibrations which was
the motivation for this work. The knowledge obtained in this report will be used in a proceeding
study which involves physical testing of dampers.

The simulation models developed here, permit exploration of case where Q, the stiffness k1 and k2
can vary. In the first cases, Q is varied, but assuming k = k1 = k2. Differences in results for the
parallel, combined and the standard models are small in this case. The serial damper offers better
damping in the sense of less acceleration (which requires more retarding space), but is of limited
use due to its incapability to handle static loads.

In the next case studied, Q = 5, k = k1 with fixed k1, while k2 is varied. It appears that damping is
sensitive to variation in k2. This can be used to construct damping systems that perform better
compared with the parallel damping model. For rubber dampers it is plausible to assume that
k1 ≈ k2. This has to be explored further.

As shock is a violent process for which nonlinear models may describe the dynamics better than
linear models. The study of nonlinearity is described through compression dependent stiffness. The
result is striking where the SRS shows enhanced acceleration in the entire frequency band above the
point where the SRS peaks. This has a most devastating effect on equipment. The bad accelerations
are an effect of the damper being “saturated” as it is heavily compressed. When designing shock
damper systems, care should be taken due to this effect. If possible by extended room for
compression.

Finally, the Frahm damper and its effect on shock is studied. By adding an extra mass, the impact of
the shock can be reduced by a factor of two. Additional mass is not a good idea if it is of no use, but
perhaps there are situations where systems can be coupled together in such a way that the added
mass has a purpose other than just being dead mass.

Further work:
This work has posed some new questions. It was necessary to limit parameter space to k = k1 = k2
and a few cases where k1 , k2. This should be explored further which is straightforward with the
software developed here. The models can also be applied to other dampers that rubber dampers.

Pseudo-velocity and pseudo-displacement are quantities that are used in classical shock analysis
and have defined a standard. This is mainly due to the fact that before mems-accelerometers were
developed, velocity was measured in shock tests. The results were plotted on tripartite log paper,
giving in addition “some picture” of displacement and acceleration. From shock simulations, both
velocity and displacement are available and a study to compare calculated SRS-velocity and
SRS-displacement should be compared with pseudo velocity and pseudo displacement derived
from acceleration. Both linear and nonlinear cases should be studied.

The software developed here is structured such that any nonlinear stiffness-profile or any form of
shock-profile can be implemented. For example it should be easy to implement random vibrations
instead of the double half-sine functions used here.
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A Matlab form of the damper equations

A.1 Parallel damper model

Matlab implementation. Parallel support system.
Equation (2.2) is written as two first order equations

Ûz = ξ, (A.1)
Ûξ = −2ζωnξ − ω2

nz − Üy. (A.2)

Here z = z(1), Ûz = ξ = z(2).
The matlab form of equation (2.2) with the initial conditions. For harmonic excitation
y = sinωt, Ûy = ω cosωt, Üy = −ω2 sinωt.

Initial condition z(1) = 0, z(2) = −ω ⇒ Üx(0) = 2ζωnω.

Governing equations general Üy

dz(1) = z(2),
dz(2) = −2ζωnz(2) − ω2

nz(1) − Üy.

Acceleration
Üx = −2ζωnz(2) − ω2

nz(1).

Initial conditions for pulse excitation

z(1) = 0, z(2) = 0 ⇒ Üx(0) = 0.

A.2 Serial damper model

Matlab implementation. Serial support system equations:

m Üx = −kzb = −c Ûza .

Harmonic excitation y = sinωt, Ûy = ω cosωt, Üy = −ω2 sinωt.
The first order equations for the serial damper

Ûz = ξ, (A.3)
Ûξ = −2ηωnξ − ω2

nz − 2ηωn Ûy − Üy. (A.4)

Matlab form, governing equations

dz(1) = z(2),
dz(2) = −2ηωnz(2) − ω2

nz(1) − 2ηωn Ûy − ω2
n Üy.

