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Abstract

This paper describes a linear-image-transform-based algorithm for reducing stripe noise,
track line artifacts, and motion-induced errors in remote sensing data. Developed for multi-
beam bathymetry (MB), the method has also been used for removing scalloping in synthetic
aperture radar images. The proposed image transform is the composition of an invert-
ible edge detection operator and a fast discrete Radon transform (DRT) due to Götz,
Druckmüller, and Brady. The inverse DRT is computed by using an iterative method and
exploiting an approximate inverse algorithm due to Press. The edge operator is implemented
by circular convolution with a Laplacian point spread function modified to render the
operator invertible. In the transformed image, linear discontinuities appear as high-intensity
spots which may be reset to zero. In MB data, a second noise signature is linked to motion-
induced errors. A Chebyshev approximation of the original image is subtracted before
applying the transform, and added back to the denoised image; this is necessary to avoid
boundary effects. It is possible to process data faster and suppress motion-induced noise
further by filtering images in nonoverlapping blocks using a matrix representation for the
inverse DRT. Processed test images from several MB data sets had less noise and distortion
compared to those obtained with standard low-pass filters. Denoising also improved the
accuracy in statistical classification of geomorphological type by 10–28% for two sets of
invariant terrain features.

Index Terms

Discrete transforms, image denoising, image restoration, iterative methods, remote sens-
ing, sonar, terrain mapping.
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I. INTRODUCTION

Stripe noise, track line artifacts, antenna pattern effects or motion-induced errors degrade
many types of remote sensing imagery. For example, satellite images from scanning mirror
systems are often affected by periodic stripes in the across-track direction [1], [2]. The primary
causes of these artifacts are offsets in detector response between the forward and reverse scans,
unequal response of adjacent detectors, or random fluctuations in sensor response. Detector-
to-detector variations also occur in pushbroom-type systems, where a linear array is oriented
perpendicular to the flight direction and records one line of pixels simultaneously. With this
configuration, stripe artefacts appear in the along-track direction and are not periodic [3]. Any
kind of raster data obtained from a moving platform, where the pixels are recorded line by
line, geolocated and then collated together, are prone to have similar errors to some degree,
particularly if the image contains data from several adjacent survey track lines.

The multibeam echo sounder (MBES) provides a good example. By electronic beamforming
of acoustical arrays, an MBES measures the echo travel time and seabed reflectivity in narrow
beams fanning out perpendicular to the survey vessel’s track [4, Ch. 8]. Subsequent data pro-
cessing produces a high-resolution digital terrain model (DTM) of the seabed and a sidescan
image mosaic of seabed scattering strength. MBES technology has had a significant impact
on the marine sciences; in particular, it yields much information about seabed geological
processes (erosion and deposition) by mapping morphological features such as sedimentary
bedforms [5]. In addition to sidescan imagery, important tools in this respect are attribute
images derived from the DTM, particularly gradient, curvature or shaded relief [6]. Not only
are such images powerful interpretative tools, there is also promise that terrain attributes can
be used in automated statistical classification of terrain type [7] and, ultimately, sediment type
[8], [9].

The origin of this work was an attempt to use terrain attributes to improve the accuracy of
acoustical classification of sediments, and the realization that, unfortunately, many attributes
are sensitive to slight errors or artifacts in the data. One type of noise is caused by motion
sensor errors, e.g., time delays in the heave, roll, and pitch (HRP) measurements. As the
vessel moves through swell, even slight errors in HRP compensation will cause artificial
wavy patterns (“ribbing”) in the bathymetry. Often the patterns are near-periodical and oriented
perpendicular to the vessel track. A detailed investigation of this phenomenon can be found in
[10]. Another source of error is the mismatch between adjacent survey lines. A vessel typically
moves back and forth in a parallel “lawnmower pattern”, and in open seas a single pass may
take several hours, during which time the sea level changes. Even if a good tidal model is
available, a residual mismatch between survey lines may persist. Sound speed profiles (SSPs)
are obtained from conductivity, temperature and depth (CTD) probe casts at extended intervals
(unless a towed moving vessel profiler is used). Using an inaccurate SSP for computing sound
refraction leads to depth estimation errors, and such errors are most pronounced at the outer
beams where adjacent swathes overlap [5]. These types of mismatch cause stripes in attribute
images. In addition, many sonar systems estimate the bottom echo by peak amplitude detection
in the near-nadir beams, and by interferometric methods (phase matching) at higher incidence
angles. At the transition angle between the two modes, a systematic depth offset may occur,
which also causes stripe noise. Finally, beam calibration errors cause stripes in sidescan data
[11], a phenomenom which is analogous to the one observed in pushbroom optical systems.

Many of the methods for destriping remote sensing images have been developed for
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satellite systems, and all are not directly applicable to multibeam bathymetry. The spatial
filters developed in [12]–[14] are 1-D and intended for images with horizontal scan-line
noise. The statistical methods of equalization [15], [16], histogram matching [17], [18], and
moment matching [19] adjust each detector output to match the statistics of some reference
distribution, provided each detector can be identified with a line of pixels (horizontal or
vertical) in the image. To remove irregular stripes, i.e., lines where only a subset of the pixels
are noise-contaminated, and nonlinear stripes where the degradation parameters change across
the scene, Shen et al. [20] has proposed a method where lines are split into segments that are
processed separately with a statistical destriping algorithm. It may be that these methods can
be adapted to sidescan imagery (before georectification), but the artifacts to be considered
here are not caused by intrinsic variations in detector response. Likewise, the imaging modes
or assumptions are different from ours in the recent statistical and variational approaches
reported in [1]–[3], [21], and [22].

