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Trusting machine intelligence: artificial intelligence and
human-autonomy teaming in military operations
Michael Mayer

Norwegian Defence Research Establishment (FFI), Kjeller, Norway

ABSTRACT
Continuous advances in artificial intelligence has enabled higher
levels of autonomy in military systems. As the role of machine-
intelligence expands, effective co-operation between humans and
autonomous systems will become an increasingly relevant aspect
of future military operations. Successful human-autonomy
teaming (HAT) requires establishing appropriate levels of trust in
machine-intelligence, which can vary according to the context in
which HAT occurs. The expansive body of literature on trust and
automation, combined with newer contributions focused on
autonomy in military systems, forms the basis of this study.
Various aspects of trust within three general categories of
machine intelligence applications are examined. These include
data integration and analysis, autonomous systems in all
domains, and decision-support applications. The issues related to
appropriately calibrating trust levels varies within each category,
as do the consequences of poorly aligned trust and potential
mitigation measures.
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Introduction

Throughout history, technology has played a key role in the evolution of armed conflict.
New technologies and platforms have expanded the number of warfighting domains to
include the seas, the skies, outer-space and Cyber-space.1 Technology has increased
the tempo of tactical engagements, the geographic breadth of the battlefield, the means
by which commanders communicate with their forces, and the ways in which states
plan and conduct armed conflicts.2 In the twenty-first century, a group of technologies
known collectively as artificial intelligence (AI) appears poised to usher in a new era
in which machine-intelligence and autonomy will enable distinctly new concepts and
procedures for the planning and execution of military operations.3 The growing avail-
ability of large quantities of data has encouraged an insatiable appetite for information
that requires expedient and dispassionate analysis, a role for which AI is uniquely
suited. The fusion of AI decision-making, improved sensors, and agile robotics will
enable new systems capable of independently performing all phases of the observe-
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orient-decide-act (OODA) decision-making loop. The influx of autonomous systems on
the battlefield and potential for algorithm-based warfare will gradually augment, or even
displace, human decision-making processes within some or all of these steps, and at
speeds that may exceed the cognitive capacity of human planners.

Currently, algorithms contribute to a range of military systems, from communication
equipment to sensors to air defence systems. In many respects, a modern military force is
already reliant on certain forms of AI. At its most capable, however, future applications of
machine-intelligence promise something new – a non-human collaborative partner able
to make proactive “decisions”within the context of shifting circumstances on the battlefi-
eld. The inherent advantages of this capability can only be realised if humans are com-
fortable relying on AI – not just as a tool, but as a member of the team. This article will
therefore focus on one specific aspect of human-autonomy teaming (HAT): establishing
appropriate levels of trust in machine intelligence. A vast body of academic literature
exists that focuses on trust in automation, or robotics, for commercial applications,
but academic research specifically addressing military applications is less plentiful. In
particular, this essay explores how autonomous systems leveraging AI are used in dissim-
ilar military contexts and how these varying contexts influence trust.

The basic argument presented here is threefold. First, AI technologies are being devel-
oped for military use within three broad categories that cut across the tactical, oper-
ational, and strategic levels of warfare: algorithmic solutions for data integration and
analysis, autonomous systems utilising machine intelligence, and decision-support soft-
ware that augments human decision-making. Second, I argue that the proliferation of AI
in military operations will necessarily lead to more interaction between humans and
intelligent machines. Operations will increasingly rely on safe and effective human-
machine teaming, which in turn relies on humans constantly evaluating and granting
appropriate levels of trust – known as trust calibration – to intelligent machines.4

Issues relating to proper trust calibration can vary within each of the three categories,
as will the implications of trust misalignment. Third, ensuring optimal human-
machine teaming with AI will, therefore, depend on identifying potential trust issues
within each of these categories and devising appropriate technical or doctrinal adap-
tations to address them. After a brief review of AI and an overview of the likely appli-
cations of machine-intelligence on the battlefield, I explore the concept of trust and
trust calibration before analysing the pitfalls and possibilities for encouraging appropri-
ate levels of trust in each of the three categories.

Advances in artificial intelligence

For decades, humans have been fascinated with the possibility of infusing machines with
some form of artificial intelligence, defined by Nils Nilsson as “that activity devoted to
making machines intelligent, and intelligence is that quality that enables an entity to
function appropriately and with foresight in its environment.”5 Two broad approaches
to AI emerged during the earliest days of the digital age. A top-down expert system
approach used complex pre-programmed rules and logical reasoning to analyse a par-
ticular data set. For well-defined environments with predictable rules – applications
such as analysing laboratory results or playing chess – the performance of expert
systems or “symbolic” AI (based on symbolic logic) depended largely on processing
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speeds and the quality of the algorithms. The other broad category used a bottom-up
machine learning approach modelled after the way humans learn by detecting patterns
within data. Neural networks are a form of machine-learning inspired by the human
brain that can identify complex patterns using multiple (and therefore “deep”) layers
of artificial neurons, a technique that is fundamental to the approach known as “deep
learning.”6 Through an ability to find relationships within data sets, such methods are
also termed “connectionist.”7