For the harmonic excitation the initial conditions are

z(1) = 0, z(2) = −ω, Ûx(0) = 0, ⇒ Üx(0) = −2ηωn( Ûy + z(2)) − ω2
nz(1) = 0.
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An equivalent way to solve the serial system is to write the governing equations in the form

Ûza = 2ηωnzb, (A.5)
Ûzb = ξ, (A.6)
Ûξ = −2ηωnξ − ω2

nzb − Üy.. (A.7)

The matlab form is then

dz(1) = 2ηωnz(2),
dz(2) = z(3),
dz(3) = −2ηωnz(3) − ω2

nz(2) − Üy.

The acceleration becomes simply for this system

m Üx = −kzb ⇒ Üx = −ω2
nz(2).

A.3 Combined damper model

The governing equations for the combined model can be written as follows

Ûza = 2ηω1zb,

Ûzb = ξ,
Ûξ = −2ηω1ξ − (ω2

1 + ω
2
2)zb − ω

2
2za − Üy.

Using the harmonic forcing y = sinωt the initial conditions are (za, zb, Ûzb) = (0, 0,−ω), where
za = z(1), zb = z(2), Ûzb = ξ = z(3).

dz(1) = 2ηω1z(2),
dz(2) = z(3),
dz(3) = −2ηω1z(3) − (ω2

1 + ω
2
2)z(2) − ω

2
2z(1) − Üy.

For diagnostic purposes

x = z(1) + z(2) + y,

Ûx = 2ηω1z(2) + z(3) + Ûy,
Üx = −ω2

2z(1) − (ω2
1 + ω

2
2)z(2),

implying (x(0), Ûx(0), Üx(0)) = (0, 0, 0) for the harmonic excitation.
For the double half-sine pulse, also Ûzb(0) = 0.

A.4 Standard damper model

Equations (2.12) and (2.13) can be written as a first order system

Ûza = 2η1ω1

(
zb − (ω2/ω1)2za

)
, (A.8)

Ûzb = ξ, (A.9)
Ûξ = −2η1ω1ξ − ω2

1(1 − (2η1ω2/ω1)2)zb − ω2
2(2η1ω2/ω1)2za − Üy. (A.10)
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Matlab implementation

dz(1) = 2η1ω1

(
z(2) − (ω2/ω1)2z(1)

)
,

dz(2) = z(3),
dz(3) = −2η1ω1z(3) − ω2

1(1 − (2η1ω2/ω1)2)z(2) − ω2
2(2η1ω2/ω1)2z(1) − Üy

Diagnostics

x = z(1) + z(2) + y,

Ûx = 2η1ω1

(
z(2) − (ω2/ω1)2z(1)

)
+ z(3) + Ûy,

Üx = −ω2
1z(2).
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B Equations for SRS of dampers on matlab form

B.1 SRS model for parallel damper

Equation for SRS for parallel damper written on first order form

Ûz = ξ,
Ûξ = −2ζωξ − ω2z + 2ζpωpµψ + ω

2
pµzp − Üy,

Ûzp = ψ,
Ûψ = −2ζpωp(1 + µ)ψ − ω2

p(1 + µ)zp + 2ζωξ + ω2z.

Matlab implementation

z(1) = z,

z(2) = ξ = Ûz,
z(3) = zp,

z(4) = ψ = Ûzp .

dz(1) = z(2),
dz(2) = −2ζωz(2) − ω2z(1) + 2ζpωpµz(4) + ω2

pµz(3) − Üy,
dz(3) = z(4),
dz(4) = −2ζpωp(1 + µ)z(4) − ω2

p(1 + µ)z(3) + 2ζωz(2) + ω2z(1).

Accelerations

Üxp = −2ζpωpz(4) − ω2
pz(3),

Üx = −2ζωz(2) − ω2z(1) + 2ζpωpµz(4) + ω2
pµz(3).

