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Abstract

This paper provides a semantics for input/input output logic based on for-
mal concept analysis. The central result shows that an input/output logic
axiomatised by a relation R is the same as the logic induced by deriving
pairs from the concept lattice generated by R using a ∧- and ∨-classical
Scott consequence relation. This correspondence offers powerful analytical
techniques for classifying, visualising and analysing input/output relations,
revealing implicit hierarchical structure and/or natural clusterings and de-
pendencies. The application of all formal developments are illustrated by a
worked example towards the end.
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1. Introduction

Input/output logic is a branch of conditional logic, broadly conceived,
whose distinguishing feature is that it does not make any assumptions about
the ultimate nature of the relation that holds between a set of conditions
and its consequences. That may not sound like much, but it makes a real
difference, both formally and philosophically.

Philosophically, it goes against a habit of logicians of assimilating all
kinds of connections between a condition and a consequence to the inference
paradigm: causality becomes causal inference, by which is meant the drawing
of conclusions about a causal connection based on the conditions for the
occurrence of an effect. The study of sets of norms becomes the study of
normative reasoning, by which is usually meant the application of a practical
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syllogism or the drawing of a conclusion about the optimality of some state
of affairs.

Although this method of investigation is sometimes natural, it is certainly
not inevitable, nor is it always the most direct strategy available. After all,
studying causality by way of our reasoning about it is a somewhat round-
about way of approaching the object. The causal relation itself is not an
inference relation, strictly speaking, it is a relation between things or natural
phenomena. At best, co-variation of causes and effects correspond to condi-
tionals only in a derivative sense therefore. Analogical remarks apply to sets
of norms: a norm is not primarily a conditional, it is a stipulation that holds
by decree.

Input/output logic gives expression to this latter way of looking at things.
A correlation between a condition and a consequence is seen as just an ele-
ment in an ordinary binary relation between states of affairs as described by
formulae. The ultimate nature and origin of this relation is left open, which
just means that input/output logic does not foreclose any interpretational
options.

On a formal level, the thrust of this general stance—which is justified
in more detail in [11]—is to shift the emphasis from a theory formulated in
terms of the behaviour of object-language connectives to a theory formulated
in terms of the behaviour of sets and relations. Its methodological signifi-
cance consists in the fact that it allots to philosophical logic a parcel in a
wider mathematical landscape where logic is naturally tangent upon e.g. lat-
tice theory and universal algebra.

The present discussion proceeds subject to this general conception to
study the particular tangiental point which exists between input/output logic
and the branch of lattice theory called formal concept analysis (FCA for
short). The basic idea is this: formal concept lattices offer powerful, well-
studied, analytical techniques for classifying, visualising and analysing binary
relations, revealing implicit hierarchical structure and/or natural clusterings
and dependencies between the objects of the relation [5]. Since the set of
axioms in any given input/output logic is just a binary relation between
formulae, it ought to be possible to apply results from FCA to the study of
forms of conditionality that are not naturally assimilated to the model based
on inference relations and/or conditionals—e.g. to sets of norms (an example
that will be used for illustration purposes throughout the paper). This idea
was first proposed in [20], but without being developed in much detail.
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The principal research question of the present paper is the following:
given a binary relation G over sets of formulae, what is the relation between
the concept lattice induced by G on the one hand and the input/output logic
axiomatised by G on the other? The paper does not answer this question
generally, but limits itself to a couple of more specific results summarised
below:

First, there is a faithful embedding into FCA of the system of input/output
logic called basic output in the nomenclature of Makinson and van der Torre.
More precisely, we have that A) the concept lattice induced by the relation
G is equivalent (in a sense to be made precise) to G itself modulo basic out-
put, and B) there is a rule for evaluating any pair of formulae (a, b) against
the concept lattice induced by G that answers yes iff (a, b) is in system of
basic output axiomatised by G. Stated differently, for any given system of
basic output, the concept lattice induced by the axioms of that system can
A) itself be turned into a set of axioms for the system, and B) constitutes a
semantic structure for it.

The second result concerns the system of input/output logic that Makin-
son and van der Torre call basic reusable output, which is the system that
results from adding a rule of cumulative transitivity to the set of rules for
basic output. The theme is now varied a bit: whereas it would be convenient
to try and extend the results for basic output in the straightforward manner
and ask whether the concept lattice induced by G can be turned into a set of
axioms for the system of basic reusable output having G as a set of axioms,
this would not be a very interesting exercise given the goals of the present
paper. The central concern of the present paper is to bring input/output
logic into the ambit of formal concept analysis, more specifically to make
it possible to draw on lattice theoretic techniques in the analysis of a given
input/output system. Obviously, this requires information to be encoded in
the concept lattice. Yet, if one were to extend the results for basic output in
the straightforward manner, then the set of generators/axioms of the logic
would remain the same and so would the corresponding concept lattice. In
other words, the concept lattice would not reflect the change of logic.

Instead therefore, the strategy that chosen is to encode pairs whose deriva-
tion is licensed by the rule of cumulative transitivity into the concept lattice
itself by extending the relation G to a larger relation G+ that still induces a
finite lattice. This process is referred to as saturating the axioms—or simply
as saturation. It is proved that saturation yields an axiomatisation for a sys-
tem of basic reusable output analogous to A) above, although the procedure
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is not exhaustive enough to supply a non-trivial semantics in the sense of
B).

This notwithstanding, it is argued that saturation is instructive and help-
ful in precisely the way it was hoped that it would be, namely as offering a
lattice theoretic basis for exploration of a transitive input/output logic. This
claim is substantiated by working through an example towards the end of
the paper, where it is suggested that the modular structure of a corpus of
norms may fruitfully be analysed along lattice theoretic lines.

2. Preliminaries

Notation. Let L be a language containing a countable set of elementary let-
ters. The zero-ary falsum ⊥ is counted among the connectives of L, and >
is defined as ¬⊥. Lower case letters a, b, c... range over formulae of L, upper
case letters A,B,C, . . . range over sets of formulae, and W - Z over arbitrary
sets. As usual ∧ and ∨ denote classical conjunction and disjunction, respec-
tively, but will do dual service as infima and suprema in a lattice. That is,
when A is a finite set of formulae then

∧
A is taken to denote the conjunc-

tion and
∨
A the disjunction of its finitely many elements, whilst if X is an

unspecified set then
∧
X is meet and

∨
X is join. The upper case letter G

ranges over L × L, that is, G denotes a binary relation over sentences in L.
For arbitrary relations of any arity the letter R will be used. For any relation
R, Ri denotes the projection of R onto its i-th coordinate, whereas r, s, . . .
range over elements of R. We adopt the convention of writing ri instead of
{r}i.

2.1. Generalized consequence relations

The developments that follow assume a background sentential logic, typ-
ically classical logic, which it will be convenient to present in terms of a
generalized consequence relation `⊆ 2L × 2L on a language L satisfying the
following three conditions:

Reflexivity: a ` a
Thinning: If A ` B then A′, A ` B,B′
Cut: If A, a ` B and A ` a,B then A ` B

Special care is required when dealing with the empty set, which is equivalent
to the falsum on the right of the turnstile ` and to the verum on the left of
it. That is, A ` ∅ iff A `⊥ and ∅ ` B iff > ` B.
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It is common to interpret the comma on the left of the turnstile as con-
junction and the comma on the right as disjunction, giving the following
informal reading of A,B ` C,D: if the conjunction of sentences in the union
of A and B is true then necessarily the disjunction of sentences in the union
of C and D is true as well. It is in general dangerous to understand this
in terms of classical conjunction and disjunction, since the meaning and be-
haviour of the comma depends on the relation `. However, it is a reading
that is encouraged for the purposes of the present paper, since consequence
relations will henceforth be assumed to be ∧-classical and ∨-classical (cf. [7,
chp. 1.1.]):

Definition 2.1. For arbitrarily chosen a and b

1. ` is ∨-classical iff a ∨ b ` a, b, a ` a ∨ b and b ` a ∨ b.
2. ` is ∧-classical iff a, b ` a ∧ b, a ∧ b ` a and a ∧ b ` b.