A more general approach is to use an edge detection algorithm to find the pixels affected
by stripe noise and inpainting techniques to correct them. Tsai and Chen [23] used the Canny
algorithm [24] and a spline-based inpainting scheme applicable to thin horizontal or vertical
stripes. Image filtering in the Fourier domain is another option when the noise is periodic or at
least directive [25, Ch. 4]. This was explored in [26] for side-scan sonar, and in, for example,
[27] for satellite imagery. Fourier domain filtering does not require a statistical model of the
image formation process, and can be applied to both georectified and raw images, but it may
cause unwanted smoothing or distortion of real features. The same is true of filtering in the
wavelet domain. To minimize the smoothing effect in images with horizontal stripes, Chen
et al. [27] isolated the noise frequency by averaging the 1-D power spectra from each image
column, as the noise frequency tends to be constant across columns. However, the noise of
primary interest in this paper has a broad spectrum.

This paper presents an alternative image-transform-based denoising filter which is motivated
by the problems affecting MBES bathymetry and derived attributes. The method has also
proven effective for reducing scalloping in synthetic aperture radar (SAR) images, but we
concentrate here on MBES data. The forward image transform is an edge detection operator
composed with a discrete Radon transform (DRT). Noise suppression takes place in the DRT
domain. There are no assumptions about periodicity or orientation, and artifacts need not be
parallel. A linear artifact is focused to an isolated high-intensity spot in the Radon domain. For
MBES data, it is also conjectured that another noise signature is linked with motion-induced
errors in the sounding data. The proposed algorithm is applied to two MBES datasets from
the North Sea, and compared qualitatively with Fourier domain filters and spatial low-pass
filters. To quantify the effect of the denoising algorithm, we have considered the machine
learning problem of classifying different terrain morphologies, and how denoising affects the
classification accuracy. For this problem we employ two sets of invariant terrain features
based on the empirical distribution of local binary patterns (LBPs) and intrinsic geometric
features.

A major part of this paper concerns the forward and inverse two-step image transform.
One candidate for the edge operator is the Laplace operator (Laplacian), which is linear,
approximately rotation invariant, edge-sensitive, and noise-sensitive. The Laplacian is also a
measure of curvature, which is a recommended feature for visualizing terrain [6]. However,
the Laplacian is not one-to-one, and we therefore suggest a modification to obtain an invertible
edge operator. Basing the algorithm on discrete approximations of the classical forward
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and inverse Radon transform formulae did not yield satisfactory results in our experiments.
Filtered backprojection [28], [29], i.e., the standard fast method for inverting the linear Radon
transform, causes a degree of smoothing. Discrete approximations may involve interpolation,
and Beylkin [30] moreover has shown that, in a discrete setting, inversion of the Radon
transform can only be approximate when it is based on a discretization of Radon’s classical
inversion formula. Here we consider instead the DRT of Götz and Druckmüller [31] and Brady
[32] (GDB), and compute the inverse using linear algebra. In this formulation, the forward
and inverse Radon transforms are discrete linear operators, where no interpolation of data is
involved. Press [33] found a fast iterative inverse algorithm that can reconstruct images with
arbitrary precision from the forward GDB transform data. However, a numerical analysis of
the Press inverse suggests that the algorithm converges only for images of small-to-moderate
size. We therefore also consider two alternative approaches to invert the GDB transform, one
of which is a modification of Press’ method.

Thus, this paper has four subthemes: 1) inversion of the GDB (DRT) transform; 2) con-
struction of a linear invertible edge detection operator; 3) noise signature reduction in the
GDB transform domain; and finally, 4) the effect of noise reduction on the classification of
geomorphology by invariant terrain features. Section II concerns the Radon transform and its
inverse, in particular the GDB algorithm (see Section II-B) and the use of iterative inverse
methods (see Section II-C). Section III describes the full denoising algorithm, including the
invertible Laplace operator (see Section III-A), and the suppression of noise signatures in the
DRT domain (see Section III-B). Section IV describes the formation of invariant, unbiased
features for terrain classification. Section V presents the MBES data (see Section V-A),
examples of denoised images (see Section V-B), and the results of the classification experiment
(see Section V-C). The summary and discussion (see Section VI) includes considerations on
parameter choices and generalizability, elaborates further on the potential of block processing,
and mentions other possible applications.

II. THE RADON TRANSFORM

A. Classical Transform and PSF

The classical Radon transform of a function f : R2 → R is formed by integrating f along
straight lines [29]. If s ∈ R is a signed distance from the origin, and θ =

[
cos θ sin θ

]
is

a unit vector, then the straight line orthogonal to θ and parameterized by (θ, s) is L(θ, s) =

{ x ∈ R2 | x · θ = s }. The Radon transform Rf is a function on the cylinder C = [0, 2π)×R
defined by

(Rf)(θ, s) =

∫
L(θ,s)

f(x) dx. (1)

The adjoint, or backprojection operator, applied to a function g : C → R, is defined by

(R+g)(x) =

∫ 2π

0

g(θ,x · θ) dθ, (2)

which is 2π times the average of all line integrals passing through x. The standard filtered
backprojection algorithm for reconstructing f from Rf is based on the fact that

(R+g) ∗ f = R+(g ∗ Rf), (3)

where ∗ denotes convolution [29]. One finds a function g such that V ≡ R+g ≈ δ is the Dirac
delta function. Then, by (3), the reconstructed function is R+(g ∗ Rf), the backprojection

Dette er en postprint-versjon/This is a postprint version. 
DOI til publisert versjon/DOI to published version: 10.1109/TGRS.2015.2436380 



RADON-TRANSFORM-BASED IMAGE NOISE FILTER

 

 

−1 0 1

1

0

−1

lo
g

|V
/V

(0
,0

)|

−15

−10

−5

0

Fig. 1. PSF for filtered backprojection with a Shepp-Logan window with bandwidth Ω =
64 cycles per unit length (128 × 128 pixels image). The number of projections is p = 181, which exactly
meets the angular sampling criterion for this bandwidth [29].

of Rf filtered by g; V is the point spread function (PSF), which determines how much the
function f is blurred when passed through Radon transform and filtered backprojection.

