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ABSTRACT

A research platform with four cameras in the infrared and visible spectral domains is under development at the
Norwegian Defence Research Establishment (FFI). The platform will be mounted on a high-speed jet aircraft
and will primarily be used for image acquisition and for development and test of automatic target recognition
(ATR) algorithms. The sensors on board produce large amounts of data, the algorithms can be computationally
intensive and the data processing is complex. This puts great demands on the system architecture; it has to run
in real-time and at the same time be suitable for algorithm development.

In this paper we present an architecture for ATR systems that is designed to be flexible, generic and efficient.
The architecture is module based so that certain parts, e.g. specific ATR algorithms, can be exchanged without
affecting the rest of the system. The modules are generic and can be used in various ATR system configurations.
A software framework in C++ that handles large data flows in non-linear pipelines is used for implementation.
The framework exploits several levels of parallelism and lets the hardware processing capacity be fully utilised.

The ATR system is under development and has reached a first level that can be used for segmentation
algorithm development and testing. The implemented system consists of several modules, and although their
content is still limited, the segmentation module includes two different segmentation algorithms that can be
easily exchanged. We demonstrate the system by applying the two segmentation algorithms to infrared images
from sea trial recordings.
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1. INTRODUCTION

Automatic Target Recognition (ATR) is the process where computer algorithms detect and classify specified types
of targets in sensor data. Target tracking can also be an integrated part of such a system. At the Norwegian
Defence Research Establishment (FFI) we currently develop a research pod that will be used for image acquisition
and ATR algorithm testing. The pod is based on a cargo/travel pod used as a transport volume for a wide range
of jet aircrafts. We have rebuilt the pod into a research platform containing cameras, navigation hardware
and processing computers. The pod will be mounted on the wing of an RNoAF F-16 aircraft, as illustrated in
Figure 1. This enables image acquisition and ATR algorithm tests at high speeds.

Figure 1. A research pod (illustrated in orange) will be mounted on an F-16 aircraft wing for data acquisition and ATR,
algorithm tests at high speeds.
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The four cameras in the pod operate in the infrared and visible spectral domains. They will be mounted
on a steerable platform that can move in the yaw and pitch directions. This will be used to point the cameras
towards an aim point in the scene. The aim point can be defined in several ways; programmed preflight, provided
during flight by the pilot or by the target itself (using e.g. AIS), or computed continuously by the ATR system
on board.

The pod will be used for both image acquisition and to test ATR algorithms in a relevant environment
in terms of hardware as well as scenes. This means that the software system in the pod must fulfil certain
requirements. It has to be based on an architecture that enables simple exchange of certain algorithms, and that
at the same time ensures efficient processing of large amounts of camera and navigation data. For algorithm
development, desktop computers and recorded data will be used. Hence, the software architecture must also be
reconfigurable into simpler systems for algorithm development purposes.

The ATR architecture presented in this paper is well suited for efficient data processing and algorithm tests
as well as for algorithm development. The architecture is module based so that certain parts, e.g. specific ATR
algorithms, can be exchanged without affecting the rest of the system. A software framework!? that makes full
use of the pod’s processing capacity is used for implementation. Finally, the generic form of the modules makes
it possible to reconfigure the pod software to better exploit the pod hardware, and also to build simpler systems
for ATR algorithm development on desktop computers.

The ATR system for the pod is under development and the implementation has reached a first level that can
be used for segmentation algorithm test and development. Two segmentation algorithms have been tested in
this system. We present a description of the current implementation, the segmentation algorithms and results
from tests on infrared sea trial recordings.

This paper is structured as follows: In Section 2 the pod and its hardware components relevant for the ATR
system are described. The proposed ATR software architecture for the pod is presented in Section 3. This section
also gives a brief introduction to the pipeline structure and the framework used for implementation, as well as a
discussion on how to best exploit the given pod hardware. In Section 4 the current ATR pipeline implementation
is described and utilised to compare performance for two different segmentation algorithms on infrared imagery.
Section 5 concludes this paper and gives an outlook on future work.

2. THE HARDWARE SYSTEM

In Figure 2, the pod hardware components most relevant for the ATR system are illustrated with boxes. The
boxes also indicate the approximate hardware component location in the pod.
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Figure 2. The pod and the hardware components most relevant for the ATR system.

