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Abstract
The task of determining the origin of a drifting object after it has been located is highly complex due to  
the uncertainties in drift properties and environmental forcing (wind, waves and surface currents). Usually 
the origin is inferred by running a trajectory model (stochastic or deterministic) in reverse. However, this  
approach  has  some  severe  drawbacks,  most  notably  the  fact  that  many  drifting  objects  go  through 
nonlinear state changes underway (e.g., evaporating oil or a capsizing lifeboat). This makes it difficult to 
naively construct a reverse-time trajectory model which realistically predicts the earliest possible time the 
object may have started drifting. We propose instead a different approach where the original (forward) 
trajectory model is kept unaltered while an iterative seeding and selection process allows us to retain only  
those particles that end up within a certain time-space radius of the observation. An iterative refinement  
process named BAKTRAK is employed where those trajectories that  do not  make it  to the goal  are  
rejected and new trajectories are spawned from successful trajectories. This allows the model to be run in  
the forward direction to determine the point of origin of a drifting object. The method is demonstrated 
using the Leeway stochastic trajectory model for drifting objects due to its relative simplicity and the 
practical importance of being able to identify the origin of drifting objects. However, the methodology is 
general  and  even more  applicable  to  oil  drift  trajectories,  drifting ships  and hazardous material  that  
exhibit non-linear state changes such as evaporation, chemical weathering, capsizing or swamping. The  
backtracking method is tested against the drift trajectory of a life raft and is shown to predict closely the  
initial release position of the raft and its subsequent trajectory.

1 Introduction
Modeling the fate and trajectory of drifting objects or the drift and weathering of hydrocarbons on the 
ocean surface is a demanding task that puts every part of an operational model suite to the test as it  
requires  high-quality  wind  fields,  current  fields  and possibly  also  wave  fields  (Hackett  et  al,  2006, 
Davidson  et al, 2009). Objects and hydrocarbons have very specific drift and weathering properties of 
which little may be known, and in real situations even the last known position (LKP) may be uncertain.  
The errors in wind, wave and current fields will further add to the uncertainties of the trajectory forecasts.
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The task of backtracking from a known position to the time and position to where the object started 
drifting is an even more challenging task. In principle a trajectory model may be run backwards if the 
horizontal forcing fields are sufficiently non-divergent and if the properties of the object do not undergo 
non-linear state changes such as swamping, capsizing, sinking, or drowning in the case of drifting objects, 
or  weathering,  evaporation  and  vertical  mixing  in  the  case  of  hydrocarbons.  This  straight  forward 
implementation of backtracking is for example employed by Ambjörn (2008) in an operational oil drift  
backtracking service for the Baltic Sea. The condition of nearly divergence-free flow is usually met in 
large-scale geophysical flows, but nonlinear and step-like state changes in the properties of the advected  
matter (be it oil, algae or solid objects) are impossible to handle simply by reversing the direction of the  
wind field and the current field.

There exists a large number of forward oceanic trajectory models which model passive tracers based on 
single-model  current  fields  or  weighted  combinations  of  heterogeneous  models  (Rixen and Ferreira-
Coelho, 2007; Rixen et al, 2008; Vandenbulcke et al, 2009). Trajectory models also exist for a range of 
more complex drifting entities, such as oil (Hackett et al, 2006; Hackett et al, 2008) and search and rescue 
objects (Breivik and Allen, 2008; Davidson  et al,  2009). However, unlike for the atmosphere, where 
backtracking  pollution  over  large  distances  in  the  planetary  boundary  layer  using  both  forward  and 
backward (adjoint) trajectory models is an established scientific discipline (Rao et al, 2007; Stohl 1996; 
Stohl 2002), tracking drifting objects and substances to their origin in the ocean is still a fledgling field.  
Reverse-time models of passive tracers exist (see e.g. Callies et al, 2011) and have been used for tracking 
nearshore sources of hazardous materials to their origins (Havens  et al, 2009). However, backtracking 
more complex objects or substances with nonlinear properties in reverse time requires an adjoint, and this 
may not be possible to establish. Especially when dealing with hydrocarbons with nonlinear weathering  
processes it becomes crucial to assess whether a particular spill or object may indeed have come from a  
suspected release location and release time.

Here we explore an new approach to traditional reverse-time backtracking where a stochastic oceanic  
trajectory  model  is  initialized  and run  in  the  forward  direction,  whereupon the  individual  ensemble 
members (hereafter referred to as particles) that come within an acceptable time-space distance of the  
observation  are  used  to  initialize  a  new  forward  integration.  Unsuccessful  particle  trajectories  are  
discarded. This procedure is then iterated until an acceptable number of trajectories end up within the 
target area (defined as a time-space radius around the observations location) is reached and a time-space  
distribution of possible initial locations for the drifting object has emerged.

The method is conceptually similar to sequential importance resampling (Doucet et al, 2001), a statistical 
filtering method which has been proposed as a data assimilation technique in geophysical systems (see  
Van  Leeuwen,  2009,  and  references  therein),  but  has  so  far  not  been  tested  on  oceanic  trajectory  
integrations. However, there are also important differences between sequential importance resampling  
and our iterative backtracking procedure. Where particle filters in geophysical systems typically deal with  
modest ensembles of large-dimensional numerical models and a large number of observations, trajectory 
models have a small-dimensional state-space (the two-dimensional  position vector of the particles),  a 
relatively large ensemble, and usually just one observation (the final location of the object, known here as 
the target area).

The forward iterative method has not been tried before on oceanic trajectory models. The objective of this  
work is to outline the procedure and to test it  on a weakly nonlinear stochastic trajectory model,  the  
Leeway model (Breivik and Allen, 2008), an ensemble trajectory model for estimating search areas for  
drifting  objects.  The  choice  of  trajectory  model  is  motivated  by  the  immediate  societal  value  of 
backtracking objects to their origin, but also by the relative simplicity of the trajectory model. Though the 
Leeway model is only weakly nonlinear, it is a useful test bed for the method because we have field data 
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of  a  drifting  object  under  controlled  conditions  to  compare  with.  It  is  important  to  note  that  the 
methodology is equally applicable to more complex trajectory models with for example hydrocarbon 
chemistry and weathering, but exactly because of the simplicity of the Leeway model we argue that it is  
easier to gauge the efficacy of the iterative procedure here than on more sophisticated trajectory models.

