
 

  

 
 

 
 

 

    
 

   

  1  

 

I I E E 

 FFI-NOTAT Eksternnotat 23/02442 
 

     

LybinTCPServer 7.0.5 - interface 
description 

    
  Author 

Elin Margrethe Bøhler 
Prosjektnummer 549701 
18 December 2023 
 
Approvers 
Roald Otnes, Research Manager; Trygve Sparr, Research Director .  
The document is electronically approved and therefore has no handwritten signature. 
  
Keywords 
Undervannsakustikk, Sonar, LYBIN, Programvare, Grensesnitt 
 
Summary 
LYBIN is a robust, user friendly and fast acoustic ray-trace simulator. A broad set of parameters is used to 
accurately calculate the probability of detecting objects in a given area under water with the use of sonar 
technology. LYBIN can be used both with a graphical user interface and as a stand-alone calculation kernel. 
The stand-alone calculation kernel is available in two different implementations: LybinCom and 
LybinTCPServer. This FFI note describes the interface of LybinTCPServer 7.0.5. 
 
 
  

 

    



  

    

 

 2 Eksternnotat 23/02442 
 

Contents 

1 Introduction 4 

2 LYBIN model data 5 
2.1 Environment 9 

2.1.1 Bottom back scatter 12 
2.1.2 Bottom loss 14 
2.1.3 Bottom profile 15 
2.1.4 Bottom type 15 
2.1.5 Lamberts coefficient 16 
2.1.6 Ocean 18 
2.1.7 Rayleigh bottom loss 19 
2.1.8 Reverberation and noise measurements 20 
2.1.9 Sound speed 21 
2.1.10 Surface back scatter 23 
2.1.11 Surface loss 24 
2.1.12 Surface reflection angle 25 
2.1.13 Target strength 26 
2.1.14 Volume back scatter 27 
2.1.15 Wave height 29 
2.1.16 Wind speed 30 

2.2 Platform 30 
2.2.1 Sensor 31 

2.2.1.1 BeamPattern 34 
2.2.1.2 Pulse 35 

3 Initiate calculation 36 

4 Calculation results 37 
4.1 Functions returning calculation results 37 
4.2 Impulseresponse point 39 
4.3 Traveltime point 40 
4.4 Visual raytrace point 40 

A Code examples 42 
A.1 C# code example 42 



 

 
    

 

Eksternnotat 23/02442 3  
 

A.2 Python code example 51 

References 57 

 

 

  



  

    

 

 4 Eksternnotat 23/02442 
 

1 Introduction 

LYBIN [1], [2] is a well established and frequently used sonar prediction tool owned by the 
Norwegian Defence Materiel Agency (NDMA) and FFI. It is in operative use by the Norwegian 
Navy and in a number of other nations, and has been modified and improved for this purpose for 
more than 30 years. FFI has been responsible for testing, evaluation and development of LYBIN 
since 2000 and has been responsible for commercial sale and support since 2009.  

LYBIN is a robust, user friendly and fast acoustic ray-trace simulator. A broad set of parameters 
is used to accurately calculate the probability of detecting objects in a given area under water 
with the use of sonar technology. As this probability changes with environmental properties, 
LYBIN rapidly calculates the sonar coverage.  

Several thousand acoustic rays are simulated traversing the water volume. Upon hitting the sea 
surface and sea bed, the rays are reflected and exposed to loss mechanisms. Losses in the water 
volume itself due to thermal absorption are accounted for. LYBIN estimates the probability of 
detection for a given target, based on target echo strength, the calculated transmission loss, 
reverberation and noise. Both active and passive sonar systems can be simulated.  

LYBIN can be used both with a graphical user interface [3] and as a stand-alone calculation 
kernel. This duality enables LYBIN to interact with other applications, such as mathematical 
models, web services, geographic information systems, and more. The software is integrated in 
combat system software, tactical decision aids and tactical trainers. LYBIN has become an 
important tool in both planning and evaluation of maritime operations [4],[5].  

The stand-alone calculation kernel is available in two different implementations; LybinCom and 
LybinTCPServer. LybinCom [6] is implemented as a Microsoft COM [7] module for the 
Windows platform. LybinTCPServer is based on  Apache Thrift [8], using TCP/IP remote 
procedure calls. LybinTCPServer can be built for both Windows and Linux platforms and used 
from multiple programming languages.  

This document describes the interface of LybinTCPServer 7.0.5. The three following chapters 
describe the separate parts of the interface. Chapter 2 gives a description of all the input 
parameters that can be used in the simulations. Chapter 3 gives a description of how to initiate a 
sonar performance calculation and Chapter 4 gives a description of all the calculation results 
available from the calculation. To make it easier for the reader, we have included hyperlinks in 
the text. The hyperlink is indicated with blue, underlined text, and will direct the reader to the 
description of the mentioned parameter, class or type. 

The Apache Thrift technology enables LybinTCPServer to be used from many different 
programming languages. In Chapter 2 we have included some parts of code written in C#. This 
is meant as examples, not limitations. In Appendix A at the end of this document, we have 
included more complete code examples both for C# and for Python. 



 

 
    

 

Eksternnotat 23/02442 5  
 

2 LYBIN model data 

The LybinModelData class contains all the parameters to be used in a simulation: the 
environment, the platform and all the parameters controlling the acoustic calculations. All the 
parameters in LybinModelData are listed in Table 2.1.  

LYBIN has two levels of precision, called cells and steps. Cells describe the precision of the 
output results grid. Steps describe the precision of the internal calculation grid. The relation 
between cells and steps is by default so that the number of range steps is 10 times the number of 
range cells and the number of depth steps is 20 times the number of depth cells. To avoid too 
large steps, there is a maximum range step size of 50 meters and a maximum depth step size of 
5 meters. If the maximum size is exceeded, additional steps are added. 

The parameters TypeOfRevNoiseCalculation, UseMeasuredBeamPattern, 
UseMeasuredBottomLoss, UseMeasuredHorizontalBeamWidth, 
UseMeasuredPassiveProsessingGain, UseMeasuredSurfaceBackScatter, 
UseMeasuredSurfaceLoss, UseMeasuredSurfaceReflectionAngles, UseMeasuredTargetStrength 
and UseRayleighBottomLoss can make LybinTCPServer use certain datasets instead of 
predefined default values. In order to follow these demands, the spesified datasets must be sent 
into LybinTCPServer. If LybinTCPServer cannot find these datasets, the switches will be set 
back to default values.  
 