The main sensors in the pod are two IRCAM 327k Equus infrared cameras. One of the cameras covers the
long wave infrared (LWIR) spectral region, and the second covers the mid wave infrared (MWIR) spectral region.
The cameras are developed for our needs, and comprise the possibility to add up to six different filters in a filter
wheel that spins in front of the detector. Hence, when the camera acquisition rate is set to 100 Hz, up to six
sub-bands within the original wavelength range can be captured at 16.7 Hz rate. The third camera is a Sensors
Unlimited SU640HSX-1.7RT infrared camera in the short wave infrared (SWIR) spectral region, and the last
camera is either a black/white or a colour 2360/2360C visible (VIS) light camera from Gevicam.

The navigation hardware includes one 300 Hz HG9900 inertial measurement unit (IMU) from Honeywell,
and one 20 Hz OEMV-3 global navigation satellite system (GNSS), including GPS, GLONASS and DGPS, from
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NovaTel. Real-time navigation is performed using NavP, which is a real-time implementation of an inertial
navigation system developed at FFI1.2 All time-critical data is time stamped using a digital synchronization unit
(DSU) also developed at FFI. The DSU can divide the high precision 1PPS signal from the GPS into clock
resolutions up to microseconds. Time stamps are set e.g. when trig pulses are received from the cameras.

The captured raw data will be stored directly to X-25E SLC 2.57 SATA-IT solid state hard-disks from Intel.
The processing system that runs the ATR algorithms consists of three computer processing units (CPU) and
three graphical processing units (GPU). The CPUs are of type KTQ77/FLEX from Kontron and the GPUs are
of type Tesla C2070 from NVIDIA. The CPUs have three Gigabit network inputs each and the possibility to add
more using add-on boards. Communication between the components in the pod system will be based on 1 Gb
Ethernet. Figure 3 shows the steerable camera platform that is developed by SWESYSTEM AB. The platform
can be controlled in yaw and pitch directions. Shifts in the roll direction will be handled by the software.

The LWIR and MWIR cameras deliver 640x512 pixel images at a rate up to 100 Hz. The SWIR camera
delivers 640x512 pixel images at a rate up to 30 Hz and the visible light camera delivers 656x494 pixel images
at a rate up to 100 Hz. Hence, up to 175 MB of image data is produced per second. The 100 Hz rate might seem
over-dimensioned when considering that mechanical control requires a minimum of time between each update,
and that, even when flown at high speeds, the pod will move only a few meters in 0.01 seconds. However, for
the sub-band images to be delivered at 16.7 Hz rate the 100 Hz camera rate is required.

Figure 3. The camera platform located in the front of the pod is steerable in the yaw and pitch directions. Four cameras
are mounted on the platform; the orange LWIR and MWIR cameras on the top, and the black SWIR and visible cameras
below.

3. ARCHITECTURE

This section describes the proposed pod ATR system architecture in more detail and discusses how to best
exploit the given pod hardware. However, first we explain the pipeline structure chosen for the architecture and
the framework applied for system implementation.

3.1 Pipeline processing

For an automatic target recognition system, important problems include target segmentation, classification and
tracking. The system receives data, streamed either in real-time from cameras or from recordings on a disk,
and the images normally need to be preprocessed to be ready for analysis. The output from an ATR system is
typically a list of recognised targets and their positions.

The preprocessing, segmentation, classification, tracking and target selection constitute a list of sequential
tasks. Each task depends on the output of the previous task, but may perform its processing independently of
all the other tasks. This programming equivalent to an assembly line is called a pipeline structure, and each
task is called a pipeline stage. The pipeline structure allows concurrent processing of successive tasks, and will
thereby increase throughput with the possible cost of introducing a higher latency. Figures 4 and 5 are examples
of pipeline structures.

The pipeline structure also yields a modular design that can later be extended or modified. This means that
one task (stage), e.g. the segmentation algorithm, can be modified or exchanged without affecting the rest of
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the pipeline. It is also possible to extend the pipeline with additional stages, or build a new pipeline with the
same stages applied in a different configuration.

The ATR system proposed in this paper is based on hyPipe,! a cross-platform software framework imple-
mented in C++, that handles large data flows in a non-linear pipeline structure. The hyPipe framework was
originally built for an airborne real-time hyperspectral target detection system.?