For reconstructing bandlimited functions, as when f represents a digital image, g must
be chosen such that the Fourier transform V̂ (k) = δ̂(k) = 1/

√
2π for |k| ≤ Ω, i.e., the

bandwidth of f . Several functions g that yield an appropriate window function for V̂ (k) have
been proposed and applied in practice [34]. One example is the Shepp-Logan window [35],
for which the corresponding PSF V (x) is plotted in Fig. 1 for the bandwidth Ω = 64. A
certain smoothing or distortion of the original function is implied by this PSF. Moreover,
when applied to digital images (regular, discrete data), there will be an additional loss of
accuracy from the fact that line integrals must be evaluated by interpolation between nearby
pixels, or the (weighted) sum of all pixel values in a band containing the line.

B. GDB Discrete Transform

While filtered backprojection is a cornerstone of image reconstruction as in tomographic
imaging, efficient evaluation of the forward Radon transform is important in its own right.
For example, the classical Hough transform, used for straight line detection in image analysis
[25], [36], may be implemented as a Radon transform when applied to binary images. A
fast approximate method for computing line integrals was described independently in [31]
and [32]. This algorithm does not involve weighted sums. Instead, each DRT element is
the sum of pixel values along a certain graph which includes exactly one pixel from each
column of the zero-padded image. Here f denotes the discrete set of pixel values f = { fi,j }
indexed by row i and column j, where fi,j = 0 for i, j outside the range 0 ≤ i, j < N − 1,
and it is assumed that N is a power of 2. A graph DN(h, s) (using notation from [33]) is
identified by its intercept h and rise s, meaning that it starts at (i, j) = (h, 0) and ends at
(i, j) = (h+ s,N − 1) (see Fig. 2). The construction of the graph recursive. In the first step,
the image is divided into N/2 subimages, each two pixels wide, for which the lines D2(h, s)
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Fig. 2. Recursive construction of graphs in a 4× 4 pixels image. The graphs are formed by joining graphs in
the two 4×2 pixels subimages according to rule (4). The rise parameter s ranges from 0 to 1 (4×2 subimages)
and 0 to 3 (4× 4 image), yielding slopes from 0◦ to 45◦. When the image is flipped upside down, the graphs
are mapped to lines with slopes in the range −45◦ to 0◦ (faint lines).

are constructed. In the next step, graphs from pairs of adjacent subimages are combined, and
so on, for log2N steps in all. Graphs from adjacent images are combined according to the
following rule:

Dn(h, 2s) = D
(L)
n/2(h, s) ∪D(R)

n/2(h+ s, s) (4a)

Dn(h, 2s+ 1) = D
(L)
n/2(h, s) ∪D(R)

n/2(h+ s+ 1, s) (4b)

where it is understood that the right-hand side of a union refers to the right (R) half of the
image, and correspondingly for the left-hand (L) side. A graph in a subimage therefore forms
part of two graphs in the twice-as-wide subimage (see Fig. 2).

Equation (4) is applied for 0 ≤ s < N , i.e., for slopes from 0◦ to 45◦. The other line
integrals are performed in the same way after first transposing or flipping the original image.
The full DRT is the disjoint union of four parts (quadrants);

(R1f)(h, s) =
∑

(i,j)∈DN (h,s)

fi,j (0◦ to 45◦) (5a)

(R2f)(h, s) =
∑

(i,j)∈DN (h,s)

fj,i (45◦ to 90◦) (5b)

(R3f)(h, s) =
∑

(i,j)∈DN (h,s)

fj,N−1−i (−90◦ to − 45◦) (5c)

(R4f)(h, s) =
∑

(i,j)∈DN (h,s)

fN−1−i,j (−45◦ to 0◦) (5d)

The number of non-zero elements in each quadrant is at most N2 + N(N − 1)/2, and the
minimum value for h is −N + 1, for which the associated graph intersects the image only at
a corner pixel.
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C. Iterative Inverses

The GDB transform (DRT) R is a linear operator; each output element is a sum of image
pixel values. In principle R may therefore be represented by a P × Q matrix R, with P =

6N2 − 2N and Q = N2. The matrix R is only moderately sparse, and a left-inverse of R is
not sparse. The inverse problem is to solve the linear system

Rf = d (6)

with respect to the image f ∈ RQ, when the data vector d ∈ RP , containing the line sums,
is known. (Where appropriate we will use a vector to store a two-dimensional image, by
concatenating the columns into a single column of length N2.)

1) Normal Equations: The GDB transform has a corresponding fast recursive backpro-
jection algorithm, which, analogously to (2), sums the values of all line integrals passing
through a given pixel [32]. As shown in Appendix B, the matrix representation of the GDB
backprojection algorithm is precisely the transpose RT . Therefore one may consider the
normal equations, i.e.,

RTRf = RTd, (7)

also when it is infeasible to use the explicit matrix representations. Several iterative algorithms
that solve the normal equations (7) are available, e.g. the LSQR [37] and LSMR [38]
algorithms.

In the proposed denoising method (see Section III-B), the transform d0 = Rf 0 of the
original image f 0 is modified by a filter in the DRT domain to obtain some perturbation
d = d0+∆d0. The vector d is generally not contained in the range I(R) of R, which implies
that (6) does not have a solution. We have the following range-null space decomposition of
RP (see Appendix B),

RP = I(R)⊕N (RT ) (8)

where ⊕ denotes the direct sum, and the range I(R) and the null space N (RT ) are orthogonal
subspaces of RP . A solution to (7) minimizes the residual norm ‖d−Rf‖ [39, Ch. 6.9],
and d−Rf lies in the null space N (RT ) of the backprojection operator.

Hence, (7) yields an optimal solution in the sense that ‖d−Rf‖ is minimized. However,
one should bear in mind that there is no definite best choice for ∆d0. Rather, what matters is
the quality of the restored image and the computational cost. For these reasons, we consider
two alternative approaches that in experiments yielded better image reconstructions at less
computational cost, and which converge faster when (6) does have a solution.

