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The performance of spectral imagers is customarily described by several characteristics including reso-
lution, noise, and coregistration. Thesemust be traded off against each other in a practical imager design.
This paper proposes a way to use the information capacity, in an information-theoretic sense, as a figure
of merit for spectral imagers. In particular, it is shown how a metric [Opt. Express 20, 918 (2012)] can be
used to incorporate coregistration performance in a definition of total noise, which in turn can be used in
the definition of information capacity. As an example, it is shown how the information capacity can be
used to optimize the pixel size in a simple case that can be treated analytically. Generally, the information
capacity is attractive as a fundamental, application-independent figure of merit for spectral imager
optimization and benchmarking. © 2013 Optical Society of America
OCIS codes: 110.4234, 220.4830, 110.3055.

1. Introduction

The performance of a spectral imager is normally
specified by an extensive set of performance charac-
teristics. There is at present no widely accepted way
to combine performance characteristics into a single
figure of merit for benchmarking or design optimi-
zation. The performance can in principle be charac-
terized using end-to-end simulations, which must
include details of the scene and the image processing
to be representative of the system performance. How-
ever, such simulations are a complex process closely
coupled to application details.

An imaging system can be considered as a commu-
nication channel in the information-theoretic sense,
where information about the imaged object is trans-
ferred to the digital image data output. This channel
will be characterized by the information capacity,
which is the upper limit on the ability of the imager
to collect information about the scene. Although it has
never become a mainstream way of characterizing

imaging systems, there has over the years been a fair
number of papers discussing the information theory
of imaging systems (see, for example, [1–6]). However,
these papers have generally only considered the
monochrome imaging case. References [5,6] use an in-
formation-theoretic approach to derive a single figure
of merit for conventional color cameras.

Particular to spectral imaging is the need for
spatial coregistration of multiple bands. There will
inevitably be some degree of coregistration error re-
sulting from imperfections in the imaging process,
such as chromatic aberrations or inaccuracies in scan
movement, depending on the type of spectral imager.
Early works [7] stipulated that coregistration error
should not affect the recorded signal by more than
5%, which is still large compared to the noise level,
on the order of 1% or better for current sensors. It
is common to see coregistration specifications of 10%
andmore, both in the scientific literature and in com-
mercial imagers, particularly for imagers with a
high pixel count. There is at present no widely stan-
dardized way to fully characterize spatial coregistra-
tion errors. Imaging spectrometers are customarily
characterized in terms of “keystone” distortion,
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which measures only position differences between
bands and not differences in their point spread func-
tion (PSF) shape, and the corresponding “smile” dis-
tortion in the spectral dimension. Recently, however,
a simple metric has been shown to express the com-
bined effect of all types of coregistration error [8].

For a given amount of coregistration error, coregis-
tration will tend to be improved if the detector ele-
ments that define the pixel size are made larger, but
at the expense of lower spatial resolution. This is
illustrated in Fig. 1 for a very simple case with two
bands, whose pixel footprints in a scene are shown
with red and blue rectangles. On the left is a case
with two spatial pixels and a spatial coregistration
error that is a large fraction of the pixel size, leading
to significant errors in the recorded “spectrum” (with
only two bands here). On the right is a case where the
pixel footprint is twice as large, with the same
amount of distortion. The latter case has a smaller
amount of coregistration error in the recorded spec-
trum, as well as lower noise due to collection of more
light, but only half as many pixels. In both cases it is
assumed that the pixel spectrum is processed as if
there was no coregistration error, an assumption
that is tacitly made in practically all hyperspectral
image processing. The issue discussed in this paper
is basically how to choose between these two cases. In
the design or characterization of a spectral imager,
it is not immediately clear how to balance coregistra-
tion performance against resolution, unless very
specific application requirements are given. This
trade-off is an example of the difficulty in combining
different characteristics into a single figure of merit
for spectral imagers.

This paper proposes that information theory, in
combination with the coregistration metric, can
provide a figure of merit for spectral imagers, applic-
able to the trade-off between coregistration and pixel
count. The coregistration metric is used to express
the effect of coregistration error as an added noise,
which can be incorporated in amodel for the informa-
tion capacity of the imager. To illustrate the concept,
an analytic solution is derived for the simple task of
optimizing the detector pixel size, keeping the ima-
ging optics (and other image distortions) unchanged.
It is argued that the treatment can be extended to
include spectral coregistration error between bands,
to become a single performance metric that encom-
passes many characteristics of spectral imagers.