2.2. Input/output logic

The theory of input/output logic was first developed in Makinson and
van der Torre [13, 14, 15], where four systems are singled out for special
attention: simple-minded output, basic output (making intelligent use of
disjunctive inputs), simple-minded reusable output (in which outputs may
be recycled as inputs), and basic reusable output [13]. These are defined
semantically and characterised by different constellations of derivation rules
taken from the following set:

CT
(a, b), (a ∧ b, c)

(a, c)
AND

(a, b), (a, c)

(a, b ∧ c)
WO

(a, b)

(a, c)
if b ` c

OR
(c, b), (a, b)

(a ∨ c, b)
SI

(c, b)

(a, b)
if a ` c

Different choices of rules give different relations of derivability 
⊆ 2L×L×L,
where the concept of derivability is defined as follows:

Definition 2.2. A rule R of arity n ≥ 0 is an n + 1-ary relation over the
set L× L of pairs of formulae in the language L. For any sequence of pairs
((a1, b1), . . . , (an, bn), (an+1, bn+1)) ∈ R the premises of the rule is the subse-
quence (a1, b1), . . . , (an, bn) and (an+1, bn+1) is its conclusion. A derivation
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of a pair (a, b) from a set of input/output axioms G ⊆ L× L by means of a
set of rules X is understood to be a tree with (a, b) at the root, each non-leaf
node related to its immediate parents by the inverse of a rule in X, and each
leaf node an element of G or identical to (>,>).

Note that definition 2.2 hard-wires the axiom (>,>) into the very concept of
derivability from G irrespective of whether or not G contains it. Anomalous,
but harmless, this axiom reflects the original input/output semantics where
(>,>) follows semantically from any G modulo any input/output operator.
The concept semantics developed in the section 3 does not have this feature,
and the pair (>,>) will eventually drop out of view.

Table 1 summarizes the nomenclature of [13]. Here, 
n denotes deriv-
ability according to definition 2.2 for different choices of rule set identified
by the subscript n:

Rule set 
n Name

WO,SO,AND 
1 Simple-minded output
WO,SO,AND,OR 
2 Basic output
WO,SO,AND,CT 
3 Reusable output
WO,SO,AND,OR,CT 
4 Basic reusable output

Table 1: Input/output logics.

Each 
n is a Tarski consequence relation, that is, it satisfies the following
conditions of reflexivity, monotony and cumulative transitivity:

R: g 
n g any g ∈ G
M: If G 
n g then G,G′ 
n g
CT: If G 
n g for each g ∈ G′ and G,G′ 
n g then G′ 
n g

Each relation 
n may also be seen as an operation taking a relation G to a
larger relation Cn(G) =df {(a, b) : G 
n (a, b)}. As so defined Cn is a closure
operator satisfying inclusion, monotony and idempotence:

In: G ⊆ Cn(G)
M: If G ⊆ G′ then Cn(G) ⊆ Cn(G′)
Id: Cn(G) = Cn(Cn(G))

The two representations will be used interchangeably.
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Note that in the present paper there are now two kinds of consequence
relation in play: the relation 
n between 2L×L and L, and the relation `
between 2L and 2L. The former is a Tarski consequence relation whereas the
latter is a generalized consequence relation, aka. Scott consequence relation.
The two should not be conflated.

2.3. Formal concept analysis

Formal concept analysis is a mathematical theory of data analysis based
on lattice theory. It offers a principled way of deriving an implicit classi-
ficatory hierarchy from a dataset, grouping objects by the properties they
satisfy. The taxons of such a hierarchy are called formal concepts which are
considered to be determined by their extent and intent : the extent consists
of all objects belonging to the concept, while the intent is the collection of
all attributes shared by the objects [4, p. 65]. The relation between a set of
objects and a set of attributes is called a context:

Definition 2.3. A context is a triple (W,X,R) where W and X are sets
and R ⊆ W × X. The elements of W and X are called objects and at-
tributes respectively.

Obviously, any binary relation R can be considered a context with W = R1

and X = R2. Now, for Y ⊆ W and Z ⊆ X, define

Definition 2.4.

1. Y B =df {x ∈ X : (∀w ∈ Y )(w, x) ∈ R}
2. ZC =df {w ∈ W : (∀x ∈ Z)(w, x) ∈ R}

so Y B is the set of attributes common to all the objects in Y and ZC is the
set of objects possessing all the attributes in Z [4, p. 67]. The pair ( C, B)
forms a Galois connection between 2Y and 2Z in which B is the lower- and C

the upper adjoint:

Theorem 2.5. If (W,X,R) is a context, and if Y1, Y2, Y3 ⊆ W are extents
and Z1, Z2, Z3 ⊆ X are intents, then

1) Y1 ⊆ Y2 ⇒ Y B2 ⊆ Y B1
2) Y ⊆ Y BC

3) Y B = Y BCB

1’) Z1 ⊆ Z2 ⇒ ZC2 ⊆ ZC1
2’) Z ⊆ ZCB

3’) ZC = Y CBC
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4) Y ⊆ ZC ⇔ Z ⊆ Y B ⇔ Y × Z ⊆ R

A concept is a pair (Y, Z) of objects and attributes that is evenly balanced
in the sense that Z contains just those properties that pertain to all objects
in Y , whereas Y is precisely the set of objects that have all the properties in
Z:

Definition 2.6. Let (W,X,R) be a context, let Y ⊆ W be an extent and
Z ⊆ X an intent. Then (Y, Z) is a concept of (W,X,R) iff Y B = Z and
ZC = Y .

The notational convention is to denote the set of all the concepts of a context
(W,X,R) as B(W,X,R). In the case where W = R1 and X = R2 this
notation will henceforth be simplified to B(R). The following lemmata are
all standard and proofs are therefore omitted:

Lemma 2.7. Each concept of a context (W,X,R) has the form (Y BC, Y B)
for some subset Y ⊆ W and the form (ZC, ZCB) for some subset Z ⊆ X.
Conversely, all such pairs are concepts.

Lemma 2.8. If (Y, Z) ∈ B(W,X,R) then Y × Z ⊆ W .

Lemma 2.9. {(∅, ∅)} = B(R) iff R = ∅

The next lemma is also useful, and since the present author is not aware of
it being explicitly recorded anywhere, a verification is included.

Lemma 2.10 (Concept monotony). If Y×Z ⊆ G then there is a (Y ′, Z ′) ∈
B(G) such that Y ⊆ Y ′ and Z ⊆ Z ′.

Proof. Y × Z ⊆ G entails Z ⊆ Y B and Y ⊆ ZC by theorem 2.5(4). By
lemma 2.7 ((ZC)BC, (ZC)B) ∈ B(G). Now, ZC ⊆ (ZC)BC by 2.5(2) whence
Y ⊆ (ZC)BC by Y ⊆ ZC. Since Z ⊆ (ZC)B = ZCB by 2.5(2’), the proof is
complete.