This article is organized as follows. Section 2 describes the iterative method and the forward trajectory 
model and its forcing fields (surface current and wind). Then the results from a set of integrations are  
described in Section 3 before a discussion of the convergence and the potential pitfalls of the method are  
discussed in Section 4. Finally, Section 5 concludes and points the way forward to other implementations 
of the method.

2 The BAKTRAK method
The description of the method divides naturally into two parts; (i) the forward trajectory model (Section 
2.1) and (ii) the iterative refinement of the initial conditions that eventually lead to a set of trajectories  
that end up at the right time in the target area (Section 2.2). We refer to the procedure as BAKTRAK, but  
the actual forward model can be arbitrarily chosen, as can the forcing fields employed.

2.1 Leeway, an ensemble trajectory model for drifting objects
The Leeway model is a stochastic ensemble trajectory model for drifting objects. The model has been  
described in detail by Breivik and Allen (2008). Here we give only a brief recount of its main features.  
We follow Allen and Plourde (1999) and Breivik et al (2011) and define the leeway as the motion of the 
object induced by wind (10 m reference height) and waves relative to the ambient current (between 0.3  
and 1.0 m depth). The model computes the trajectories of a large number of particles with stochastic  
perturbations that move under the influence of wind and current. The leeway of a particular object is  
empirically estimated, usually from open ocean field trials (see Breivik et al, 2011).

2.1.1 Modeling the leeway (windage) of a drifting object
The leeway vector is commonly decomposed into a downwind and crosswind component. Leeway field  
trials are required to determine the relation between the wind speed and the leeway speed and divergence  
angle, L and Lα, or more robustly, the downwind (DWL) and crosswind (CWL) leeway components, Ld 

and  Lc. The objects are assumed to respond linearly to changes in the wind speed (Breivik and Allen,  
2008). Objects on the sea surface will drift at an angle relative to the downwind vector given by the ratio  
of CWL to DWL (the leeway divergence angle), either to the left or to the right of the downwind vector.  
Whether an object has oriented itself to the left or to the right is usually unknown and both eventualities 
must  be  accounted  for  by  the  ensemble.  This  often  leads  to  a  search  area  consisting  of  two  high-
probability areas. However, objects may also jibe, i.e., abruptly shift from a left to a right tack. The model 
assumes a 4% per hour probability that a given particle shifts orientation relative to the downwind vector. 
This makes the model slightly nonlinear and will over time (in the forward sense) “fill in” areas between  
the two high-probability parts of the search area.

The empirical relation between leeway and wind speed is discussed in more detail by Allen and Plourde 
(1999),  Allen  (2005),  Breivik  and Allen  (2008)  and Breivik  et  al (2011).  In  its  current  operational 
manifestation, some 63 classes of drifting objects described by Allen and Plourde (1999) plus object  
classes more recently explored (see Allen  et al, 2010; Breivik  et al, 2011 and Turner  et al, 2009) are 
available.

2.1.2 Ensemble of perturbed trajectories
Small  perturbations are added to the wind field and the leeway parameters of individual  particles to 
account  for  the  uncertainties  in  the  empirical  estimates  of  the  leeway  of  the  drifting  object  under 
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consideration  (Breivik  et  al,  2011).  The  perturbations  of  the  wind vectors  are  time-dependent  (new 
perturbations are added to each time step) to simulate high-frequency fluctuations in the wind field, while 
the  perturbations  to  the  leeway  parameters  are  constant  in  time  to  simulate  the  different  loading  
conditions of an object class. The trajectories are computed using a regular second order Runge-Kutta 
method with wind field perturbations added to the first (trial) step of the Runge-Kutta integration.

2.1.3 Coastlines and stranding
The current implementation of the Leeway model utilizes the Global, Selfconsistent, Hierarchical, High-
resolution Shoreline (GSHHS) coastline contour (Wessel and Smith, 1996). The use of a high-resolution 
coastline contour allows accurate determination of stranding of particles. However, the ocean model grid  
has a resolution of 4 km in our operational implemenation, and to make the model capable of handling 
near-shore  conditions,  current  vectors  are  extrapolated  toward  the  coastline.  Particles  “stick”  to  the 
shoreline and can not detach themselves once stranded.

2.1.4 Model domain
The model has been set up to cover the North Sea, the Norwegian Sea and the Barents Sea with 10-m 
wind vectors from a 12 km resolution numerical weather prediction model, the High-resolution limited 
area model (HIRLAM, see Undén et al, 2002) and surface current fields from a 4 km resolution ocean 
model (Engedahl, 1995; 2001), but the model domain is only restricted by the availability of wind and  
current fields (see Figure 1). The ocean model is run twice daily out to 60 hours. A seven-day rolling  
archive of two-hourly temporal resolution is  continually updated. The model ingests GRIB version 1 
fields in polar stereographic, rotated spherical  and plate carrée (longitude-latitude) projections.  In the  
standard forward setup (integration from a last known position), the model releases O(500) particles in an 
area  and over  a  period  of  time  believed  to  enclose  the  incident  (where  the  object  started  drifting).  
However, in the iterative backtracking model a much larger amount of particles is required as only a 
small fraction can be expected to reach the target area.

2.2 Iterative backtracking through seeding and selective breeding
The  iterative  backtracking  procedure  encapsulates  the  stochastic  trajectory  model  described  in  the 
previous section. The model is run forward, but by discarding trajectories that do not end up near the 
target area an iterative refinement of the initial conditions is achieved. The successful trajectories are used  
to seed the next forward integration, but small perturbations are added to the initial time and location of  
the new particles. In general,  it may not be known how far back to go, but often it is known. We impose a 
backwards time-limit of 7 days based on the availability of our rolling archive of current and wind. In 
cases where the time of the incident is known (if for example a distress call has been picked up) we can 
also start the integration at a given time and release all particles at that particular instant.

