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A B S T R A C T

In a previous work the authors described a fast high-fidelity computer model for acoustic
scattering from multi-layered elastic spheres. This work is now extended with a scaling strategy
significantly mitigating the problem of overflow and thus expanding the useful frequency range
of the model. Moreover, new boundary conditions and loads are implemented. Most important
are the fluid–fluid and solid–solid couplings, which allow a completely general layering of the
scattering object. Sound hard and sound soft boundary conditions are implemented for solids
and fluids respectively. In addition to the existing acoustic excitation, mechanical excitation in
the form of point-excitation and surface excitation are implemented. Attenuation in the form of
hysteresis damping as well as viscous fluid layers are also included. Several numerical examples
are included, with the purpose of validating the code against existing reference solutions. The
examples include air bubbles, a coated steel shell and a point-exited steel shell.

. Introduction

Computer models of acoustic scattering from three-dimensional elastic objects including internal structure are important tools in
nderwater acoustics, as well as in many other fields such as non-destructive testing, seismology, noise control and medical imaging.

In underwater acoustics such scattering models allow the study of realistic scattering scenarios, both from marine life [1,2]
nd man-made objects [3–7]. Present work studies scattering by objects in the presence of interfaces, which enable modeling of
artially and completely buried objects. Being able to predict the acoustic response of objects aids in the development of methods
or detection and identification, and reduces the need for expensive experiments [8–12]. Another application is noise and vibration
eduction, where sandwich structures with sound absorbent cores are used to improve the acoustic insulation [13–15].

Many computational techniques have been developed over the years for studying scattering from fluid-loaded objects, ranging
rom fast approximate methods to computer intensive high-fidelity models. In the development of such methods, reference models
re an invaluable tool for validating the accuracy and valid ranges of the different methods [16,17].

Exact solutions are only known for a few simple shapes: the infinitely long cylinder and the sphere. There is therefore a need
or reference models for more complex objects of simple shapes included inside layered acoustic media; for this purpose, we have
eveloped an open sourced1 toolbox for scattering by multi-layered elastic spheres [18]. The model computes scattering by an elastic
bject submerged in an infinite fluid medium, waveguide effects are not considered. The model is exact in the sense that it is based
n analytical expressions but requires numerical calculations to compute a truncated series with accuracy depending only on the
recision used.
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Fig. 1. An outer spherical aluminum shell with a coating layer is immersed in water (unbounded domain), the interior being flooded with water and containing
another steel shell also being flooded with water but has also an air bubble in its center. This illustrates some of the generalization being made; both fluid–fluid
and solid–solid couplings are made for the multi layered model.

The present work solves some limitations of the model described in [18] and extends its capabilities. New boundary conditions are
implemented, including fluid–fluid and solid–solid coupling (e.g. as in Fig. 1); this removes the former restriction on the layering to
be alternating fluid and solid, such that completely general layering is now allowed. Sound hard and sound soft boundary conditions
are also implemented, allowing perfectly rigid and pressure release domains to be modeled. In order to simulate realistic materials
attenuation needs to be included, and attenuation in the form of viscous fluid layers and hysteresis damping are implemented for
this purpose. Source types now include both acoustical (plane wave and point source) and mechanical (point force and surface)
excitation.

Another issue that is addressed is the overflow problem that occurs at high 𝑘𝑎-numbers due to the exponential behavior of Bessel
functions for large order. The resulting instabilities may hide significant physics and render the solution useless. A scaling strategy
is applied that mitigates this problem and expands the useful frequency range significantly.

The novelty of this work is thus the stabilization and generalization of the work in [18] both in terms of domain composition but
also type of medium and boundary conditions. Besides some small alternation to the notations and the inclusion of scaling functions
(for stabilization) the new scheme is similar to that of [18]. The main achievement in this work is arguably the stabilization as
this scaling is completely absent in the literature. The main motivation for this work (i.e. new boundary conditions) is to enable
verification of numerical codes although the physical problem in and of itself is of interest.

The article is organized as follows: Section 2 introduces full Navier–Navier coupling conditions allowing completely general
layering and implements viscous fluid layers through the linearized Navier–Stokes equation. The problem of overflow is treated in
Section 3, where a scaling strategy is implemented to mitigate the exponential behavior. The resulting stable solutions are given in
Section 4. Several numerical examples are given in Section 5: Scattering by gas bubbles in a liquid; empty spherical steel shell with
soft coating; spherical steel shell with point excitation; and viscoelastic sphere. The examples serve to validate the implemented
code by a comparison with existing benchmark solutions.

2. General solution

The restriction in [18], that the scattering object needs to consist of alternating fluid and solid domains is removed. This forces
us to alter the notation slightly. Denote by 𝑀 the number of media (solids and fluids) present such that we have 𝑀 − 1 spherical
interfaces at radii 𝑅𝑚, 𝑚 = 1,… ,𝑀 , separating the solid and fluid layers (where 𝑅𝑚 > 𝑅𝑚+1). If the innermost media has support at
the origin, 𝑅𝑀 = 0. The domain number 𝑚 is denoted by

𝛺𝑚 = {𝒙 ∈ R3 ∶ 𝑅𝑚 ≤ |𝒙| < 𝑅𝑚−1} (1)

with the convention 𝑅0 → ∞ for unbounded domains. We will also generalize the fluid domain to be viscous using linearized
equations of continuity and the Navier–Stokes equation for a barotropic, viscous non-heat-conducting compressible fluid [19–21]

𝜕𝜌′𝑚
𝜕𝑡

+ 𝜌𝑚∇ ⋅ 𝒗̆𝑚 = 0 (2)

𝜌𝑚
𝜕 𝒗̆𝑚
𝜕𝑡

+ ∇𝑝̆𝑚 = 𝜇𝑚∇2𝒗̆𝑚 +
( 1
3
𝜇𝑚 + 𝜇b,𝑚

)

∇(∇ ⋅ 𝒗̆𝑚) (3)

𝑝̆ = 𝑐2 𝜌̆′ (4)
2

𝑚 𝑚 𝑚
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where 𝑝̆𝑚 represents the deviation of pressure from its mean value, 𝒗̆𝑚 is the velocity, 𝜌̆′𝑚 is the time-varying part (as opposed to the
constant equilibrium density 𝜌𝑚) of the total mass density, 𝜌̆tot,𝑚 = 𝜌𝑚 + 𝜌̆′𝑚, and 𝜇𝑚 and 𝜇b,𝑚 are the shear and the bulk coefficient
of viscosity, respectively. Finally, 𝑐𝑚 is the ideal speed of sound evaluated at ambient conditions. Eqs. (2)–(4) can be combined into
a single equation for the velocity field

𝜌𝑚
𝜕2𝒗̆𝑚
𝜕𝑡2

− 𝜌𝑚𝑐2𝑚∇(∇ ⋅ 𝒗̆𝑚) = 𝜇𝑚∇2 𝜕 𝒗̆𝑚
𝜕𝑡

+
( 1
3
𝜇𝑚 + 𝜇b,𝑚

)

∇
(

∇ ⋅
𝜕 𝒗̆𝑚
𝜕𝑡

)

. (5)

he time-dependent velocity field, 𝒗̆𝑚, can be written in terms of the time-dependent displacement field, 𝒖̆𝑚, by

𝒗̆𝑚 =
𝜕 𝒖̆𝑚
𝜕𝑡

. (6)

The displacement field, 𝒖̆𝑚, in the solid domain is governed by (as in [18])

𝜌𝑚
𝜕2𝒖̆𝑚
𝜕𝑡2

= 𝐺𝑚∇2𝒖̆𝑚 +
(

𝐾𝑚 +
𝐺𝑚
3

)

∇(∇ ⋅ 𝒖̆𝑚), (7)

where the bulk modulus, 𝐾𝑚, and the shear modulus, 𝐺𝑚, are defined by the Young’s modulus, 𝐸𝑚, and Poisson’s ratio, 𝜈𝑚, as

𝐾𝑚 =
𝐸𝑚

3(1 − 2𝜈𝑚)
and 𝐺𝑚 =

𝐸𝑚
2(1 + 𝜈𝑚)

. (8)

Eqs. (5) and (7) in the frequency domain are obtained through Fourier transform2 as