The framework lets the ATR system naturally exploit task level parallelism, as previously explained. Data
level parallelism, where e.g. all pixels in an image are processed in parallel, can be exploited within each stage
using e.g. CUDA. Thus the framework makes the most of both the CPU and the GPU hardware and their
inherent processing capacity. It is designed to be generic and easily adaptable, using object oriented design
principles, and distribution across several computers is possible using TCP /IP sockets.

3.2 The ATR architecture

The pipeline shown in Figure 4 is a schematic representation of the proposed ATR, architecture for the pod. The
dark blue boxes represent hardware; the long wave, mid wave, short wave and visual cameras are at the start of
the pipeline, and at the end is the camera platform that will be steered towards an aim point in the scene, based
on analysis of images delivered by the cameras.
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Figure 4. Schematic illustration of a pipeline where data flows from the cameras and through a list of stages. Output
from the system is a position to an aim point, and this is used to control the camera platform. This pipeline represents
the ATR architecture designed for the research pod.

Each of the light blue boxes represents one stage (module) in the ATR software. Each stage can process its
task independently from the other stages. The data flow, i.e. the input and output, is represented with arrows
between the different stages, and between the pipeline stages and the hardware components.

In the designed architecture, the DataReceiver stage receives images from the cameras and navigation data
from the navigation system in the pod and combines them based on timestamps. The navigation unit is omitted
in Figure 4 to simplify the figure. The Preprocessor stage prepares the camera images for further analysis and
performs e.g. noise reduction and roll stabilisation. These two stages run separately and in parallel for each of
the cameras.
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The FrameMatcher receives streamed images from each of the cameras and makes sure the different images
are represented with the same timestamp and in a common coordinate system, so that the images can be
analysed with respect to each other. The TrackerPredictor uses the time elapsed since last tracker update and
predicts where previously detected targets will be located with a given uncertainty for the current images. This
information can be utilised in the subsequent image analysis stages to facilitate re-detection of tracked objects
and new targets.

The image analysis stages involve the Segmenter, the FeatureExtractor and the Classifier. The Segmenter
separates interesting areas from the image background. Characteristic features for each segment are computed
by the FeatureExtractor and sent to the Classifier for target classification.

The TrackerUpdater tracks each object over time. It establishes, maintains and terminates tracks based on
the previously predicted tracks and computed segments, features and classes for the current image. As indicated
with an arrow in Figure 4, the TrackerPredictor and the TrackerUpdater seem mutually dependent on each other.
However, the track prediction performed before image analysis starts will not wait for the updated tracks from
the previous image, since this could violate the concurrent task processing inherent in the pipeline structure.
Instead, the track prediction will be based on the last updated tracks available when the new image is received.
The TargetSeeker will perform application specific tasks, such as target selection and aim point determination.

The interfaces between the stages are important, since they have to be predefined for the stages to be
exchangeable and generic. We do not present them here, since their details will likely be subject to change
during the early implementation phase. Instead, we give an idea on the type of data flowing between the stages.

The input and output for each stage are organised into data structures, and which data structures that
flow between the stages vary. Typically, the structures early in the pipeline contain images from one or more
cameras, their timestamps and e.g. their corresponding navigation data. After image analysis is performed, the
data structures can contain binary images defining segmented areas, lists of features describing each segment or
classification results such as class and confidence. The tracking will result in a data structure containing a list
of tracks, their position and uncertainty in position estimates. The output from the ATR pipeline to the camera
platform is an aim point in global coordinates.

3.3 Exploiting the pod hardware

The proposed ATR architecture is very flexible and exploits several levels of parallelism. The question is how
to distribute the ATR pipeline stages on the given pod hardware to ensure maximum processing efficiency. In
general, one can say that computationally intensive tasks should be divided into parallel stages that execute
in different threads on a multi-core CPU or distributed over several CPUs, or they should exploit data level
parallelism using e.g. the GPU.