 

Parameter Type Default 
value 

Unit 

DepthCells 
Number of depth cells in the calculation output.  

Integer 50  

DepthCellSize 
Size of the depth cells in the calculation output. 

Double 6 m 

DepthScale  
Maximum depth in the calculation. 

Double 300 m 

DepthSteps 
Number of depth steps to be used during the calculation. 

Integer 1000  

DepthStepSize Double 0.3 m 



  

    

 

 6 Eksternnotat 23/02442 
 

Parameter Type Default 
value 

Unit 

Size of the depth steps to be used during the calculation. 

Environment 
All the environmental data to be used in the calculation. 

Environment   

ImpulseResponseCalculation 
Switch to control whether to calculate impulse response or 
not.  

Boolean false  

ImpulseResponseDepth 
The depth that the impulse response will be calculated 
from. 

Double 0 m 

ImpulseResponseWindowHeight 
The heigth of the window that the impulse response will be 
calculated from. 

Double 80 m 

MaxBorderHits 
Maximum number of boundary hits (sea or bottom) allowed 
before a ray is terminated. 

Integer 5000  

NoiseCalculation 
Switch to control whether to calculate the noise or not. 

Boolean true  

PassiveCalculation 
Switch to control whether to perform calculations for 
passive or active sonar. 

Boolean false  

Platform 
All the platform data to be used in the calculation. 

Platform   

RangeCells 
Number of range cells in the calculation output. 

Integer 50  

RangeCellSize 
Size of the range cells in the calculation output. 

 

Double 200 m 



 

 
    

 

Eksternnotat 23/02442 7  
 

Parameter Type Default 
value 

Unit 

RangeScale 
Maximum range in the calculation. 

Double 10000 m 

RangeSteps 
Number of range steps to be used during the calculation. 

Integer 500  

RangeStepSize 
Size of the range steps to be used during the calculation. 

Double 20 m 

SignalExcessConstant 
Parameter affecting the relation between signal excess and 
probability of detection. 

Double 3  

TerminationIntensity  
Each ray is terminated when its intensity falls below this 
value. 

Double 1E-16  

TravelTimeAngleRes 
The distance in degrees between the start angles of the rays 
to be used in the travel time calculation. 

Double 1 Deg 

DoTravelTimeCalculation 
Switch to control whether to calculate travel time or not. 

Boolean false  

TRLRays 
Number of rays to be used in the transmission loss 
calculation. 

Integer 1000  

TypeOfRevNoiseCalculation 
Enumerator used to control how the calculation of 
reverberation is performed: 

0: Calculate bottom reverberation from bottom types 
1: Calculate bottom reverberation from back scatter 

values 
2: Use measured reverberation and noise data 
3: Use Lamberts law to calculate bottom reverberation 

 
 

Enum 0  



  

    

 

 8 Eksternnotat 23/02442 
 

Parameter Type Default 
value 

Unit 

UseMeasuredBeamPattern 
Tells the model to use measured beam pattern. 

Boolean false  

UseMeasuredBottomLoss 
Tells the model to use measured bottom loss.  

If UseRayleighBottomLoss = true, it will overrule 
UseMeasuredBottomLoss. 

Boolean false  

UseMeasuredHorizontalBeamWidth 
Tells the model to use the input parameter 
BeamWidthHorizontal instead of calculating the horizontal 
beam.  

Boolean false  

UseMeasuredPassiveProcessingGain 
Tells whether to use the input parameter 
PassiveProcessingGain instead of calculating the passive 
processing gain.  

Boolean false  

UseMeasuredSurfaceBackScatter 
Tells the model to use measured back scatter instead of 
calculating it. 

Boolean false  

UseMeasuredSurfaceLoss 
Tells the model to use measured surface loss instead of 
calculating it. 

Boolean false  

UseSurfaceReflectionAngles 
Tells the model to use input reflection angles instead of 
calculating them. 

Boolean false  

UseMeasuredTargetStrength 
Tells the model to use measured target strengt. 

 

 

 

Boolean false  



 

 
    

 

Eksternnotat 23/02442 9  
 

Parameter Type Default 
value 

Unit 

UseRayleighBottomLoss 
Tells the model to calculate bottom loss according to the 
Rayleigh bottom loss algorithms.  

If UseRayleighBottomLoss = true, it will overrule 
UseMeasuredBottomLoss. 

Boolean false  

UseWaveHeight 
Tells the model to use wave height instead of wind speed. 

Boolean false  

VisualRayTraceCalculation 
Switch to control whether to calculate a ray trace plot for 
visualisation or not. 

Boolean false  

VisualBottomHits 
Number of bottom hits allowed in the visual ray trace plot. 

Integer 1  

VisualNumRays 
Number of rays in the visual ray trace plot. 

Integer 50  

VisualSurfaceHits 
Number of surface hits alloved in the visual ray trace plot. 

Integer 2  

Table 2.1 Parameters in the LybinModelData class. 

 

2.1 Environment 

The environment class contains all the environmental data as listed in Table 2.2. 

LybinTCPServer is able to handle range dependent environments. In LybinTCPServer, range 
dependent environmental data are specified for certain range intervals from the sonar. We call 
such a dataset, with start and stop ranges related to a value (or sets of values), a range dependent 
object. A range dependent object can contain one or more values with their range of validity. 
The structure of range dependent objects with start and stop range is shown in Figure 2.1 . The 
maximum number of range dependent values are only limited by the given calculation accuracy. 



  

    

 

 10 Eksternnotat 23/02442 
 

When the environmental properties are entered for a discrete set of locations (ranges), 
LybinTCPServer will create values at intermediate ranges using interpolation. If no 
environmental descriptions are given at zero range, LybinTCPServer will substitute the data for 
the nearest range available, likewise, if data at maximum range are missing. 