2. Signal Model

Consider a single pixel in a single spectral band of a
spectral imager. The basic output signal is the num-
ber of excited photoelectrons N for a given incoming
spectral radiance L:

N � LηtAωΔλ
λ

hc
:

Here η is the quantum efficiency, t is the integration
time,A is the area of the entrance pupil of the imager,
ω is the solid angle subtended by the pixel in the
scene, Δλ is the spectral bandwidth, λ is the wave-
length, and λ∕hc is the photon energy. If the mean
radiance level in the scene is L̄ and the imager has
P pixels in its field of view, the total number of photo-
electrons for all pixels in the band is

Ntot � PL̄ηtAωΔλ
λ

hc
:

The mean number of photoelectrons per pixel is
then

N̄ � Ntot

P
:

The fundamental noise mechanism is Poisson fluc-
tuations inN. The mean of this “photon noise” can be
estimated as

ΔNphot ≈

�����
N̄

p
: (1)

Dark current and readout noise are neglected here
for simplicity but would have to be included for
cases where they become significant contributions
to ΔNphot.

Coregistration imperfections will introduce errors
in the signal, depending on the scene. In the common
case where the pixel contains an inhomogeneous
mixture of scene materials, the weighting of the ma-
terials in the pixel signal may differ from band to
band due to spatial coregistration error. As shown
in [8], the maximum weighting error between two
bands i and j in a pixel p is given by the metric

Fig. 1. (Color online) Illustration of the trade-off between coregis-
tration error and pixel count. The figure illustrates the pixel
footprint for two bands, shown as red and blue rectangles, for two
cases. There is a fixed amount of spatial distortion, caused by the
imaging optics or other imperfections in the imaging process. On
the left is a case with small pixels and a spatial coregistration error
that is a large fraction of the pixel size. On the right is a case with
larger but fewer pixels. Then the relative amount of distortion is
reduced, and also the signal-to-noise ratio improves. The scene is
assumed to contain contrasts on a wide range of spatial scales,
illustrated here by an urban landscape. Here it is not obvious
how to make the important trade-off between coregistration and
spatial resolution in spectral imaging. This paper proposes infor-
mation capacity as a relevant figure of merit.
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εs;ijp � 1
2

ZZ
x;y

jf jp�x; y� − f ip�x; y�jdxdy: (2)

Here, f ip and f jp are the normalized sampling point
spread functions (SPSFs) for the recording of light at
pixel p in band i and j, and the integration is over the
image plane. The overall coregistration performance
can be expressed as an average of Eq. (2) over all
bands and pixels, denoted ε̄s.

Imaging systems are normally designed such that
the SPSF for one pixel overlaps somewhat with that
of its neighbors (since nonoverlapping SPSFs would
imply spatial subsampling of the image plane). Then
the between-band SPSF differences characterized by
Eq. (2) will introduce differences in the signal influ-
ence from scene materials present in neighboring
pixels [8,9]. Therefore, the effect of coregistration
errors on the signal can be approximately modeled
by assuming proportionality with the amount of
nearest-neighbor contrast in the image. Let the
mean difference between nearest-neighbor pixels
be αN̄ with 0 < α < 1. The mean amplitude of signal
errors due to misregistration can be estimated by

ΔNcoreg ≈ ε̄sαN̄: (3)

This approximation may be somewhat coarse, but in
the limit of a uniform scene it becomes exact, since
α � 0, and it is clear from physics that there can
be no signal error due to misregistration in the op-
tics. Note that it may be reasonable to use a higher
value of α than the mean neighbor difference, to
account for the higher risk of signal errors near ma-
terial boundaries in the scene, which typically make
up only a small fraction of the image area. If a value
α � 1 is chosen, Eq. (3) expresses the largest possible
error for any scene under the assumption [Eq. (3)]. (It
is conceivable to have an even larger error in cases
where the PSF is smaller than the pixel sampling
interval, which is unlikely in a practical imager de-
sign.) The signal contamination due to coregistration
will here be represented as additive Gaussian noise
with zero mean and standard deviation ε̄sαN̄.

3. Estimating the Information Capacity

Consider the task of choosing the optimal pixel size
for a spectral imager where at least one spatial di-
mension is imaged by a photodetector array. Exam-
ples include the imaging spectrometer (one spatial
dimension imaged, the other scanned) or the filter
wheel camera (two-dimensional spatial imaging with
sequential recording of bands). The array determines
the pixel size and the number of pixels. Assume
that the imager has a total field of view Ω divided
into P spatial pixels. Regardless of the measurement
concept employed, the pixel field of view ω tends to
vary as

ω � Ω
P
:

Assume that the pixel size is increased by binning
or by increasing the detector element size, while
keeping the imaging optics unchanged. This will
tend to reduce the coregistration error εs inversely
proportional to the change in pixel size. As a result,
the error in the signal is reduced, and the informa-
tion collection capacity of a single pixel tends to in-
crease. On the other hand, the reduction in the total
number of pixels tends to decrease the total amount
of information collected by the imager. In the follow-
ing, it is shown how information capacity optimiza-
tion can be used to choose the pixel size in this
simple model case.