2.2.1 Initial seeding
The stochastic trajectory model is initialized with a fixed number,  O(5000), of initial particle positions 
drawn from a two dimensional  circular  normal (Gaussian in both longitude and latitude) distribution  
based on a first guess radius. The radius is estimated from a coarse upper bound on the speed of the 
drifting object, assumed here to be 2 m/s. The initial time of release of the particles is drawn from a  
uniform distribution. The ensemble of particles is thus spread over a range of initial positions and start  
times ranging from the earliest time that the object is assumed to have started drifting up until the time of  
observation in the target area. The trajectory model is now run forward from the earliest time that the 
object  may have started drifting while particles are continually seeded in a smaller  and smaller  disc  
centered on the target area. 
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2.2.2 Selection of parent (breeder) particles by relative distance metric
In general,  particles released near the target area in time and space will  have a higher probability of  
reaching the target than “older” particles starting further away. Because both young and old particles  
should be given an equal chance of being selected for feedback, older particles are retained if they fall  
within a greater radius of the observation location than “younger” particles. Particles are thus considered  
for selection based on a metric denoted the relative distance,

0

1

D

D=β    (1),

where D0 is the particle’s initial distance to the target area and D1 its distance at the end of the integration. 
Another argument for using relative distance as a selection criterion for the next generation of particles is 
that the computational cost of requiring a given number of particles to hit an absolute target area increases 
quickly with increasing distance from target. By allowing a larger target area for particles starting further 
away the computational cost can be maintained at tolerable levels. 

At the end of the first iteration, no particles may yet have arrived inside the target area radius. But the 
backtrack feedback algorithm still needs some initial particles for seeding the next iteration. Also, when  
in later iterations more particles successfully reach the target area, not all are needed in the feedback loop 
as the seeder generates replicas of successful particles for the next iteration. Therefore, the Np (default set 
to 64) nearest particles are used in the feedback loop even though they initially may arrive far outside TA.

Particles which arrive further away from TA may also be used for the seeding of the next iteration in  
cases where few particles get close to TA, but their starting positions used for the resampling are adjusted  
for original distance offset from TA to allow for faster convergence. This procedure is also self-correcting  
in that it will also increase the initial seed distance from target area in cases where the assumed upper  
bound on the speed of the drifting object has been set too low.

Note that the spatial resolution of the forcing fields (in our case 4 km resolution surface current and 12 
km resolution 10-m wind vector fields) in itself does not affect the convergence of the method. In fact, a 
higher  resolution current  vector  field will  normally disperse  nearby particles  more efficiently  due to  
small-scale eddies. The procedure is more lenient on particles that have drifted over large distances as it  
considers the particle’s relative distance, hence even in a complex current field some of these particles  
will be used to seed the next iteration.

2.2.3 Seeding the next iteration
The  Np “parent”  particles  that  have been deemed successful  are  used as  the  starting point  of  a  new 
forward integration. The Nc “children” particles seeded from each selected parent particle of the previous 
run are spread out according to a radial Gaussian distribution about their parent particle according to the 
initial distance of their parent particle to TA,

0sDr =    (2),

where s is a dimensionless spread factor (default 0.1) and r is the seed radius (equal to twice the radial 
standard deviation,  σ=r/2) about the parent particle. The spread factor ensures that parent particles that 
started far away (large D0) from TA are replicated by a wide cloud of “offspring” particles while parent 
particles that originated near TA are replicated by a tight cloud. A similar spread in initial time is also  
implemented.  The  seeder  thus  regenerates  an  ensemble  of  size  NpNc ~  O(5000)  particles  from 
perturbations to the initial time and location of these parent particles and the next integration is started.

2.2.4 Halting condition
The iteration stops when the number of successful particles no longer continues to rise and/or when a 
sufficient number of particles,  O(100), have come within a critical time-space radius of TA. What is 
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considered a “sufficient” number of particles is somewhat subjective, but the procedure is flexible and  
easily altered. The Leeway model is not idempotent, i.e., rerunning the model ensemble never produces 
the exact same solution due to stochastic perturbations both to the initial locations and the wind field.  
This means that no amount of further refinement of the initial conditions can increase the number of 
particles that will reach the target area. Hence the only way to increase the number of successful particles 
is to boost the number of initial particles, N. The iterative algorithm is summarized in Table 1.

3 Life raft drift experiment
A field campaign was conducted with the Norwegian Coast Guard vessel CGV Ålesund outside the island 
of Fedje on the west coast of Norway from 21-30 March 2011 (around 60º40’N, 004º20’E, see Figure 2). 
The objective of the cruise was to establish the drift properties of search and rescue objects, among them 
a Viking 12 person life raft. The raft was loaded to typical conditions with sandbags (approximately 400 
kg) and equipped with a tracking transponder, a Global Position System (GPS) data logger and a 2 m high  
WeatherPak wind anemometer mast. The raft was deployed at 2011-03-22T18:20 UTC and picked up 
after approximately 14 hours at 2011-03-23T08:30 UTC. The wind was south-westerly and westerly 5-15 
m/s and the current was mostly northbound 0.3-0.8 m/s (see Figure 3). The area is monitored with high 
frequency (HF) radars (see Breivik et al, 2011, Breivik and Sætra, 2001 and Essen et al, 2003). There was 
reasonable  agreement  between the ocean model  and the HF current  fields  during the campaign (see 
Figures 2 and 3).

We have compared the BAKTRAK trajectory ensemble with the true trajectory of the Viking life raft.  
The leeway properties of the raft were assumed similar to that of the shallow ballast rafts studied by Allen 
and Plourde (1999). We assumed mean values of a canopied life raft (see Table 2).

Figure 4 illustrates the initial  seeding described in Section 2.2.1. The model is  seeded with  O(5000) 
particles (the default) over a period of 16 hours from 2011-03-22T16 UTC until 07 UTC the following 
day (an hour before pickup of the raft). The seeding is Gaussian in both longitude and latitude, as shown 
in panels (b) and (c). A large part of the particle trajectories end on the shoreline (black dots in Figure 4,  
panel (a) are particles that were seeded over land). Unsuccessful particle trajectories are shown in gray in  
Figure 4, panel (d). The filtering procedure itself does not distinguish between stranded particles and  
particles still drifting but simply selects successful particles based on their proximity in time and space to 
the target area.