2) Press Inverse: Press [33] devised an approximate inverse for the GDB transform, based
on the backprojection algorithm. The approximate inverse algorithm is a linear operator B that
is applied recursively on downsampled versions of Rif (i = 1, . . . 4), to produce a smoothed
image f s. The residual Rf −Rf s is backprojected and high-pass filtered to obtain an image
correction δf which is added to the smoothed image f s. Since B is linear, it has a matrix
representation B.

Suppose (6) has a solution, i.e., d ∈ I(R). We can show that R is injective (one-to-one),
therefore, the solution must be unique (see Appendix A). Define E = 1Q−BR, and let ρ(E)
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(a) Original image (b) Approximate inverse (c) Three iterations (iterative in-
verse)

Fig. 3. Press approximate inverse (b), equation (9a), and the Press iterative inverse (c), equation (9b) with
k = 2, applied to the GDB transform of the test image in (a) (512 × 512 pixels). The original image (a) has
gray level intensities in the range 0–1; the approximate inverse has intensities in approximately the range 0–1.4,
but has been rescaled so that white corresponds to maximum intensity in all three images. The RMS difference
between (a) and (b), and (a) and (c), can be read off the graph labeled “Press (camera)” in Fig. 4 below.

denote the spectral radius of E (the largest eigenvalue magnitude). The following recurrence
relation developed in [33] converges to the solution of (6)

f 0 = Bd, (9a)

fk+1 ≡

(
k+1∑
j=0

Ej

)
Bd = fk +B (d−Rf k) (9b)

provided ρ(E) < 1. This condition implies that the N2 × N2 matrix BR is non-singular
[40, Ch. 7.10]. Fig. 3 shows the Press approximate (9a) and iterative (9b) inverses applied to
the GDB transform of a standard test image. The root-mean-square (RMS) error after three
iterations is about 1%.

3) GMRES: However, the analysis in Appendix C suggests that, for N ≥ 512, a small
fraction of the eigenvalues of E have magnitudes larger than unity. This implies that the
convergence of (9) halts after a certain number of iterations and the residual error begins
to grow as some eigenimages get amplified. Nevertheless, the initial rate of convergence is
typically very good, and we would therefore like to make use of the approximate inverse B.

Applying the binomial formula to the Neumann series appearing in (9b) gives

fk =
k∑
j=0

j∑
i=0

(−1)i
(
j

i

)
Aib, (10)

where we have defined A ≡ BR and b ≡ Bd. Consequently fk lies in the Krylov subspace
[41]

Kk+1(A, b) ≡ span { b,Ab, . . . ,Akb }. (11)

The generalized minimum residual (GMRES) algorithm [42], [43] produces a sequence of
iterates xk, where xk is the solution to the least squares problem

min
x∈Kk(A,b)

‖b−Ax‖, k = 1, 2, . . . (12)
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in the Euclidean norm. Hence, GMRES gives approximate solutions to the N2 × N2 linear
system obtained by left-multiplying (6) by B,

BRf = Bd. (13)

GMRES, like (9), involves only matrix-vector multiplications, which are implemented by the
recursive algorithms R and B.

The exact solution to (13), if A is nonsingular, lies in the Krylov space Kd(A, b), where d
is the degree of the minimal polynomial of A [41]. Note that we have only established that
A is nonsingular for N < 512. However, ρ(E) < 1 is not a necessary condition for A−1

to exist, it is only required that λ = 1 is not an eigenvalue of E. Moreover, the necessary
condition that R (and RT ) is injective has been established. If ρ(E) < 1, then (9) and (12)
converge to the same solution, as is also evident from (32) (Appendix C).

4) Stopping Criterion: For the kth iterate xk in (12), the relative residual norm is defined
as rk = ‖b−Axk‖ / ‖b‖. From (9b),∥∥fk+1 − fk

∥∥
‖Bd‖

=
‖b−Afk‖
‖b‖

= rk (14)

For both GMRES and the Press iterative inverse the iteration is stopped when rk < τ , for
some tolerance τ . In denoising applications with image size N = 1024, it turned out that a
tolerance of τ ∼ 0.1 was usually enough to achieve the desired result. This corresponded to
three to four iterations.

5) Comparison: To demonstrate the difference between the three methods, we applied
them to the GDB transform of two test images, the cameraman image from Fig. 3 and an
eigenimage of E with eigenvalue λ > 1. The eigenimage was found by Arnoldi iteration (see
Appendix C). Both images have 512× 512 pixels and intensity values in the range 0–1. The
inverse problem has 262144 unknowns, and the dimension of R is 1571840× 262144.

Fig. 4 shows the RMS value of f−fk [Press inverse (9)] and f−xk [GMRES inverse (12)]
as a function of k, where f denotes the original image. The RMS error of the approximate
inverse (k = 0) is about 10 % for both images. Fig. 4 shows that both methods apparently
converge to the cameraman image when k ≤ 20. The GMRES inverse converges to the eigen-
image as well, but the Press inverse does not. Fig. 5 shows the RMS error for all three methods
as a function of computing time (cameraman image only). During the initial iterations, the
Press and GMRES inverses converge almost equally fast, but the amplification problem that
destroys convergence for the Press inverse is now evident. The GMRES inverse approaches f
to high accuracy, while the normal equation solver LSQR has slower convergence. The results
are similar when plotting the residual matrix norm ‖f − fk‖2. The preliminary conclusion
from these tests is that the GMRES inverse is to be preferred because of its fast convergence
when the inverse problem has a solution.