 

 

Parameter Type 

BottomBackScatter List<StartStopDoubleList> 

BottomLoss List<StartStopDoubleList> 

BottomProfile List<BottomProfileSample> 

BottomType List<StartStopSampleDouble> 

LambertsCoefficient List<StartStopSampleDouble> 

Ocean Ocean 

RayleighBottomLoss RayleighBottomLoss 

ReverberationAndNoise List<ReverberationAndNoiseSample> 

SoundSpeed List<SoundSpeedProfile> 

SurfaceBackScatter List<StartStopDoubleList> 

SurfaceLoss List<StartStopDoubleList> 

SurfaceReflectionAngle List<StartStopSampleDouble> 

TargetStrength List<StartStopDoubleList> 

VolumeBackScatter List<VolumeBackScatterProfile> 

WaveHeight List<StartStopSampleDouble> 

WindSpeed List<StartStopSampleDouble> 

Table 2.2 The environment class holds all the environment data. 



 

 
    

 

Eksternnotat 23/02442 11  
 

 
Figure 2.1 Schematic description of a range dependent object with start and stop parameters. 

 

The start and stop functionality provides great flexibility in defining the environmental range 
dependent properties. By setting start and stop to the same range, the values will be considered 
to belong to a point in space, and LybinTCPServer will use interpolation to produce data for 
intermediate range points. The start and stop functionality might be utilized to illustrate 
meteorological or oceanographic fronts, entering values with finite ranges of validity to each 
side of the front, and separating the sets by any small distance, across which the conditions will 
change as abruptly as the user intends. In between these two extreme choices, all combinations 
of these are possible to use. 

In addition to some classes designed for a certain type of environmental data, there are three 
more generic data classes. They are used for environmental datasets with similar structure. 
StartStopSampleDouble and StartStopDoubleList store range dependent data and DoubleSample 
stores angle dependent data. Each of the three classes are listed with parameters, types, default 
values and units in Table 2.3. 

The StartStopSampleDouble contains start, stop and value. Both start and stop always has the 
default 0 and unit m. The default and unit for Value varies with type of environmental data. 

StartRange 

Object 

 

StopRange 

Value(s) 

StartRange 

StopRange 

Value(s) 

StartRange 

StopRange 

Value(s) 



  

    

 

 12 Eksternnotat 23/02442 
 

The StartStopDoubleList contains start, stop and Samples. Both start and stop always has the 
default 0 and unit m. Samples is a list of DoubleSamples that contains the two parameters Data 
and Key. Data has the default value 0 and unit dB. Key has default value 0 and the unit degrees. 

The BottomProfile and the ReverberationAndNoiseMeasurements do not have the start-stop 
functionality. These datasets are not likely to have constant values over range. Both 
BottomProfile and the ReverberationAndNoiseMeasurements are to be inserted into 
LybinTCPServer as single values with corresponding range. The number of data points in each 
dataset is optional. 

 

 

Class Parameter Type Default value Unit 

DoubleSample Data Double 0 dB 

Key Double 0 deg 

StartStopSampleDouble Start Integer 0 m 

Stop Integer 0 m 

Value Double - - 

StartStopDoubleList 

 

 

Start Integer 0 m 

Stop Integer 0 m 

Samples List<DoubleSample> - - 

Table 2.3 Different types of data classes used to store environmental data. 
StartStopSampleDouble and StartStopDoubleList store range dependent data. 
DoubleSample stores angle dependent data. 

 

 

2.1.1 Bottom back scatter 

Bottom back scatter is the fraction of energy that is scattered back towards the receiver when a 
ray hits the sea bottom. A dataset representing bottom back scattering coefficients is entered 
into LybinTCPServer in tabular form, giving backscattering coefficients (in dB) for a set of 



 

 
    

 

Eksternnotat 23/02442 13  
 

grazing angles. Based on the tabulated values, LybinTCPServer interpolates between the given 
values. The back scattering coefficients are given as dB per square meter. 

Bottom back scatter is one of four possible options to calculate bottom reverberation. 
LybinTCPServer will only use the bottom back scatter values given if the 
TypeOfRevNoiseCalculation parameter in LybinModelData class is set to 1: 
USE_BOTTOM_BACKSCATTER. 

BottomBackScatter is a StartStopDoubleList as listed in Table 2.3.  A C# example where a start 
stop double list containing range dependent bottom back scatter values are added to the 
BottomBackScatter class is seen in Figure 2.2. 

 

 

 

 

 

Figure 2.2  C# code example: A StartStopDoubleList containing range dependent bottom back 
scatter values is added to the BottomBackScatter class. 



  

    

 

 14 Eksternnotat 23/02442 
 

2.1.2 Bottom loss 

Bottom loss is the fraction of energy that is lost after the sound has been reflected from the 
ocean bottom, usually expressed in dB. The bottom loss is also referred to as forward scattering 
in underwater acoustic terminology. A dataset representing bottom loss is entered into 
LybinTCPServer in tabular form, giving bottom loss (in dB) for a set of grazing angles. Based 
on the tabulated values, LybinTCPServer interpolates between tabulated values to create loss 
values for grazing angles in between the given angles. 

The parameter UseMeasuredBottomLoss  tells LybinTCPServer to use BottomLossTable 
instead of calculating the bottom loss. If UseRayleighBottomLoss is set to true, 
UseMeasuredBottomLoss will be ignored. UseRayleighBottomLoss must always be set to false 
and UseMeasuredBottomLoss to true if one wants to use predefined bottom loss values in 
LybinTCPServer. Both these parameters can be found in the LybinModelData class. 

BottomLoss is a StartStopDoubleList as listed in Table 2.3.  A C# example where a start stop 
double list containing range dependent bottom loss values is added to the BottomLoss class is 
seen in Figure 2.3. 

 
Figure 2.3  C# code example: A StartStopDoubleList containing range dependent bottom loss 

values is added to the BottomLoss class. 



 

 
    

 

Eksternnotat 23/02442 15  
 

 

2.1.3 Bottom profile 

The BottomProfile consist of bottom profile samples containing range and depth values as listed 
in Table 2.4. The samples can be added to the bottom profile as seen in the C# example shown 
in Figure 2.4. 

 

Class Parameter Type Default value Unit 

BottomProfileSample Depth Double 200 m 

Range Double 0 m 

Table 2.4 The BottomProfileSample contains range and depth. 