The first iteration assumes that the object has traveled at a maximum radial speed toward TA of 2 m/s.  
The particles are thus spread according to their initial release time (the further back in time the wider the  
radius) and spreads particles according to a two-dimensional Gaussian distribution. Panels (b) and (c) of  
Figure 4 show the particle distributions in latitude and longitude at a given time. Panel (d) shows the 
successful trajectories in red against the backdrop of all trajectories (gray). Those trajectories that came 
nearest TA in terms of the relative distance of Eq (1) were selected for breeding the next generation.

The  next  stage  is  to  select  at  most  Np from  those  successful  trajectories  and  replicate  each  as  Nc 

“children”. The “parent” initial locations and release times with small perturbations provide the starting 
point for the particles of the next iteration. This procedure, as described above, goes on until a satisfactory  
number of trajectories reach their destination. Panel (a) of Figure 5 shows the new initial distribution 
based on the successful particles of the first iteration, two hours after the first particles were released.  
Panel (b) shows the trajectories of the total ensemble in gray and the trajectories selected for the final  
iteration in red. It is evident from panels (a) and (b) that after the initial integration quite a range of initial  
locations vie for selection.  As the iterations continue,  the initial  locations near the final  position are  
weeded out in favor for the earlier initial locations, until in panel (c) only those locations surrounding the 

Dette er en postprint-versjon / This is a postprint version. 
DOI til publisert versjon / DOI to published version:  10.1007/s10236-011-0496-2 



time and position of the true release position have won out. Note also that the spread factor s in Eq (2) is 
used to spread the “children” around their parent particle. The further away from TA the parent particle is  
(large D0), the larger the spread. This effect is apparent in panel (a) of Figure 5, where patchy clouds of  
offspring particles of various sizes according to their distance  D0 to TA are present. As the iterations 
progress, this field of initial particle locations is refined until the increase in successful particles slows and 
starts to vacillate about a convergence limit. Panel (c) of Figure 5 shows the initial field of particles at the  
start  of iteration 7 together with the observed trajectory of the life raft.  Now the ensemble of initial  
locations has converged toward a much tighter cloud surrounding the drop location of the raft. Panel (d) 
shows the trajectories of the total ensemble in gray and the trajectories selected for the final iteration in  
red.

Figure  6 shows iteration  no 8,  chosen as  the  final  even  though nine  iterations  were  performed (the  
integration with the most successful particles is selected as the final one). The convex hull of the initial  
locations at the time of release of the life raft is shown in blue in the south-western part of Figure 6. The 
release position is enclosed by the convex hull (note that a few particles were released before or after the 
time  of  the  release  of  the  life  raft  and  their  initial  location  falls  outside  the  convex hull).  As  time  
progresses, the real trajectory enters the center of the ensemble (shown as red trajectories), until the final  
pickup location is found in the center of the convex hull (blue) of ensemble.

4 Convergence of the BAKTRAK procedure
A series of BAKTRAK integrations have been carried out to test the convergence under a realistic range  
of  coastal  and offshore  weather and current  conditions.  Their  convergence is  listed in  Figure 7.  We  
measure convergence in terms of “successful” particles of the final iteration. The success or failure of a  
particle is decided by its relative distance as defined by Eq (1), i.e., a particle from afar can end up further  
from the target area than a particle that started closer and still be selected for breeding. This makes sense  
when iterating as it allows particles further afield to compete with those nearer in space and time to the  
target area. It  also offers a convenient objective measure of convergence when we compare different  
integrations with different environmental conditions and different integration times. However, it is not  
strictly necessary to adhere to the concept of relative distance when we present the final integration, as we 
are really interested in the  absolute distance to the target area when we present the final backtracked 
ensemble. However, the question of what is considered close enough crops up when using an absolute  
measure of distance to the target area. As an example, consider Figure 8 where a threshold distance of  
3000 m to target area has been subjectively chosen. This is slightly larger than the radius of the convex  
hull in Figure 6 (2.3 km), but the ensemble of successful particles is more than doubled to 542. Because  
of  the  level  of  subjectivity  involved  in  choosing  an  acceptable  target  area  radius,  we  stick  to  the 
automated convergence estimated from the relative distance estimates, noting that these convergence rates  
are lower bounds on the convergence in real world applications where the user could subjectively select 
the target area radius.

The model was tested on three nearshore cases, named Sheringham Shoal, Shetland and F/V Idarson (a 
real case with a fishing vessel where nothing was known about its distress location). The locations of all  
test cases are marked in Figure 1. All three cases showed acceptable convergence rates in the presence of  
blocking by land, similar to what was seen for the life raft study (although with onshore winds the effect  
is less pronounced). The filtering procedure does not distinguish between stranded particles and particles 
still drifting but simply selects successful particles based on their proximity in time and space to the target  
area. The convergence is acceptable in all three cases. The time range from earliest to latest possible time 
of release varied from five hours to three days.
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The Ekofisk integration is set in the middle of the North Sea to explore how realistic wind and current 
conditions affect the convergence of the iteration over longer periods in offshore conditions. Particles are 
released over 24 hours in a relatively large radius about the target area at Ekofisk, located at 56º30’N, 
003º12’E. The currents are moderate and tidally dominated while the wind is south-westerly 7-10 m/s.  
Figure 7 shows the convergence to be somewhat slower than for the other integrations. The wide spread 
of the unsuccessful trajectories (not shown) even after eight iterations clearly shows that the effect of the 
open ocean is to slow the convergence as a much wider area of potential origins must be considered than 
in cases like the life raft study where a relatively straight coastline blocks one half-plane of the initial  
locations.

The life raft case study is quite representative of a nearshore accident and a sighting of the vessel a few 
hours later. The model shows reasonable convergence in the presence of complex coastlines and with 
variable current and wind conditions. Convergence on a larger time scale has been tested for the Ekofisk 
case, and even longer time scales (three days) for the Shetland case. In all cases, convergence of at least  
O(100) particles can be achieved with 5-8 iterations on runs with O(5000) particles. This number can be 
increased arbitrarily by expanding the size of the ensemble.