�

Concepts can be ordered by extents or intents by putting (Y1, Z1) ≤
(Y2, Z2) either iff Y1 ⊆ Y2 or iff Z2 ⊆ Z1. The two alternatives give the same
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ordering since upper and lower adjoints of Galois connections are antitone
(by theorem 2.5). The fundamental theorem of formal concept analysis says
that the set of concept B(W,X,R) of a context (W,X,R) forms a complete
lattice under ≤ in which meet and join are given by,∨

j∈J

(Yj, Zj) =

(
(
⋃
j∈J

Yj)
BC,

⋂
j∈J

Zj

)
∧
j∈J

(Yj, Zj) =

(⋂
j∈J

Yj, (
⋃
j∈J

Zj)
CB

)
Moreover, the relation R is encoded in, and can be read off from, the lattice
B(W,X,R). Put

γ(x) =df ({y}BC, {y}B) for any y ∈ Y and

µ(z) =df ({z}C, {z}CB) for any z ∈ Z

then γ(y) ≤ µ(z) iff (y, z) ∈ R. Conversely, the extent and intent of any
concept c ∈ B(W,X,R) can be read off using these same functions:

(Yc, Zc) := ({x ∈ Y : γ(x) ≤ c}, {y ∈ Z : c ≤ µ(y)}) (1)

Example 2.11. Fig. 1 shows a cross-table for a binary relation R and the
concept lattice it gives rise to. Every concept of form ({y}B, {y}BC) for some
object w ∈ R1 has been labelled γ(w), and every concept of form ({z}C, {z}CB)
for some attribute z ∈ R2 has been labelled µ(z). The fundamental theorem of
concept lattices says, essentially, that the extent and intent of any concept c in
the lattice can be read off from the labels in (↓ c, ↑ c) by letting every argument
to µ be an intent and every argument to γ be an extent of the concept in
question. For instance the concept labelled γ(x3) is ({x2, x3}, {x2, y1}). Note
that it is not a requirement of concept lattices, although often assumed, that
extents and intents be disjoint. This particular liberty is essential for the
FCA approach to basic reusable output in section 4.

3. Concept lattices and basic output.

The connection between concept lattices and input/output logic is based
on giving concepts a logical interpretation: recall that (Y, Z) being a concept
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◦

◦ ◦

◦ ◦ ◦

◦

◦

µ(y1) µ(x2)

µ(y2), γ(x1) γ(x3) γ(x4), µ(y3)

γ(x2)

x2 y2 y3 y4
x1 × ×
x2 × × ×
x3 × ×
x4 × ×

Figure 1: A context and its associated concept lattice

means that Y consists of the set of objects which is such that each object in
Y can be ascribed all attributes in Z. When a concept (A,B) in question
is determined by a binary relation G over formulae, it is natural to interpret
this as saying that each formula in A constitutes a sufficient condition for
every formula in B to obtain. By extension of this thought it is natural to
understand extents disjunctively and intents conjunctively.

Henceforth, this interpretation of concepts (restricted, of course, to con-
cept lattices that are generated by relations over formulae) will be made
explicit using a function ψ:

Definition 3.1. (A,B)ψ =df (
∨
A,
∧
B), where

∨
∅ is defined as ⊥ and

∧
∅

as >.

Clearly, ψ as so defined is injective. For any set X of concepts Xψ =df {cψ :
ψ ∈ X}.

As mentioned already, the pair (>,>) will not be valid in the concept
semantics for basic output that is to be developed in the present section. It
therefore needs to be removed from the concept of derivability as well. From
here on, derivability means:

Definition 3.2. A derivation of a pair (a, b) from G, given a set X of
rules, is understood to be a tree with (a, b) at the root, each non-leaf node
related to its immediate parents by the inverse of a rule in X, and each leaf
node an element of G.

Bearing this adjustment in mind, the nomenclature from table 1 will be
reused as is. For instance 
2 will continue to denote the input/output logic
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characterised by the set of rules {SI,AND,WO,OR}, only it is understood
that derivability is according to definition 3.2.

Turning now to the first substantial theorem of the present paper, it says
that the concept lattice induced by a relation G over formulae gives rise to
a set of axioms that are equivalent to G modulo basic output:

Theorem 3.3. If G is non-empty then G 
2 (a, b) iff B(G)ψ 
2 (a, b).

Proof. For the left-to-right direction, it suffices to show that B(G)ψ 
2 (c, d)
for every (c, d) ∈ G, for if G 
2 (a, b), then it follows by monotony for 
2 that
B(G)ψ, G 
2 (a, b) whence B(G)ψ 
2 (a, b) by cumulative transitivity for 
2.
So suppose (c, d) ∈ G. We have ({c}BC, {c}B) ∈ B(G) by lemma 2.7, and
c ∈ {c}BC by theorem 2.5(2). Therefore, by reflexivity and thinning for ` it
follows that c ` {c}BC, whence c `

∨
{c}BC by ∨-classicality. As regards {c}B

we have d ∈ {c}B since (c, d) ∈ G. Since (
∨
{c}BC,

∧
{c}B) ∈ B(G)ψ, by the

definition of ψ, successive applications of WO and SI now yields B(G)ψ 
2

(c, d) as desired. For the converse inclusion, it suffices, by reasoning similar
to that above, to show that (c, d) ∈ B(G)ψ implies G 
2 (c, d). Suppose
(
∨
C,
∧
D) ∈ B(G)ψ and thus by the injectiveness of ψ that (C,D) ∈ B(G).

For the limiting case that C = ∅ we have
∨
C =⊥. Since G is non-empty

by assumption it follows by lemma 2.9 that D 6= ∅. Thus there are pairs
(ek, dk) ∈ G for k ∈ K such that

∧
k∈K dk a` D. By SI we have G 
2 (⊥, dk)

for k ∈ K, whence G 
2 (⊥,
∧
k∈K dk) by AND. Since C = ∅ we have∨

C =⊥ so G 
2 (
∨
C,
∧
D) by SI as desired. For the limiting case that

D = ∅ we have
∧
D = >. Since G is non-empty by assumption it follows

by lemma 2.9 that C 6= ∅. Thus there are pairs (ek, d) ∈ G for k ∈ K
such that

∨
k∈K ek a` C. By WO we have G 
2 (ek,>) for k ∈ K, whence

G 
2 (
∨
k∈K , ek) by OR. Since D = ∅ we have

∧
D = > so G 
2 (

∨
C,
∧
D)

by WO as desired. For the principal case that C 6= ∅ 6= D suppose that
C = {c1, . . . , cn} and D = {d1, . . . , dk}. Since D = CB we have D ⊆ G(ci)
for every 1 ≤ i ≤ n, whence (ci, dj) ∈ G for every 1 ≤ j ≤ k. It follows by

AND that (ci,
∧k
j=1 dk) is 
2-derivable from G. Therefore (

∨n
i=1 ci,

∧
D) is

derivable from G by OR whence (
∨
C,
∧
D) is derivable from G by SI.

�

Note that the correspondence breaks down in the limiting case that G is
empty, for then (∅, ∅) ∈ B(G), by lemma 2.9, whence (⊥,>) ∈ B(G)ψ
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by definition 3.1. Yet, ∅ 12 (⊥,>). The qualification to non-empty G is
therefore essential, and recurs throughout.

Whereas theorem 3.3 gives 
2-equivalent lattice representation for a set
of input/output axioms G, it is not yet a semantics since what the lattice
implies is specified with reference to 
2. The question is whether it is possible
to push the envelope and use the concept lattice itself as a semantic structure
against which to evaluate pairs of propositions. As it turns out, this question
has an affirmative answer.