 

 

Figure 2.4  C# code example: A BottomProfileSample containing range and depth values is 
added to the BottomProfile class. 

 

2.1.4 Bottom type 

The geo-acoustic properties of the bottom are coded by a single parameter in LybinTCPServer. 
Bottom types ranging from 1 to 9, where 1 represents a hard, rock type of bottom with low 
bottom reflection loss, while 9 represents a soft bottom with a high reflection loss. In addition, 



  

    

 

 16 Eksternnotat 23/02442 
 

bottom types 0 and 10 have been added, representing lossless and fully absorbing bottoms, 
respectively.  

Bottom type is one of three options for modelling the bottom loss. Bottom type is the default 
choice if both UseMeasuredBottomLoss and UseRayleighBottomLoss are set to false, which 
also are their default setting. Both these parameters can be found in the LybinModelData class. 

Bottom type is the default of the four possible options to calculate bottom reverberation. 
LybinTCPServer will use the given bottom type when the TypeOfRevNoiseCalculation 
parameter in LybinModelData class is set to 0: USE_MODELL_CALC_ALL. 

A range dependent bottom type sample can be added to the BottomType class as seen in the C# 
example in Figure 2.5. Each range dependent bottom type is given as a StartStopSampleDouble 
as listed in Table 2.3. The default bottom type value is 2. 

 

 

Figure 2.5  C# code example: A StartStopSampleDouble containing range dependent bottom 
type data is added to the BottomType class. 

 

2.1.5 Lamberts coefficient  

Lamberts rule is one of four possible options to calculate bottom reverberation.  According to 
Lamberts rule, the back scattering coefficient is given by: 



 

 
    

 

Eksternnotat 23/02442 17  
 

( ) 2sinσ θ µ θ=  (2.1) 
 
 

Where σ is the back scattering coefficient, θ is the incident grazing angle and μ is the Lamberts 
coefficient. 

The input parameter LambertsCoefficient is range dependent, and needs corresponding start and 
stop values. If LambertsCoefficient is to be used, the parameter TypeOfRevNoiseCalculation 
has to be set to 3: USE_LAMBERT_BACKSCATTER, in order to use Lamberts rule in the 
calculation of the bottom reverberation. The parameter TypeOfRevNoiseCalculation can be 
found in the LybinModelData class. 

The range dependent Lamberts coefficient can be added to the LambertCoefficient class as seen 
in the C# example in Figure 2.6. Each coefficient is given as a StartStopSampleDouble as listed 
in Table 2.3. The default LambertsCoefficient value is 0 dB. 

 

  

Figure 2.6  C# code example: Two StartStopSampleDoubles containing a range dependent 
Lamberts coefficient are added to the LambertsCorfficient class. 

 

 



  

    

 

 18 Eksternnotat 23/02442 
 

2.1.6 Ocean 

The parameters in the ocean class represent the ocean environment and targets within the sea. 
All the parameters in the ocean class are listed in Table 2.5.  

Both Ambient noise and target strength can either be given as a fixed parameter, or it can be 
calculated from the given environmental input. Which one of these alternatives to be used is 
decided by the parameters NoiseCalculation and UseMeasuredTargetStrength in 
LybinModelData. 

Parameter Type Default value Unit 

AmbientNoiseLevel 
Noise from ambient sources. 

Double 50 dB 

PH 
pH level in the sea water. 

Double 8  

PrecipitationType 
Type of precipitation in the area. 

0: No precipitation 
1: Light rain 
2: Heavy rain 
3: Hail 
4: Snow 

 

Enum 0  

ReverberationZone 
The reverberation zone that the target is within, relative 
to the ship. This parameter is only applicable to CW-
pulses. 

0: MainLobe 
1: Typical 
2: NoReverb 

 

Enum 1  

ShipDensity 
Density of ship traffic in the area of the calculation. The 
ship density can vary from 1 (low) to 7 (high). 

Double 4  

SurfaceScatterFlag Boolean true  



 

 
    

 

Eksternnotat 23/02442 19  
 

Parameter Type Default value Unit 

Tells the model if reflected ray angles will be modified in 
order to simulate rough sea scattering or reflected 
specularly, as from a perfectly smooth surface. 

TargetAspectAngle 
Aspect angle of target. 

Double 0 Deg 

TargetCourse 
Course of target. 

Double 0 Deg 

TargetSpeed 
Speed of target. 

Double 10 m/s 

TargetStrength 
Target echo strength. 

Double 10 dB 

Table 2.5 Parameters in the Ocean class. 

 

2.1.7 Rayleigh bottom loss 

In order to calculate the bottom loss more accurately, a Rayleigh bottom loss model is included. 
The Rayleigh bottom loss is based on the physical parameters bottom attenuation, bottom sound 
speed and density ratio. In order to relate these bottom parameters to other bottom models, the 
sound speed in the water at bottom depth is assumed to be 1500 m/s. This sound speed is only 
used in the calculation of bottom loss, and will not influence any other part of the model. The 
Rayleigh bottom loss is not range dependent. The parameters in the RayleighBottomLoss class 
are listed in Table 2.6. A C# example where Rayleigh bottom loss values are added to the 
RayleighBottomLoss class is shown in Figure 2.7. 

In order to make LybinTCPServer calculate and use Rayleigh bottom loss, the 
UseRayleighBottomLoss parameter in LybinModelData class must be set to true. This 
parameter will overrule the parameter UseMeasuredBottomLoss if there is any conflict between 
the settings of the two. 

 

 



  

    

 

 20 Eksternnotat 23/02442 
 

Class Parameter Type Default value Unit 

RayleighBottomLoss 

 

BottomAttenuation Double 0,5 dB/wavelength 

BottomSoundSpeeed Double 1700 m/s 

DensityRatio Double 2  

Table 2.6 Parameters in the RayleighBottomLoss class. 

 

 

Figure 2.7  C# code example: Rayleigh bottom loss values are added to the 
RayleighBottomLoss class. 

 

 

2.1.8 Reverberation and noise measurements 

The ReverberationAndNoiseMeasurements can consist of any number of measurements with 
corresponding ranges. To find values for the ranges not given as measurements, 
LybinTCPServer uses linear interpolation. 