III. DENOISING ALGORITHM

The main idea is to transform the image (DTM) by an edge operator (filter) L followed by
the DRT R. The edge operator accentuates fine-scale intensity changes; the DRT concentrates
accentuated linear features. The algorithm should cause as little distortion of real features as
possible. Image reconstruction is done by applying the inverse operator L−1R−1. R−1 is
implemented using one of the iterative methods described in Section II-C, such that R−1R ≈
1Q to arbitrary desired accuracy. However, edge operators are in general not one-to-one
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Fig. 4. RMS difference between original image and inverse iterate of the GDB transform, using (9) and (12).
Results for two images are shown: the cameraman image in Fig. 3a, and an eigenimage of E with eigenvalue
magnitude |λ| > 1.
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desktop computer). Three inverse methods are compared: LSQR (normal equation solver), GMRES (12), and
the Press inverse (9) based on the Neumann series.
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mappings [44, Ch. 12.3] and hence not invertible. Therefore we first consider a suitable
invertible edge operator.

A. Invertible Edge Detection Operator

For the reasons stated in Section I, our preferred operator is the Laplacian. The non-
invertibility of the Laplacian is perhaps best examined in the frequency domain. A digital
image f = [f(u, v)]Nu,v=1 with N × N pixels, N even, may be constructed by regularly
sampling the periodic, band-limited function given by the Fourier series

f : R2 → R, f(x, y) =

N/2−1∑
m=−N/2

N/2−1∑
n=−N/2

cmne
2πi(nx+my), (15)

where f may be viewed as a function on the torus T2 = R2/Z2, obtained geometrically by
gluing together the two pairs of opposing edges of the unit square [0, 1]× [0, 1]. By letting the
first row in the image (m = 1) correspond to y = 0, the coefficients cmn in (15) are related
to the 2D discrete Fourier transform F by

cmn =
1

N2
F [f ](m+N mod N, n+N mod N), (16)

with F [f ](m,n) =
∑N−1

u=0

∑N−1
v=0 f(u, v)e−2πi(mu+nv)/N . A function

f ∈ L2(T2) = { g : T2 → R |
∫
T2

|g(x)|2 dx <∞}

may be identified with its set of Fourier coefficients. For twice-differentiable functions in
L2(T2), the continuous Laplace operator ∆ = ∂2/∂x2 + ∂2/∂y2 may be defined by

∆ : cmn 7−→ −4π2(m2 + n2)cmn, (m,n) ∈ Z2. (17)

In terms of the wave vector k = 2π(m,n), the transfer function is ∆(k) = −k ·k, which is a
manifestation of the rotation invariance of the continuous Laplace operator. For the restricted
set of functions

L2
0(T2) =

{
f ∈ L2(T2)

∣∣∣∣ ∫
T2

f dx = 0

}
, (18)

for which c00 ≡ 0, the operator D : L2
0(T2)→ L2

0(T2) defined by

D : cmn 7−→


cmn

−4π2(m2+n2)
for (m,n) ∈ Z2 \ {0}

0 for m = n = 0.
(19)

is a right-inverse so that ∆Df = f [45, Ch. 4.4]. This suggests forming an invertible Laplace-
like operator for images via (15)–(17) by perturbing the factor (m2 + n2) in (17) away from
zero, i.e.,

−4π(m2 + n2) 7→ −4π2(m2 + n2 + ε2), 0 < ε2 � 1.

However, while this approach works well for some images, computing the Laplacian in
the frequency domain may fail because the function (15) need not be differentiable on the
boundary of the unit square, whence image distortions may be incurred (one may consider,
for example, the image formed by regularly sampling the function g(x, y) = xy exp (x2 + y2)

on the unit square [0, 1]× [0, 1]).
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Instead, a more robust approach is to perturb the PSF of a discrete approximation ∆d to the
Laplacian in the spatial domain. We start with the operator implemented by circular (because
of the periodicity condition) convolution with the PSF

h =
1

2

1/2 1 1/2

1 −6 1

1/2 1 1/2

 . (20)

The transfer function is

F [h] = 4
[
cos2 (k̂x/2) cos2 (k̂y/2)− 1

]
(21)

≈ −k̂2 +
3

32
k̂4 − 1

96
cos (4φ)k̂4 +O(k̂6), (22)

where k̂ = 2π(m,n)/N is a scaled wave vector with polar coordinates (k, φ) [44, Ch. 12.5].
This operator is isotropic at long wavelengths. We have F [∆d f ] = F [h]F [f ], and direct
deconvolution fails because of a single zero (at zero frequency) in the transfer function
F [h]. (Here and below it is understood that the optical transfer function F [h] has the same
dimension as F [f ], obtained after zero-padding h and circularly shifting the DFT.) This
problem can be amended by adding a small random component to the PSF h (not to the
filtered image). We let h0

M denote the matrix (20) symmetrically zero-padded to size M×M ,
and let ηM(ε) be an M ×M matrix where the elements ηij are random numbers such that
|ηij| ≤ ε � 1. The edge operator L is then implemented by circular convolution with the
modified PSF

h→ h0
M + ηM(ε). (23)

There is no guarantee that any randomly picked matrix on the form (23) has a zero-free
transfer function, so one should check (for any dimension N only one such matrix need be
found). This modified PSF does the same job as the Laplace operator as long as ε� 1. There
is no compromise or approximation involved in (23). It simply means replacing one operator
with another which fulfills the same purpose while also being invertible. In this paper, we
have used M = 7 and ε = 10−3.

B. Noise Suppression Filter

The GDB transform can be visualized by appropriately flipping, vertically shifting, and
stitching together the four quadrants R1f , . . . ,R4f into a Möbius band, as shown in Fig. 6
[33]. It is a Möbius band because the left and right edges, corresponding to vertical projections
(±90◦), can be identified after flipping one of them upside down. The horizontal axis, the
projection angle, maps to the rise parameter s in the GDB transform. A change in the vertical
direction corresponds to a change in intercept parameter h. It is to this representation of the
transformed data that we apply the noise filter.