𝜇𝑚∇2𝒗𝑚 +

(

1
3
𝜇𝑚 + 𝜇b,𝑚 +

i𝜌𝑚𝑐2𝑚
𝜔

)

∇(∇ ⋅ 𝒗𝑚) + i𝜔𝜌𝑚𝒗𝑚 = 𝟎. (9)

nd

𝐺𝑚∇2𝒖𝑚 +
(

𝐾𝑚 +
𝐺𝑚
3

)

∇(∇ ⋅ 𝒖𝑚) + 𝜌𝑚𝜔2𝒖𝑚 = 𝟎. (10)

espectively. Eq. (9) can be written in terms of the fluid displacement using the Fourier transformation of Eq. (6)

𝒗𝑚 = −i𝜔𝒖𝑚 (11)

uch that

− i𝜔𝜇𝑚∇2𝒖𝑚 − i𝜔

(

1
3
𝜇𝑚 + 𝜇b,𝑚 +

i𝜌𝑚𝑐2𝑚
𝜔

)

∇(∇ ⋅ 𝒖𝑚) + 𝜌𝑚𝜔2𝒖𝑚 = 𝟎. (12)

For fluid domains we define

𝐾𝑚 ← 𝜌𝑚𝑐
2
𝑚 − i𝜔𝜇b,𝑚 and 𝐺𝑚 ← −i𝜔𝜇𝑚 (13)

which makes Eq. (12) equivalent to Eq. (10). This enables us to use same expressions for fluid and solid domain when expressing
the general solution.

The solution for the displacement field in domain 𝑚, may be decomposed as3

𝒖𝑚 = ∇𝜙𝑚 + ∇ × 𝜓𝑚, 𝜓𝑚 = 𝜓𝜑,𝑚𝒆𝜑, (14)

where the displacement potentials 𝜙𝑚 and 𝜓𝑚 solves

∇2𝜙𝑚 + 𝑎2𝑚𝜙𝑚 = 0 (15)

∇2𝜓𝑚 + 𝑏2𝑚𝜓𝑚 = 𝟎, (16)

respectively. The angular wave numbers 𝑎𝑚 and 𝑏𝑚 are given by

𝑎𝑚 = 𝜔
𝑐s,1,𝑚

, 𝑐s,1,𝑚 =

√

3𝐾𝑚 + 4𝐺𝑚
3𝜌𝑚

(17)

𝑏𝑚 = 𝜔
𝑐s,2,𝑚

, 𝑐s,2,𝑚 =

√

𝐺𝑚
𝜌𝑚

. (18)

For non-viscous fluids we use the classical notation for the wave number, 𝑘𝑚 = 𝜔
𝑐𝑚

= 𝑎𝑚, as 𝑐𝑚 = 𝑐s,1,𝑚 in this case.

2 For a time dependent function 𝛹̆ (𝒙, 𝑡), its Fourier transform is [18]

𝛹 (𝒙, 𝜔) =
(

 𝛹̆ (𝒙, ⋅)
)

(𝜔) = ∫

∞

−∞
𝛹̆ (𝒙, 𝑡)ei𝜔𝑡 d𝑡

here 𝜔 = 2𝜋𝑓 is the angular frequency, 𝑓 the frequency and i =
√

−1 is the imaginary unit. That is, we use the breve notation, ⋅̆, for the time-dependent Fourier
transforms of functions in the frequency domain.

3 We use displacement-based potentials also for the fluid as was done in [22] (in contrast with the velocity based potentials used in [20,21]).
3
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Remark 1. The angular wave numbers may for fluid domain be written in terms of the fluid parameters as4

𝑎𝑚 = 𝜔
𝑐𝑚

[

1 −
i𝜔𝜇𝑚
𝜌𝑚𝑐2𝑚

(

4
3
+
𝜇b,𝑚
𝜇𝑚

)

]− 1
2

(19)

𝑏𝑚 =

√

i𝜔𝜌𝑚
𝜇𝑚

. (20)

The following relations are obtained from Eqs. (11), (14) and (15)

∇ ⋅ 𝒖𝑚 = −𝑎2𝑚𝜙𝑚 (21)

∇ ⋅ 𝒗𝑚 = i𝜔𝑎2𝑚𝜙𝑚 (22)

and using Eq. (2) we have for fluid domains

𝑝𝑚 = 𝜌𝑚𝜔
2𝜙𝑚. (23)

The displacement is given in spherical coordinates as 𝒖𝑚 = 𝑢r,𝑚𝒆r + 𝑢𝜗,𝑚𝒆𝜗 with components

𝑢r,𝑚 =
𝜕𝜙𝑚
𝜕𝑟

+ 1
𝑟
𝜕𝜓𝜑,𝑚
𝜕𝜗

+ 1
𝑟
𝜓𝜑,𝑚 cot 𝜗, 𝑢𝜗,𝑚 = 1

𝑟
𝜕𝜙𝑚
𝜕𝜗

−
𝜕𝜓𝜑,𝑚
𝜕𝑟

− 1
𝑟
𝜓𝜑,𝑚. (24)

As in [18] Eqs. (15) and (16) can be written in spherical coordinates as

𝜕
𝜕𝑟

(

𝑟2
𝜕𝜙𝑚
𝜕𝑟

)

+ 1
sin 𝜗

𝜕
𝜕𝜗

(

sin 𝜗
𝜕𝜙𝑚
𝜕𝜗

)

+ (𝑎𝑚𝑟)2𝜙𝑚 = 0 (25)

𝜕
𝜕𝑟

(

𝑟2
𝜕𝜓𝜑,𝑚
𝜕𝑟

)

+ 1
sin 𝜗

𝜕
𝜕𝜗

(

sin 𝜗
𝜕𝜓𝜑,𝑚
𝜕𝜗

)

+
[

(𝑏𝑚𝑟)2 −
1

sin2 𝜗

]

𝜓𝜑,𝑚 = 0. (26)

Using separation of variables, each of these equations can be reduced to a couple of spherical Bessel and Legendre equations, with
the associate Legendre polynomials of zero and first order and spherical Bessel functions as solutions (as described in [18]). The
solution can be written as,5

𝜙𝑚(𝑟, 𝜗) =
∞
∑

𝑛=0
𝑄(0)
𝑛 (𝜗)𝐴(𝑖)

𝑚,𝑛𝑍
(𝑖)
𝑛 (𝜉𝑚(𝑟)) (27)

𝜓𝜑,𝑚(𝑟, 𝜗) =
∞
∑

𝑛=0
𝑄(1)
𝑛 (𝜗)𝐵(𝑖)

𝑚,𝑛𝑍
(𝑖)
𝑛 (𝜂𝑚(𝑟)). (28)

where 𝐴(𝑖)
𝑚,𝑛 and 𝐵(𝑖)

𝑚,𝑛 are coefficients to be found and6

𝑍(1)
𝑛 (𝜁 ) = j𝑛(𝜁 ), 𝑍(2)

𝑛 (𝜁 ) = y𝑛(𝜁 ), 𝑍(3)
𝑛 (𝜁 ) = h(1)𝑛 (𝜁 ), 𝑄(𝑗)

𝑛 (𝜗) = d𝑗

d𝜗𝑗
P𝑛(cos 𝜗), (29)

𝜉𝑚(𝑟) = 𝑎𝑚𝑟, 𝜂𝑚(𝑟) = 𝑏𝑚𝑟. (30)

he derived functions (e.g. the displacement field 𝑢r,𝑚) can be found in Appendix A.
Hysteresis damping [21, p. 146] can be included by modifying Youngs modulus with an addition of an imaginary loss factor for

olid domains. However, [21] assumes the loss factor to be the same in both the longitudinal and transverse wave velocities. We
hus generalize by

𝑐s,1,𝑚 → 𝑐s,1,𝑚
√

1 − i𝜂̃1,𝑚 and 𝑐s,2,𝑚 → 𝑐s,2,𝑚
√

1 − i𝜂̃2,𝑚 (31)

where 𝜂̃1,𝑚 and 𝜂̃2,𝑚 are the loss factor in longitudinal and transverse wave velocities, respectively. For non-viscous fluids this
modification is equivalent with

𝑐𝑚 → 𝑐𝑚
√

1 − i𝜂̃1,𝑚 (32)

ut many authors [21,23] do not use the square root for attenuation in non-viscous fluids (i.e., 𝑐𝑚 → 𝑐𝑚(1 − i𝜂̃1,𝑚)).
For unbounded domains 𝛺1 we impose the Sommerfeld radiation condition [24]

𝜕𝜙1(𝒙, 𝜔)
𝜕𝑟

− i𝑎1𝜙1(𝒙, 𝜔) = 𝑜
(

𝑟−1
)

(33)
𝜕𝜓𝜑,1(𝒙, 𝜔)

𝜕𝑟
− i𝑏1𝜓𝜑,1(𝒙, 𝜔) = 𝑜

(

𝑟−1
)

(34)

as 𝑟 → ∞ uniformly in 𝒙̂ = 𝒙
𝑟 .