Reverberation and noise measurements are an optional choice where one uses measured values 
instead of letting LybinTCPServer estimate reverberation and noise. LybinTCPServer will only 
use the reverberation and noise measurements values given if the TypeOfRevNoiseCalculation 
parameter in LybinModelData class is set to 2: USE_MEASURED_REV_NOISE. 

The ReverberationAndNoiseSample can consist of any reverberation and noise samples 
containing range and depth values as listed in Table 2.7. The samples can be added to the 
ReverberationAndNoise class as seen in the C# example in Figure 2.8. 

 



 

 
    

 

Eksternnotat 23/02442 21  
 

Class Parameter Type Default value Unit 

ReverberationAndNoiseSample Depth Double 0 m 

Scatter Double 80 dB 

Table 2.7 The ReverberationAndNoiseSample contains range and depth. 

 

 

Figure 2.8  C# code example: ReverberationAndNoise values are added to the 
ReverberationAndNoise class. 

 

 

2.1.9 Sound speed 

The sound speed is a function of both range and depth. Since the sound speed is most often 
measured as depth dependent profiles, the SoundSpeed class can contain multiple sound speed 
profiles, representative of different ranges. The sound speed profiles contain sound speed 
samples holding the parameters temperature, salinity and sound speed for a given set of depths, 
as listed in Table 2.8. 



  

    

 

 22 Eksternnotat 23/02442 
 

One or more sound speed profiles can be added to the SoundSpeed class as seen in the C# 
example in Figure 2.9. 

 

Class Parameter Type Default 
value 

Unit 

SoundSpeedSample Depth Double 0 m 

SoundSpeed Double 1480 m/s 

Temperature Double 7,36 °C 

Salinity Double 35 parts per 
thousand 

SoundSpeedProfile Start Integer 0 m 

Stop Integer 0 m 

Latitude 
This parameter is not 
used in the 
calculations. 

Double 0 deg N 

Longitude 
This parameter is not 
used in the 
calculations. 

Double 0 deg E 

SoundSpeedSamples List 
<SoundSpeedSample> 

  

Table 2.8  A sound speed profile contains one or more sound speed samples. 

 



 

 
    

 

Eksternnotat 23/02442 23  
 

 

Figure 2.9  C# code example: sound speed samples are added to the SoundSpeed class. 

 

2.1.10 Surface back scatter 

Surface back scatter is the fraction of energy that is scattered back towards the receiver when a 
ray hits the sea surface. A dataset representing surface back scattering coefficients is entered 
into LybinTCPServer, giving backscattering coefficients (in dB) for the rays hitting the sea 
surface. Based on the values, LybinTCPServer interpolates to create backscattering coefficients 
for the grazing angles. The back scattering coefficients are given as dB per square meter. 

Surface back scatter is an optional choice to calculate surface reverberation. LybinTCPServer 
will only use the surface back scatter values given if the UseMeasuredSurfaceBackScatter 
parameter in LybinModelData class is set to true. 



  

    

 

 24 Eksternnotat 23/02442 
 

A StartStopDoubleList containing range dependent surface back scatter values can be added to 
the SurfaceBackScatter class as listed in Table 2.3 and shown as a C# example in Figure 2.10. 

 

 

Figure 2.10  C# code example: surface back scatter samples are added to the 
SurfaceBackScatter class. 

 

2.1.11 Surface loss 

Surface loss is the fraction of energy that is lost after the sound has been reflected from the 
ocean surface, usually expressed in dB. The surface loss is also referred to as forward scattering 
in underwater acoustic terminology. A dataset representing surface loss is entered into 
LybinTCPServer, giving surface loss (in dB) for a set of grazing angles. Based on the values, 
LybinTCPServer interpolates to create loss values for the all grazing angles. 

The parameter UseMeasuredSurfaceLoss tells LybinTCPServer to use SurfaceLossTable instead 
of calculating the surface loss. UseMeasuredSurfaceLoss must be set to true if one wants to use 



 

 
    

 

Eksternnotat 23/02442 25  
 

predefined surface loss values in LybinTCPServer. UseMeasuredSurfaceLoss can be found in 
the LybinModelData class. 

A StartStopDoubleList as listed in Table 2.3 containing range dependent surface loss values can 
be added to the SurfaceLoss class as seen in the C# example in Figure 2.11. 

 

 

Figure 2.11 C# code example: surface loss samples are added to the SurfaceLoss class. 

 

2.1.12 Surface reflection angle 

Predefined surface reflection angles can be set as seen in the C# example in Figure 2.12. Each 
surface reflection is given as a StartStopSampleDouble as listed in Table 2.3. 

Surface reflection angle is an optional parameter that can be used to completely control the 
surface reflection of each ray in a simulation. If surface reflection angle is to be used, the 
parameter UseSurfaceReflectionAngles must be set to true. The parameter 
UseSurfaceReflectionAngles can be found in the LybinModelData class. 

 



  

    

 

 26 Eksternnotat 23/02442 
 

 

Figure 2.12  C# code example: a surface reflection angle StartStopSampleDouble is added to 
the SurfaceReflectionAngle class. 

 

2.1.13 Target strength 

It is possible to include tables of target strength values. Each table consists of target strength 
values as a function of aspect angle. The aspect angle can be from 0-359°. If only values less 
than 180° are given in the table, the target strength values are reflected symmetrically through 
the longitudinal axis of the target. Each target strength table has a valid frequency range with a 
given minimum and maximum frequency. 
 
The actual aspect angle to be used in the simulation is given in degrees by the parameter 
TargetAspectAngle. Whether LybinTCPServer shall find target strength from the table or use 
the parameter TargetStrength, is given by the parameter UseMeasuredTargeStrength. If 
UseMeasuredTargeStrength is true, the parameter TargetStrength will be updated with the target 
strength value that was actually used, found in the table based on frequency and target aspect 
angle. 
A StartStopDoubleList containing frequency dependent target strength values can be added to 
the TargetStrength class as seen in the C# example in Figure 2.13 and listed in Table 2.3. 



 

 
    

 

Eksternnotat 23/02442 27  
 

 

Figure 2.13  C# code example: two target strength samples are added to the TargetStrength 
class. 