Although  the  examples  here  have  presented  the  iteration  with  the  largest  number  of  particles  that 
converge  on  the  target  area  in  this  final  forward  integration,  a  simple  way to  boost  the  number  of  
successful  trajectories  is  to  aggregate  trajectories  from  previous  iterations.  This  increases  the  tally  
typically by a factor five. The convergence is also seen to be quite rapid, although significant deviations  
occur from one iteration to the next. The convergence is not monotonous, but this is partly due to the 
flexibility in defining “successful” trajectories selected for breeding. In the early iterations (1 and 2), the  
successful trajectories may actually end quite far from the target area and still be selected for breeding.  
This allows the iterative procedure to adjust the initial distance in cases where the particles have been  
seeded too near the target area. The procedure usually reaches a maximum after 5-7 iterations, after which  
nothing more is added. The runs selected as “final” are the ones with the highest number of particles  
arriving at the target area.

As with reverse-time trajectory models, the question of whether the final set of backtracked trajectories is  
close to the true trajectory or not depends on the quality of the modeled current and wind vector fields as 
well as our ability to properly account for the object’s behavior (the leeway and jibing in the case of our 
trajectory model). Other things being equal, it is clear that the reverse-time approach can generate a much  
larger ensemble and for cases where a simple passive tracer is sufficient, the reverse-time approach is  
clearly recommended. However, the BAKTRAK methodology described here is not intended for passive 
tracers but rather for complex trajectory models where a simple reverse-time is difficult to implement. In  
the case of the raft described in Section 3 the sensitivity to the ocean model is relatively small as the wind  
forces on its over-water structure dominate its drift. In such a case the pertinent question is whether the 
backtracking model (be it a reverse-time or an iterative forward method) properly accounts for all the  
forces on the drifting object. In other cases where the wind is weaker, a simple reverse-time model may  
well do a good job, but in general it is difficult to decide in advance whether a reverse-time trajectory 
computation will be sufficient.

5  Conclusion  and  perspectives  for  iterative  forward 
trajectory models
We have established that the iterative method works for a weakly nonlinear stochastic trajectory model  
with  complex geography and high-resolution forcing fields  (wind and current).  The  model  has  been 
implemented on the same model domain as the operational Leeway model, covering the North Sea, the 
Norwegian Sea and the Barents Sea. The model backtracks objects to seven days ago. The BAKTRAK 
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procedure circumvents the need for constructing a reverse-time version (adjoint) of the trajectory model,  
which may be difficult  given the nonlinearities of model.  This has the advantage of utilizing the full  
nonlinear properties of the trajectory model to determine whether a certain source location is a realistic  
one, but comes at the cost of a somewhat higher numerical cost and time of execution. The iterative  
procedure is self-correcting in the sense that larger initial distributions in time and space are tried for the  
next iteration if too few successful trajectories make it to the target area. The convergence toward an  
acceptable number of trajectories is shown to be quite rapid, and 5-8 iterations are sufficient  for the  
implementation presented here. This has been confirmed through a range of integrations under different  
topographic constraints and in varying weather and current fields. Successful trajectories from subsequent  
iterations can also be aggregated to boost the ensemble, and as discussed in Section 4, the target area 
radius can also be subjectively increased or decreased for real world cases.

BAKTRAK reverse drift  estimates showed close agreement with the observed trajectory of a life raft 
released during a field campaign in the Norwegian Coastal Current. Although more field work is clearly 
required to quantify the uncertainties under a range of weather conditions, the example clearly confirms 
the  approach is  valid  and usable.  Although beyond the  scope  of  this  work,  it  might  be  possible  to 
construct an adjoint to the Leeway model where the weakly nonlinear effect of the jibing is accounted for.  
This would provide an interesting benchmark for the forward iterative method, but it might be difficult to  
disentangle the effect of the jibing on the adjoint. However, for more complex models such as oil drift  
such an adjoint may be very difficult to construct. 

Future work should explore the potential of using the iterative approach outlined here for more complex 
trajectory models involving strong nonlinearities, in particular oil spill models (see Hackett  et al, 2006; 
Broström et al, 2008; Hackett et al, 2009). A common approach to identifying spills is to investigate their 
chemical  composition and compare  with  the  chemical  fingerprint  of  known sites  (Christensen  et  al, 
2004).  Our  method  should  prove  useful  as  a  complementary  line  of  investigation  when  identifying 
sources of spills, whether from ships, land-based production plants (see Havens et al, 2009) or offshore 
oil fields. 

The dynamical risk assessment analysis explored by Eide et al (2007) estimates the time to shore of ships 
following a planned route under realistic weather conditions. A backtracking algorithm applied to the ship 
drift model employed by Eide et al (2007) could explore the corresponding risk of objects running into 
fixed installations near a sea route. 

Another  line  of  investigation  is  to  utilize  graphics  processing  units  (GPU)  for  massively  parallel  
computational problems. This would allow a radical expansion of ensemble size to further refine the  
initial conditions (Brodtkorb et al, 2010). This method could also be used to investigate the much larger 
ensembles required to recreate observed trajectories rather than single observations (in our work denoted 
the target area). One application where observed trajectories could be used would be in iceberg modeling.  
Recreating the iceberg trajectories using a forward procedure similar to what has been described here 
would require a very large number of trajectories and starts to resemble particle filtering in that more than 
one observation is available (van Leeuwen, 2009). 

Another approach would be to employ forcing fields from different model systems, possibly consisting of  
both ocean models, wave models and numerical weather prediction models and weighing the different 
fields using the hyper ensemble techniques described by Rixen and Coelho (2007), Rixen et al (2008) and 
Vandenbulcke  et al (2009). The iterative refinement technique described here is equally applicable to 
fields  thus  generated  and would  complement  these  techniques  by  allowing in  principle  any forward 
trajectory model  to be utilized.  In conclusion,  the advantages of retaining the full  forward trajectory  
model should more than outweigh the higher computational cost associated with the iterative BAKTRAK 
procedure when considering more complex trajectory models.