The differences between top-down, rule-based symbolic systems; and bottom-up
machine learning connectionist techniques, are substantial, particularly regarding the
potential range and flexibility of their applications. Deep learning approaches are
notable due to their ability to separate the learning from the data set upon which they
train, and the software therefore can be applied to other similar problems. Whereas
rules-based algorithms perform exceedingly well at narrowly defined tasks, deep learning
approaches are able to find rapidly patterns and; in effect, teach themselves applications
for which expert-system computational approaches are less effective.8 A number of
recent AI advances demonstrate an ability to mimic creativity, or generate novel
approaches to problem-solving, that can appear counter-intuitive to humans. Examples
include high altitude balloons with AI navigation controls that discovered optimal and
unexpected techniques for utilising wind patterns, or using AI to develop more
effective designs for machine-parts using additive manufacturing.9

In general, however, AIs remain narrow or “brittle” in the sense that they function well
for particular applications, but remain inflexible when used for others. Compared with
humans, machine-intelligence is far superior when applying rules of logic to a data set
given that machine computational speeds far exceed the human brain, but falls short
when attempting inductive reasoning where it must make general observations about
a data set, or an environment. Large amounts of training data are still necessary for
most machine learning, even though new approaches including self-supervised learning,
techniques for generating simulated data, such as the use of generative adversarial net-
works (GAN), and “less than one-shot” or LO-shot learning, requiring very small data-
sets are emerging.10 Image recognition algorithms can become easily confused, and
cannot immediately, or intuitively, interpret situational context as well as humans.
This brittleness extends to other problems such as games. Whereas AI often exhibits
superhuman capabilities in video games, they often cannot transfer that expertise to a
new game with similar rules or playing mechanics.11

While AI technologies continue to make significant progress in becoming more adapt-
able, anything approaching human-like artificial general intelligence remains elusive.12

This is partly due to our surprisingly limited grasp of the biology and chemistry involved
when humans process information – what is generally referred to as human cognition.
Neuroscientists still do not fully understand how the brain functions, which limits
efforts to model digital processes on biological ones. AI techniques such as deep-learning
have therefore enjoyed a symbiotic and mutually beneficial relationship with cognitive
neuroscience.13 Evaluating the near-term future of AI is further complicated by the incre-
mental progress of the technology. The hype surrounding AI – fuelled in no small part by
the success of deep-learning approaches – has led to both unrealistic expectations sur-
rounding the future of the technology and a normalisation of its very substantial pro-
gress. Some have termed this the “AI effect.” One report noted, “AI brings a new
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technology into the common fold, people become accustomed to this technology, it stops
being considered AI, and newer technology emerges.”14 Some speculate that the progress
resulting from machine-learning techniques may plateau, while others remain optimis-
tic.15 Some see the potential in attempts to merge symbolic AI approaches with the
various forms of machine-learning.16 The near-term future therefore remains uncertain.
Related technological advances, including computer chip design in the short-term, and
quantum computing in the long-term, may also influence the pace of further progress.17

Artificial intelligence in military operations

For many military applications, however, narrow uses of AI are more than adequate.
Many algorithmic solutions already in use by militaries around the globe can be con-
sidered “artificial intelligence” and there is no shortage of proposed uses for AI. The poss-
ible military capabilities enabled by AI are part of a dramatically different future
operating environment envisaged by analysts such as Christian Brose, and former
defence officials such as Robert Work.18 If these predictions regarding the effects of artifi-
cial intelligence come to fruition, they will have wide-ranging implications for the plan-
ning and implementation of operations. Existing and near-future applications can be
divided into three categories: data integration and analysis, autonomous systems, and
decision-support software. As with most typologies, the categories do not have comple-
tely clean edges and some applications cut across several of the labels. Notably, however,
the potential consequences of leveraging AI in a military context – and thus the risks of
poorly calibrated trust – increase from data analysis to autonomous systems and ulti-
mately decision-support applications. Furthermore, the integration of autonomous
systems in military force structures suggests a cumulative effect, as well. Trusting AI
to process sensor data is a necessary step for allowing autonomous systems to operate
alongside human personnel, and future AI-supported decision-making at the operational
level will require an additional layer of trust resting atop the trust relationships infused in
the human-autonomy teaming among military units fielding autonomous systems.