4 Note that [19,20] use the (linear Taylor expansion) approximation 𝑎𝑚 ≈ 𝜔
𝑐𝑚

(

1 + i 𝜔𝜇𝑚
2𝜌𝑚𝑐2𝑚

(

4
3
+ 𝜇b,𝑚

𝜇𝑚

))

.
5 Note that the Einstein’s summation convention will be used throughout this work. Moreover, as in [18] the spherical coordinate system (𝑟, 𝜗, 𝜑) is used

throughout this work.
6 Here, j𝑛(𝑥) and y𝑛(𝑥) are the spherical Bessel functions of first and second kind, respectively, h(1)𝑛 (𝑥) is the Hankel function of first kind, and P𝑛(𝑥) are the

egendre polynomials.
4
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Fig. 2. Half of a cross section of a model setup with 𝑀 = 7 is described with supporting free parameters and non-zeros coefficients (with the other coefficient
being set to zero). The example is similar to the example in Fig. 1, but with equidistant interfaces. Instead of a domain with support at the origin, the boundary
conditions Eqs. (39)–(41) may be used.

We now introduce prescribed (e.g. Appendix B) incident potential fields 𝜙inc,𝑚 and 𝜓𝜑,inc,𝑚 that solves the same equations and
as the same derived formulas for the displacement fields, 𝑢r,inc,𝑚, and stress fields, 𝜎rr,inc,𝑚, as 𝜙𝑚 and 𝜓𝑚, respectively (except,
ossibly, for the Sommerfeld radiation condition in Eq. (33)). For the derived quantities, such as 𝑢r,𝑚, we simply add ‘‘inc’’ to the

subscript (i.e. 𝑢r,inc,𝑚). For all applications investigated herein, 𝜓𝜑,inc,𝑚 = 0. The coupling conditions (Neumann-to-Neumann, NNBC)
for spherical symmetric objects are given by

𝑢r,𝑚 + 𝑢r,inc,𝑚 − (𝑢r,𝑚+1 + 𝑢r,inc,𝑚+1) = 0, radial displacement boundary condition, (35)

𝑢𝜗,𝑚 + 𝑢𝜗,inc,𝑚 − (𝑢𝜗,𝑚+1 + 𝑢𝜗,inc,𝑚+1) = 0, polar displacement boundary condition, (36)

𝜎rr,𝑚 + 𝜎rr,inc,𝑚 − (𝜎rr,𝑚+1 + 𝜎rr,inc,𝑚+1) = 0, pressure boundary condition, (37)

𝜎r𝜗,𝑚 + 𝜎r𝜗,inc,𝑚 − (𝜎r𝜗,𝑚+1 + 𝜎r𝜗,inc,𝑚+1) = 0, traction boundary condition. (38)

If 𝑅𝑀 ≠ 0, the following boundary conditions may be implemented on the innermost interface
{

𝑢r,𝑀 + 𝑢r,inc,𝑀 = 0
𝑢𝜗,𝑀 + 𝑢r,inc,𝑀 = 0,

Sound Hard Boundary Condition (SHBC) (39)

{

𝜎rr,𝑀 + 𝜎rr,inc,𝑀 = 0
𝜎r𝜗,𝑀 + 𝜎r𝜗,inc,𝑀 = 0,

Sound Soft Boundary Condition (SSBC) (40)

𝑝𝑀 + 𝑝inc,𝑚 +
𝑧𝑀

i𝑘𝑀𝜌𝑀 𝑐𝑚

𝜕 (𝑝𝑀 + 𝑝inc,𝑚)
𝜕𝑟

= 0, Impedance Boundary Condition (IBC) (41)

with 𝑧𝑀 being the impedance [25,26]. The impedance condition is used only for non-viscous fluids.
As the Hankel functions of the first kind satisfies the Sommerfeld condition in Eq. (33), these will be the radial basis functions

for the outermost domain (that is, 𝐴(𝑖)
1,𝑛 = 0 and 𝐵(𝑖)

1,𝑛 = 0 for 𝑖 = 1, 2). For the case 𝑅𝑀 = 0, only the Bessel functions of first kind
ill constitute a bounded solution and so 𝐴(𝑖)

𝑀,𝑛 = 0 for 𝑖 = 2, 3 (see discussion in [18]). In all other cases, the Bessel functions of
irst and second kind are used as the basis for the solution (that is, 𝐴(3)

𝑚,𝑛 = 0 and 𝐵(3)
𝑚,𝑛 = 0 for 𝑚 > 1). One model setup is shown in

ig. 2. The linear system of equations (modal equations) are built from boundary conditions at interfaces (starting at the outermost
nterface, 𝑚 = 1).

The non-zero coefficients (𝐴(𝑖)
𝑚,𝑛 and 𝐵(𝑖)

𝑚,𝑛) are now found by, for each 𝑛, solving a linear system of equations,

𝑯𝑛𝑪𝑛 = 𝑫𝑛, (42)

rising from evaluating the boundary conditions Eqs. (35)–(41) at all interfaces (cf. [18]).
All solutions are given in terms of spherical Bessel functions which have exponential behavior for large order (as illustrated

n [18]). This is a problem as one computationally run into ‘‘0 ⋅∞’’ evaluations (overflow). As we will later see, we can scale the
oefficients to include this exponential behavior to mitigate this problem. To find proper scales, a discussion of asymptotic behavior
5

f the Bessel functions is in order.
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3. Scaling Bessel functions

Consider first cylindrical Bessel functions of large arguments. As 𝑧→ ∞ (with 𝜈 fixed) we have the asymptotic expansions (Eq. 10.
17.3, 10.17.4 and 10.17.5] [27])

J𝜈 (𝑧) ∼
( 2
𝜋𝑧

)

1
2

(

cos 𝑞
∞
∑

𝑘=0
(−1)𝑘

𝑎2𝑘(𝜈)
𝑧2𝑘

− sin 𝑞
∞
∑

𝑘=0
(−1)𝑘

𝑎2𝑘+1(𝜈)
𝑧2𝑘+1

)

Y𝜈 (𝑧) ∼
( 2
𝜋𝑧

)

1
2

(

sin 𝑞
∞
∑

𝑘=0
(−1)𝑘

𝑎2𝑘(𝜈)
𝑧2𝑘

+ cos 𝑞
∞
∑

𝑘=0
(−1)𝑘

𝑎2𝑘+1(𝜈)
𝑧2𝑘+1

)

H(1)
𝜈 (𝑧) ∼

( 2
𝜋𝑧

)

1
2 ei𝑞

∞
∑

𝑘=0
i𝑘
𝑎𝑘(𝜈)
𝑧𝑘

where

𝑞 = 𝑧 − 𝜈𝜋
2

− 𝜋
4

(43)

and

𝑎𝑘(𝜈) =
(4𝜈2 − 12)(4𝜈2 − 32)⋯ (4𝜈2 − (2𝑘 − 1)2)

𝑘!8𝑘
. (44)

To eliminate exponential behavior in this case, the scaling e−| Im 𝑧| can be used for the Bessel functions of first and second kind, and
e−i𝑧 for the Hankel function of the first kind.