Fig. 6a shows the GDB transform of a Laplacian image of a DTM with parallel horizontal
tracks (it is actually the transposition of a DTM with vertical tracks). The track line dis-
continuities appear as a string of high intensity spots at the 0◦ projection angle. The other
conspicuous feature is the concentration of noise at ±90◦, i.e., in the direction perpendicular
to the tracks. In addition, there is a more diffuse salt-and-pepper-like pattern across the whole
image. We think the noise amplification at ±90◦ is a manifestation of the motion-induced
noise, which tends to be oriented perpendicular to the tracks.
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Fig. 6b shows the effect of applying a 3× 3 median filter, a standard choice for salt-and-
pepper noise removal. The track line spots persist, and must be removed in a separate step.
Fig. 7 shows the 0◦ column of the DRT where the track line discontinuities appear as distinct
spikes in the data. When the track lines are roughly parallel as they often are in remote
sensing situations, the spikes will always lie in a narrow vertical band at the angle given
by the orientation of the tracks. The spikes can then be eliminated by zeroing all values in
the narrow vertical band, or for example, by using a 1-D polynomial approximation for each
column in the band (see Fig. 7).

Note that, when the edge operator is applied to a DTM (image) by circular convolution
with (23), high pixel intensities may occur along the four edges of the resulting image. This
is because the DTM may not be continuous there, in the sense of being a function on T2

as in (15). The edges of the image therefore get transformed to high intensity spots in the
DRT domain. These spots are not artifacts in the data, and should not be affected by the DRT
domain filter. To avoid boundary effects in the reconstructed DTM, the edge filter should be
applied to a detrended DTM. A low-frequency approximation should first be subtracted, and
subsequently added back to the final reconstructed DTM. This step removes discontinuities at
the edges. As will be shown in Section V-B, standard low-pass filters tend to preserve some
of the noise/artifacts that we want to remove, and this must be avoided. In their place we
use a Chebyshev polynomial approximation that achieves the desired effect. The algorithm,
denoted T (p,D), is characterized by the polynomial degree p and a downsampling factor D
(see Appendix D). The complete denoising algorithm may now be summarized as follows:

procedure f = DENOISE(f 0)
a← T (p,D)f 0

f ← f 0 − a
f ← Lf = h(M, ε) ∗ f . circular convolution
d← Rf
d← medfilt(d) . 3× 3 median filter
d← suppress peaks at track line angle
f ← R−1d

f ← L−1f = F−1 [F [f ] /F [h]]

return f + a

end procedure

First, the trend T (p,D)f 0 is computed and stored in memory and subtracted from the image
(DTM) f0. The modified Laplace operator is applied to the detrended image, and the PSF
is stored for later use in the inverse (deconvolution) step. Next, the forward GDB DRT is
applied to the Laplacian image, and the four quadrants in (5) are merged into a single matrix
as illustrated in Fig. 6. A 3× 3 median filter is applied to this matrix. The median filter may
not be relevant in other applications; we have used the procedure, excluding the median filter,
to remove scalloping (parallel stripes) in synthetic aperture radar (SAR) images; see further
remarks in Section VI. The peaks in the DRT corresponding to linear artefacts are suppressed,
e.g., by zeroing the columns corresponding to the orientation of the lines. The inverse DRT
is next computed using one of the iterative methods described in Section II-C. The inverse
Laplacian image is computed by direct deconvolution with the PSF h(M, ε) (23). Finally, the
trend is added back to obtain the restored image (DTM).
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(a) DRT

(b) 3× 3 median filter of DRT

Fig. 6. Typical example of the GDB transform of an edge-filtered bathymetric DTM with motion-induced noise
and track line artifacts is shown in (a). (b) shows the effect of applying a 3 × 3 median filter in the DRT
domain, i.e., to the image (a). A unit (one pixel) increase along the vertical axis corresponds to a unit change
in the intercept parameter h. However, the parameter h is not constant along horizontal lines in the figure, it is
only constant within each of the four quadrants. This is because the quadrant transforms R1f, . . . ,R4f have
been translated vertically so that they fit together in a Möbius band [33]. The color map is symmetric about
zero, so that white corresponds to zero and black corresponds to high positive or negative values. The DTM
has 1024 × 1024 pixels and horizontal line artifacts (tracks). The small squares symbolize the image (DTM)
extent, and the red (short, thick) lines indicate the projection that corresponds to the associated pixel in the
GDB domain. For example, the topmost non-zero value at 0◦ corresponds to the bottom horizontal line, while
the top left value corresponds to the rightmost column in the image.
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Fig. 7. GDB transform (non-zero part) at 0◦ projection angle, showing track line discontinuities as a series of
spikes.

IV. UNBIASED TERRAIN FEATURES

As noted above, local geometric attributes, such as gradient or curvature, may be used to
visualize landforms and geomorphology. Furthermore, images may be segmented (or clas-
sified) according to variations in morphological patterns caused by differing erosional and
depositional processes. The rate at which local patterns are correctly classified will be a
relative measure of image quality. Preferably, local patterns should be represented by intrinsic
properties that do not depend on image orientation, intensity (or depth/elevation), or large-
scale variations such as approximately constant slopes. We also require that features should
not depend on externally imposed parameters, such as the direction of a derivative, the spatial
relationship of pixel pairs, or the elevation angle of artificial illumination. The operator will,
effectively, only determine the spatial resolution, i.e, the size of the pixel blocks used to
identify local patterns.