Definition 3.4. Let EG(a) denote the set of concepts in B(G) whose extents
are each entailed by a. That is,

EG(a) =df {(A,B) ∈ B(G) | a ` A}

We have:

Theorem 3.5. Assume that G is non-empty and put EG(a) := {(Ai, Bi)}i∈I .
Define an operation O2 as follows:

(a, b) ∈ O2(G) iff {Bi}i∈I ` b

Then (a, b) ∈ O2(G) iff G 
2 (a, b).

Proof. For the right-to-left direction, we prove by induction on the deriva-
tion of (a, b) from G, using only the stipulated proof rules, that (a, b) ∈
O2(G). In the base case (a, b) ∈ G. Since a ∈ aBC it follows that (aBC, aB) =
(Ak, Bk) for some k ∈ I. Therefore since b ∈ aB we have {Bi}i∈I ` b as
desired. For input strengthening suppose (a, b) is derived from (a′, b) by SI.
Then by the induction hypothesis there is a family of concepts {(Ai, Bi)}i∈I
with a′ ` Ai for all i ∈ I and {Bi}i∈I ` b. It thus suffices to show that a ` Ai
for all i ∈ I, which follows from a ` a′ by cut. For output weakening suppose
(a, b) is derived from (a, b′) by WO. Then by the induction hypothesis there
is a family of concepts {(Ai, Bi)}i∈I with a ` Ai for all i ∈ I and {Bi}i∈I ` b′.
Since b′ ` b it thus follows by cut that {Bi}i∈I ` b and we are done. For
AND suppose (a, b1∧b2) is derived from (a, b1) and (a, b2). By the induction
hypothesis there are families of concepts {(Ai, Bi)}i∈I and {(Aj, Bj)}j∈J such
that a ` Ak for every k ∈ I∪J with {Bi}i∈I ` b1 and {Bj}j∈J ` b2. It follows
by ∧-classicality, thinning and cut that {Bi}i∈I ∪ {Bj}j∈J ` b1 ∧ b2 whence
the family of concepts {(Ak, Bk)}k∈I∪J has the required properties. For OR
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suppose (a1 ∨ a2, b) is derived from (a1, b) and (a2, b). By the induction hy-
pothesis there are families of concepts {(Ai, Bi)}i∈I and {(Aj, Bj)}j∈J such
that a ` Ak for every k ∈ I ∪ J with {Bi}i∈I ` b and {Bj}j∈J ` b. Since by
thinning {Bk}k∈I∪J ` b it follows that the family of concepts {(Ak, Bk)}k∈I∪J
has the required properties.

For the converse direction, suppose (a, b) ∈ O2(G). Then a ` Ai for each
i ∈ I and {Bi}i∈I ` b. It suffices to show for any j ∈ I that (a,

∧
Bj)

is derivable from G using only the stipulated proof rules, because then
(a,
∧
i∈I(
∧
Bi)) is derivable by AND, from which it follows in turn that

(a, b) is derivable by ∧-classicality and WO. Thus, consider any (Aj, Bj)
such that j ∈ I. There are four cases to consider:

1. Aj = ∅, Bj 6= ∅: Then since a ` Aj we have a ` ∅ and so a `⊥. Since
Bj 6= ∅ there are pairs (e1, b1), . . . , (en, bn) ∈ G such that {bi}1≤i≤n =
Bj. We thus have the following derivation

(e1, b1), . . . , (en, bn)
SI

(⊥, b1), . . . , (⊥, bn)
AND

(⊥,
∧n
i=1 bi)

SI
(a,
∧n
i=1 bi)

It follows that (a,
∧
Bj) is derivable from G as desired.

2. Aj 6= ∅, Bj = ∅: We wish to show that (a,
∧
Bj) is derivable from G.

Since Bj = ∅ we have
∧
Bj = >, so it suffices to show the derivability

of (a,>). Since Aj 6= ∅ there are pairs (a1, e1), . . . , (an, en) ∈ G such
that {ai}1≤i≤n = Aj. We therefore have the following derivation:

(a1, e1), . . . , (an, en)
WO

(a1,>), . . . , (an,>)
OR

(
∨n
i=1 ai,>)

SI Since a ` Aj iff a `
∨n
i=1 ai by ∨-classicality

(a,>)

3. Aj 6= ∅, Bj 6= ∅: Since (Aj, Bj) is a concept of B(G) it follows by
lemma 2.8 that Aj × Bj ⊆ G. Put Aj := {ai}1≤i≤n, then in particular
we have {ai} × Bj ⊆ G for each i. Therefore, (ai,

∧
Bj) is derivable

from G by repeated applications of AND. Thus, taking the (ai,
∧
Bj)

as leaves we have the following derivation from G:
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(a1,
∧
Bj), . . . , (an,

∧
Bj)

OR
(
∨n
i=1 ai,

∧
Bj)

SI Since a ` Aj iff a `
∨n
i=1 ai by ∨-classicality

(a,
∧
Bj)

4. Aj = ∅ = Bj: This case is ruled out by lemma 2.9 and the assumption
that G is non-empty.

�

Theorem 3.5 can be taken to show that not only can a set of axioms for
basic input/output logic be visualised as a concept lattice, the converse is
true as well: basic output has a reasonable claim to be called the logic of
concept lattices.

Example 3.6. A national labour and welfare service provides social benefits
that contribute to the financial security of citizens and other right holders.
Being entitled to a social benefit usually depends on certain required pieces
of information that are associated by law with the tasks in question. Assume
the following lists of tasks and information requirements:

Tasks: Information requirements:
a = declare incapacity to work g = verify sickness
b = grant sickness pay h = determine line of work
c = fund rehabilitation i = determine present education
d = fund education j = obtain prognosis

Let the relationship between tasks and information requirements be given by
the cross-table in fig 2. Then e.g. the element labelled γ(a) in the associ-
ated concept lattice tells us that declaration of incapacity to work requires
verification of sickness and line of work.

As regards the operation O2, consider the query “is it so that declaring
incapacity to work and funding rehabilitation requires determining present
line of work?”. This amounts to asking whether the pair (a∧ c, h) is seman-
tically valid according to the definition of O2. The query can be answered
by considering the concepts labelled γ(c) and γ(a) respectively, these are
{cc := ({c}, {j, h}), ca := ({a}, {g, h})} = EG(a∧c). Since {g, h}, {j, h} ` h,
the answer to the query is affirmative.
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◦

◦ ◦ ◦

◦ ◦ ◦

◦

µ(j) µ(h) γ(b), µ(g)

γ(d), µ(i) γ(c) γ(a)

⊥

>

g h i j
a × ×
b ×
c × ×
d × ×

Figure 2: A concept lattice for (some) social benefits.

4. Concept lattices and basic reusable output.

The previous section showed that any set of axioms for a system of basic
output can A) faithfully be represented as a concept lattice (theorem 3.3),
and B) that this concept lattice constitutes a semantic structure against
which any pair of formulae can be evaluated wrt. membership in the logic in
question (theorem 3.5). Taken together, these results offer a way of ‘mining’
a system of basic output using a blend of lattice theoretic techniques and
propositional logic.

It is an interesting question whether a similar result can be established
for the stronger, and for certain applications more interesting (cf. section 5)
system of basic reusable output. The two parts of this question will continue
to be referenced as A) and B) in the following, bearing in mind that it is now
derivability according to 
4 which is at issue.