Dette er en postprint-versjon / This is a postprint version. 
DOI til publisert versjon / DOI to published version:  10.1007/s10236-011-0496-2 



Acknowledgments
This work was made possible by funding from the Norwegian Defence Research Establishment (FFI) 
through  the  BAKTRAK  project.  The  field  work  was  organized  and  partly  funded  by  the  project  
“Uncontrolled drift of ships and larger objects”, funded by the Research Council of Norway (NFR) under  
the MAROFF programme (grant no 200862). The analysis has also benefited from the MAROFF project  
FARGE (grant no 200843). The authors wish to thank the Joint Rescue Co-ordination Centres (JRCC) 
and the Norwegian Navy for their continued support of the development of operational trajectory models  
for  search  and rescue.  This  work  builds  on  results  from the SAR-DRIFT project  under  the  French-
Norwegian Foundation (Eureka grant E!3652) and the FOB project funded through the NFR MAROFF 
programme  (grant  no  180175).  This  project  has  also  benefited  from  the  Norwegian  National 
Supercomputing Facility (NOTUR). Finally, we wish to thank the two anonymous reviewers for their 
thorough scrutiny of the manuscript which made us include important new material.

References
Allen, A.A., 2005: Leeway divergence, USCG R&D center technical report CG-D-05-05. Available 
through: http://www.ntis.gov.

Allen, A. A., Plourde, J.V., 1999. Review of Leeway: Field Experiments and Implementation. Report 
CG-D-08-99. US Coast Guard Research and Development Center, 1082 Shennecossett Road, Groton, CT, 
USA. Available through http  ://  www  .  ntis  .  gov  , ref: ADA366414

A Allen, JC Roth, C Maisondieu, Ø Breivik and B Forest, 2010: Field Determination of the Leeway of  
Drifting Objects, Technical Report 17/2010, Norwegian Meteorological Institute.

Ambjörn, C, 2008. Seatrack Web forecasts and backtracking of oil spills-an efficient tool to find illegal 
spills using AIS, US/EU-Baltic International Symposium, 2008 IEEE/OES, pp 1-9

Brodtkorb, AR, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O. Storaasli, 2010. State-of-the-art in 
heterogeneous computing. Scientific Programming, 18(1), pp 1–33

Breivik, Ø and A Allen, 2008. An operational search and rescue model for the Norwegian Sea and the 
North Sea, J Marine Syst, 69(1-2), Special Issue on Maritime Rapid Environmental Assessment - New 
Trends in Operational Oceanography, 99-113, doi:10.1016/j.jmarsys.2007.02.010.

Breivik, Ø, A Allen, C Maisondieu and J-C Roth, 2011. Wind-induced drift of objects at sea: the leeway 
field method, Appl Ocean Res, 33, pp 100-109, doi:10.1016/j.apor.2011.01.005

Breivik, Ø and Ø Sætra, 2001: Real time assimilation of HF radar currents into a coastal ocean model, J 
Marine Syst, 28(3–4), 161–182, doi:10.1016/S0924-7963(01)00002-1

Broström G., A. Carrasco, P. Daniel, B. Hackett, D. Paradis, 2008. Comparison of two oil drift models 
and different ocean forcing with observed drifter trajectories in the Mediterranean. Proceedings of the 5th  
International Conference on EuroGOOS, 20-22 May 2008, Exeter, UK.

Dette er en postprint-versjon / This is a postprint version. 
DOI til publisert versjon / DOI to published version:  10.1007/s10236-011-0496-2 

http://www.google.com/url?q=http%3A%2F%2Fwww.ntis.gov&sa=D&sntz=1&usg=AFQjCNGAGvPAoDWHdOHK5du4WAdZDmhwiQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ntis.gov&sa=D&sntz=1&usg=AFQjCNGAGvPAoDWHdOHK5du4WAdZDmhwiQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ntis.gov&sa=D&sntz=1&usg=AFQjCNGAGvPAoDWHdOHK5du4WAdZDmhwiQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ntis.gov&sa=D&sntz=1&usg=AFQjCNGAGvPAoDWHdOHK5du4WAdZDmhwiQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ntis.gov&sa=D&sntz=1&usg=AFQjCNGAGvPAoDWHdOHK5du4WAdZDmhwiQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ntis.gov&sa=D&sntz=1&usg=AFQjCNGAGvPAoDWHdOHK5du4WAdZDmhwiQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ntis.gov&sa=D&sntz=1&usg=AFQjCNGAGvPAoDWHdOHK5du4WAdZDmhwiQ
http://www.ntis.gov/


Christensen, JH, AB Hansen, G Tomasi, J Mortensen, and O Andersen, 2004. Integrated Methodology for 
Forensic Oil Spill Identification, Environ. Sci. Technol, 38(10), pp 2912–2918, DOI:10.1021/es035261y

Davidson, F J M, A Allen, G B Brassington, Ø Breivik, P Daniel, M Kamachi, S Sato, B King, F Lefevre, 
M Sutton, H Kaneko, 2009. Applications of GODAE ocean current forecasts to search and rescue and 
ship routing, Oceanography, 22(3), pp 176-181, doi:10.5670/oceanog.2009.76

Doucet, A.; De Freitas, N.; Gordon, N.J., 2001. Sequential Monte Carlo Methods in Practice. Springer

Eide, MS, O Endresen, Ø Breivik, OW Brude, IH Ellingsen, K Roang, J Hauge and PO Brett, 2007. 
Prevention of oil spill from shipping by modelling of dynamic risk, Mar Poll Bull, 54(10), pp 1619-1633, 
doi:10.1016/j.marpolbul.2007.06.013.

Essen, H-H, Ø Breivik, H Gunther, K-W Gurgel, J Johannessen, H Klein, T Schlick, and M Stawarz, 
2003: Comparison of remotely measured and modelled currents in coastal areas of Norway and Spain, 
The Global Atmosphere-Ocean System, 9(1-2), 39-64, doi:10.1080/1023673031000151412

Engedahl, H., 1995. Implementation of the Princeton Ocean Model (POM/ECOM3D) at The Norwegian  
Meteorological Institute (DNMI). Research Report 5. The Norwegian Meteorological Institute, Oslo, 
Norway.