Data integration and analysis

The use of AI in the operation of various capabilities and platforms may oftentimes go
unnoticed for the average user simply due to its integrated role in system architectures.
Examples of this include civilian satellite navigation, internet search engines, or online trans-
lation tools. Military applications include wireless communication, or radars, that leverage
machine-learning algorithms for optimal use of the electromagnetic spectrum.19 For
unmanned or remotely piloted aircraft, onboard algorithms allow sensors independently
to conduct preliminary data analysis and thereby reduce bandwidth requirements. Algor-
ithms are already useful for analysing sensor data across a range of systems and platforms.20

In addition to these integrated applications, the conscious and active use of AI for data
analysis extends to intelligence, surveillance, and reconnaissance (ISR) efforts. As James
Johnson notes, machine-learning algorithms “could significantly improve existing
machine vision and other signal processing applications, identify patterns from large
data-sets of signals and imagery, and enhance autonomy and sensor fusion appli-
cations.”21 The US Air Force created the Algorithmic Cross Functional Team in 2017
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to apply AI to image analysis in its efforts to identify and track targets, and establish pat-
terns of life to enhance situational awareness.22 In cyberspace, pattern-recognition algor-
ithms can similarly determine a network’s normal operating pattern to enable easier
identification of deviances that may signal the presence of an intruder. The use of AI
for open-source intelligence (OSINT) analysis can identify individuals or even make
rough near-term predictions about insurgent activity.23 Experimental AI applications
such as the Global Information Dominance Experiments (GIDE) sift through massive
amounts of multisource data for patterns and trends to make predictions about a
range of future events.24

Autonomous systems

A second category of AI applications comprises a broad range of autonomous systems.
Autonomy is a term that remains challenging to define precisely or concisely. A 2016
report by the Joint Air Power Competency Centre (JAPCC) distinguished automation
– which involves machines preforming predictable, bounded pre-defined tasks set by
humans – from a fully autonomous system. The authors characterised an autonomous
system as one that could determine its own course of action, deliberate decisions not
restrained by pre-programmed responses, have an ability to learn and compile “experi-
ence,” and therefore no longer be completely predictable in its actions.25 Paul Scharre
and Michael Horowitz described three dimensions of autonomy in a 2015 paper: (a)
the human-machine command and control relationship, simplified by determining
whether a human is “in,” “on”, or “out of” the decision-making loop; (b) the complexity
and abilities of the machine or system; and, (c) the type of function being automated.26

Within the context of AI, it is worth noting that the distinction between automated
and autonomous systems becomes blurred. Machine-intelligence is highly relevant for
a number of automated functions that enable autonomous systems, including system
operations and self-diagnostics, autopilots, combat software and target tracking/identifi-
cation, and self-guided weaponry.27 Autonomy therefore describes a sliding scale of inde-
pendent machine functionality along a number of variables, including the level of
human-machine interaction, an ability independently to sense and adapt to changing
contexts, decision-making abilities to accomplish some set of pre-determined goals,
and the ability continuously to learn and improve from those decisions.

The less stringent definition of autonomy might encompass current military assets
ranging from air and missile defence systems, counter-rocket or artillery systems,
active protection systems for ground vehicles, loitering munitions, advanced cruise mis-
siles, and Cyber capabilities.28 While autonomous systems are currently deployed in most
warfighting domains, the next generation of autonomy will leverage AI to enable even
greater independence from human direction. Currently under development are space,
maritime, airbourne, and ground-based platforms and systems that, as the JAPCC
report outlined, represent a qualitative evolution, from a tool at the disposal of a tactical
commander, to a partner with which humans will have to interact and cooperate.

Autonomous aircraft will soon perform logistical tasks such as transporting cargo, or
refuelling duties. New operational concepts known colloquially as “loyal wingman” pro-
grammes envisage larger unmanned platforms that operate alongside piloted craft,
thereby offering more options for networking sensors, or additional munitions, and
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thus greater tactical flexibility. Autonomous ships will give maritime commanders a
similar capability at sea, and ground-based systems are currently under development
as well.29 New manufacturing processes will reduce production costs along with
reduced size, weight, and power requirements for scalable AI software. This will likely
enable the deployment of large numbers of small unmanned systems, which will be con-
trolled and co-ordinated in swarm formations with battle management and targeting
software that can be quickly uploaded and updated to “retrain” effectively the system
with a few keystrokes.30 Autonomous systems are therefore poised to increase the
overall number of platforms on the battlefield.

Decision support and decision-centric warfare

Military commanders already rely on machine-intelligence in their decision-making pro-
cesses, ranging from algorithmically derived collateral damage estimates, to targeting sol-
utions for air andmissile defence systems. For a range of systems, computer-generated data
analysis enhances situational awareness and provides options for war-fighters. Future
decision-making aids may bring about further developments. Compared with current
time-consuming operational planning paradigms, Steven Davis observes that “AI can
lead decision-makers towards optimal solutions when presented with many that are
merely suitable, feasible, or complete.”31 The introduction of large numbers of autonomous
weapon systems using AI decision-making software may influence the operational level of
war, particularly command and control (C2) aspects of military operations.