Features with such properties may be obtained from the Laplacian ∆ f , which is approx-
imately rotation invariant and insensitive to depth and constant slopes. The Laplacian is
a measure of curvature, and in some situations additional information on patterns can be
obtained by computing the Gaussian curvature K and the mean curvature H . K and H

are intrinsic geometric properties of more general differentiable surfaces embedded in three-
dimensional space [46]. For our purpose, a DTM may be considered as a regular set of
samples from the graph of a function f(x, y) of rectangular coordinates. For the special case
of a graph surface, the formulae for K and H are

K =
fxxfyy − f 2

xy(
1 + f 2

x + f 2
y

)2 (24)

H =
fxx
(
1 + f 2

y

)
− 2fxyfxfy + fyy (1 + f 2

x)

2
(
1 + f 2

x + f 2
y

)3/2
, (25)
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Fig. 8. ECDFs for the quantity |H| (in a rescaled image), for three areas with different geomorphology (see
Section V-C). Given the local CDF for some geometrical property, a Q-dimensional feature vector may be
formed by taking the inverse CDF at Q values 0 < q1 < . . . < qQ < 1 (only q = 0.9 shown here).

where fx denotes ∂f/∂x etc. [47]. The curvatures K and H have some useful local and
global properties. For example, for a domain V ⊂ R2, the functional

∫
V
H
√

1 + |∇f |2 dx dy

is equivalent to the minimum curvature functional of thin-plate spline interpolation [47],
and measures how much the area of the surface f(V ) changes in response to a unit length
deformation in the surface normal direction. K and H are related to the more familiar principal
curvatures, i.e., κ1 and κ2, by K = κ1κ2 and H = (κ1 + κ2)/2 (at any point p ∈ Σ, i.e., a
differentiable surface, κ1 and κ2 are the maximum and minimum curvatures of the family of
1D curves formed by the intersection of Σ with all planes containing the surface normal N p

at p).
An image block of size S×S pixels may be characterized by the distribution of a particular

geometric property. Here we have used the empirical cumulative distribution function (ECDF),
as shown in Fig. 8. Specifying Q values 0 < q1 < . . . < qQ < 1 (e.g., the 10-quantiles) yields
a Q-dimensional feature vector via the inverse ECDF. One may also concatenate the feature
vectors of several geometric properties, e.g. K and H or H and ∆ f .

For comparison and as an alternative to the ECDF, we have applied the local binary pattern
(LBP) operator, a widely used texture operator that also yields distribution-based feature
vectors. LBPs were introduced by Ojala, Pietikäinen and Harwood [48], building on the work
on texture spectra by Wang and He [49]. The original LBP is formed by thresholding the
pixel values of an 8-neighborhood with respect to the center pixel, producing a string of
eight zeros and ones. The string is interpreted as a binary number in the range 0–255. The
distribution (histogram) of LBPs in an image block of size S × S pixels may be used as a
measure of the texture in that block [50]; the number of features equals the number of bins
in the histogram. Since this gives very high-dimensional feature vectors (256 components),
it is common to consider only the so-called uniform patterns corresponding to the binary
strings with at most two transitions between 0 and 1 (e.g. 00111000 has two transitions and
is uniform, while 01001000 has four transitions). There are 58 such patterns [51].
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By definition, the LBP is invariant with respect to uniform (or locally uniform) changes
in image intensity, but it is not rotation invariant. However, rotating an image at angles
2π/P (where P = 8 for an 8-neighborhood) corresponds to a circular bit shift in the patterns.
Therefore, one obtains rotation-invariant distributions by identifying all patterns that are equal
modulo a circular bit shift. For 8-neighborhoods, this results in 36 distinct features [52]. For
the subset of uniform patterns, the corresponding number is nine.

The block size S must be large enough to ensure reliable histogram estimation; here we
have used S = 16, the smallest size considered in [50], and S = 32. To compute the LBPs we
have used the VLFeat library [53], which was modified to handle rotation-invariant patterns.
In the VLFeat LBP algorithm, each pixel-level pattern contributes to the histograms of the
four nearest blocks via bilinear interpolation.

V. TESTS AND RESULTS

A. Multibeam Bathymetry

The denoising algorithm was tested on MBES data from three areas in the northern North
Sea (A, B, and C: Fig. 9). The data were acquired by the Norwegian Defence Research
Establishment (FFI, Kjeller/Horten, Norway), on the research vessel M/S HU Sverdrup II,
in 2005 (C), 2006 (B), and 2008 (A), respectively. Area A was surveyed with a Kongsberg
Maritime (KM, Horten, Norway) EM 710 echo sounder, while areas B and C were surveyed
with a KM EM 1002. The EM 1002 has a center frequency of 95 kHz; the array is semi-
cylindrical and emits a fan-shaped beam with 2.0◦ along-track 3 dB beamwidth, and it forms
111 beams with 2.0◦ beamwidth across track. The EM 710 operates at 70–100 kHz, and has
orthogonally oriented rectangular transmit and receive arrays. The EM 710 transmits in three
sectors simultaneously with distinct frequencies in inner and outer sectors, and forms up to
400 1.0◦ × 0.5◦ beams on reception (0.5◦ transmit beamwidth). The EM 710 system may
generate two separate swathes per ping (at slightly different forward tilt angles), yielding a
higher density of soundings than the older EM 1002 system.

The survey area stretches from the eastern margin of the North Sea plateau (water depth
circa 100 m) and into the Norwegian Trench (water depth circa 300 m, see Fig. 9). The three
areas A, B, and C have different sedimentary and morphological characteristics, and the data
have different noise characteristics. Area A (EM 710) lies on the North Sea plateau, where
the seabed is sandy. Area B covers part of the western slope of the Norwegian Trench. This
area has an irregular pattern of elongated pockmarks that may be a result of fluid seepage
and water current erosion [54], [55]. Area C is flat with soft, silty sediments, but there are
many circular pockmarks caused by vertically migrating shallow gas. In general, noise and
artifacts will be most visible in flat areas such as C, and less visible in areas with greater
depth variation, such as B, which has a depth range of about 90 m.