The metric ε̄s specifies coregistration performance
for the complete imager at a particular pixel size. The
performance of the optics can be expressed indepen-
dently of the pixel size by the ratio

Plim � P
ε̄s
;

which will tend to stay constant as the pixel size is
varied. Approximately at this “limiting number of
pixels,” the coregistration error would be ε̄s � 1. The
signal distortion due to coregistration error can then
be expressed as

ΔNcoreg � ε̄sαN̄ � PαN̄
Plim

� αNtot

Plim
:

The ratio of coregistration error to photon noise
becomes

ΔNcoreg

ΔNphot
� P

Plim
α

�����
N̄

p
� α

�������������
PNtot

p
Plim

: (4)

The ratio [Eq. (4)] should be less than 1 for the sensor
to approach ideal behavior. This expression sum-
marizes several of the trade-offs in the design of a
spectral imager. The relative importance of coregis-
tration error tends to increase with increasing num-
ber of pixels. Also, the coregistration error increases
linearly with the signal level, faster than the photon
noise, so that the relative impact of coregistration is
strongest when the signal is large. (Not captured in
this expression is the coupling between coregistra-
tion error and the numerical aperture of the lens,
which affects the signal level.) An important point
here is that Eq. (4) does not provide a criterion for
optimal choice of the pixel size in the presence of a
given amount of coregistration error, since it does not
account for the utility of a higher number of pixels.

Assume that the pixels are binned spatially in
groups of b pixels, or that the area of the photodetector
elements is changed by a factor b. Then b < 1 can be
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taken to represent a reduction in element size. After
binning or element resizing, the photoelectron count
changes proportionally to b. The coregistration error
ε̄s tends to vary inversely proportionally to b. The re-
sulting signal error will depend on b in a way that
depends on the spatial frequency distribution of the
scene, so that α becomes a function of b. However, for
natural scenes, contrasts tend to vary inversely pro-
portionally to spatial frequency [10]. Thus for the
purposes of formulating an illustrative model, it is
not unreasonable to assume α to be independent of
b as long as the size of the binned pixels is larger
than the width of the PSF of the optics.

To model the imaging process as a communication
channel, the pixel count is analogous to the band-
width in a regular communication channel, and the
total noise has contributions from photon noise and
coregistration error. The amount of information that
can be collected by a single pixel in a single band is
determined only by the signal level (which also deter-
mines photon noise) and coregistration performance
(represented as added noise), according to some func-
tion C�N̄; ε̄s�, which gives the information capacity in
bits. A readout of all pixels in the band then produces
PC�N̄; ε̄s� bits of information.

If P0, N̄0, and ε̄s0 are taken to represent a reference
case for which b � 1 and the information capacity per
pixel is C�N̄0; ε̄s0�, then the information capacity
after binning by a factor b becomes

C�N0; b� �
P0

b
C
�
bN̄0;

ε̄s0
b

�
: (5)

for one band.
For information channels with stationary additive

Gaussian noise, the capacity is given by the well-
known Shannon theorem. This theorem is at best
is an approximation for optical imaging, where the
noise is signal dependent according to Eq. (1). For
channels where Poisson noise is dominating or signif-
icant, a similar theorem does not exist. However,
several works have provided upper and lower capa-
city bounds for channel models relevant to optical
imaging, including [11–13]. Reference [12] gives
bounds for a Poisson channel with a dark current.
Reference [13] gives bounds for a Poisson channel
approximated as a signal-dependent Gaussian chan-
nel, with additive Gaussian noise. The applicability
of these bounds as approximations to the channel
capacity needs further investigation for practical
use. It may be necessary to resort to numerical
calculation of channel capacity [14], due to the lack
of an accurate analytical capacity model for relevant
channel characteristics.

4. Analytical Optimization in an Example Case

As an example, assume a hypothetical imaging spec-
trometer with a spatial coregistration error of
ε̄s � 0.15, representative of the “keystone” distortion
specified for several sensors currently used for
remote sensing. The value of α can be estimated from

real images or from some model of image contrasts,
depending on the application. For example, α ≈ 0.05
for a typical remote sensing scene with resolved sha-
dow areas recorded by an airborne hyperspectral
sensor in the visible and near infrared (VNIR) spec-
tral range. For this value of α, the ratio [Eq. (4)] is
unity for a mean signal of N̄ ≈ 20; 000, representative
of commonly used VNIR hyperspectral imagers. With
the two equal noise contributions, the image can be
considered to have a total signal-to-noise ratio of
about 100. At higher signal levels, the signal-to-noise
ratio observed on a uniform scene area will be higher.
However, in average over the image, the effect of
coregistration error will then be larger than the
photon noise. An increase in detector pixel size, keep-
ing the same imaging optics, will tend to reduce both
the photon noise and the coregistration error, but at
the expense of lower spatial resolution and fewer
pixels.