B.2 SRS model for serial damper

SRS model for the serial damper on first order form

Ûza = 2ηωzb, (B.1)
Ûzb = ξ, (B.2)
Ûξ = −2ηωξ − ω2zb + 2ζpωpµψ + ω

2
pµzp − Üy, (B.3)

Ûzp = ψ, (B.4)
Ûψ = −2ζpωp(1 + µ)ψ − ω2

p(1 + µ)zp + ω2zb . (B.5)

Matlab implementation

z(1) = za,

z(2) = zb,

z(3) = Ûzb = ξ,
z(4) = zp,

z(5) = Ûzp = ψ.

dz(1) = 2ηωz(2),
dz(2) = z(3),
dz(3) = −2ηωz(3) − ω2z(2) + 2ζpωpµz(5) + ω2

pµz(4) − Üy,
dz(4) = z(5),
dz(5) = −2ζpωp(1 + µ)z(5) − ω2

p(1 + µ)z(4) + ω2z(2).

46 FFI-RAPPORT 22/02192



Accelerations

Üx = −ω2z(2) + 2ζpωpµz(5) + ω2
pµz(4),

Üxp = −2ζpωpz(5) − ω2
pz(4).

B.3 SRS model for the combined damper

The equations for the SRS model for the combined damper are

Ûza = 2ηω1zb,

Ûzb = ξ,
Ûξ = −2ηω1ξ − (ω2

1 + ω
2
2)zb − ω

2
2za + 2ζpωpµψ + ω

2
pµzp − Üy,

Ûzp = ψ,
Ûψ = −2ζpωp(1 + µ)ψ − ω2

p(1 + µ)zp + ω2
2za + (ω2

1 + ω
2
2)zb .

Matlab implementation

z(1) = za,

z(2) = zb,

z(3) = Ûzb = ξ,
z(4) = zp,

z(5) = Ûzp = ψ.

dz(1) = 2ηω1z(2),
dz(2) = z(3),
dz(3) = −2ηω1z(3) − (ω2

1 + ω
2
2)z(2) − ω

2
2z(1) + 2ζpωpµz(5) + ω2

pµz(4) − Üy,
dz(4) = z(5),
dz(5) = −2ζpωp(1 + µ)z(5) − ω2

p(1 + µ)z(4) + ω2
2z(1) + (ω2

1 + ω
2
2)z(2).

Accelerations

Üxp = −ω2
pz(4) − 2ζpωpz(5),

Üx = −ω2
2z(1) − (ω2

1 + ω
2
2)z(2) + ω

2
pµz(4) + 2ζpωpµz(5).

B.4 SRS model for the standard damper

First order form of the equations for the SRS model for the standard damper

Ûza = 2η1ω1

(
zb − (ω2/ω1)2za

)
,

Ûzb = ξ,
Ûξ = −2η1ω1ξ − ω2

1

(
1 − (2η1ω2/ω1)2

)
zb − ω2

2(2η1ω2/ω1)2za + ω2
pµzp + 2ζpωpµψ − Üy,

Ûzp = ψ,
Ûψ = −2ζpωp(1 + µ)ψ − ω2

p(1 + µ)zp + ω2
1zb .

Matlab implementation
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z(1) = za,

z(2) = zb,

z(3) = Ûzb = ξ,
z(4) = zp,

z(5) = Ûzp = ψ.

dz(1) = 2η1ω1

(
z(2) − (ω2/ω1)2z(1)

)
,

dz(2) = z(3),

dz(3) = −2η1ω1z(3) − ω2
1

(
1 − (2η1ω2/ω1)2

)
z(2) − ω2

2(2η1ω2/ω1)2z(1)

+ ω2
pµz(4) + 2ζpωpµz(5) − Üy,

dz(4) = z(5),
dz(5) = −2ζpωp(1 + µ)z(5) − ω2

p(1 + µ)z(4) + ω2
1z(2).