Care needs to be taken when interpreting A), since it has in one sense
already been answered affirmatively: theorem 3.3 showed that G 
2 (a, b) iff
B(G)ψ 
2 (a, b). Since cumulative transitivity is a Horn rule, it follows that
G 
4 (a, b) iff B(G)ψ 
4 (a, b). Thus, representation of any 
4-system by
some lattice is immediate. It should be obvious, though, that no ground is
gained by this observation if the aim is to analyse the reuse feature of reusable
basic output using lattice theoretic techniques, for the lattice representation
B(G)ψ is the same as for basic output, whereas the logic of 
4 is stronger.
In other words, none of the information that is specific to 
4 is explicitly
present in B(G)ψ.

Better, then, to look for a lattice that, so to speak, wears its 
4-inferences
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(at least some of them) on its sleeves. This is the strategy that will be pursued
in the present section. What is sought is thus a principled way to extend G
into a larger G+ such that G 
4 (a, b) iff B(G+)ψ 
4 (a, b). To be sure, for
any such G+ it follows that B(G+)ψ 
4 (a, b) iff B(G)ψ 
4 (a, b) so B(G+)
will have the same inferential potential as B(G) itself modulo 
4. However,
B(G+) and B(G) is not the same lattice, and this is what matters for present
purposes.

In what follows, G+ will be built from G by a process called saturation—
not to be confused with any of the other things called saturation out there—
which can be thought of as the counterpart to the notion of transitive closure
within the FCA framework.

Definition 4.1. For any G ⊆ L2 the saturation G+ of G is the least rela-
tion that contains G and is closed under the rule

S : If (A1, B1), (A2, B2) ∈ B(G+) and B1 ` A2 then A1 ×B2 ⊆ G+

The following equivalent inductive definition tends to be more convenient in
proofs:

Definition 4.2. G+ :=
⋃ω
i=0Gi, where

1. G0 = G

2. Gn+1 = Gn ∪ (
⋃
{A1 ×B2 | (A1, B1), (A2, B2) ∈ B(Gn) and B1 ` A2})

Lemma 4.3. G+ = G+

Proof. To show that G+ ⊆ G+ it suffices to show that G+ includes G
and that it is is closed under the rule S. The former follows immediately
from case 1 of definition 4.2. For the latter, put G+ :=

⋃
{Gi}i<ω and

suppose (A1, B1), (A2, B2) ∈ B(G+) and B1 ` A2. We need to show that
A1×B2 ⊆ G+. From the first assumption we have (A1×B1)∪(A2×B2) ⊆ G+

by lemma 2.8. Since {Gi}i<ω is a directed set, there is a finite k such that

a) (A1 ×B1) ⊆ Gk

b) (A2 ×B2) ⊆ Gk

We can thus infer the following about Gk:
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→ 1 : (ABC1 , AB1 ), (ABC2 , AB2 ) ∈ B(Gk) by lemma 2.7, since A1, A2 ⊆
(Gk)

1 by a) and b).

→ 2 : B2 ⊆ AB2 from b).

→ 3 :B1 ⊆ AB1 from a)

In light of the fact that A1 ⊆ ABC1 (2.5), item→ 2 entails A1×B2 ⊆ ABC1 ×AB2 .
Now, B1 ` A2 by assumption. Therefore item→ 3 taken together with A2 ⊆
ABC2 (theorem 2.5) entailsAB1 ` ABC2 by thinning. But thenABC1 ×AB2 ⊆ Gk+1,
by → 1 together with case 2 of definition 4.2, whence A1 ×B2 ⊆ G+ by the
transitivity of ⊆ as desired.

For the converse direction it suffices to prove by induction on n < ω that
Gn ⊆ G+. This is immediate for the base case where n = 0. For the induction
step, assume as the induction hypothesis that Gn−1 ⊆ G+. We need to show
that Gn ⊆ G+. Suppose not. Then by case 2 of definition 4.2 there are
(A1, B1), (A2, B2) ∈ B(Gn−1) with B1 ` A2 such that A1×B2 * G+. By the
induction hypothesis together with lemma 2.8 we have

i) (A1 ×B1) ⊆ G+ and

ii) (A2 ×B2) ⊆ G+.

We can thus infer the following about G+:

← 1 : (ABC1 , AB1 ), (ABC2 , AB2 ) ∈ B(G+) by lemma 2.7, since A1, A2 ⊆
(G+)1 by i) and ii).

← 2 : B2 ⊆ AB2 from ii).

← 3 : B1 ⊆ AB1 from i)

In light of the fact that A1 ⊆ ABC1 , by theorem 2.5, item ← 2 above entails
A1 × B2 ⊆ ABC1 × AB2 . Now, B1 ` A2 by assumption. Therefore item
← 3 taken together with A2 ⊆ ABC2 (theorem 2.5) entails AB1 ` ABC2 by
thinning. But then (ABC1 , AB2 ) ∈ G+ by → 3 and the rule S. Therefore
(ABC1 × AB2 ) ⊆ G+ whence A1 × B2 ⊆ G+ by the transitivity of ⊆. This
contradicts the assumption that A1 ×B2 * G+.

�

Note that G+ as so defined exists for any G:
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Lemma 4.4. If G is a set of saturated super-sets of G then
⋂
G is a satu-

rated super-set of G.

Proof. Suppose (A1, B1), (A2, B2) ∈ B(
⋂
G) such that B1 ` A2. Let G be

any member of G. Then
⋂
G ⊆ G from which it follows by lemma 2.10

that there are (C1, D1), (C2, D2) ∈ B(G) such that Ai ⊆ Ci and Bi ⊆ Di for
i ∈ {1, 2}. By thinning B1 ` A2 implies D1 ` C2, whence C1 ×D2 ⊆ G by
the assumption that G is saturated. Since A1×B2 ⊆ C1×D2 it follows that
A1×B2 ⊆ G. Since G was chosen arbitrarily it follows that A1×B2 ⊆

⋂
G.

�

Corollary 4.5. Every binary relation G has a least saturated super-relation
G+.

The existence of least fixpoints for the saturation operation provides an
answer to A) that is informative wrt. 
4:

Theorem 4.6. If G is non-empty then G 
4 (a, b) iff B(G+)ψ 
4 (a, b).

Proof. The left-to-right inclusion is exactly like that for theorem 3.3 and
thus requires the non-emptiness of G.

For the converse inclusion, it suffices by monotony, cumulative transitivity
for 
4 together with lemma 4.3 to show that (a, b) ∈ B(G+)ψ implies G 
4

(a, b). So, put G+ :=
⋃
{Gi}i<ω. Since G is finite it follows from definition

4.2 that G+ = Gn for some finite n. We prove by induction n that the desired
implication follows from G+ = Gn on any value of n.