Appropriately enough, this now-common term emerged during the nascent infor-
mation technology age of the 1960s to distinguish the authority and responsibility of
command from the processes creating the necessary conditions for the commander to
exert control over the implementation and execution of operations.32 Although it has
become commonplace for higher-level commanders and political leaders to observe par-
ticular tactical engagements, the operational level may nevertheless be the most appro-
priate for having humans “on the loop” if autonomous systems were deployed. Even
with fleets of self-synchronizing autonomous surface vessels or aerial systems, the
need to co-ordinate the broader operational effort will remain human-centric. If that
is the case, however, operational planning and co-ordination may need AI assistance
simply to maintain an advantageous and effective battle rhythm.

This is the motivation behind the so-called “decision-centric” concept of warfighting.
One such concept developed by the Defense Advanced Research Projects Agency
(DARPA), known as Mosaic Warfare, utilises AI to co-ordinate a network of disaggre-
gated forces. The concept proposes a hybrid C2 configuration with human command
and machine control. Commanders choose tasks in need of completion from a set of
AI-generated courses of action (COA) based on its overview of available manned and
unmanned force components.33 Another approach outlined by Davis utilises a maritime
decision-support architecture with a middle layer of AI based on operational functions
such as protection, sustainment, or fires.34 Concepts integrating AI and autonomous
systems are a logical – albeit ambitious – progression given the perceived advantages
of rapid machine-based decision-making. This is particularly applicable when a con-
nected battlespace allows for data-fusion amongst a disparate, but linked, network.
The sheer volume of available information may lead to a dependence on machine-
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intelligence simply because machine cognition will be needed to understand and act
upon those data in an advantageous and timely manner.

Trust and machine intelligence

The anticipated role of machine-intelligence in all areas of military operations – from
sensor data to weapons systems to operational decision support – suggests a growing
reliance on AI. For example, an expert group report under the rubric of a North Atlantic
Treaty Organisation (NATO) initiative recommended that the military alliance “should
encourage the incorporation of AI into strategic and operational planning. It should
exploit the power of AI-driven technologies to enhance scenario planning exercises
and long-term preparedness.”35 Official statements and publications such as the US
Navy’s recently-released policy on intelligent autonomous systems emphasises trust as
an important component of reliance, and includes questions such as how and when
humans should trust machines.36 As machine intelligence becomes more capable of
increasingly complex cognitive functions and hones its ability to operate independently,
humans will need to view AI and autonomous systems as partners just as much as tools.
Similar to any partnership, trust is a crucial to effective human-machine cooperation.

Defining trust

Trust is one of many concepts that initially appears intuitive, but becomes more complex
upon further inspection. Not surprisingly, multiple definitions and conceptualisations of
trust have emerged over the past decades. After reviewing some of the various attempts
to define the term, the authors of one influential article concluded that, “these definitions
highlight some important inconsistencies regarding whether trust is a belief, attitude,
intention, or behaviour. These distinctions are of great theoretical importance.”37 One
popular definition from Mayer et al. (1995) contends that trust is the “willingness of a
party to be vulnerable to the actions of another party based on the expectation that the
other will perform a particular action important to the trustor, irrespective of the ability
to monitor or control that party.”38 A more recent and simplified definition of trust is
“the attitude that an agent will help achieve an individual’s goals in a situation characterised
by uncertainty and vulnerability.”39 The presence of vulnerability and therefore risk is a
significant component of trust since it attaches a potential cost for misplaced trust.

Although the building blocks of human-machine teaming are distinct from human
interpersonal relationships, many of the fundamentals are comparable. Keng Siau and
WeiyuWang note that trust is dynamic, and typically is built gradually via two-way inter-
action, but can also be strongly affected by initial impressions.40 Some scholars have
posited that generating trust occurs initially through the predictability of future behav-
iour, which is then repeatedly confirmed through consistent behaviour that establishes
dependability, and finally evolves into a broad judgement of reliability akin to faith.41

Trust in automation

Three similar elements influence trust in automation. The past and current performance
of the automation, along with information about what the system actually does, parallels
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predictability. Details about the automation’s design, and whether it will achieve the goals
set by the operator, can reveal relevant and useful information about how the system
operates, thereby eliciting the same dynamics as dependability. Finally, the purpose, or
rationale, behind the automation; and whether its use aligns with the designer’s intent,
has an abstract quality of transference (trust the designer’s intent, therefore trust the
automation) similar to faith.42

For many scholars, it is at this point that human interpersonal relationships and
human trust in machines begin to differ. Whereas people are usually sceptical of stran-
gers and trust builds gradually as described above, humans often have initial, faith-based
expectations that machines will work perfectly. This initial trust quickly erodes when
errors arise, but faith eventually can be replaced by the more durable qualities of predict-
ability and dependability.43 In a comprehensive 2015 survey of scholarly articles on trust
and automation, Kevin Hoff and Masooda Bashir developed a three-part trust model that
takes this initial trust in machines (dispositional trust) as its starting point and adds
context (situational trust) and experience (learned trust) to the mix.44