We consider now the uniform asymptotic expansions for Bessel functions of large order [28, 9.3.38, p. 368]. Define 𝑧(𝜁 ) through

2
3
𝜁 (𝑧)3∕2 = ln

(

1 +
√

1 − 𝑧2
𝑧

)

−
√

1 − 𝑧2. (45)

hen the uniform asymptotic expansion of the Bessel function of the first kind is given by [28, 9.3.35–9.3.37, p. 368]

J𝜈 (𝜈𝑧) ∼
(

4𝜁
1 − 𝑧2

)
1
4
⎛

⎜

⎜

⎜

⎝

Ai
(

𝜈
2
3 𝜁

)

𝜈
1
3

∞
∑

𝑘=0

𝐴𝑘(𝜁 )
𝜈2𝑘

+
Ai′

(

𝜈
2
3 𝜁

)

𝜈
5
3

∞
∑

𝑘=0

𝐵𝑘(𝜁 )
𝜈2𝑘

⎞

⎟

⎟

⎟

⎠

(46)

Y𝜈 (𝜈𝑧) ∼ −
(

4𝜁
1 − 𝑧2

)
1
4
⎛

⎜

⎜

⎜

⎝

Bi
(

𝜈
2
3 𝜁

)

𝜈
1
3

∞
∑

𝑘=0

𝐴𝑘(𝜁 )
𝜈2𝑘

+
Bi′

(

𝜈
2
3 𝜁

)

𝜈
5
3

∞
∑

𝑘=0

𝐵𝑘(𝜁 )
𝜈2𝑘

⎞

⎟

⎟

⎟

⎠

(47)

H(1)
𝜈 (𝜈𝑧) ∼ 2e−𝜋i∕3

(

4𝜁
1 − 𝑧2

)
1
4
⎛

⎜

⎜

⎜

⎝

Ai
(

𝑒2𝜋i∕3𝜈
2
3 𝜁

)

𝜈
1
3

∞
∑

𝑘=0

𝐴𝑘(𝜁 )
𝜈2𝑘

+
𝑒2𝜋i∕3Ai′

(

𝑒2𝜋i∕3𝜈
2
3 𝜁

)

𝜈
5
3

∞
∑

𝑘=0

𝐵𝑘(𝜁 )
𝜈2𝑘

⎞

⎟

⎟

⎟

⎠

, (48)

as 𝜈 → ∞ and | arg 𝑧| < 𝜋, where

𝐴𝑘(𝜁 ) =
2𝑘
∑

𝑗=0
( 23 𝜁

3∕2)−𝑗𝑣𝑗𝑈2𝑘−𝑗

(

(1 − 𝑧2)−
1
2
)

𝐵𝑘(𝜁 ) = −𝜁−
1
2

2𝑘+1
∑

𝑗=0
( 23 𝜁

3∕2)−𝑗𝑢𝑗𝑈2𝑘−𝑗+1

(

(1 − 𝑧2)−
1
2
)

and 𝑈𝑘(𝑝) are polynomial of degree 3𝑘 given by 𝑈0(𝑝) = 1 and

𝑈𝑘+1(𝑝) =
1
2 𝑝

2(1 − 𝑝2)𝑈 ′
𝑘(𝑝) +

1
8 ∫

𝑝

0
(1 − 5𝑡2)𝑈𝑘(𝑡)d𝑡, (49)

and finally, starting with 𝑢0 = 𝑣0 = 1,

𝑢𝑘 =
(2𝑘 + 1)(2𝑘 + 3)(2𝑘 + 5)⋯ (6𝑘 − 1)

216𝑘𝑘!
=

(6𝑘 − 5)(6𝑘 − 3)(6𝑘 − 1)
(2𝑘 − 1)216𝑘

𝑢𝑘−1

𝑣𝑘 =
6𝑘 + 1
1 − 6𝑘

𝑢𝑘

or 𝑘 = 1, 2,… .

emark 2. ‘‘Transition regions’’ [29] should use separate expansions for when the order is roughly the same size as the magnitude
f the argument. Proper treatment of the transition regions of the asymptotic expansion of the Bessel functions requires usage of
nother expansion as outlined in [29].
6

https://dlmf.nist.gov/10.17.E3
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The implementation of the Airy functions in [30] provides the option of using the scales exp( 23 𝑦
3∕2) and exp(−| 23 Re 𝑦

3∕2
|) for

he Airy functions Ai(𝑦) and Bi(𝑦), respectively, in order to eliminate the exponential behavior (same scales are used for the first
erivatives). This motivated scales 𝑠(𝑖)𝑛 (𝑥), 𝑖 = 1, 2, 3, for the Bessel functions (j𝑛(𝑦) and y𝑛(𝑦)) and the Hankel function of first kind
h(1)𝑛 (𝑦)), respectively, where

𝑠(1)𝑛 (𝑥) = exp
{2
3
𝜈𝜁 (𝑥∕𝜈)

3
2
}

(50)

𝑠(2)𝑛 (𝑥) = exp
{

−
|

|

|

|

Re
[2
3
𝜈𝜁 (𝑥∕𝜈)

3
2
]

|

|

|

|

}

(51)

𝑠(3)𝑛 (𝑥) =

⎧

⎪

⎨

⎪

⎩

exp
{

−
|

|

|

|

Re
[

2
3 𝜈𝜁 (𝑥∕𝜈)

3
2
]

|

|

|

|

}

Im 𝑥 < 0

exp
{

− 2
3 𝜈𝜁 (𝑥∕𝜈)

3
2
}

otherwise.
(52)

with 𝜈 = 𝑛 + 1∕2.
In Fig. 3 the magnitude of the Bessel functions and their scales are compared on the domain

 =
{

(𝑛, 𝑧) ∈ N × C ∶ 𝑛 ∈
[

0, 2 ⋅ 104
]

, Re 𝑧 ∈
[

−104, 104
]

, Im 𝑧 ∈
[

−104, 104
]}

. (53)

The plots are visually indistinguishable validating the correct scales 𝑠(𝑖)𝑛 (𝑧) for the Bessel functions 𝑍(𝑖)
𝑛 (𝑧). The usage of Eqs. (46)–(48)

will be limited to the inside of the ‘‘cup’’7 in these plots as 𝑛 must be larger than the magnitude of 𝑧 for these formula to apply.
However, the scales motivated by the same formulas works remarkably well in other parts of the domain as well. Further evidence for
this can be obtained using high precision toolboxes like the multiprecision computing toolbox Advanpix. A test was performed (using
100 digits precision) in the same domain used in Fig. 3 which resulted in the bounds 2.718 ⋅ 10−6 ⪅ |𝑍(𝑖)

𝑛 (𝑧)∕𝑠(𝑖)𝑛 (𝑧)| ⪅ 6.657 ⋅ 10−2,
𝑖 = 1, 2, 3, for (𝑛, 𝑧) ∈  using 41 × 41 × 41 uniformly sampled points (for reference: max𝑖,𝑛,𝑧 |𝑍

(𝑖)
𝑛 (𝑧)| ≈ 9.341 ⋅ 1029 375, 𝑖 = 1, 2, 3,

𝑛, 𝑧) ∈ ). The ‘‘0∕0’’ evaluations are here discarded.

. Computationally stable solutions

In the following we transform the expressions in [18] to mitigate computational instability based on the discussion in previous
ection. The scales are always applied on the final formulas in [18] (that is, after differentiation and manipulations). Define the
ntermediate radii by

𝑅̃𝑚 =

⎧

⎪

⎨

⎪

⎩

𝑅1 𝑚 = 1
𝑅𝑀−1 𝑚 =𝑀 and 𝑅𝑀 = 0
(𝑅𝑚 − 𝑅𝑚−1)∕2 otherwise.