  

2.1.14 Volume back scatter 

Volume back scatter is the fraction of energy scattered back towards the receiver from the sea 
volume. Scattering elements in the sea volume can be particles or organic life, like plankton, 
fish or sea mammals. The volume back scatterers are not distributed uniformly in the sea, and 
may vary considerably as a function of depth, range and time of the day. In LybinTCPServer, 
the volume back scatter is given as a profile of back scattering coefficients as a function of 
depth. Scatter values for the depths between data points are calculated using linear interpolation. 
The influence region of each profile is determined from the corresponding start range and stop 
range values. 

The volume back scatter profiles contain volume back scatter samples, as listed in Table 2.9. 

One or more volume back scatter profiles can be added using the function Add, as seen in the 
C# example in Figure 2.14. 

 



  

    

 

 28 Eksternnotat 23/02442 
 

Class Parameter Type Defaul
t value 

Unit 

Volume 
BackScatter 
Sample 

Depth Double 0 m 

Scatter Double 80 dB 

Volume 
BackScatter 
Profile 

Start Integer 0 m 

Stop Integer 0 m 

Latitude 

This parameter is 
optional and not used 
in the simulation. 

Double 0 deg N 

Longitude 

This parameter is 
optional and not used 
in the simulation. 

Double 0 deg E 

VolumeBackScatter 

Samples 

List<VolumeBackScatter 
Sample > 

  

Table 2.9 A VolumeBackScatterProfile contains one or more VolumeBackScatterSamples. 



 

 
    

 

Eksternnotat 23/02442 29  
 

 

Figure 2.14  C# code example: two volume back scatter samples are added to the 
VolumeBackScatter class. 

 

2.1.15 Wave height 

The WaveHeight consists of wave height StartStopSsampleDoubles containing start, stop and 
height values as listed in Table 2.3. All values are in meters. The samples can be added to the 
WaveHeight class using the Add function as seen in the C# example in Figure 2.15. 

Wave height is an optional parameter to wind speed. If wave height is to be used, the parameter 
UseWaveHeight found in the LybinModelData class must be set to true. 

 



  

    

 

 30 Eksternnotat 23/02442 
 

 

Figure 2.15  C# code example: a wave height StartStopSampleDouble is added to the 
WaveHeight class. 

 

2.1.16 Wind speed                                                                                                                                                                                                             

The wind speed consists of wind speed StartStopSampleDoubles containing start, stop and 
speed values as listed in Table 2.3.. Start and stop has the unit meters and the wind speed is 
measured in m/s. The default wind speed is 0 m/s. The samples can be added to the WindSpeed 
class as seen in the C# example in Figure 2.16. 

 

 

Figure 2.16  C# code example: a wind speed StartStopSamplDouble is added to the WindSpeed 
class. 

  

2.2 Platform 

The platform class contains all the relevant information about the platform holding the sonar. 
The platform is most often a ship but can also be other things like a helicopter or a buoy. The 
parameters in the platform class are listed in Table 2.10.  



 

 
    

 

Eksternnotat 23/02442 31  
 

 

Parameter Type Default value Unit 

Latitude 
Actual latitude of platform. 

Double 0 deg 

ShipCourse 
Platform course relative to north. 

Double 0 deg 

SelfNoise 
Noise from the platform that holds the sonar. 

Double 50 dB 

SelfNoisePassive 
Noise from the platform that holds the sonar. To be 
used in calculations for passive sonars. 

Double 50 dB 

Sensor 
All the sensor data to be used in the calculation. 

Sensor   

Speed 
Speed of the platform that holds the sonar. 

Double 10 Knots 

Table 2.10 Parameters in the platform class. 

 

2.2.1 Sensor 

The sensor class contains all the relevant information about the sonar. The parameters in the 
sensor class are listed in Table 2.11.  

 

Parameter Type Default value Unit 

BeamPatternReceiver 
BeamPattern of the receiver. 
 
If BeamPattern is to be used, the parameter 
UseMeasuredBeamPattern must be set to true. 

 

BeamPattern   



  

    

 

 32 Eksternnotat 23/02442 
 

Parameter Type Default value Unit 

BeamPatternSender 
BeamPattern of the sender. 
 
If BeamPattern is to be used, the parameter 
UseMeasuredBeamPattern must be set to true. 

BeamPattern   

BeamWidthHorizontal 
Horisontal beam width of the sonar. 

If BeamWidthHorizontal is to be used, the parameter 
UseMeasuredHorizontalBeamWidth must be set to true. 

Double 20 Degrees 

BeamWidthReceiver 
Vertical beam width of the receiving part of the sonar. 

Double 15 Degrees 

BeamWidthTransmitter  
Vertical beam width of the transmitting part of the 
sonar. 

Double 15 Degrees 

CalibrationFactor 
The parameter is on the interface, but are not yet 
implemented or used in the calculations. 

Double 0 dB 

Depth 
Depth of the sonar.  

Double 5 Meters 

DetectionThreshold 
The strength of the signal relative to the masking level 
necessary to see an object with the sonar. 

Double 10 dB 

DirectivityIndex 
The sonars ability to suppress isotropic noise relative 
to the response in the steering direction. 

Double 20 dB 

Frequency 
Centre frequency of the sonar. 

Double 7000 Hz 

IntegrationTimePassive 
Integration time for the passive sonar. 

Double 1 Seconds 



 

 
    

 

Eksternnotat 23/02442 33  
 

Parameter Type Default value Unit 

PassiveBandWidth 
Band width of the passive sonar. 

Double 100 Hz 

PassiveFrequency 
Centre frequency of the passive sonar. 

Double 800 Hz 

PassiveProcessinGain 
Gain of the passive sonar. 

Double 0 dB 

Pulse 
All the pulse data to be used in the calculation. 

Pulse   

SideLobeReceiver 
The suppression of the highest side lobe relative to the 
centre of the beam for the receiving sonar. 

Double 13 dB 

SideLobeTransmitter 
The suppression of the highest side lobe relative to the 
centre of the beam for the transmitting sonar. 

Double 13 dB 

SonarTypePassive 
Tells whether the passive sonar is narrow- or  
broadband.. 

0: Narrowband 
1: Broadband 

 

Enumerator 0  

SourceLevel 
Source level of the sonar. 