They posit that dispositional trust of automation is the most stable of the three and
most influenced by culture, age, gender, and personality traits. Most of these variables
have a demonstrative impact but with few clear tendencies.45 The role of culture –
which can be defined as a “set of social norms and expectations that reflect shared edu-
cation and life experience” – represents a particularly salient factor.46 Professional back-
ground or technical training constitutes one cultural difference that influences how
individuals approach automation. Attitudes towards power and authority, or even
views regarding the balance between individual or collective interests, can also play a
role. One study of trust in e-commerce services among customers in Iceland, Finland,
and Sweden revealed significant differences regarding dispositional trust, with customers
in Finland harbouring the greatest scepticism and those in Iceland exhibiting the highest
levels of trust.47

Along with the initial impact from dispositional trust, situational trust is the model’s
second component having a substantial role in developing trust in automation. Contex-
tual factors may include external variabilities such as system complexity, operator work-
load that affects automation monitoring, environmental factors that influence the risks
and benefits of automation, or organisational structures. Relevant situational trust
factors considered “internal” to the human operator might include self-confidence,
subject-matter expertise in the domain being automated, the operator’s ability to focus
(affected by stress, sleep, boredom, internal motivation), or even a positive mood –
which has been linked to higher levels of initial trust in automation.48

The third and final component of the model is learned trust, which encompasses a
broad set of variables relevant to trust in automation. An operator often has some pre-
existing knowledge of automation, whether it comes via previous experience from
other automated systems, or based on the reputation of the automation in question.
Expectations regarding automation and second-hand knowledge regarding its perform-
ance can influence trust even before an operator interacts with the system. The initial
interaction is influenced first by the automation’s design features: its appearance, ease
of use, modes of communication, and transparency.49 Design choices relating to the
human-machine interface, such as display layout or types of voice commands, can
play a significant role in eliciting trust. Once the initial levels of trust are established
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through prior experience or design features of the system itself, operators continually and
dynamically gauge their level of trust. This may rely on factors such as reliability, predict-
ability, system utility, and when and how errors occur – including how the operator is
alerted to them.50

Trust calibration and misalignment

Significant effort has been devoted to creating trust between humans and automated
systems, but past experience has demonstrated that excessive trust can also be proble-
matic. Amongst the most common tendencies associated with automation “overtrust,”
or misuse, include complacency and automation bias. Operators overseeing mostly
reliable automated systems tend to become complacent, and therefore less vigilant in
their monitoring routines and assume – not surprisingly – that systems are functioning
normally. A related issue is automation bias, whereby a human operator fails to respond
to automation malfunctions, or makes incorrect decisions to follow automated rec-
ommendations.51 One study concluded that pilots using a computer-generated rec-
ommendation system for de-icing procedures outperformed those without the aid, as
long as the computer provided correct advice, but performed more poorly when the
advice was incorrect. In another study, operators responsible for in-flight retargeting
of Tomahawk cruise missiles appeared to more acceptant of automated recommen-
dations as the level of automation increased, suggesting the existence of automation
bias.52

Automation bias appears to have contributed to a number of commercial aircraft dis-
asters, included the loss of Air France flight 447 in 2009. Veteran journalist William Lan-
gewiesche, in a detailed 2014 article about the crash based on the cockpit crew’s
conversations recovered from the aircraft’s flight recorder, focused on automation as a
contributing factor. Langewiesche argued that the pilots were so accustomed to relying
on automated flying aids that misleading information from a faulty airspeed indicator
created uncertainty and an inability to comprehend what was actually happening to
the aircraft. This led to a string of faulty decisions and repeated failures to make the
proper – and in retrospect relatively simple – adjustments that might have avoided the
tragedy. His succinctly summarised thesis was that “automation has made it more and
more unlikely that ordinary airline pilots will ever have to face a raw crisis in flight –
but also more and more unlikely that they will be able to cope with such a crisis if one
arises.”53

Rather than focusing on ways to increase human trust of automated systems, develo-
pers often strive to elicit calibrated levels of trust that correlate to the system’s capabili-
ties. Trust calibration simply describes a process by which human interactions with
machine-automation, or machine intelligence, strive to achieve an ideal state in which
the human places an appropriate amount of trust in machine intelligence based on its
strengths and weaknesses. With properly calibrated trust levels as a target, overtrust
can be understood as trust that exceeds the capabilities of the system, whereas distrust
describes the opposite situation in which the operator trusts the system less than its capa-
bilities might dictate.54 Achieving the proper trust alignment sounds simple enough, but
often can be complicated by normal human responses. As noted above, operators usually
have high performance expectations when using systems, particularly those with
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machine-intelligence. When errors occur, human operators tend to over-correct their
trust levels and lower their expectations to a level below the capabilities of the system
– thereby transitioning directly from overtrust to distrust.55