Accelerations

Üxp = −ω2
pz(4) − 2ζpωpz(5),

Üx = −ω2
1z(2) + ω2

pµz(4) + 2ζpωpµz(5).

B.5 Matlab implementation, Frahm damper

For matlab implementation ©«

z(1)
z(2)
z(3)
z(4)
z(5)
z(6)

ª®®®®®®®¬
=

©«

z
Ûz

zp
Ûzp
zd
Ûzd

ª®®®®®®®¬
.
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C Matlab code for calculating SRS for the parallel damper,
example parallel damper

This implementation use the equations presented in appendix (B.1).
1 f u n c t i o n SRSparams ( )
2 g l o b a l SRSdhs % d e f i n e s t h e doub l e h a l f −s i n e
3 SRSdhs .A = 2250 ; % a c c e l e r a t i o n m/ s ^2
4 SRSdhs . t 1 = 0 . 0 0 29 ; % d u r a t i o n f i r s t h a l f −pu l s e
5 SRSdhs . t 2 = 0 . 0 1 16 ; % d u r a t i o n second ha l f −pu l s e
6
7 g l o b a l SRSprobe % da t a f o r SRS probe
8 SRSprobe .Q = 50 ; % Q f a c t o r
9 SRSprobe .mu = 0 . 0 0 01 ; % mu = m_p /m

10
11 g l o b a l phys % d e f i n i t i o n s i n p h y s i c a l space ( t ime domaine )
12 phys .m = 12 ; % d u r a t i o n f a c t o r f o r i n t e g r a t i o n T=m∗ ( t 1 + t 2 )
13 phys . n = 15 ; % number o f damper o s c i l l a t i o n s w i t h i n [ 0 ,T ]
14 % phys .m = 24 ; % d u r a t i o n f a c t o r f o r i n t e g r a t i o n T=m∗ ( t 1 + t 2 )
15 % phys . n = 8 ; % number o f damper o s c i l l a t i o n s w i t h i n [ 0 ,T ]
16 phys . n p t s = 1600 ; % number o f p o i n t s i n t ime domaine
17
18 g l o b a l spec % d e f i n i t i o n o f p o i n t s i n s p e c t r a l s pace
19 spec . n f = 120 ; % number o f f r e qu en cy p o i n t s
20 spec . f0 = 2 ^ ( 1 / 8 ) ; % s e p a r a r t i o n between f r e qu en cy p o i n t s
21 spec . f ak = 0 . 036∗2 ; % s c a l e f a c t o r f o r f r e qu en cy d a t a
22 spec . f s t a r t = 10 ; % l owe s t f r e qu en cy i n spec t rum

1 f u n c t i o n SRSrappor t (Q)
2 % c a l c u l a t i n g SRS f o r DOUBLE HLAF SINE shock , p a r a l l e l damper
3 % use : SRSrappor t (Q)
4 % i n p u t : Q q u a l i t y f a c t o r f o r o s c i l l a t o r m
5 % pa r ame t e r s s e e SRSparams .m
6
7 SRSparams ( ) % d e f i n e s p a r ame t e r s
8
9 g l o b a l SRSdhs