The proof of the base case reduces to the right-to-left inclusion of theorem
3.3. For the induction step suppose the implication holds for n − 1. Let
(a, b) := (

∨
A,
∧
B) and suppose (a, b) ∈ B(Gn)ψ. We need to show that

G 
4 (a, b). Since ψ is injective, we have (A,B) ∈ B(Gn). If (A,B) ∈
B(Gn−1) then (

∨
A,
∧
B) ∈ B(Gn−1)

ψ and therefore G 
4 (a, b) by the
induction hypothesis. Suppose therefore that the opposite is the case, i.e.
that (A,B) /∈ B(Gn−1). There are now two cases to consider:

1. A × B ⊆ Gn−1: Then by lemma 2.10 there is a concept (A′, B′) ∈
B(Gn−1) with A ⊆ A′ and B ⊆ B′. We have (

∨
A′,
∧
B′) ∈ B(Gn−1)

ψ

and so G 
4 (
∨
A′,
∧
B′) by the induction hypothesis. Since a =

∨
A `∨

A′ and
∧
B′ `

∧
B = b we may apply SI and WO to conclude that

G 
4 (a, b) as desired.
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2. A × B * Gn−1: It suffices to show that for every c ∈ A and every
d ∈ B we have G 
4 (c, d) since then G 
4 (c,

∧
B), follows by AND

and G 
4 (
∨
A,
∧
B) by OR, whence G 
4 (a, b) as desired. So let c be

any element in A and d any element in B. By the supposition of the case
we have A × B * Gn−1 whilst (A,B) ∈ B(Gn). If (c, d) ∈ Gn−1 then
by lemma 2.7 ({c}BC, {c}B) ∈ B(Gn−1) whence (

∨
{c}BC,

∧
{c}B) ∈

B(Gn−1)
ψ by definition 3.1. Therefore G 
4 (c, d) by the induction

hypothesis together with WO and SI. If (c, d) /∈ Gn−1 then since
(c, d) ∈ A×B ⊆ Gn, by lemma 2.10, it follows by the definition of Gn

that there are (C,E1), (E2, D) ∈ B(Gn−1) with E1 ` E2, c ∈ C and d ∈
D. Since (

∨
C,
∧
E1), (

∨
E2,
∧
D) ∈ B(Gn−1)

ψ, by the definition of ψ,
it follows by the induction hypothesis that (

∨
C,
∧
E1), (

∨
E2,
∧
D)

are 
4-derivable from G . We therefore have the following derivation:

hypothesis
(
∨
C,
∧
E1)

hypothesis
(
∨
E2,
∧
D)

SI since E1 ` E2
(
∧
E1,
∧
D)

SI
(
∨
C ∧

∧
E1,
∧
D)

CT
(
∨
C,
∧
D)

WO since d ∈ D
(
∨
C, d)

SI since c ∈ C
(c, d)

This completes the proof.

�

Turning now to B) the question is whether this concept lattice, where
for any given G the anaphor ‘this’ is bound by the grammatical antecedent
B(G+) gives a semantics (in the broad sense of the term) for the logic C4(G).
That is, the question is whether there is an evaluation rule similar to O2 of
previous section that given any pair (a, b) acts as the characteristic function
for C4(G).

The first thing to note in this connection is that the O2 applied to G+ is
itself sound wrt. 
4-derivability from G. The proof of this property requires
a lemma:

Lemma 4.7. If G+ 
4 (a, b) then G 
4 (a, b).
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Proof. By idempotence and monotony it suffices to show that G+ ⊆ C4(G).
Put G+ :=

⋃
{Gi}i<ω, which by theorem 4.3 is legitimate. The proof proceeds

by induction on n. The base case where n = 0 is immediate. For the
induction step, suppose the property holds for n−1 and suppose (a, b) ∈ Gn.
If (a, b) ∈ G then there is nothing to prove, so suppose the opposite. Then by
case 2 of definition 4.2 there are (A1, B1), (A2, B2) ∈ B(Gn−1) with B1 ` A2

such that a ∈ A1 and b ∈ B2. By the induction hypothesis we have Ai×Bi ⊆
C4(G) for i ∈ {1, 2}. By repeated applications of AND and OR it follows
that (

∨
Ai,
∧
Bi) ⊆ Cn(G). Since B1 ` A2 it follows that

∧
B1 `

∨
A2.

Therefore (
∨
A1,
∧
B2) ∈ C4(G) by CT . Now, since a ∈ A1 it follows that

a `
∨
A1 and since b ∈ B2 it follows that

∧
B2 ` b. Hence (a, b) ∈ C4(G) by

SI and WO as desired.

�

As for the property itself:

Theorem 4.8. If (a, b) ∈ O2(G
+) then G 
4 (a, b)

Proof. By theorem 3.5, (a, b) ∈ O2(G
+) implies G+ 
2 (a, b), moreover

G+ 
2 (a, b) implies G+ 
4 (a, b), since CT is a Horn condition, and by
lemma 4.7 we have that G+ 
4 (a, b) implies G 
4 (a, b). Chaining implica-
tions now yields the desired result.

�

Theorem 4.8 says that the lattice B(G+) may safely be ‘mined’ for en-
tailments by selecting sets of concepts EG+ as specified in definition 3.5—no
unlicensed inferences can come from this.

It would have been nice if one could show the converse too, because one
would then have a reduction of 
4 to 
2 in finite concept lattices. However,
the converse of theorem 4.8—the completeness direction—does not hold. To
see this, put G := {(a, b1), (c, b2), (b1 ∧ b2, d)}. Then B(G) is the lattice in
fig. 3.
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({a, b1 ∧ b2, c}, ∅)

({a}, {b1}) ({c}, {b2}) ({b1 ∧ b2}, {d})

(∅, {b1 ∧ b2, d)

Figure 3: The lattice induced by G

Notice that G is already saturated—no intent entails another extent (recall
that ∅ on the right of ` means ⊥). Notice also that EG(a ∧ c) = {({a, b1 ∧
b2, c}, ∅), ({a}, {b1}), ({c}, {b2})} but {b1}, {b2} 0 d. In other words (a ∧
c, d) /∈ O2(G). Yet, G 
4 (a ∧ c, d) as the following derivation shows:

(a, b1)
SI

(a ∧ c, b1)
(c, b2)

SI
(a ∧ c, b2)

AND
(a ∧ c, b1 ∧ b2)

(b1 ∧ b2, d)
SI

(a ∧ c ∧ b1 ∧ b2, d)
CT

(a ∧ c, d)

Since G is in fact saturated, it follows that O2 is not a 
4-complete evaluation
rule wrt. saturated relations in general. In other words G 
4 (a, b) does not
entail (a, b) ∈ O2(G

+), and so does not a fortiori entail B(G+)ψ 
2 (a, b).
The saturation procedure is just not sufficiently exhaustive to relieve the
input/output processor of the burden of reusing outputs as inputs.

There are two general ways to respond to this situation: one is to come up
with a saturation process—‘saturation’ now being understood in the intuitive
sense of a way of amplifying the relation G with pairs that are derivable from
G by CT—that is sufficiently complete to make the O2 rule to work for basic
reusable output as well. The second option is of course to define a separate,
stronger evaluation rule O4.

As regards the first option, one might be tempted to consider C4(G) itself
a candidate saturated super relation of G. But this would be a sterile move,
for even if it were the case that G 
4 (a, b) iff B(C4(G))ψ 
2 (a, b), which
seems likely, this could hardly have been called a semantics since 
4 occurs on
both sides of the biconditional. Moreover, if the underlying logical language
L is not logically finite then B(C4(G)) is an infinite concept lattice, so the
reduction alluded to above would have lost its luster.
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As regards the second option, it is not obvious that O2 can be strength-
ened to take up the slack in a way that is non-trivial. That is, although
something along the lines of (a, b) ∈ O4(G) iff there is a c ∈ L such that
(a, c), (a ∧ c, b) ∈ O2(G) would work, this too seems a rather unexciting
prospect hardly deserving of being called a semantics. Yet, something very
much like it is probably required.