(54)

ith

𝑍̃(𝑖)
𝑛 (𝑥) = 𝑠(𝑖)𝑛 (𝑥)𝑍(𝑖)

𝑛 (𝑥), 𝑖 = 1, 3

𝐴̃(𝑖)
𝑚,𝑛 = 𝐴(𝑖)

𝑚,𝑛
[

𝑠(𝑖)𝑛 (𝜉𝑚(𝑅̃𝑚))
]−1 , 𝑖 = 1, 2

𝐵̃(𝑖)
𝑚,𝑛 = 𝐵(𝑖)

𝑚,𝑛
[

𝑠(𝑖)𝑛 (𝜂𝑚(𝑅̃𝑚))
]−1 , 𝑖 = 1, 2

𝐶̃ (𝑖)
𝑚,𝑛 = 𝐶 (𝑖)

𝑚,𝑛
[

𝑠(𝑖)𝑛 (𝜁𝑚(𝑅̃𝑚))
]−1 , 𝑖 = 1, 3

e can write the solution as

𝜙𝑚 =
∞
∑

𝑛=0
𝑄(0)
𝑛 (𝜗)𝐴̃(𝑖)

𝑚,𝑛𝑤
(𝑖)
𝑛 (𝜉𝑚(𝑅̃𝑚), 𝜉𝑚(𝑟))𝑍̃(𝑖)

𝑛 (𝜉𝑚(𝑟)) (55)

𝜓𝜑,𝑚 =
∞
∑

𝑛=0
𝑄(1)
𝑛 (𝜗)𝐵̃(𝑖)

𝑚,𝑛𝑤
(𝑖)
𝑛 (𝜂𝑚(𝑅̃𝑚), 𝜂𝑚(𝑟))𝑍̃(𝑖)

𝑛 (𝜂𝑚(𝑟)) (56)

here

𝑤(𝑖)
𝑛 (𝑥, 𝑦) =

𝑠(𝑖)𝑛 (𝑥)

𝑠(𝑖)𝑛 (𝑦)
. (57)

7 Defined by

 =
{

𝑧 ∈ C ∶ |

|

|

𝑠(1)𝑛 (𝑧)||
|

−1
<
√

REALMIN, 𝜈 > 𝜈a

}

here REALMIN is the minimum floating-point number for the precision used. For double precision we have

REALMIN = 2−1022 ≈ 2.2250738585072013830902327173324 ⋅ 10−308

REALMAX = (2 − 2−52) ⋅ 21023 ≈ 1.7976931348623157081452742373170 ⋅ 10308 .

Throughout this work 𝜈 = 100 has been used.
7
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https://www.advanpix.com/
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Fig. 3. Plots of the magnitude of the Bessel functions and their scales. The plots are obtained by sampling the coordinates (Re 𝑧, Im 𝑧, 𝑛) on a 200 × 200 × 200
grid where the real part and the imaginary part ranges from −104 to 104, and the order from 0 to 2 ⋅ 104. The solution is then clipped for values outside the
interval [10−150 , 10150]. The visualizations are done using Paraview.
8
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Table 1
S135 benchmark Parameters for the examples in Fig. 4.

Parameter Description

𝑅1 = 5m Inner radius of outer fluid (domain 1)
𝜌1 = 1000 kgm−3 Density of outer fluid (domain 1)
𝑐1 = 1500m s−1 Speed of sound in outer fluid (domain 1)
𝑅2 = 4.992m Inner radius of outer shell (domain 2)
𝜌2 = 7850 kgm−3 Density of outer shell (domain 2)
𝐸2 = 210 ⋅ 109 Pa Young’s modulus of outer shell (domain 2)
𝜈2 = 0.3 Poisson’s ratio of outer shell (domain 2)
𝑅3 = 3m Inner radius of intermediate fluid (domain 3)
𝜌3 = 1000 kgm−3 Density of intermediate fluid (domain 3)
𝑐3 = 1500m s−1 Speed of sound in intermediate fluid (domain 3)
𝑅4 = 2.98m Inner radius of intermediate solid shell (domain 4)
𝜌4 = 7850 kgm−3 Density of intermediate solid shell (domain 4)
𝐸4 = 210 ⋅ 109 Pa Young’s modulus of intermediate solid shell (domain 4)
𝜈4 = 0.3 Poisson’s ratio of intermediate solid shell (domain 4)
𝑅5 = 1m Inner radius of inner fluid (domain 5)
𝜌5 = 1000 kgm−3 Density of inner fluid (domain 5)
𝑐5 = 1500m s−1 Speed of sound of inner fluid (domain 5)

Remark 3. Computationally, it is here important to evaluate the combined arguments for the exponential factors in the numerator
and the denominator before applying the exponential function (in order to avoid overflow).

Remark 4. For large 𝑛 and |𝑥 − 𝑦| even the combined evaluations (Remark 3) will yield overflow, and the strategy presented herein
only extends the range of parameters at which the solution may be computationally evaluated (for a given floating point precision).

For the displacement field we correspondingly have (from Eqs. (A.1) and (A.2))

𝑢r,𝑚 = 1
𝑟

∞
∑

𝑛=0
𝑄(0)
𝑛 (𝜗)

[

𝐴̃(𝑖)
𝑚,𝑛𝑤

(𝑖)
𝑛 (𝜉𝑚(𝑅̃𝑚), 𝜉𝑚(𝑟))𝑆̃

(𝑖)
1,𝑛(𝜉𝑚(𝑟)) + 𝐵̃

(𝑖)
𝑚,𝑛𝑤

(𝑖)
𝑛 (𝜂𝑚(𝑅̃𝑚), 𝜂𝑚(𝑟))𝑇̃

(𝑖)
1,𝑛(𝜂𝑚(𝑟))

]

(58)

and

𝑢𝜗,𝑚 = 1
𝑟

∞
∑

𝑛=0
𝑄(1)
𝑛 (𝜗)

[

𝐴̃(𝑖)
𝑚,𝑛𝑤

(𝑖)
𝑛 (𝜉𝑚(𝑅̃𝑚), 𝜉𝑚(𝑟))𝑆̃

(𝑖)
2,𝑛(𝜉𝑚(𝑟)) + 𝐵̃

(𝑖)
𝑚,𝑛𝑤

(𝑖)
𝑛 (𝜂𝑚(𝑅̃𝑚), 𝜂𝑚(𝑟))𝑇̃

(𝑖)
2,𝑛(𝜂𝑚(𝑟))

]

(59)

where

𝑆̃(𝑖)
1,𝑛(𝜉) = 𝑛𝑍̃(𝑖)

𝑛 (𝜉) − 𝜉𝑔(𝑖)𝑛 (𝜉)𝑍̃(𝑖)
𝑛+1(𝜉)

𝑇̃ (𝑖)
1,𝑛(𝜂) = −𝑛(𝑛 + 1)𝑍̃(𝑖)

𝑛 (𝜂)

𝑆̃(𝑖)
2,𝑛(𝜉) = 𝑍̃(𝑖)

𝑛 (𝜉)

𝑇̃ (𝑖)
2,𝑛(𝜂) = −(𝑛 + 1)𝑍̃(𝑖)

𝑛 (𝜂) + 𝑔(𝑖)𝑛 (𝜂)𝜂𝑍̃(𝑖)
𝑛+1(𝜂).

and (Remark 3 is also important here)

𝑔(𝑖)𝑛 (𝑥) =
𝑠(𝑖)𝑛 (𝑥)

𝑠(𝑖)𝑛+1(𝑥)
. (60)

Remark 5. For a fixed 𝑥 one can show that 𝑔(1)𝑛 (𝑥) ∼ 𝑥
2𝑛 , 𝑔(2)𝑛 (𝑥) ∼ 2𝑛

|𝑥| and 𝑔(3)𝑛 (𝑥) ∼ 2𝑛
𝑥 , as 𝑛 → ∞, such that 𝑔(𝑖)𝑛 should not be

onsidered to have exponential behavior in this context.

The linear system of equation in Eq. (42) is now modified to be

𝑯̃𝑛𝑪̃𝑛 = 𝑫𝑛, (61)

here 𝑯̃𝑛 and 𝑪̃𝑛 are modifications of 𝑯𝑛 and 𝑪𝑛 taking into account the scaling functions 𝑤(𝑖)
𝑛 (𝑥, 𝑦) and 𝑠(𝑖)𝑛 (𝑥), respectively.

In Fig. 4 the setup used in figure 6 in [18] (with the S135 model with SHBC on the inner sphere and parameters in Table 1) is
sed to illustrate the improvement of this scaling. The cut-off at which machine epsilon precision is no longer obtained8 is increased
rom 𝑘1𝑅1 ≈ 107 to 𝑘1𝑅1 ≈ 614. This limit is extended by roughly a factor 10 if quadruple-precision is used (which increases
EALMAX). At the end however, exponential functions must still be evaluated which still limits computational evaluations for high
nough frequencies. To extend the computational frequency range one needs a representation with more bits for the exponent than
he standard 8-bit representation for the exponent for double precision. In Fig. 4(d) quadruple precision is used and covers the
requency range for most applications.