The modular ATR design enables non-linear pipelines with parallel stages for concurrent processing. This is
utilised at the DataReceiver and Preprocessor stages in Figure 4, where processing is kept separate and in parallel
stages for the four camera image streams. Thus, images from the four cameras can be processed simultaneously,
either in several threads on one CPU, or distributed over more computers. Other stages in the pipeline, e.g.
the FeatureExtractor or the Classifier, can with minimum effort be split into similar parallel stages if needed.
The processing need for these stages is typically dependent on the number of objects segmented in the scene.
However, some overhead is introduced with splitting, and processing speed-up using the GPU will probably be
preferred where possible.

The Segmenter stage is expected to be computationally intensive, due to image processing operations such
as filtering, morphological operations etc. In principle, the Segmenter could be separated into parallel stages for
each image stream, as explained above. However, we have chosen to keep the Segmenter in one stage for the
possibility to process images from more cameras simultaneously and with respect to each other. Thus, rapid
processing is ensured at this stage utilising the GPU. Image processing algorithms are often well suited for
parallel processing using either CUDA to write algorithms, or exploiting existing functions from libraries that
utilise the GPU.

The interfaces will be carefully considered when distributing the pipeline stages on the hardware. One IRCAM
camera image stream will need the full capacity of a Gigabit Ethernet line when running at maximum rate. The
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CPU boards have at least three network inputs each, and the hyPipe framework allows the pipeline stages to
communicate over TCP/IP. However, if the images from all the cameras are put into one data structure, this
will be too large to be delivered at full rate over one network line.

One way to avoid handling large data streams on the Ethernet is to distribute the stages so that those that
communicate the most data run on the same computer. When running on the same CPU, the framework ensures
that communication between the stages is performed through safe use of pointers instead of moving the data
itself. This is less I/O intensive and thus more effective. Which stages that utilise the GPUs must also be
considered. One GPU is mounted on each of the CPU boards, and all the stages that utilise the GPU should
not be run on the same CPU but rather be distributed according to their computational needs.

These considerations are taken to ensure that all the pipeline stages perform as efficient as possible. Whether
each stage is loaded with equally intensive tasks, is rather difficult to predict before a specific set of algorithms
is applied. Nevertheless, equal processing loads for each stage is important for the pipeline structure to run
efficiently and to avoid that one stage ends up waiting for the previous one to finish its task. Thus, once all
stages are implemented, the relative processing load for each stage will be analysed and improved where possible,
and the complete distribution of stages on the available pod hardware will be decided.

4. IMPLEMENTATION AND TEST

This section presents an example of a pipeline implementation based on the ATR system presented in Section 3.
The implementation can be used for segmentation algorithm development and testing. We give a brief introduc-
tion to the two segmentation algorithms included at the Segmenter stage, and present the results from utilising
the implemented system to segment targets in an infrared image recording.

4.1 Implemented system

The ATR system for the pod is under development. We are currently implementing the system in C++, utilising
the hyPipe framework described in Section 3.1 and the OpenCV library. The implementation has reached a first
level and can be used for segmentation algorithm development and test purposes. Figure 5 illustrates the test
system and the modules included.
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Figure 5. Schematic representation of the implemented pipeline for segmentation algorithm development and testing.

The currently implemented DataReceivers differ from the ones that will be implemented for the pod, since
their task in the current implementation is to read image recordings from file, not to receive image streams
from cameras. The future DataReceivers have to offer both types of functionality; file reading for replays and
streamed image reception from cameras for pod runs. The FrameMatcher is very simple; it forwards the image
streams, but still lacks the image synchronisation functionality.

The Segmenter stage is more set and could be plugged directly into a complete ATR system in the pod. It
contains two different segmentation algorithms, and which to use is defined at system start up. The Segmenter
interface takes as input an image and the output is a segmented and labelled image. The Visualiser stage is not
a part of the pod architecture in Figure 4. However, it is an important module to facilitate debugging during
algorithm development and testing. It takes as input the original images as well as the segmentation results, and
visualises the infrared image with the segments overlaid. The system is initialised using a configuration file that
defines which recordings, algorithms and parameters to be used for the current run.
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The implemented pipeline stages have rather simple contents. However, the pipeline connections and com-
munication is equal to the complete ATR system. Thus, the current system is an implemented example of parts
of the pipeline in Figure 4. It also is an example of a system that can be used for segmentation algorithm
development and testing. To illustrate this further, we will compare the two different algorithms included at the
Segmenter stage by applying them to the same data set, utilising the implemented system in Figure 5.