10 A = SRSdhs .A;
11 t 1 = SRSdhs . t 1 ;
12 t 2 = SRSdhs . t 2 ;
13
14 g l o b a l SRSprobe
15 Qp = SRSprobe .Q;
16 mu = SRSprobe .mu ;
17
18 g l o b a l phys
19 m = phys .m;
20 n = phys . n ;
21 np t s = phys . n p t s ;
22
23 g l o b a l spec
24 nf = spec . n f ;
25 f0 = spec . f0 ;
26 f ak = spec . f ak ;
27 f s t a r t = spec . f s t a r t ;
28
29
30 T = m∗ ( t 1 + t 2 ) ; % d u r a t i o n f o r shock c a l c u l a t i o n
31 omega = 2∗ p i ∗n / T ; % c i r c u l a r f r e qu en cy damper o s c i l l a t o r
32 z e t a = 1 / ( 2∗Q) ; % damping p a r ame t e r damper o s c i l l a t o r
33 z e t a p = 1 / ( 2∗Qp) ; % damping pa r ame t e r p robe o s c i l l a t o r
34 % i n i t i a l c o n d i t i o n s
35 Z10 = 0 ; dZ10 = 0 ; Z20 = 0 ; dZ20 = 0 ;
36 Z i n i t = [ Z10 , dZ10 , Z20 , dZ20 ] ;
37 %
38 t s p a n = l i n s p a c e ( 0 . 0 , T , n p t s ) ; % p o i n t s i n t ime frame
39
40 acc = @myacc ; % dhs a c c e l e r a t i o n
41 v e l = @myvel ;
42 d i s = @mydisp ;
43
44 a = z e r o s ( np t s , 1 ) ; % a r r a y c o n t a i n i n g s u p p o r t a c c e l e r a t i o n
45 ve = z e r o s ( np t s , 1 ) ; % a r r a y c o n t a i n i n g s u p p o r t v e l o c i t y
46 d i = z e r o s ( np t s , 1 ) ; % a r r a y c o n t a i n i n g s u p p o r t d i s p l a c emen t
47
48 ddx2 = z e r o s ( np t s , n f ) ; % a r r a y c o n t a i n i n g a c c e l e r a t i o n s f o r p r obe s
49 f f = z e r o s ( nf , 1 ) ; % a r r a y c o n t a i n i n g f r e qu en cy p o i n t s
50 ddx2max = z e r o s ( nf , 1 ) ; % a r r a y c o n t a i n i n g SRS da t a
51 d i s p ( [ ’SRS c a l c u l a t e d f o r p a r a l l e l damper : Q= ’ , . . .
52 num2s t r (Q) , ’ , f = ’ , num2s t r ( omega / ( 2∗ p i ) ) , ’Hz , n f= ’ , i n t 2 s t r ( n f ) ] )
53 %
54 t o = 1 ;
55 f o r i =1 : n f
56 t o = f0 ∗ t o ;
57 f f ( i ) = f ak ∗ t o + f s t a r t ;
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58 f r e k = f ak ∗ t o + f s t a r t ;
59 omegap = 2∗ p i ∗ f r e k ; % probe f r e qu en cy
60 %s o l v e r u s i n g RK45 s o l u t i o n a r r a y s a t t s p a n
61 % z ( : , 1 ) =z , z ( : , 2 ) =dz , z ( : , 3 ) = z_p , z ( : , 4 ) = dz_p
62 [ t , z ]= ode45 (@( t , z ) ddSRSpar ( t , z , z e t a , z e t ap , omega , omegap ,mu , . . .
63 acc ) , t s pan , Z i n i t ) ;
64 ddx2 ( : , i ) = −omegap^2∗ z ( : , 3 ) − 2∗ z e t a p ∗omegap∗z ( : , 4 ) ; % probe s o l u t i o n s
65 ddx2max ( i ) = max ( abs ( ddx2 ( : , i ) ) ) ; % SRS based on max ( abs )
66 end
67 % t ak en ou t o f l oop s i n c e mu << 1 , ddx1 no t dependen t on m_p mot ion
68 ddx1 = −omega^2∗ z ( : , 1 ) − 2∗ z e t a ∗omega∗z ( : , 2 ) + omegap^2∗mu∗z ( : , 3 ) + . . .
69 2∗ z e t a p ∗omegap∗mu∗z ( : , 4 ) ; % a c c e l e r a t i o n o f m
70
71 f o r i = 1 : n p t s
72 a ( i ) = acc ( t s p a n ( i ) ) ; % a c c e l e r a t i o n o f s u p p o r t
73 ve ( i ) = v e l ( t s p a n ( i ) ) ; % v e l o c i t y
74 d i ( i ) = d i s ( t s p a n ( i ) ) ; % d i s p l a c emen t
75 end
76
77 f i g = 1 ; % p l o t o f DHS, damper o s c i l l a t i o n s and p robe s
78 f i g u r e ( f i g )
79 c l f ( f i g )
80 p ( 1 ) = p l o t ( t , a , ’ g ’ , ’ LineWidth ’ , 1 . 5 ) ;
81 ho ld on
82 p ( 2 ) = p l o t ( t , ddx1 , ’ r ’ , ’ LineWidth ’ , 1 . 5 ) ;
83 f o r i =1 : n f
84 p l o t ( t , ddx2 ( : , i ) )
85 end
86 x l a b e l ( ’ t ime s ’ )
87 y l a b e l ( ’ a c c e l e r a t i o n m/ s ^2 ’ )
88 t i t l e ( [ ’ P a r a l l e l damper Q= ’ , num2s t r (Q) , ’ . ’ ] ) ;
89 l egend ( [ p ( 1 ) , p ( 2 ) ] , ’ Suppo r t a c c e l e r a t i o n ’ , ’Damper r e s p on s e ’ )
90 g r i d on
91
92 f i g = f i g + 1 ; % p l o t o f SRS
93 f i g u r e ( f i g )
94 c l f ( f i g )
95 l o g l o g ( f f , ddx2max , ’ b ’ )
96 ho ld on
97 [ fb , ddxbase ] = MSRSbase ( ) ;
98 l o g l o g ( fb , ddxbase , ’ k ’ )
99 g r i d on