8 By this we mean when the ratio between term 𝑁 and its sum in absolute value is less than machine epsilon precision.
9
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Fig. 4. S135 benchmark: Residual errors for the governing equations and boundary conditions. The quadruple calculations were enabled through Advanpix in
atlab.

. Numerical examples

To give further evidence for the correctness of the implemented code, comparison to existing benchmark solutions by Sage [31],
kelton [21], Hetmaniuk [32], and Ayres [25], will be presented.

It is customary to present results in the far-field. For the scattered pressure 𝑝1, it is defined by

𝑝0(𝒙̂, 𝜔) = 𝑟e−i𝑎1𝑟𝑝1(𝒙, 𝜔), 𝑟 = |𝒙| → ∞, (62)

̂

10

ith 𝒙 = 𝒙∕|𝒙|.

https://www.advanpix.com/
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Table 2
Sage parameters: Parameters for the examples in Fig. 1 and Fig. 4 in [31].

Parameter Description

𝜌1 = 1025 kgm−3 Density of water
𝑐1 = 1531m s−1 Speed of sound in water at 25 °C
𝜌2 = 1.293 kgm−3 Density of air
𝑐2 = 346.2m s−1 Speed of sound in air at 25 °C

Table 3
Skelton parameters: Parameters for the examples in Figure 10.4 to Figure 10.7
in [21].

Parameter Description

𝑅1 = 1.02m Inner radius of domain 1
𝜌1 = 1000 kgm−3 Density of water
𝑐1 = 1500m s−1 Speed of sound in water
𝑅2 = 1.0m Inner radius of domain 2
𝜌2 = 800 kgm−3 Density of decoupling
𝜂̃1,2 = 𝜂̃2,2 = 0.1 Loss factor in coating layer
𝐸2 = 0.260 ⋅ 107 Pa Young’s modulus in decoupling
𝜈2 = 0.460 Poisson’s ratio in decoupling
𝑅3 = 0.98m Inner radius of domain 3
𝜌3 = 7700 kgm−3 Density of steel
𝜂̃1,3 = 𝜂̃2,3 = 0.01 Loss factor in steel shell
𝐸3 = 0.195 ⋅ 1012 Pa Young’s modulus in steel shell
𝜈3 = 0.290 Poisson’s ratio in steel shell

From the far-field pattern, the target strength, TS, can be computed. It is defined by

TS = 20 log10

(

|𝑝0(𝒙̂, 𝜔)|
|𝑃inc(𝜔)|

)

(63)

where 𝑃inc is the amplitude of the incident wave at the geometric center of the scatterer (i.e., the origin).
Unless stated otherwise, the direction of the incident wave will be given by the vector 𝒅s = [0, 0, 1]⊤.

5.1. Sage benchmark problem

Sage [31] considers an air bubble and uses the parameters in Table 2. Sage defines the cross-section area by

𝜎 = 4𝜋
|𝑝0|

2

|𝑃inc|
2
. (64)

In Fig. 5 the present work treating the interface as fluid–fluid interaction (NNBC) and treating the interface as sound soft boundary
condition (SSBC) are compared with the data from Fig. 1 and Fig. 2 in [31].9 Moreover, the spectrum has been sampled closely,
revealing small (less significant) eigenmodes not shown by Sage. It seems as if the 𝑦-axis in [31] is scaled by 1∕𝜋, and so this is also
done here. A good agreement is here observed.

5.2. Skelton benchmark problem

Skelton [21] considers a steel spherical shell with a hysteretic loss factor, scattering an incident plane wave directed along
the positive 𝑥3-axis, and uses the parameters in Table 3. In Fig. 6 several cases are compared with the data from Figure 10.4 to
Figure 10.7 in [21].10 Good agreements are observed in all cases considered. The case of an empty steel shell without coating is
considered for higher frequencies in Fig. 7(a) and higher still in Fig. 7(b). The latter plots illustrate the importance of the scaling
strategy presented herein as the solution without scaling (computed from code based on [22]) does not converge to machine epsilon
precision due to overflow computations. In [21] the equally spaced dips in the range 𝑓 ∈ [2 kHz, 10 kHz] and the ‘‘hump’’ round
𝑓 = 14 kHz is explained to stem from first symmetric Lamb wave and first antisymmetric Lamb wave, respectively. However, both
of these are actually symmetric Lamb waves, and the phenomena round 𝑓 = 140 kHz (not covered in [21]) represents antisymmetric
Lamb waves.

9 The discrepancies probably comes from the fact that the data set is collected by the software WebPlotDigitizer where a digital scan of Fig. 1 and Fig. 4
n [31] has been made.
10 The discrepancies probably comes from the fact that the data set is collected by the software WebPlotDigitizer where a digital scan of Figure 10.4 to Figure
11

0.7 in [21] has been made.

https://automeris.io/WebPlotDigitizer/
https://automeris.io/WebPlotDigitizer/
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Fig. 5. Sage benchmark problem: Sonar cross section of an air bubble in water.

5.3. Hetmaniuk benchmark problem

Hetmaniuk [32] considers a steel spherical shell with the parameters in Table 4. Two load examples are considered: In Fig. 8(a)
a point excitation (Eq. (B.5)) is considered at 𝑅2𝒅s, and in Fig. 8(b) a plane wave with direction 𝒅s is considered. Both plots are
compared with the data from Figure 12 and Figure 17 in [32],11 and very good agreement is yet again observed.

.4. Ayres benchmark problem

Ayres [25] considers a rubber spherical shell with the parameters in Table 5. The loss factors for the rubber sphere is here
efined by

𝜂̃1,2 =
𝛼 + 2𝛽
𝜌2𝑐2s,1,2

, and 𝜂̃2,2 =
𝛽

𝜌2𝑐2s,2,2
. (65)

11 The discrepancies probably comes from the fact that the data set is collected by the software WebPlotDigitizer where a digital scan of Figure 12 and Figure
12

7 in [32] has been made.

https://automeris.io/WebPlotDigitizer/
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Fig. 6. Skelton benchmark problem: An empty steel shell is considered with and without coating. The sound hard sphere is also considered. All three cases
re compared to reference solutions from [21].

Table 4
Hetmaniuk parameters: Parameters for the examples in Figure 12 and Figure
17 in [32].

Parameter Description

𝑅1 = 1m Inner radius of domain 1
𝜌1 = 1000 kgm−3 Density of water
𝑐1 = 1500m s−1 Speed of sound in water
𝑅2 = 0.95m Inner radius of domain 2
𝜌2 = 7850 kgm−3 Density of steel
𝐸2 = 2.0 ⋅ 1012 Pa Young’s modulus in steel shell
𝜈2 = 0.3 Poisson’s ratio in steel shell

Table 5
Ayres parameters: Parameters for the examples in Figure 12 and Figure 17 in
[25].

Parameter Description

𝜌1 = 1.2 kgm−3 Density of air
𝑐1 = 334m s−1 Speed of sound in air
𝜌2 = 1130 kgm−3 Density of rubber
𝑐s,1,2 = 1400m s−1 Longitudinal wave velocity
𝑐s,2,2 = 94m s−1 Transverse wave velocity

Three pairs of 𝛼 and 𝛽 was considered and the resulting scaled far-field pattern is plotted in Figs. 9(a) and 9(b). Both plots are
ompared with the data from Figure 1 in [25]12 but is sampled a lot more closely to reveal more eigenmodes, and good agreement

is yet again observed.

6. Conclusions

In this work the solution in [18] has been generalized and extended with new boundary conditions and loads, and generalized
to include materials with damping. Moreover, a scaling strategy is presented which extracts exponential behavior from the Bessel
functions in order to deal with overflow issues. The problem is significantly mitigated and extends the domain of computation by an
order of magnitude for the frequency. Using quadruple precision, the problem is eliminated for practical applications at the expense
of the computational efficiency. This significantly extends the range for the parameters at which the solution can be computationally
evaluated.

12 The discrepancies probably comes from the fact that the data set is collected by the software WebPlotDigitizer where a digital scan of Figure 1 in [25] has
13

een made.

https://automeris.io/WebPlotDigitizer/
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Fig. 7. Skelton benchmark problem: A steel shell is implemented with a sound soft boundary condition at its interior and is insonified with a plane wave.
The latter plots considers a larger range of frequencies to illustrate the importance of the scaling strategy presented herein.