Automated versus autonomous systems

Most of the research into human-machine teaming over the past decades has focused on
automated systems. A fundamental question for which there are few clear answers is the
extent to which automated systems differ from autonomous systems. The distinction
mentioned earlier differentiated between rigid, pre-determined, and predictable auto-
mated tasks, versus unrestrained, dynamic, and unpredictable autonomy. One recent
survey article on human autonomy teaming noted, “the division between the two is a
matter of degree and the differences are a moving target… .at what point automation
might be better described as autonomy is an open question.”56

In practice, therefore, this distinction is more graduated and perhaps better under-
stood as a continuum with automated functionality at one end, and autonomous func-
tionality at the other. Even this type of graduated approach has only limited utility.
We humans tend gradually to regard autonomous functionality as something more
akin to automation once we become more comfortable with its performance and
reliability. To add further nuance, it may even be the case that autonomous systems
could have an automated function. An autonomous AI-enabled Cyber-defence may
act independently to handle threats in an unpredictable and unscripted fashion, but
the network defences themselves might considered automated.

In a thought-provoking article dealing with trust in autonomous weapons systems,
Heather Roff and David Danks question a similar binary attitude categorising auton-
omous systems either as a tool “where reliability and predictability of behaviour is
sufficient to ‘trust’ the system,” or “a moral agent with values and preferences, in
which case the threshold for ‘trust’ would be significantly higher.”57 Similarly, Thomas
O’Neill et al. introduces the concept of computer-based “autonomous agents,” as “dis-
tinct entities that represent unique roles on the team that would otherwise have to be
filled by a human.”58 While acknowledging Roff and Danks’ discomfort with the
binary concept of moral agent versus tool, the distinction nevertheless has some value
in conceptualising the differences between trusting automation and trusting autonomy.
Rather than simply performing pre-defined actions for a narrow set of circumstances, the
autonomous agent relies to a greater degree on something akin to judgement. Trusting
this judgement combines the dispositional and situational trust related to the perform-
ance of automated systems with an increased focus on process and purpose, which
entails a deeper understanding of the agent’s values and preferences.

AI and trust calibration on the battlefield

The potential for machine-intelligence to provide new capabilities and enhance the per-
formance of existing ones can be a significant factor for military operations, as long as the
human operators have properly calibrated levels of trust in the systems being operated.
As Hoff and Bashir observed, “just as it does in interpersonal relationships, trust plays a
leading role in determining the willingness of humans to rely on automated systems in
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situations characterised by uncertainty.”59 The effective incorporation of autonomy,
therefore, depends in part on individual traits, cultural backgrounds, and attitudes
towards machine intelligence. In alliance or coalition operations, interoperability
issues can arise if some member states have a well-established and well-calibrated
relationship with human-machine teaming, whilst others do not. Trust calibration
may not necessarily be transferable to personnel across different cultural backgrounds.
Even within each state’s military forces, however, issues of trust calibration will likely
vary according to the tasks performed by machine-intelligence across the three categories
mentioned above: data integration and analysis, autonomous weapons systems, and
decision-support.

Trust calibration for AI data integration and analysis

For many military applications, the role performed by machine-intelligence has already
been so fully integrated in the system architecture that it may not even be noticeable.
Applications can include automated language translation tools, AI-steered frequency
selection for communications equipment, the integration of sensor data to create a hol-
istic view of the battlefield for platform operators, or an intelligent digital entity moni-
toring computer networks for signs of intrusion. For these types of functions, the AI is
making “choices” and influencing the human operator’s understanding of the situation,
which in turn has an effect on cognition and the human decision-making that results.
This use of machine intelligence fits more comfortably in the definition of an automated
system. Issues of trust calibration are therefore more familiar and more thoroughly
studied.

An immediate and obvious concern is the high level of dispositional, or initial, trust
most operators are likely to grant these types of systems, perhaps even unaware the
extent to which the AI is shaping the information environment. Proper trust calibration
for military applications could involve human-machine interface-design features that
both elicit trust, but provide adequate levels of transparency, particularly regarding the
robustness of the data upon which the machine intelligence bases its conclusions. One
study suggested that autonomous agents should have an ability to evaluate its own
self-confidence, including uncertainties in its own knowledge base as well as uncertain-
ties about its own state of operation and uncertainties about its reasoning processes.60 Of
course, this too would be subject to the same weaknesses as the decision-making process
itself, but could add a useful corrective to human tendencies toward automation bias.

Another challenge for human operators who depend on machine-intelligence for
situational awareness is temporal in nature. During a future conflict, the time available
to make decisions may be severely truncated, incentivising a reliance on machine-cogni-
tion. When forced to act quickly, humans may choose not to analyse the self-confidence
levels of an autonomous agent, or critically evaluate AI-generated data when making
time-critical decisions. In certain domains, other sensors might provide a useful second-
ary source for verification, whereas humans in other situations may be completely reliant
on information provided by machine intelligence. AI-enabled tools in the Cyber-domain
represent a complex hybrid between data analysis and autonomous systems, as machine
intelligence monitors networks to protect against potential intrusions, and enables
offensive Cyber-weapons to analyse and circumvent an opponent’s smart defences.61
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Independent verification of such tools to ensure adequate situational awareness may be
challenging, particularly given operational time constraints.