The attempt to negotiate an answer to B) in the context of basic reusable
output has reached an impasse that at this point is better left for future
research. Taking stock, the situation now is this: Every binary relation G
over L has a 
4-equivalent representation as a lattice of concepts (theorem
4.6). Moreover, the information contained in B(G) can be processed with
the operator O2 without risk of logical distortion (theorem 4.8). Although,
this procedure will not in general produce all the information that is encoded
in B(G+) relative to 
4, the next section argues that it is enough to secure
interesting applications.

5. Extended example

A legal corpus is an eminent example of a relation between conditions and
consequences that it is not natural to subsume under the inference paradigm,
and/or to treat as a set of conditionals. As Hans Kelsen argued, norms are
better seen as stipulations, laid down by some authority for some purpose,
that are logically arbitrary: “Norms posited by human acts of will are arbi-
trary in the genuine signification of the word: that is, they can decree any
behaviour whatsoever to be obligatory” [8, p. 4].

The purpose of the present section is to illustrate the concept representa-
tion of input/output logic developed in the preceding sections by analysing
a hypothetical but not unrealistic example of statutory law. The analysis is
centered on the role of the principle of transitivity as a rule that serves to link
separately maintained areas of law into a cohesive whole. The transitivity
of normative implicature, one might say, is a principle that allows law to be
modular.

By an area of law—fuzziness admitted—will here be meant some set of le-
gal norms (written or otherwise) that approaches a distinct social institution.
That is, it is practised by specialists, it has a more or less clearly demarcated
legal subject matter, it evolves in relative independence from other areas
of law, and so on and so forth. By way of example, property law defines
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the conditions under which rights and obligations pertaining to the con-
trol of physical and intangible objects are transferred between legal persona,
whereas criminal law sets out the punishment to be imposed on behaviour
that threatens, harms or endangers the safety and welfare of individuals or
the society as a whole. Administrative law governs eligibility to hold office
as well as the activities of administrative agencies of government, whereas
banking law subject banks to requirements that create transparency between
banking institutions and the individuals and corporations with whom they
conduct business, etc.

The idea that is proposed in the present section is that it is by recognition
of the transitivity of normative implicature that these different areas of law
make up a cohesive whole. That is, when the law as such recognizes the
general principle of chaining norms it becomes possible for one area of law to
reuse legal consequences from another area of law as applicability conditions
or legal provisos for its own regulatives.

Penal law occupies a central position in this edifice insofar as the sanc-
tions imposed by penal law is an important determinant for the rights and
obligations that can be ascribed to a legal person subject to another area of
law. It is thus natural to take penal law as the starting point for the analysis
to follow.

Note first that penal law usually distinguishes between different cate-
gories of unwanted behaviour. For instance, felonies vs. misdemeanours and
criminal offences vs. violations of civic duties. The stipulated punishments
typically vary with the seriousness and type of the transgression. Common
classifications of sanctions comprise a) various forms of incarceration (im-
prisonment, mandatory reformatory psychiatry, b) loss or suspension of civil
rights, c) reprimand/official reproof, d) removal from office/termination of
employment, and e) fines.
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Suppose that the penal code in question correlates offenses as in table 3. The
offenses themselves are listed in table 2:

Offenses:
mi = allowing identity documents to be misused
gl = grand larceny
ll = lesser larceny
r = robbery/obtaining of property by threat of force
ltr = lesser tax evasion
aa = aggravated assault
le = lesser embezzlement/dishonestly witholding assets
asa = aggravated sexual assault
rca = repeated child abuse
nda = neglect of duty to assist a person who has fallen into peril
ht = high treason/treason against the state
gm = gross misconduct in public office

Sanctions:
Nm = imprisonment of a maximum lenght of N months
Ny = imprisonment of a maximum lenght of N years
f = fine
or = reprimande, official reproof
rp = incarceration and mandatory reformatory psychiatry
ii = indeterminate imprisonment
fl = financial liability towards the offended
ls = loss of suffrage

Table 2: List of offenses

It should be emphasized at this point that, as stated, the offenses and
punishments in table 2 are not sentences, but rather predicates and open
sentences that can in general be instantiated by different agents. The cor-
relation of such predicates is not in general free of problems since it may
involve e.g. considerations of arity (cf. [9]).1 Yet, going into detail about
this would cloud the overall picture of the role of the principle transitivity
in a modular corpus of norms, and it is uncertain whether the gains would
be worth the investment. For now, therefore, the reader is simply invited to
mentally prepend ‘x is guilty of ...’ and ‘x is sentenced to ...’, or something
like it, wherever appropriate.

1We are grateful to one of the anonymous reviewers for raising this point.
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6m 10y 21y f fl ls rp ii or
mi × ×
gl ×
ll × ×
r ×
lte × ×
aa ×
le × ×
asa × ×
rca × × ×
nda ×
ht × ×
gm ×

Table 3: A hypothetical penal code.

Now, given the correlations in table 3, theorem 3.3 tells us that the lattice
in fig. 4 gives an 
2-equivalent representation of the penal code in question:

◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦

γ(mi) γ(le), γ(ll)
µ(10y)
γ(asa)

µ(ii), µ(rp)
γ(rca)

µ(fl)
γ(aa), γ(gl), γ(r)

µ(f)µ(6m)
γ(lte), γ(mda)

µ(21y)
µ(ls)
γ(ht)

µ(or)
γ(gm)

Figure 4: The lattice corresponding to table 3.

In order to bring the principle of transitivity into the picture, note that
it is not usually the case that the sanctions as defined in a penal statute
figure as applicability conditions/legal grounds in other statutes literally, for
whereas the punishments of penal law are usually specific—at least within a
reasonable range—about the form, duration and severity of a sanction, legal
grounds are typically more general, and, in the case of sanctions, grouped
into transgressions that are deemed to be relevantly similar.

To make this more concrete, consider the device of legal debarment, i.e.
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the act of depriving a person of certain legal rights as a consequence of his
or her legal history. Common examples include exclusion from public office,
suspension, exclusion from various kinds of occupation and/or ineligibility
for rendering a public service such as e.g. jury duty. By way of example,
consider tables 4 and 5:

rlt sw hp jd

≥6m × ×
ic × × ×
or ×

Table 4: Proviso-preclusion

Legal provisos:
≥6m = more than 6 months imprisonment
ic = indeterminate custody
or = official reproof/reprimande

Preclusive effect:
rlt = realtor
sw = social worker
hp = healthcare professional
jd = jury duty

Table 5: Legal provisos and preclusions.

Each row in the upper half of table 5 represents a general form of pun-
ishment that in this context is to be considered a legal proviso—i.e. it serves
to ensure that transgressions falling under it, as specified by penal law, is to
have as a legal consequence that there is a capacity in the lower half of table
5 that the offender shall not be allowed to operate in. Suppose provisos and
preclusions are correlated as in table 4. Each correlation may be thought of
as a point of contact between the penal code from table 3 and some other
area of law, for instance a health care professionals act or real estate law.