Several numerical examples has been investigated and verified against reference solutions in the literature. The example from
Skelton illustrates the importance of the scaling strategy presented herein as previously hidden important characteristics has now
been reviled.

CRediT authorship contribution statement

Jon Vegard Venås: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing – original
draft, Writing – review & editing, Visualization, Project administration, Funding acquisition. Trond Jenserud: Writing – original
14

draft, Writing – review & editing, Supervision.



Journal of Sound and Vibration 539 (2022) 117263J.V. Venås and T. Jenserud

A

Acknowledgments

This work was supported by SINTEF Digital, Norway.

ppendix A. Derived functions

For completeness we list the resulting solutions for the displacement and the stress fields (cf. [18])

𝑢r,𝑚 = 1
𝑟

∞
∑

𝑛=0
𝑄(0)
𝑛 (𝜗)

[

𝐴(𝑖)
𝑛 𝑆

(𝑖)
1,𝑛(𝜉𝑚(𝑟)) + 𝐵

(𝑖)
𝑛 𝑇

(𝑖)
1,𝑛(𝜂𝑚(𝑟))

]

(A.1)

Fig. 8. Hetmaniuk benchmark problem: Comparison between present work and a finite element solution from [32].
15
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Fig. 9. Ayres benchmark problem: Comparison between present work and a reference solution from [25] for different pairs of 𝛼 and 𝛽.

and

𝑢𝜗,𝑚 = 1
𝑟

∞
∑

𝑛=0
𝑄(1)
𝑛 (𝜗)

[

𝐴(𝑖)
𝑛 𝑆

(𝑖)
2,𝑛(𝜉𝑚(𝑟)) + 𝐵

(𝑖)
𝑛 𝑇

(𝑖)
2,𝑛(𝜂𝑚(𝑟))

]

(A.2)

where

𝑆(𝑖)
1,𝑛(𝜉) = 𝑛𝑍(𝑖)

𝑛 (𝜉) − 𝜉𝑍(𝑖)
𝑛+1(𝜉)

𝑇 (𝑖)
1,𝑛(𝜂) = −𝑛(𝑛 + 1)𝑍(𝑖)

𝑛 (𝜂)

𝑆(𝑖)
2,𝑛(𝜉) = 𝑍(𝑖)

𝑛 (𝜉)

𝑇 (𝑖)
2,𝑛(𝜂) = −(𝑛 + 1)𝑍(𝑖)

𝑛 (𝜂) + 𝜂𝑍(𝑖)
𝑛+1(𝜂).
16
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The derivatives of the displacement fields are found to be

𝜕𝑢r,𝑚
𝜕𝑟

= 1
𝑟2

∞
∑

𝑛=0
𝑄(0)
𝑛 (𝜗)

[

𝐴(𝑖)
𝑛 𝑆

(𝑖)
3,𝑛(𝜉𝑚(𝑟)) + 𝐵

(𝑖)
𝑛 𝑇

(𝑖)
3,𝑛(𝜂𝑚(𝑟))

]

(A.3)

𝜕𝑢𝜗
𝜕𝑟

= 1
𝑟2

∞
∑

𝑛=0
𝑄(1)
𝑛 (𝜗)

[

𝐴(𝑖)
𝑛 𝑆

(𝑖)
4,𝑛(𝜉𝑚(𝑟)) + 𝐵

(𝑖)
𝑛 𝑇

(𝑖)
4,𝑛(𝜂𝑚(𝑟))

]

(A.4)

𝜕𝑢r,𝑚
𝜕𝜗

= 1
𝑟

∞
∑

𝑛=0
𝑄(1)
𝑛 (𝜗)

[

𝐴(𝑖)
𝑛 𝑆

(𝑖)
1,𝑛(𝜉𝑚(𝑟)) + 𝐵

(𝑖)
𝑛 𝑇

(𝑖)
1,𝑛(𝜂𝑚(𝑟))

]

(A.5)

𝜕𝑢𝜗,𝑚
𝜕𝜗

= 1
𝑟

∞
∑

𝑛=0
𝑄(2)
𝑛 (𝜗)

[

𝐴(𝑖)
𝑛 𝑆

(𝑖)
2,𝑛(𝜉𝑚(𝑟)) + 𝐵

(𝑖)
𝑛 𝑇

(𝑖)
2,𝑛(𝜂𝑚(𝑟))

]

(A.6)

where

𝑆(𝑖)
3,𝑛(𝜉) = (𝑛2 − 𝜉2 − 𝑛)𝑍(𝑖)

𝑛 (𝜉) + 2𝜉𝑍(𝑖)
𝑛+1(𝜉)

𝑇 (𝑖)
3,𝑛(𝜂) = −𝑛(𝑛 + 1)

[

(𝑛 − 1)𝑍(𝑖)
𝑛 (𝜂) − 𝜂𝑍(𝑖)

𝑛+1(𝜂)
]

𝑆(𝑖)
4,𝑛(𝜉) = (𝑛 − 1)𝑍(𝑖)

𝑛 (𝜉) − 𝜉𝑍(𝑖)
𝑛+1(𝜉)

𝑇 (𝑖)
4,𝑛(𝜂) = (𝜂2 − 𝑛2 + 1)𝑍(𝑖)

𝑛 (𝜂) − 𝜂𝑍(𝑖)
𝑛+1(𝜂).

The stress fields are given by (cf. [18])13

𝜎rr,𝑚 =
2𝐺𝑚
𝑟2

∞
∑

𝑛=0
𝑄(0)
𝑛 (𝜗)

[

𝐴(𝑖)
𝑛 𝑆

(𝑖)
5,𝑛(𝜉𝑚(𝑟); 𝑎𝑚, 𝑏𝑚) + 𝐵

(𝑖)
𝑛 𝑇

(𝑖)
5,𝑛(𝜂𝑚(𝑟))

]

(A.7)

𝜎𝜗𝜗,𝑚 =
2𝐺𝑚
𝑟2

∞
∑

𝑛=0

{

𝑄(0)
𝑛 (𝜗)

[

𝐴(𝑖)
𝑛 𝑆

(𝑖)
6,𝑛(𝜉𝑚(𝑟); 𝑎𝑚, 𝑏𝑚) + 𝐵

(𝑖)
𝑛 𝑇

(𝑖)
6,𝑛(𝜂𝑚(𝑟))

]

(A.8)

+𝑄(2)
𝑛 (𝜗)

[

𝐴(𝑖)
𝑛 𝑆

(𝑖)
2,𝑛(𝜉𝑚(𝑟)) + 𝐵

(𝑖)
𝑛 𝑇

(𝑖)
2,𝑛(𝜂𝑚(𝑟))

]}

(A.9)

𝜎𝜑𝜑,𝑚 =
2𝐺𝑚
𝑟2

∞
∑

𝑛=0

{

𝑄(0)
𝑛 (𝜗)

[

𝐴(𝑖)
𝑛 𝑆

(𝑖)
6,𝑛(𝜉𝑚(𝑟); 𝑎𝑚, 𝑏𝑚) + 𝐵

(𝑖)
𝑛 𝑇

(𝑖)
6,𝑛(𝜂𝑚(𝑟))

]

(A.10)

+𝑄(1)
𝑛 (𝜗) cot(𝜗)

[

𝐴(𝑖)
𝑛 𝑆

(𝑖)
2,𝑛(𝜉𝑚(𝑟)) + 𝐵

(𝑖)
𝑛 𝑇

(𝑖)
2,𝑛(𝜂𝑚(𝑟))

]}

(A.11)

𝜎𝜗𝜑,𝑚 = 0 (A.12)
𝜎r𝜑,𝑚 = 0 (A.13)

𝜎r𝜗,𝑚 =
2𝐺𝑚
𝑟2

∞
∑

𝑛=0
𝑄(1)
𝑛 (𝜗)

[

𝐴(𝑖)
𝑛 𝑆

(𝑖)
7,𝑛(𝜉𝑚(𝑟)) + 𝐵

(𝑖)
𝑛 𝑇

(𝑖)
7,𝑛(𝜂𝑚(𝑟))

]

(A.14)

where

𝑆(𝑖)
5,𝑛(𝜉; 𝑎, 𝑏) =

[

𝑛2 − 𝑛 − 1
2

( 𝑏
𝑎

)2
𝜉2
]