4.2 Segmentation algorithms

The first segmentation algorithm separates the foreground from the background simply using a hard-coded
threshold. Such a simple algorithm is very sensitive to intensity changes in the imagery and not suited for
any applications. It is included in this paper only to illustrate the implemented test system’s ability to switch
between and test different algorithms.

The second segmentation algorithm was presented by Felzenszwalb and Huttenlocker in 2004,* and we call it
the FH algorithm. The algorithm is a graph-based clustering method that adaptively adjusts its segmentation
criteria based on the degree of variability in neighbouring regions in the image. An important characteristic of
this method is thus its ability to preserve detail in low-variability image regions while ignoring detail in high
variability regions. As input the algorithm needs a (preprocessed) floating point raw image and three numerical
parameters, and its output is a segmented and labelled image. The numerical input parameters are ¢, which
controls the amount of noise-reducing Gaussian blur applied to the input image before segmentation; k, which
effectively is a scale of observation (larger k causes a preference for larger components); and M, which is the
minimum amount of pixels allowed in a segment. The FH algorithm runs in O(nlogn) time.

Before applying the FH algorithm, the raw image is subject to some preprocessing. This includes a 3 x 3
median filter to remove bad pixels, and a normalisation, which linearly maps the input pixels to the range [0, 255].
After segmentation, the segmented image is subjected to some post processing. The post processing first removes
segments bigger than a fraction f of the total image (typically large structures in the sky and in the water). Then
it applies a morphological opening operation with a 3 x 3 kernel on each of the segments, which removes thin
whiskers protruding from them, as well as removing thin bridges of connection between segment blobs. The last
post processing operation joins neighbouring segments, on the assumption that segments that are 8-connected
through one or more pixels actually belong to the same segment. This last operation also relabels the segmented
image.

4.3 Test on sea trial recordings

We have processed long wave infrared data using the implemented system with the two different segmentation
algorithms. The data is recorded with a Cedip Emerald LWIR camera and shows the cargo ship Nina passing
outside the Norwegian coastline at Lista in June 2012.

Output from the system, provided by the Visualiser, is a plot showing the original LWIR image overlaid
with cyan-coloured segments found by the segmentation algorithm. The plot is updated for every image in the
recorded video. Figure 6 shows the output for each of the algorithms (the simple threshold to the left and the FH
algorithm to the right) when applied to one of the images in the LWIR recording. For the simple algorithm, the
hard-coded threshold was 0.84 after the pixels had been mapped to the range [0, 1]. The FH algorithm settings
were o0 = 0.8, k = 500, and M = 20 for preprocessing and f = 0.2 for the post processing.

In Figure 6, the segmented ship can be seen as the largest cyan segment in both images. The other segments
are mainly due to waves in the sea. Some segments can be found in the sky, and these stem from image artefacts
introduced by defects inherent in the camera. In this particular image, the simple threshold algorithm seems to
give a cleaner image with fewer false segments, e.g. due to sea waves, than the FH algorithm. However, one must
keep in mind that the hard-coded threshold is adapted to this dataset, and that the FH algorithm will perform
better in general.
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Figure 6. The original long wave infrared image with the segmented image overlaid in cyan. The segmented images are
obtained using a simple threshold (left) and an algorithm by Felzenszwalb and Huttenlocker? (right).

5. CONCLUSIONS AND OUTLOOK

We have presented an ATR architecture for a research pod that is currently being developed at FFI. The archi-
tecture is well suited for efficient ATR processing and algorithm tests as well as for algorithm development, due
to its pipeline structure where tasks are separated into generic stages and processed concurrently. The stages can
be modified, exchanged and reused in other configurations. Pipeline processing has been demonstrated through
the currently implemented system, where different segmentation algorithms have been applied to recorded data.

The implemented system forms the basis for the research pod ATR system. Further work includes imple-
menting a complete ATR system that runs in real-time. Once the ATR system is finished, it will be used for
image acquisition and algorithm test during flight. In the near future, interfaces for each stage will be defined in
detail. Thus, development systems for specific stages can be implemented and utilised for continuous algorithm
development on desktop computers. The developed algorithms can be used to update the ATR system in the
pod. This enables test of new algorithms in a relevant environment, and also increases the lifetime for the pod
and its ATR system.
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