100 xl im ( [ f f ( 1 ) f f ( n f ) ] )
101 yl im ( [ min ( ddx2max ) max ( ddx2max ) ] )
102 x l a b e l ( ’ f r e qu en cy Hz ’ )
103 y l a b e l ( ’ a c c e l e r a t i o n m/ s ^2 ’ )
104 l egend ( ’m’ , ’ ba se ’ )
105 t i t l e ( [ ’SRS f o r p a r a l l e l damper Q= ’ , num2s t r (Q) ] )

Solvers, functions for acceleration, velocity and displacement for a double half-sine pulse, see
chapter (3).

1 f u n c t i o n [ f f , ddxmax ] = MSRSbase ( )
2 % c a l c u l a t i n g SRS f o r t h e base moving as DOUBLE HALF SINE shock ,
3 % see d e f i n i t i o n s i n f i l e SRSparams .m
4 %
5 % use : [ f f , ddxmax ] = SRSbase ( )
6 % i n p u t : p a r ame t e r s d e f i n e d i n SRSparams .m
7 % ou t p u t :
8 % f f f r e qu en cy d a t a
9 % ddxmax SRS da t a

10 %
11 g l o b a l SRSdhs
12 A = SRSdhs .A;
13 t 1 = SRSdhs . t 1 ;
14 t 2 = SRSdhs . t 2 ;
15
16 g l o b a l phys
17 m = phys .m;
18 n = phys . n ;
19 np t s = phys . n p t s ;
20
21 g l o b a l SRSprobe
22 Qp = SRSprobe .Q;
23 mu = SRSprobe .mu ;
24
25 g l o b a l spec
26 nf = spec . n f ;
27 f0 = spec . f0 ;
28 f ak = spec . f ak ;
29 f s t a r t = spec . f s t a r t ;
30
31
32 i f t 1 > t 2
33 d i s p ( ’ E r r o r t 2 > t 1 ’ )
34 f f =0 ; ddxmax =0;
35 r e t u r n
36 end
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37 d i s p ( [ ’ Computing SRS f o r base Qp= ’ , num2s t r (Qp) ] )
38 T = m∗ ( t 1 + t 2 ) ; % t ime d u r a t i o n f o r shock c a l c u l a t i o n
39 z e t a = 1 / ( 2∗Qp) ;
40 Z = 0 ;
41 dZ= 0 ;
42 Z i n i t = [Z , dZ ] ;
43
44 t s p a n = l i n s p a c e ( 0 . 0 , T , n p t s ) ;
45
46 acc = @myacc ;
47 %
48 % SRS c a l c u l a t i o n
49 %
50 f f = z e r o s ( nf , 1 ) ;
51 ddxmax = z e r o s ( nf , 1 ) ;
52 d i s p ( [ ’ Base : z e t a = ’ , num2s t r ( z e t a ) , ’ , numpts = ’ , i n t 2 s t r ( n f ) ] )
53
54 t o = 1 ;
55 f o r i =1 : n f
56 t o = f0 ∗ t o ;
57 f f ( i ) = f ak ∗ t o + f s t a r t ;
58 f r e k = f ak ∗ t o + f s t a r t ;
59 omi = 2∗ p i ∗ f r e k ;
60 [ t , z ] = ode45 (@( t , z ) ddMBase ( t , z , z e t a , omi , acc ) , t s pan , . . .
61 Z i n i t ) ;
62 ddx = −2∗ z e t a ∗omi∗z ( : , 2 ) − omi ^2∗ z ( : , 1 ) ; % probe a c c e l e r a t i o n
63 ddxmax ( i ) = max ( abs ( ddx ) ) ;
64 end