Double 221 dB 

SourceLevelPassive 
Source level of the possible target in the calculation for 
passive sonar. 

Double 100 dB 

SystemLoss 
System loss due to special loss mechanisms in the sea 
or sonar system, not otherwise accounted for. 

Double 0 dB 

TiltReceiver  
Tilt of the receiving part of the sonar. 

Double 4 Degrees 



  

    

 

 34 Eksternnotat 23/02442 
 

Parameter Type Default value Unit 

TiltTransmitter  
Tilt of the transmitting part of the sonar. 

Double 4 Degrees 

Table 2.11 Parameters in the sensor class. 

 

2.2.1.1 BeamPattern 

The BeamPattern measurement is an optional choice where one uses values instead of letting 
LybinTCPServer eastimate the beam pattern. The beam pattern can consist of any number of 
measurements with corresponding angles. To find values for the ranges not given as 
measurements, LybinTCPServer uses linear interpolation. 

BeamPattern is an optional parameter that can be used to completely control the start intensity 
of each ray in a simulation. If BeamPattern is to be used, the parameter 
UseMeasuredBeamPattern must be set to true. The parameter UseMeasuredBeamPattern can be 
found in the LybinModelData class 

Predefined beam patterns can be set as seen in the C# example in Figure 2.17. The beam pattern 
is given as BeamPatternSamples as listed in Table 2.12. 

 

 

Class Parameter Type Default value Unit 

BeamPatternSample Angle Double 0 Degrees 

Value Double 0 dB 

Table 2.12 The BeamPatternSample contains angle and value. 

 



 

 
    

 

Eksternnotat 23/02442 35  
 

 

Figure 2.17  C# code example: two BeamPatternSamples are added to BeamPatternReceiver 
and BeamPatternSender respectively. 

 

 

2.2.1.2 Pulse 

All the information about the pulse is gathered in the pulse class. All the access parameters in 
the pulse class are listed in Table 2.13 below. 

 

Parameter Type Default value Unit 

EnvelopeFunc 
Envelope function of the signal. Currently, 
only “Hann” is available.  

String Hann  

FilterBandWidth 
Filter bandwidth of the pulse. 

 

Double 100 Hz 

FMBandWidth 
Frequency modulation bandwidth of the 
pulse. Applicable for FM signals only. 

Double 100 Hz 



  

    

 

 36 Eksternnotat 23/02442 
 

Parameter Type Default value Unit 

Form 
Pulse type: 

FM: Frequency modulated 
CW: Continuous wave 

 

String FM  

Length 
Pulse length. 

Double 60 Milliseconds 

Table 2.13 Parameters in the pulse class.  

3 Initiate calculation 

The CalculateLybinModel function initiates a new instance of LybinTCPServer using the 
modelIndex returned from the function CreateLybinModel that is used to set the model data in 
the simulation. Both these functions are described in Table 3.1. 

 

Function Type 

CalculateLybinModel(int modelIndex) 
Start the calculation. 

LybinResults 

CreateLybinModel(LybinModelDAta lybinModelData) 
Send the model data to LybinTCPServer. 

Integer 

Table 3.1 Functions for initiation of calculation. 



 

 
    

 

Eksternnotat 23/02442 37  
 

4 Calculation results 

4.1 Functions returning calculation results 

The calculation results can be accessed through the functions listed in Table 4.1.  

 

Function Type Unit 

getCalculatedAmbientNoise(int modelIndex) 
The ambient noise used in the calculations. 

Double dB 

getBottomReverberation(int modelIndex) 
Calculated bottom reverberation values. 

List<double> dB 

getEchoLevel(int modelIndex) 
Not yet implemented inside LybinCore. This 
object will not have any data. 

List<List<double>> dB 

getImpulseResponse(int modelIndex) 
Get calculated impulse response. 

List<List<ImpulseResponsePoint>>  

getInterpolatedBottomProfile(int 
modelIndex) 
Get the interpolated bottom profile. 

List<List<double>> m 

GetInterpolatedSoundSpeed(int modelIndex) 
Get the smoothed and interpolated sound speed 
matrix. 

List<List<double>> m/s 

getMaskingLevel(int modelIndex) 
Calculated masking level (total reverberation + 
noise after processing).  

List<double> dB 

getNoiseAfterProcessing(int modelIndex) 
Calculated noise after processing. 

Double  dB 

getProbabilityOfDetection(int modelIndex) 
Calculated probability of detection. 

 

List<List<double>> % 



  

    

 

 38 Eksternnotat 23/02442 
 

Function Type Unit 

getRayTrace(int modelIndex) 
Not implemented inside LybinCore. This object 
will not have any data. 

List<List<double>>  

getLybinModel(int modelIndex) 
The model data used during the calculation. 

LybinModelData  

getSignalExcess(int modelIndex) 
Calculated signal excess. 

List<List<double>> dB 

getSurfaceReverberation(int modelIndex) 
Calculated surface reverberation. 

List<double> dB 

getTotalReverberation(int modelIndex) 
Calculated total reverberation. 

List<double> dB 

getTransmissionLossReceiver(int 
modelIndex) 
Calculated transmission loss from the target to 
the receiver. 

List<List<double>> dB 

getTransmissionLossTransmitter(int 
modelIndex) 
Calculated transmission loss from the 
transmitter to the target. 

List<List<double>> dB 

getTravelTime(int modelIndex) 
Returns the travel time paths calculated. 

List<List<TravelTimePoint>>  

getVisualRayTrace(int modelIndex) 
Returns the visual ray trace paths calculated. 

List<List<VisualRayTracePoint>>  

getVolumeReverberation(int modelIndex) 
Calculated volume reverberation. 

List<double> dB 

Table 4.1 Functions returning calculation results. 

 



 

 
    

 

Eksternnotat 23/02442 39  
 

4.2 Impulseresponse point 

All the parameters in the ImpulseResponsePoint class are listed in Table 4.2. 
 

Parameter Type Unit 

LongestTravelTime  
Longest travel time. 

Double s 

MaxInitialAngle 
Maximum initial ray angle. 

Double deg 

MeanInitialAngle 
Mean initial ray angle. 

Double deg 

MinInitialAngle 
Minimum initial ray angle. 