As to the question of how to render this formally, theorem 4.6 shows
that if one adopts basic reusable output as one’s logic of norms, then the
cumulative effect of tables 3 and 4 can be visualized by taking the union of
the two tables, call it G and saturating the resulting relation, call it G+,
before generating the corresponding concept lattice B(G+).
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By definition 4.1, saturating G requires one to determine entailment re-
lationships between extents and intents in B(G) first of all. Suppose for the
sake of argument that punishments from table 2 are subsumed by the legal
provisos from table 5 as follows:

10y ∨ 21y ` ≥ 6m
ii ∨ rp ` ic
or ` or

As examples of relevant entailment relationships in B(G) consider the fol-
lowing concepts:

(10yC, 10yCB) = ({asa}, {10y})
(≥ 6mBC,≥ 6mB) = ({≥ 6m}, {rlt, jd})

Since 10y ` ≥ 6m it follows by definition 4.1 that the pairs (10y, rlt), (10y, jd)
belong to the saturated context. Repeating the process of deriving new pairs
in this way until a fixed point is reached produces the context in table 6:

6m 10y 21y f fl ls rp ii or rlt sw hp jd
mi × ×
gl ×
ll × ×
r ×
lte × ×
aa ×
le × ×
asa × × ◦ ◦
rca × × × ◦ ◦ ◦
nda ×
ht × × ◦ ◦
gm × ×
≥6m + +
ic + + +
or +

Table 6: The saturated context

Here, correlations generated by saturation have been marked with a ‘◦’ in-
stead of a ‘+’.

This context, table 6 that is, induces the lattice in figure 5 in which, due
to saturation, previously implicit information is now manifest. This structure
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is therefore very well suited for querying the cumulative effects of the legal
modules in question.

Consider for instance the question “what are the legal consequences of
spying on the military, or on the diplomacy, or on the secret services for a
hostile and foreign power”. If one takes it that each of these disjuncts imply
high treason, then the disjunction as such, call it a, implies high treason.
Now, theorem 4.8 says that EG+(a) collects legal consequences of a that are
all valid according to basic reusable output, and under the assumption that
a ` ht one has EG+(a) = {({ht}, {21y, ls, jd, rlt})}. Thus the legal conse-
quences of spying on the military, or the diplomacy, or the secret services for
a hostile and foreign power is Cn({21y, ls, jd, rlt}) where Cn is the opera-
tion of classical consequence. Thus a person found guilty of espionage will
in addition to being liable to imprisonment of up to 21 years, face a number
of other sanctions that arise from the interaction of the penal statute with
other areas of law. For instance, he or she will not be eligible for jury duty,
does not necessarily retain his or her right to vote, and cannot become a
realtor—a bit of a surprise at the end there.

◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦

◦

µ(f) µ(6m)

γ(nda)

µ(fl)

γ(aa)

γ(gl)

γ(r)

µ(ls)
µ(jd)

γ(or)

γ(mi) γ(le), γ(ll) γ(lte)
µ(hp), µ(sw)

γ(ic)

µ(or)

γ(gm)

µ(rlt)

γ(≥ 6m)

µ(ii), µ(rp)

γ(rca)

µ(10y)

γ(asa)

µ(21y)

γ(ht)

Figure 5: The lattice corresponding to the saturated context
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6. Related work

6.1. The theory of joining systems

In a series of papers going back at least as far as 1999 (thus predating
input/output logic) Lars Lindahl and Jan Odelstad have developed an alge-
braic theory of relations between pre-ordered sets—or, as they prefer to call
them, quasi-orderings—called the theory of joining systems. The most re-
cent, and most complete presentation of this theory is [9], which also contains
references to earlier stages of research.

The theory of joining systems bears some striking resemblances to in-
put/output logic. Philosophically, both idioms were originally motivated by
the study of normative systems, and both idioms view norms, not as con-
ditionals capable of being true and false, but rather as logically arbitrary
stipulations correlating applicability conditions with states of affairs deemed
optimal relative to some end or purpose. Both theories acknowledge the
influence of the tradition from Alchourrón and Bulygin in this respect [1, 2].

The theory of joining system itself is not tied to this interpretation, how-
ever, but is entirely abstract: the carrier sets of the quasi-orders in ques-
tion need not be construed concretely as sets of formulae. For present pur-
poses it will be convenient to do so, though. Indeed, for comparison with
input/output logic, the case of interest is that where the quasi-orders are
boolean algebras generated by the elementary letters of some propositional
language.

So interpreted, a joining system is a tuple 〈B1,B2,J 〉 where each Bi is a
boolean algebra, that is, Bi = 〈Ai,≤〉 where Ai is a set of formulae and ≤ is
the induced partial order. The set of joinings J is a relation from A1 × A2

which is constrained in certain ways in order induce logical behaviour. Define
the narrowness relation E on A1 × A2 by stipulating that (a1, b1) E (a2, b2)
iff a2 ≤ a1 and b1 ≤ b2. The joining system 〈B1,B2,J 〉 is required to satisfy
the following conditions for all a, b, a1, a2, b1, b2 ∈ A1 ∪ A2:

1. if (a1, b1) ∈ J and (a1, b1)E (a2, b2), then (a2, b2) ∈ J
2. if (a, b) ∈ J for all a ∈ A′ ⊆ A1 then (

∨
A′, b) ∈ J

3. if (a, b) ∈ J for all b ∈ A′ ⊆ A2 then (a,
∧
A′) ∈ J

In [9, p. 631] it is conjectured that for this particular case of a joining system
we have J = out1(J ), where out1 is the operation of simple-minded output
as defined in [13].

29

Dette er en postprint-versjon / This is a postprint version. 
DOI til publisert versjon / DOI to published version: 10.1016/j.jal.2015.04.002



Whether this conjecture is indeed true, is a question that is here left open.
The interested reader is referred to [22] for a detailed comparison of the two
idioms.

Suffice it for present purposes to say that what matters matters for the
informativeness of a concept lattice is ultimately the syntactic form or shape
of the set of axioms for an input/output system. So even if it were the case
that a system Cn(G) of of input/output logic could be represented as a set
of joinings J , the relationship between J and the concept lattice induced by
G would not thereby necessarily have been determined.

6.2. Related work in input/output logic

Driven by different considerations and objectives, various modifications
of the original input/output logic semantics have been proposed. Bochman
[3] sees input/output logic primarily as a formalism for reasoning about pro-
duction systems and causal inference, and furnishes it with a semantics for-
mulated in terms of deductively closed theories called bimodels. Another
approach that belongs to the same general field is Goncalves and Alferes [6],
who recast input/output logic as an extension of answer set programming,
thereby extending it with non-monotonic features.

Some modifications to the input/output idiom have also been proposed
by normative systems theorists, who as a group tend to stay closer to the
original semantic idiom. Most of these approaches are developed from a clas-
sical basis, but uses it differently to achieve different effects than the original
input/output semantics. Stolpe [19] considers a weakening of input/output
logic that retains input strengthening whilst discarding output weakening in
the context of a transitive logic. This involves redefining the input/output
semantics in an inductive manner not unlike the inductive reformulation of
Reiter default logic given in Makinson [12]. Parent and van der Torre [17]
extend the work of [19] in two directions: first the logic is made to sup-
port reasoning by cases alias OR, and secondly cumulative transitivity is
replaced with a a principle the authors call aggregative cumulative transitiv-
ity, which differs from the former principle in keeping tabs on the ‘history’
of the chaining process. Parent and van der Torre [17] is in turn is used in
Sun and van der Torre [21] in studying the interplay between regulative and
constitutive rules in a normative system.

As regards approaches to input/output logic that do not take classical
logic as the underlying propositional language, we are aware of only one.
This is Parent et al. [18] which substitutes intuitionistic logic for classical
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logic and tracks the changes that must be made to the semantic idiom in order
to obtain the same syntactic characterisation of the different input/output
systems, up to the meaning of the connectives.

As regards the interface between input/output logic and abstract algebra,
there does not seem to be many forerunners to the present paper. The cor-
respondence between the system of basic output and formal concept lattices
was first noticed in Stolpe [20], without being developed into a systematic
account.

A good introduction to some of the input/output logics currently in ex-
istence is [16].
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