Engedahl, H., 2001. Operational Ocean Models at Norwegian Meteorological Institute (DNMI). Research 
Note, vol. 59. The Norwegian Meteorological Institute, Oslo, Norway.

Hackett, B., Breivik, Ø., Wettre, C., 2006. Forecasting the drift of objects and substances in the oceans. 
In: Chassignet, E.P., Verron, J. (Eds.), Ocean Weather Forecasting: An Integrated View of  
Oceanography. Springer, pp. 507–524.

Hackett, B., E. Comerma, P. Daniel and H. Ichikawa, 2009: Marine Oil Pollution prediction, 
Oceanography, 22(3), 168-175, doi:10.5670/oceanog.2009.75

Havens, H, ME Luther, SD Meyers, 2009. A coastal prediction system as an event response tool: Particle 
tracking simulation of an anhydrous ammonia spill in Tampa Bay, Mar Poll Bull, 58(8), pp 1202-1209, 
doi:10.1016/j.marpolbul.2009.03.012

Rao, K S, 2007. Source estimation methods for atmospheric dispersion, Atmospheric Environment, 
41(33), pp 6964-6973, doi:10.1016/j.atmosenv.2007.04.064

Rixen, M., Ferreira-Coelho, E., 2007: Operational surface drift prediction using linear and non-linear 
hyper-ensemble statistics on atmospheric and ocean models. J Marine Syst, 65, 105–121, 
doi:10.1016/j.jmarsys.2004.12.005.

Rixen, M., Ferreira-Coelho, E., Signell, R., 2008: Surface drift prediction in the Adriatic Sea using hyper-
ensemble statistics on atmospheric, ocean and wave models: uncertainties and probability distribution 
areas. J Marine Syst, 69, 86–98, doi:10.1016/j.jmarsys.2007.02.015

Stohl, A, 1996. Trajectory statistics - A new method to establish source-receptor relationships of air 
pollutants and its application to the transport of particulate sulfate in Europe, Atmos Env, 30(4), pp 579-
587, DOI:10.1016/1352-2310(95)00314-2

Dette er en postprint-versjon / This is a postprint version. 
DOI til publisert versjon / DOI to published version:  10.1007/s10236-011-0496-2 



Stohl, A, 2002. Computation, accuracy and applications of trajectories-a review and bibliography, 
Developments in Environmental Sciences, 1, pp 615-654

Turner, C; T. Waddington, J. Morris, V Osychny, and P. Luey, 2006. Leeway of Submarine Escape Rafts  
and Submarine Emergency Positioning Beacons, USCG R&D Center Technical Report CG-D-05-06, 99 
pp. Available through http  ://  www  .  ntis  .  gov  , ref: ADA457525

Undén, P., Rontu, L., Jarvinen, H., Lynch, P., Calvo, J., Cats, G., Cuaxart, J., Eerola, K., Fortelius, C., 
Garcia-Moya, J.A., Jones, C., Lenderlink, G., McDonald, A., McGrath, R., Navascues, B., Nielsen, N.W., 
Ødegaard, V., Rodriguez, E., Rummukainen, M., Room, R., Sattler, K., Sass, B.H., Savijarvi, H., Schreur, 
B.W., Sigg, R., The, H. and Tijm, A., 2002., HIRLAM-5 Scientific Documentation, HIRLAM-5 Project. 
Available from SMHI, S-601767, Norrkoping, Sweden.

Vandenbulcke, L, J.-M. Beckers, F. Lenartz, A. Barth, P.-M. Poulain, M. Aidonidis, J. Meyrat, F. 
Ardhuin, M. Tonani, C. Fratianni, L. Torrisi, D. Pallela, J. Chiggiato, M. Tudor, J.W. Book, P. Martin, G. 
Peggion, M. Rixen, 2009: Super-ensemble techniques: Application to surface drift prediction, Prog 
Oceanog, 82(3), pp 149-167, doi:10.1016/j.pocean.2009.06.002.

van Leeuwen, Peter Jan, 2009: Particle Filtering in Geophysical Systems. Mon. Wea. Rev., 137, 4089–
4114, doi:10.1175/2009MWR2835.1

Wessel, P. and W.H.F. Smith., 1996. A global, selfconsistent, hierarchical, high-resolution shoreline 
database. Journal of Geophysical Research, 101(B4), pp 8,741–8,743

List of figures
Figure  1.  Excerpt  of  the  polar  stereographic  model  domain  of  the  ocean  model.  The  model  has  an 
approximate resolution of 4 km and is run twice daily to 60 hours. A seven-day rolling archive of two-
hourly temporal resolution is continually updated. The operational implementation of the trajectory model 
ingests current and wind vectors in polar stereographic, plate carrée and rotated spherical projections.  
Only every sixth surface current  vector is  shown for clarity.  The locations of the five test  cases are  
marked  with  red  crosses.  From south  west  (left)  to  north  east  (right):  Sheringham Shoal  (53º00’N, 
000º23’E),  Ekofisk  (56º30’N,  003º12’E),  Shetland  (60º53’N,  000º37’E),  Fedje  life  raft  (60º45’N, 
004º20’E), and F/V Idarson (70º15’N, 021º15’E).

Figure 2. The trajectory of the life raft (deployed at the SW end of the trajectory) overlaid on the surface 
current  vector  field  from  a  network  of  high-frequency  radars  valid  at  2011-03-23T02  UTC.  The 
Norwegian Coastal Current flows swiftly through the area with currents exceeding 1 m s-1.

Figure 3. The surface current vector field (blue isolines in ms -1) of the operational ocean model, Nordic4 
(4 km resolution) and 10-m wind vectors (red wind barbs measured in knots) from the HIRLAM12 (12 
km resolution) numerical weather prediction model valid at 2011-03-23T02 UTC, approximately halfway 
through the drift experiment. Black crosses mark the deployment and pickup locations for the life raft.  