Double deg 

My 
Mean arrival time – first arrival time. 

Double s 

Phase 
Phase identifier. 

Integer  

RayFamilyCode 
Ray family identifier. The ray family identifier represents the 
ray family’s travel history, using the letter codes: 
s Surface reflection 
b Bottom reflection 
u Upper turning point 
l Lower turning point 

 

String  

S 
Intensity loss. 

Double dB 

ShortestTravelTime 
Shortest travel time. 

Double s 

Sigma 
Arrival time standard deviation. 

 

Double s 



  

    

 

 40 Eksternnotat 23/02442 
 

StandardDeviationInitialAngle 
Standard deviation of initial ray angle. 

Double deg 

Table 4.2 Parameters in the ImpulseResponsePoint class. 

 
 

4.3 Traveltime point 

All the parameters in the TravelTimePoint class are listed in Table 4.3. 
 

Parameter Type Unit 

InitialAngle 
Initial ray angle. 

Double deg 

Range 
Range of travel time point. 

Double m 

Depth 
Depth of travel time point. 

Double m 

TravelTime 
Travel time from start to point. 

Double s 

Table 4.3 Parameters in the TravelTimePoint class. 

 

4.4 Visual raytrace point 

All the parameters in the VisualRayTracePoint class are listed in Table 4.4. 
 

Parameter Type Unit 

InitialAngle 
Initial ray angle. 

Double deg 

Range 
Range of travel time point. 

Double m 



 

 
    

 

Eksternnotat 23/02442 41  
 

Depth 
Depth of travel time point. 

Double m 

Table 4.4 Parameters in the VisualRayTracePoint class. 

  



  

    

 

 42 Eksternnotat 23/02442 
 

A Code examples 

A.1 C# code example 

 



 

 
    

 

Eksternnotat 23/02442 43  
 

 



  

    

 

 44 Eksternnotat 23/02442 
 

 



 

 
    

 

Eksternnotat 23/02442 45  
 

 



  

    

 

 46 Eksternnotat 23/02442 
 

 



 

 
    

 

Eksternnotat 23/02442 47  
 

 



  

    

 

 48 Eksternnotat 23/02442 
 

 



 

 
    

 

Eksternnotat 23/02442 49  
 

 



  

    

 

 50 Eksternnotat 23/02442 
  



 

 
    

 

Eksternnotat 23/02442 51  
 

A.2 Python code example 

 



  

    

 

 52 Eksternnotat 23/02442 
 

 



 

 
    

 

Eksternnotat 23/02442 53  
 

 



  

    

 

 54 Eksternnotat 23/02442 
 

 



 

 
    

 

Eksternnotat 23/02442 55  
 

 

 



  

    

 

 56 Eksternnotat 23/02442 
 

 

 
 
  



 

 
    

 

Eksternnotat 23/02442 57  
 

References 

1. E. Dombestein, and T. Jenserud, “Improving Underwater Surveillance: LYBIN Sonar 
performance prediction”, Proceedings of MAST 2010 – Rome, 2010. 

2. K.T. Hjelmervik, S. Mjølsnes, E. Dombestein, T. Såstad and J. Wegge, “The acoustic 
raytrace model Lybin – Descriptions and applications”, UDT 2008, Glasgow, United 
Kingdom, 2008 

3. E. Dombestein, "LYBIN 6.2 2200 - user manual", FFI Rapport 17/00412, 2017. 

4. E. Dombestein, S. Mjølsnes, and F. Hermansen, "Visualization of sonar performance 
within environmental information," in Oceans 2013, Bergen, 2013. 

5. E. Dombestein and F. Hermansen, "Integration of Sonar Performance Modelling in 
Sonar Operator Training, Mission Planning and High Risk Decisions," presented at the 
MSG-126, Washington DC, USA, 2014. 

6. E. Dombestein, "LybinCom 6.2 - description of the binary interface," FFI-Rapport 
2014/00511, 2014. 

7. Microsoft Component Object Model (COM), https://learn.microsoft.com/en-
us/windows/win32/com/component-object-model--com--portal 

8. The Apache Thrift software framework, https://thrift.apache.org/ 

 

 

 

 

 

 

  

https://learn.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
https://learn.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
https://thrift.apache.org/


  

    

 

 58 Eksternnotat 23/02442 
 

 

 
Om FFI 
Forsvarets forskningsinstitutt ble etablert 11. april 1946. Instituttet er organisert som et 
forvaltningsorgan. Med særskilte fullmakter underlagt Forsvarsdepartementet. 
 
FFIs formål 
Forsvarets forskningsinstitutt er Forsvarets sentrale forskningsinstitusjon og har som formål å 
drive forskning og utvikling for Forsvarets behov. Videre er FFI rådgiver overfor Forsvarets 
strategiske ledelse. Spesielt skal instituttet følge opp trekk ved vitenskapelig og militærteknisk 
utvikling som kan påvirke forutsetningene for sikkerhetspolitikken eller forsvarsplanleggingen. 
 
FFIs visjon 
FFI gjør kunnskap og ideer til et effektivt forsvar. 
 
FFIs verdier 
Skapende, drivende, vidsynt og ansvarlig. 

 

 

 

 

 


	Contents
	1 Introduction
	2 LYBIN model data
	2.1 Environment
	2.1.1 Bottom back scatter
	2.1.2 Bottom loss
	2.1.3 Bottom profile
	2.1.4 Bottom type
	2.1.5 Lamberts coefficient
	2.1.6 Ocean
	2.1.7 Rayleigh bottom loss
	2.1.8 Reverberation and noise measurements
	2.1.9 Sound speed
	2.1.10 Surface back scatter
	2.1.11 Surface loss
	2.1.12 Surface reflection angle
	2.1.13 Target strength
	2.1.14 Volume back scatter
	2.1.15 Wave height
	2.1.16 Wind speed

	2.2 Platform
	2.2.1 Sensor
	2.2.1.1 BeamPattern
	2.2.1.2 Pulse



	3 Initiate calculation
	4 Calculation results
	4.1 Functions returning calculation results
	4.2 Impulseresponse point
	4.3 Traveltime point
	4.4 Visual raytrace point
	A Code examples
	A.1 C# code example
	A.2 Python code example



	References