1 f u n c t i o n dz = ddMBase ( t , z , z e t a , om , acc )
2 % s o l v i n g s u p p o r t sys tem p a r a l l e l o s c i l l a t o r
3 % f o r s p e c i f i e d acc , f o r example doub l e h a l f s i n e shock
4 %
5 dz = z e r o s ( 2 , 1 ) ;
6 dz ( 1 ) = z ( 2 ) ;
7 dz ( 2 ) = −2∗ z e t a ∗om∗z ( 2 ) − om^2∗ z ( 1 ) − acc ( t ) ;

1 f u n c t i o n dz = ddSRSpar ( t , z , z e t a , z e t ap , omega , omegap ,mu , acc )
2 % s o l v e r f o r a PARALLEL ( sp r i ng , d a shpo t ) s u p p o r t sys tem e x c i t e d by a
3 % pu l s e d e f i n e d by f u n c t i o n acc .
4 % Damping pa r ame t e r i s z e t a =1 / ( 2Q) and f r e qu en cy i s omega .
5 % The probe mass mp has damping p a r ame t e r z e t a p and f r e qu en cy omegap .
6 % The s c r i p t i s g en e r a l , no t dependen t on t h e mass f r a c t i o n mu=mp /m.
7 % When mp i s used as an SRS probe , s e t m >0 and m << 1 .
8 % The doub l e h a l f s i n e p u l s e i s d e f i n e d by t1 , t 2 and A as
9 % s e t i n SRSparams .m

10 dz = z e r o s ( 4 , 1 ) ;
11 dz ( 1 ) = z ( 2 ) ;
12 dz ( 2 ) = −2∗ z e t a ∗omega∗z ( 2 ) − omega^2∗ z ( 1 ) +2∗ z e t a p ∗omegap∗mu∗z ( 4 ) . . .
13 + omegap^2∗mu∗z ( 3 ) − acc ( t ) ;
14 dz ( 3 ) = z ( 4 ) ;
15 dz ( 4 ) = −2∗ z e t a p ∗omegap ∗(1+mu) ∗z ( 4 ) − omegap ^2∗ (1+mu) ∗z ( 3 ) . . .
16 + 2∗ z e t a ∗omega∗z ( 2 ) + omega^2∗ z ( 1 ) ;

1 f u n c t i o n acc = myacc ( t )
2 % doub l e h a l f s i n e ( dhs ) a c c e l e r a t i o n f o r SRS c a l c u l a t i o n s
3 % t i n s t a n t f o r which a c c e l e r a t i o n i s t o be c a l c u l a t e d
4 % t1 d u r a t i o n f i r s t p a r t o f dhs
5 % t2 d u r a t i o n o f second p a r t o f dhs
6 % A amp l i t u d e m/ s ^2
7 % acc = @myacc
8 % a = acc ( t ) , a c c e l e r a t i o n c a l c u l a t e d a t t ime t
9 g l o b a l SRSdhs