𝑍(𝑖)
𝑛 (𝜉) + 2𝜉𝑍(𝑖)

𝑛+1(𝜉)

𝑇 (𝑖)
5,𝑛(𝜂) = −𝑛(𝑛 + 1)

[

(𝑛 − 1)𝑍(𝑖)
𝑛 (𝜂) − 𝜂𝑍(𝑖)

𝑛+1(𝜂)
]

𝑆(𝑖)
6,𝑛(𝜉; 𝑎, 𝑏) =

[

𝑛 − 1
2

( 𝑏
𝑎

)2
𝜉2 + 𝜉2

]

𝑍(𝑖)
𝑛 (𝜉) − 𝜉𝑍(𝑖)

𝑛+1(𝜉)

𝑇 (𝑖)
6,𝑛(𝜂) = −𝑛(𝑛 + 1)𝑍(𝑖)

𝑛 (𝜂)

𝑆(𝑖)
7,𝑛(𝜉) = (𝑛 − 1)𝑍(𝑖)

𝑛 (𝜉) − 𝜉𝑍(𝑖)
𝑛+1(𝜉)

𝑇 (𝑖)
7,𝑛(𝜂) = −

(

𝑛2 − 1 − 1
2
𝜂2
)

𝑍(𝑖)
𝑛 (𝜂) − 𝜂𝑍(𝑖)

𝑛+1(𝜂).

(A.15)

13 Note that formulas in [18, Eq. (B.8)] are related to [20, Eqs. (23a) and (23b)] by

𝜎rr,𝑚 =
(

𝐾𝑚 +
4𝐺𝑚
3

)

𝜀rr,𝑚 +
(

𝐾𝑚 −
2𝐺𝑚
3

)

𝜀𝜗𝜗,𝑚 +
(

𝐾𝑚 −
2𝐺𝑚
3

)

𝜀𝜑𝜑,𝑚

= −𝑝𝑚 +
(

𝜇b,𝑚 − 2
3
𝜇𝑚

)

∇ ⋅ 𝒗𝑚 + 2𝜇𝑚
𝜕𝑣r,𝑚
𝜕𝑟

𝜎r𝜗,𝑚 = 𝐺𝑚

(

1
𝑟
𝜕𝑢r,𝑚
𝜕𝜗

+
𝜕𝑢𝜗,𝑚
𝜕𝑟

−
𝑢𝜗
𝑟

)

= 𝜇𝑚

(

1
𝑟
𝜕𝑣r,𝑚
𝜕𝜗

+
𝜕𝑣𝜗,𝑚
𝜕𝑟

−
𝑣𝜗
𝑟

)

here

𝜀rr,𝑚 =
𝜕𝑢r,𝑚
𝜕𝑟

, 𝜀𝜗𝜗,𝑚 = 1
𝑟

( 𝜕𝑢𝜗,𝑚
𝜕𝜗

+ 𝑢r,𝑚

)

, 𝜀𝜑𝜑,𝑚 = 1
𝑟 sin 𝜃

( 𝜕𝑢𝜑,𝑚
𝜕𝜑

+ 𝑢r,𝑚 sin 𝜗 + 𝑢𝜗,𝑚 cos 𝜗
)

.

17
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Appendix B. The incident wave

At the interfaces it is assumed that the incident wave may be decomposed as

𝜙inc,𝑚 =
∞
∑

𝑛=0
𝑄(0)
𝑛 (𝜗)𝐴(𝑖)

inc,𝑚,𝑛𝑍
(𝑖)
𝑛 (𝜉𝑚(𝑟)),

where the coefficients are found from

𝐴(𝑖)
inc,𝑚,𝑛𝑍

(𝑖)
𝑛 (𝜉𝑚(𝑟)) =

2𝑛 + 1
2 ∫

𝜋

0
𝜙inc,𝑚(𝑟, 𝜗)𝑄(0)

𝑛 (𝜗) sin 𝜗 d𝜗.

A plane wave has such an expansion (it is most sensible to imposed this only in the outermost unbounded domain, that is 𝜙inc,𝑚 = 0
or 𝑚 > 1)

𝜙inc,1 = 𝛷inc,1ei𝑎1𝑟 cos 𝜗 = 𝛷inc,1

∞
∑

𝑛=0
𝑄(0)
𝑛 (𝜗)(2𝑛 + 1)i𝑛𝑍(1)

𝑛 (𝜉1(𝑟)),

such that 𝐴(1)
inc,1,𝑛 = 𝛷inc,1(2𝑛 + 1)i𝑛 and 𝐴(𝑖)

inc,1,𝑛 = 0 for 𝑖 = 2, 3.
The incident wave due to a point source located at 𝒙s = 𝑟s𝒆3 (in domain 𝑚 such that 𝑅𝑚 < 𝑟s < 𝑅𝑚−1) can be more efficiently

evaluated then what was presented in [18]. Consider the incident wave14

𝜙inc,𝑚 = 𝛷inc,𝑚
ei𝑎𝑚|𝒙−𝒙s|
|𝒙 − 𝒙s|

, |𝒙 − 𝒙s| =
√

𝑟2 − 2𝑟s𝑟 cos 𝜗 + 𝑟2s . (B.1)

Using [28, 10.1.45 and 10.1.46]

sin 𝑎𝑚𝑅
𝑎𝑚𝑅

=
∞
∑

𝑛=0
(2𝑛 + 1)j𝑛(𝑎𝑚𝑟)j𝑛(𝑎𝑚𝑟s)P𝑛(cos 𝜗) (B.2)

−
cos 𝑎𝑚𝑅
𝑎𝑚𝑅

=
∞
∑

𝑛=0
(2𝑛 + 1)j𝑛(𝑎𝑚𝑟)y𝑛(𝑎𝑚𝑟s)P𝑛(cos 𝜗), |𝑟| < |𝑟s| (B.3)

where

𝑅 =
√

𝑟2 − 2𝑟𝑟s cos 𝜃 + 𝑟2s

e get

𝜙inc,𝑚 = 𝛷inc,𝑚i𝑎𝑚
∞
∑

𝑛=0
(2𝑛 + 1)P𝑛(cos 𝜗)

{

j𝑛(𝑎𝑚𝑟)h
(1)
𝑛 (𝑎𝑚𝑟s) 𝑟 < 𝑟s

j𝑛(𝑎𝑚𝑟s)h
(1)
𝑛 (𝑎𝑚𝑟) 𝑟 > 𝑟s.

(B.4)

It is also possible to implement a point force mechanical excitation located at 𝒙s = 𝑟s𝒆3 where 𝑟s = 𝑅𝑚 for a given interface
𝑚 [21]

𝜙inc,𝑚|𝑟=𝑅𝑚 = 𝛷inc,𝑚
𝛿(𝜗)

2𝜋𝑅2
𝑚 sin 𝜗

= 𝛷inc,𝑚

∞
∑

𝑛=0
𝑄(0)
𝑛 (𝜗) 2𝑛 + 1

4𝜋𝑅2
𝑚

(B.5)

where 𝛿 is the Dirac delta function.
A surface excitation over the axisymmetric region defined by the limits 𝜗 ∈ [𝜗s,1, 𝜗s,2], 𝜑 ∈ [0, 2𝜋] at 𝑟 = 𝑅𝑚 for a given interface

𝑚 can also be implemented

𝜙inc,𝑚|𝑟=𝑅𝑚 = 𝛷inc,𝑚[H(𝜗 − 𝜗s,1) − H(𝜗 − 𝜗s,2)]

=
𝛷inc,𝑚

2

∞
∑

𝑛=0
𝑄(0)
𝑛 (𝜗)

[

P𝑛−1(cos 𝜗s,2) − P𝑛+1(cos 𝜗s,2) − (P𝑛−1(cos 𝜗s,1) − P𝑛+1(cos 𝜗s,1))
]

where H is the Heaviside function.

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jsv.2022.117263.

14 The relation between 𝛷 and the amplitude of the incident wave in a non-viscous fluid used in [18], 𝑃 , is given by 𝑃 = 𝜌 𝜔2𝛷
18

inc,𝑚 inc,𝑚 inc,𝑚 𝑚 inc,𝑚
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