The optimization of a spectral imager can be illu-
strated by using published analytical capacity
bounds as approximations to the channel capacity
C. For the purpose of the analysis here, the most re-
levant case is the lower capacity bound for a Poisson
channel with a constrained mean value from [12]
and [13]. When inserting εsαN̄, respectively, as the
variance of the dark current and of the additive
Gaussian noise, the lower bounds for the mean-
constrained case in both these papers reduce to
the same expression for the channel capacity of a
single pixel in a single band when N̄ ≫ 1:

C�N̄; εs� ≥
1
2

log N̄ − ε̄sα

��������
πN̄
2

s
; (6)

given in nats∕pixel. (1 nat � 1.44 bits.) This bound is
not tight in the limit of large added noise, where its
value can become negative, but for purposes of illus-
tration it is used as a model of the channel capa-
city here.

Figure 2 shows the resulting information capacity
estimate for one spectral band, for particular choices
of ε̄s0 and b in the example case. Here a value α �
0.15 has been used to emphasize signal integrity at
the scene edges more strongly than using the mean
neighbor difference value from the example above.
The figure illustrates how the information capacity
reaches an optimum for a particular pixel count if
the distortions of the optics are held fixed. If the dis-
tortions in the optics are large, it is clearly beneficial
to improve coregistration by making the pixels
larger, even if the pixel count is correspondingly re-
duced. The figure illustrates that coregistration error
can lead to a large loss of information.

5. Extension to Spectral Coregistration and an Overall
Figure of Merit

In the spectral dimension, it is important that all
pixels in a given band exhibit the same spectral
response. For many types of spectral imagers, a
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trade-off exists between this spectral coregistration
and the number of bands. In [8], it is discussed
how a metric similar to Eq. (2) can be applied in
the spectral dimension. Signal errors resulting from
imperfect registration of spectral bands between pix-
els can be estimated in an analogous way to Eq. (3).
These errors can be added as an independent noise
contribution in the same way as for spatial coregis-
tration error above. Then the information capacity
can be taken as a figure of merit even for the spectral
resolution trade-off. In analogy with pixel size varia-
tion, let s be a spectral binning factor. Let B0 be
the number of bands for s � 1 and ε̄λ0 be the mean
spectral coregistration error [8]. N̄0 is the mean
photoelectron count for s � 1 and b � 1, for simpli-
city assumed to be the same in all bands. Then, in
analogy with Eq. (5), the information capacity of
the imager, incorporating all bands and all pixels,
will tend to vary as

C�N0; b; s� �
P0

b
B0

s
C
�
bsN̄0;

�����������������������������������������
ε̄s0
b

�
2
� β

�
ε̄λ0
s

�
2

s �
;

(7)

where the spectral and spatial contributions to core-
gistration error are assumed independent and β is a
factor representing the relative strength of spectral
coregistration error. This outlines how information
capacity could be used to optimize both the spatial

and spectral resolution. However, the phenomenol-
ogy of signal variation along the spectral dimension
is very different from that of spatial contrasts and is
strongly dependent on the spectral range and resolu-
tion. Therefore, the value of β as well as the validity
of Eq. (7) will have to be determined for the applica-
tions of interest, and a detailed treatment is not
given here.

6. Discussion and Conclusions

Note that throughN̄0, the information capacity
[Eq. (7)] also characterizes the light collection effi-
ciency of the imager expressed by η,A, and ω. By sum-
ming over all bands, using proper wavelength
dependencies of L̄ and η, one obtains a total informa-
tion collection capacity that captures the effect of
signal-to-noise, spectral/spatial coregistration error,
number of bands, and number of pixels in one figure
of merit. The overall information capacity should
also take into account image blur introduced by the
SPSF. The application is represented by the simple
parameters L̄, α, and β, making the information
capacity a fairly generic measure of performance.
This could be useful either for comparative bench-
marking of instruments for a given application or
for overall design optimization. A detailed discussion
of such a figure of merit will not be undertaken here.

Themain point of this paper has been to argue that
the combination of the coregistration metric with in-
formation theory enables estimation of the informa-
tion capacity of a spectral imager. The information
capacity captures many of the essential performance
characteristics in a single figure of merit that is
not directly tied to a particular application. Possibly,
information capacity could be developed into a stan-
dardized performance metric for spectral imagers.

The analytical treatment in the example above
considers the very basic case of optimizing the pixel
size while keeping the imaging optics fixed. This can
be employed as an element in the design of imaging
optics by repeating the pixel size optimization in
each iteration of the design, using the information
capacity as a figure of merit for optimization.

The results illustrate that coregistration error can
lead to a strong reduction in the information capa-
city. This degradation is most significant under con-
ditions where the ratio of signal to photon noise
is high.
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