10 A = SRSdhs .A;
11 t 1 = SRSdhs . t 1 ;
12 t 2 = SRSdhs . t 2 ;
13
14 i f (0 <= t ) && ( t <= t 1 )
15 acc = A∗ s i n ( ( p i / t 1 ) ∗ t ) ;
16 e l s e i f ( t 1 < t ) && ( t <= t 2 )
17 acc = −A∗ ( t 1 / ( t2− t 1 ) ) ∗ s i n ( p i ∗ ( t− t 1 ) / ( t2− t 1 ) ) ;
18 e l s e
19 acc = 0 ;
20 end

1 f u n c t i o n v e l = myvel ( t )
2 % doub l e h a l f s i n e ( dhs ) v e l o c i t y f o r SRS c a c l u l a t i o n s
3 % co r r e s p o n d i n g t o q u a n t i t i e s d e f i n e d i n a c c e l e r a t i o n .m
4 % t i n s t a n t f o r which a c c e l e r a t i o n i s t o be c a l c u l a t e d
5 % t1 d u r a t i o n f i r s t p a r t o f dhs
6 % t2 d u r a t i o n o f second p a r t o f dhs
7 % A amp l i t u d e m/ s ^2 d e f i n e d i n a c c e l e r a t i o n .m
8 % ve l = @myvel
9 % v = ve l ( t ) % v e l o c i t y c a l c u l a t e d a t t ime t

10 g l o b a l SRSdhs
11 A =SRSdhs .A;
12 t 1 =SRSdhs . t 1 ;
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13 t 2 =SRSdhs . t 2 ;
14
15 K = A∗ ( t 1 / p i ) ;
16 i f (0 <= t ) && ( t <= t 1 )
17 v e l = K∗(1− cos ( ( p i / t 1 ) ∗ t ) ) ;
18 e l s e i f ( t 1 < t ) && ( t <= t 2 )
19 v e l = K∗(1+ cos ( ( p i ∗ ( t− t 1 ) / ( t2− t 1 ) ) ) ) ;
20 e l s e
21 v e l =0 ;
22 end

1 f u n c t i o n d i s = mydisp ( t )
2 % doub l e h a l f s i n e ( dhs ) d i s p l a c emen t f o r SRS c a l c u l a t i o n s
3 % co r r e s p o n d i n g t o q u a n t i t i e s d e f i n e d i n a c c e l e r a t i o n .m
4 % t i n s t a n t f o r which a c c e l e r a t i o n i s t o be c a l c u l a t e d
5 % t1 d u r a t i o n f i r s t p a r t o f dhs
6 % t2 d u r a t i o n o f second p a r t o f dhs
7 % A amp l i t u d e m/ s ^2 d e f i n e d i n a c c e l e r a t i o n .m
8 % d i s = @mydisp
9 % d = d i s ( t ) d i s p l a c emen t c a l c u l a t e d a t t ime t ;

10 g l o b a l SRSdhs
11 A = SRSdhs .A;
12 t 1 = SRSdhs . t 1 ;
13 t 2 = SRSdhs . t 2 ;
14
15 K = A∗ ( t 1 / p i ) ;
16 i f (0 <= t ) && ( t <= t 1 )
17 d i s = K∗ ( t − ( t 1 / p i ) ∗ s i n ( ( p i / t 1 ) ∗ t ) ) ;
18 e l s e i f ( t 1 < t ) && ( t <= t 2 )
19 d i s = K∗ ( t + ( ( t2− t 1 ) / p i ) ∗ s i n ( p i ∗ ( t− t 1 ) / ( t2− t 1 ) ) ) ;
20 e l s e
21 d i s =K∗ t 2 ;
22 end
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