Trust calibration for autonomous systems

Interactions with autonomous systems in the physical world – whether it be a ground-
based “packbot” system, an unmanned refuelling drone, an autonomous surface vessel,
or an autonomous weapon system, involve the same issues as the algorithmic entities dis-
cussed above, but entail other unique and challenging aspects of human autonomous
teaming. These systems represent a truer embodiment of autonomous agents filling a
defined role within a team, and are often discussed in terms of human agent interaction
(HAI). Therefore, the characteristics of successful interpersonal teaming have greater rel-
evance, including strong communication, shared mental models regarding intentions
and motivations, and an ability to act predictably and collaboratively.62

One study conducted under the auspices of the US Defence Department’s Autonomy
Research Pilot Initiative examined interactions between a military unit and its auton-
omous “packbot” squad member, finding that displaying data about the robot’s intent
and logic strengthened some of the basic foundational building blocks for trust, such
as situational awareness and understanding.63 This transparency can enhance learned
trust as operators become more proficient and experienced with autonomous agents.
A number of transparency models are possible, including communicating the agent’s
intentions and goal structures, or its understanding of the tasks, an analytical model
that focuses on the agent’s inner workings and algorithms, communicating the agent’s
understanding of the external environment, or a teamwork model that emphasises the
division of labour within the team.64

Transparency is one potential design feature for enhancing human-autonomy teaming.
Engineering details relating to the machine-interface can be influential to striking the
proper balance between eliciting trust and encouraging over-trust. Natural language proces-
sing and synthetic speech has made significant strides, enabling conversational communi-
cation between humans and robots that improves transparency and trust.65 Attributing
human characteristics to autonomous agents is a natural psychological phenomenon that
can enhance co-operation, but anthropomorphising can have negative effects including
unfortunate emotional attachments to explosive ordnance disposal robots, or encouraging
overtrust in autonomous agents due to human-like speech patterns.66

Dispositional trust may be most influential during the initial interactions between
humans and physical autonomous agents. For example, one Australian study concluded
that service members harbour deep-seated scepticism of autonomous weapon systems.67

However, achieving proper trust calibration over time may depend primarily on situa-
tional and learned trust. The human judgement to rely on machine intelligence in
high-risk situations; or leave the critical tasks to other humans even if that choice is sub-
optimal, may ultimately be a highly personal one. As with human teaming, such decisions
are often based on previous experience from similar situations, which suggests that com-
prehensive training exercises with autonomous agents can be an important component
in trust calibration. Training with autonomous systems has been touted as a logical
step to encourage trust in human autonomy teaming, with the added benefit of providing
additional AI training data.68 Roff and Danks caution that the context in which training
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occurs might also be consequential, and emphasise the variations between a low-risk
environment such as basic training and more advanced exercises that simulated battlefi-
eld environments. Additionally, they suggest leveraging the transitive property of trust by
creating an autonomous agent “liaison officer” within each unit that works more closely
with the system to understand its logic, motivations, and processes. Trust calibration for
the remaining members of the unit might then be more easily conveyed through the
liaison officer, although this approach has its limitations as well.69

Trust calibration for operational decision support systems

The issues relating to effective human autonomy teaming discussed above will have an
immediate impact at the sub-tactical and tactical levels, but deployment of autonomous
systems on the battlefield may bring about adaptation at the operational level as well.70

Greater numbers of autonomous platforms operating independently – along with tactical
decision-making occurring at machine speeds –will pose challenges for human cognition
and may become a limiting factor in disrupting an adversary’s decision loops. Consider-
ing the threats an adversary can pose in multiple domains and the amount of information
required to respond adequately and promptly, one US military leader concluded that “a
twentieth century commander will not survive in that environment” without the assist-
ance of machine intelligence to manage the data.71 The use of machine-intelligence at the
operational level is likely cumulative, incorporating the benefits and risks of trust dis-
cussed in the previous two sections and adding another layer of complexity.