Figure 4. The first BAKTRAK iteration of the life raft experiment. Panel (a) shows the initial distribution 
of all particles two hours after release (red, with particles seeded on land in black). A blue cross marks the  
life raft pickup location, used as the center for the integration. Panels (b) and (c) show the initial Gaussian 

Dette er en postprint-versjon / This is a postprint version. 
DOI til publisert versjon / DOI to published version:  10.1007/s10236-011-0496-2 

http://www.google.com/url?q=http%3A%2F%2Fwww.ntis.gov%2Fsearch%2Findex.aspx&sa=D&sntz=1&usg=AFQjCNHV8Gcl4XtzhBIl6VlHcaK-17AJJw
http://www.google.com/url?q=http%3A%2F%2Fwww.ntis.gov%2Fsearch%2Findex.aspx&sa=D&sntz=1&usg=AFQjCNHV8Gcl4XtzhBIl6VlHcaK-17AJJw
http://www.google.com/url?q=http%3A%2F%2Fwww.ntis.gov%2Fsearch%2Findex.aspx&sa=D&sntz=1&usg=AFQjCNHV8Gcl4XtzhBIl6VlHcaK-17AJJw
http://www.google.com/url?q=http%3A%2F%2Fwww.ntis.gov%2Fsearch%2Findex.aspx&sa=D&sntz=1&usg=AFQjCNHV8Gcl4XtzhBIl6VlHcaK-17AJJw
http://www.google.com/url?q=http%3A%2F%2Fwww.ntis.gov%2Fsearch%2Findex.aspx&sa=D&sntz=1&usg=AFQjCNHV8Gcl4XtzhBIl6VlHcaK-17AJJw
http://www.google.com/url?q=http%3A%2F%2Fwww.ntis.gov%2Fsearch%2Findex.aspx&sa=D&sntz=1&usg=AFQjCNHV8Gcl4XtzhBIl6VlHcaK-17AJJw
http://www.google.com/url?q=http%3A%2F%2Fwww.ntis.gov%2Fsearch%2Findex.aspx&sa=D&sntz=1&usg=AFQjCNHV8Gcl4XtzhBIl6VlHcaK-17AJJw


distribution in latitude and longitude of the particles,  respectively. Panel (d) shows the 20 successful  
trajectories in red against the backdrop of unsuccessful trajectories (gray) that did not make it to the target  
area.

Figure 5. The second and seventh BAKTRAK iterations. Panels (a) and (c) show the initial distribution of 
the second and seventh iterations (raft pickup location marked with a cross). Panels (b) and (d) show the  
successful trajectories of the second and seventh iterations in red against the backdrop of unsuccessful 
trajectories (gray). It is evident from a comparison of panels (a) and (c) that many of the initial locations  
selected for iteration 2 are since weeded out in favor of a much tighter initial distribution centered near  
the true release position of the life raft in panel (c). The observed trajectory of the life raft is overlaid on  
the initial  distribution of iteration 7 in panel (c) for reference. Panel (d) shows a marked increase in  
successful trajectories from panel (b).

Figure 6. The eighth iteration was selected as the final integration because it had the highest number of  
successful trajectories (red). The convex hulls of the initial distribution and the final distribution of the  
particles are shown in blue. The life raft trajectory is shown as black circles. The initial distribution of the 
ensemble encloses the release position of the life raft. 

Figure 7. The number of successful trajectories, i.e., those that appear within reasonable proximity of the  
target  area,  determined by the relative  distance metric  in  Eq (1)  is  shown as  a  function of  iteration  
number. The aggregate number of successful trajectories is shown in the legend. Note that this number  
can become much higher if the target area radius is chosen subjectively, as shown in Figure 8.

Figure 8. The target area radius can be chosen arbitrarily. This may increase the number of successful 
trajectories, as here where the target area radius has been set to 3000 m. This more than doubles the 
number of successful trajectories (see Figure 6). The convex hull of the final distribution (blue) is now  
nearly circular because of the way the successful trajectories have been chosen.

List of tables
Table 1. The BAKTRAK algorithm for the refinement of the initial time and position of particles for the  
next forward integration of the trajectory model.
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------------------------------------
BAKTRAK iterative feedback algorithm
------------------------------------
Variables:
TA: Target area (where particles shall end up)
T0: First release time for particles
T1: Final release time for particles
D0: Distance to TA from the N particle positions at the end of the previous iteration
D1: Distance to TA from the N particle positions at the start of the next iteration 
β = D1/D0, relative distance
Np: Parent particles, the nearest (default 64) particles(sorted by β) from the

previous iteration
Nc: Children particles centered on a parent particle from previous iteration
N = Np*Nc: Ensemble size
S: dimensionless spread factor (default 0.1)
R =S*D0

Algorithm:
1. First iteration:

1.1 Seed N initial particles in radius R around TA over
period T0-T1

2. Iterate until enough particles reach TA:
2.1 Run forward trajectory model
2.2 Sort particles by increasing relative distance, β
2.3 Select Np nearest (in terms of β) parent particles
2.4 Seed Nc children particles from Gaussian distr with radius 

R (2σ) around each of the Np parent particles

Table 1. A summary of the BAKTRAK procedure.

Object Downwind leeway (DWL), Ld Crosswind leeway (CWL), Lc

Slope
(%)

Offset
(cm s-1)

Syx

(cm s-1)
Slope
(%)

Offset
(cm s-1)

Syx

(cm s-1)
Life raft shallow ballast, mean 
values

2.7 0.0 12.0 1.1 0.0 9.4

Table 2. The leeway coefficients used in the life raft drift experiment. We have assumed the mean values  
for shallow ballast life rafts (see Allen (2005). The standard deviation  Syx  is used to spread the leeway 
coefficients of the ensemble.
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Figure 4, panel (a).
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Figure 4, panel (b).
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Figure 4, panel (c).
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Figure 4, panel (d).

Dette er en postprint-versjon / This is a postprint version. 
DOI til publisert versjon / DOI to published version:  10.1007/s10236-011-0496-2 



Figure 5, panel (a).
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Figure 5, panel (b).
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Figure 5, panel (c).
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Figure 5, panel (d).
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