Leveraging machine intelligence for decision-support at the operational level has clear
parallels with data analysis at the tactical level, particularly the susceptibility to auto-
mation bias and tendencies to overlook the sometimes-subtle decision-making effects
of AI. Furthermore, the potential addition of co-ordinated groups – perhaps even
swarms – of autonomous weapons or platforms introduces new challenges to existing
C2 procedures such as joint targeting that may themselves require automation in a poten-
tially more fast-paced and dynamic environment. For operations planners, the element of
human-machine trust becomes an additional factor for evaluating the readiness and
efficacy of combat units. A decision-centric warfare concept that incorporates AI directly
into command-and-control structures may be the most dramatic application of auton-
omy. An appreciation of the potential strategic implications stemming from missteps
in tactical decision-making has become even more poignant with the advent of continu-
ous news coverage and social media. An important part of human autonomy teaming in
the military sphere involves the consideration of the autonomous agent’s ability to act
with an awareness of the conflict’s strategic and political context, as well as within the
legal framework of the international laws of armed conflict. This consideration
becomes greatly amplified at the operational level, as AI-assisted information flows
and autonomous control over groups of autonomous platforms combine with the con-
sequences of autonomous agent actions at the tactical level. This is particularly concern-
ing given the potential conflict escalation dynamics associated with machine-intelligence
and autonomous systems due to compressed decision-making times, confirmation bias,
and the clinical cost–benefit rewards system of machine learning.72

Trust is a phenomenon occurring in situations of uncertainty and risk. These are two
aspects of operational planning and control that machine-intelligence can potentially
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mitigate with fewer personnel in harm’s way and improved information processing
leading to enhanced situational awareness. As noted in a recent article, AI for algorithmic
warfare must remain flexible and reduce operational complexity, including an ability to
“independently compose and adjudicate courses of action.”73 Trusting machine intelli-
gence to act as the moral agent “in the loop” for planning and approving specific
COAs involves an adequate level of comfort in allowing the autonomous agent to evalu-
ate tactical decisions appropriately, which of itself involves some sort of machine-based
“trust.” As Davis argues, an AI-based decision-support architecture at the operational
level “would act as a trusted agent, condensing the amount of information for which
the commander was responsible.”74 Existing research suggests that operators overseeing,
or managing, autonomous agents should be given as much situational data as possible,
particularly since some studies suggest that situational awareness degrades as the
number of autonomous agents increases.75 For commanders managing autonomous
agents as the human “on the loop,” enhancing situational understanding has been
shown to be more effective than simply providing options from which an operator can
choose.76

Another issue that could emerge relating to trust and machine intelligence is the
somewhat paradoxical nature of trust and tactical advantage. Existing research suggests
that predictable behaviour within similar circumstances engenders trust, but this predict-
ability can be a vulnerability on the battlefield if an adversary has similar data analysis
tools and can predict algorithmic patterns. After only a few instances of observing the
algorithmic tactics and behaviours of autonomous agents, their actions might be antici-
pated and thereby countered. To be sure, adaptations can be incorporated into the behav-
iour of the agents to refrain from repeating identical manoeuvres during aerial combat,
for example, but this lack of predictability will make human-autonomy trust more chal-
lenging, however advantageous it may be in a tactical sense. The potential for adversarial
interference with one’s own training data, or algorithms, will also remain a concern and a
justified reason for scepticism.77

Such tactical and operational level issues can create a number of strategic dilemmas.
Time constraints may force human operators to relinquish important aspects of the
decision-making process to autonomous agents in order to gain an advantage over an
adversary. In virtual experiments conducted by the US Army, humans tended to micro-
manage their drone swarms and were consistently defeated by AI-controlled units due to
slower human cognition.78 Such a dynamic is likely to encourage operators to forego a
sober evaluation of an autonomous agent’s trustworthiness for the sake of expediency.
The gradual reduction of human cognition in decision-making is likely to have unpre-
dictable strategic implications relating to deterrence and escalation control at all levels,
particularly when trust issues are involved. As James Johnson has argued, “uncertainty
created by AI threats to strategic stability could be either the result of an adversary’s exag-
gerated faith in its effectiveness or (and perhaps more concerning) the false belief that a
particular AI capability is operationally effective when it is not.”79

Conclusion

It seems clear that military applications for autonomous systems will continue to expand
as the incentives for policy-makers appear to outweigh the risks. Machine intelligence
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represents a unique set of technologies that goes beyond incremental improvements to
range, speed, or accuracy of weapons systems. Autonomous agents in each of the three
categories can potentially alter the battlefield in unpredictable ways, which presents
both danger and opportunity to military leaders looking for the most optimal means
of integrating AI technology into existing and planned force structures. Given that
warfare remains a human-centred endeavour, the importance of human autonomous
teaming is likely to become an increasingly important aspect of military operations.

Research-based knowledge on aspects of trust in human-autonomy teaming is wide-
ranging and comprehensive, but much of the empirical data naturally relates primarily
towards the more automated processes side of the sliding scale from automation to
autonomy. Given the anticipated functions of machine intelligence in a military
context, much of this research nevertheless remains highly relevant – particularly regard-
ing aspects of cultural differences related to dispositional trust or common phenomena
such as automation bias. The challenges to proper trust calibration vary according to the
type and category of application, and eliciting sufficient human trust in physical auton-
omous systems may be more challenging than integrated machine-learning software for
ISR data analysis. Ultimately, it remains crucial that appropriate and calibrated levels of
trust are achieved to best harness the potential of artificial intelligence.
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