For each area (A, B, and C), DTMs with resolutions in the range of 1.5 m to 8 m were
constructed by block averaging the MBES soundings. Empty cells were filled in by taking the
mean depth of the four nearest cells. All the processing results presented in the next section
were obtained on grid models with 1024 × 1024 pixels. The EM 1002 data set had, before
we received it, been put through a standard post-processing chain that included corrections
for tidal variations, manual editing, and removal of outliers. The EM 1002 data have motion-
induced noise which is most pronounced at the outer beams, possibly a result of imperfect
sound refraction corrections; this also causes visible discontinuities between adjacent track
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Fig. 9. Overview and bathymetry of the survey area in the northern North Sea. The denoising algorithm was
tested in the areas labeled A, B, and C. Area A was surveyed with a Kongsberg Maritime (KM) EM 710 MBES,
while areas B and C were surveyed with a KM EM 1002 MBES.

lines. The EM 710 data were raw, unprocessed data, where, prior to construction of DTMs we
applied only a crude thresholding to exclude large outliers. The lack of tidal correction causes
marked discontinuities between track lines. There is also a low-frequency swell-induced noise
that appears as wavy patterns “propagating” in the direction of the ship tracks. While MBES
data normally have post-processing corrections, it is useful to test a new algorithm on a
challenging data set.

B. Denoising results

The DTMs for areas A, B, and C were DRT-filtered with the following settings: For areas A
and B, the trend surface T f was computed using the Chebyshev polynomial approximation
algorithm of Appendix D with the parameter values p = 12 and D = 4; for area C the
parameter values were p = 6 and D = 4. Note that the approximation algorithm is based
on least squares fitting, which mitigates the phenomenon of Runge (oscillations near the
boundary) [56]. The modified Laplacian was computed using the PSF (23) with size M = 7

and perturbation level ε = 10−3. A 3 × 3 median filter was applied to the DRT of the
Laplacian. In all three areas, the track lines are oriented approximately north-south; the track
line discontinuities therefore appear as high-intensity spots at ±90◦ in the DRT domain, or,
equivalently, at 0◦ in the DRT of the transposed image (as in Fig. 6). To suppress linear
artefacts, each DRT column was zeroed in approximately the range 〈−1◦, 1◦〉. (One might
also use some interpolation scheme to reset the zeroed values, but this was not done in the
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present work and we do not think it is important when the DRT is applied to the Laplacian
of a detrended surface.) The inverse DRT was computed using the GMRES algorithm with
stopping criterion rk = 10−6 or maximum six iterations, whichever is reached first. We found,
however, that the less tight criterion of rk = 10−2 also yielded good results, good enough
as perceived by the human eye. The rate of convergence will depend on the nature of the
noise and data; we found that the algorithm converged faster when inverting the SAR images
(briefly mentioned in Section VI) compared with the MBES terrain models. As discussed
below (Section VI), except for the polynomial degree p the results shown here were not very
sensitive to the parameters, and consequently, little parameter tuning was required. How to
determine the best value for p a priori is an open question.

For comparison, various lowpass filters were applied to the DTMs or directly to attribute
images, some examples of which are shown in the following. Lowpass filters were im-
plemented as convolutional averaging filters with constant or Gaussian weights and filter
diameters between 3 and 13 pixels (for Gaussian filters, the diameter was defined as 6
standard deviations). In addition, a Butterworth filter was implemented by multiplying the
centered normalized spectrum of F [f − T f ] or F [∆ f ] (see Fig. 10b) with

G(ν1, ν2) =
1

(1 +
√
ν2

1 + ν2
2/D0)2n

, (26)

where n and D0 are adjustable parameters.
In general, we found that low-pass filters were ineffective against stripe noise caused by

track line discontinuities. Depending on the size of the convolution kernel, low-pass filters
can significantly reduce motion-induced noise, but only at the cost of severe smoothing of
real features. The DRT filter is targeted at linear artifacts and produced comparatively good
attenuation of stripe noise. The DRT filter also has a smoothing effect which reduced motion-
induced noise with apparently less distortion of real features. However, severe motion-induced
noise, seen in particular on the outer beams in some of the EM 1002 data, is difficult to
eliminate using either low-pass filters or the DRT filter.

A partial solution to this problem was to apply a DRT filter locally by subdividing the
1024 × 1024 pixels DTMs into nonoverlapping blocks of 32 × 32, 64 × 64 or 128 × 128

pixels. This DRT filter was designed to attenuate linear artifacts in narrow sectors close
to perpendicular to the track lines. Applying the filter in non-overlapping blocks ensures
fast processing. Moreover, at least for block size N ≤ 64, it is possible to use a matrix
representation for the DRT inverse (see further remarks in Appendix E). It does not seem
obvious in advance that disjoint block processing should work satisfactorily, i.e., without
producing block artifacts in the final composite image. Indeed, local DRT filters applied
directly to gradient images did produce block artifacts. In the present results, the DRT was
applied to the Laplacian images, and the denoised gradient images were derived from the
final, restored DTMs. These gradient images have no visible block artifacts.

Fig. 10 shows the power spectrum of the detrended original DTM f −T f for area A (see
Fig. 10a), and the power spectrum of the Laplacian image ∆ (f − T f) (see Fig. 10b). These
spectra reflect that the noise patterns are directed and broadbanded. For both spectra it is
difficult to design a filter that eliminates the artifacts without distorting the real bathymetric
features. Fig. 11 shows the frequency response of the Butterworth filter (26) with parameters
n = 2 and D0 = 400. This filter was applied to the Laplacian image of area A (cf. Fig. 10b)
to produce the lowpass-filtered Laplacian image shown in Fig. 12d.
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Fig. 10. Centered Fourier log-power spectra 2 log | F [·] | (normalized frequency) of detrended DTM for area
A (a) and corresponding Laplacian image (b).
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Fig. 11. Centered frequency response, in normalized frequency, of Butterworth low-pass filter (26) with n = 2
and D0 = 400. This filter was used to produce the image in Fig. 12d below.

Fig. 12 shows the effect of the DRT filter and lowpass filters on the Laplacian ∆ (f − T f)

for area A. In the original image (see Fig. 12a), the morphological features are poorly visible.
The track line discontinuities cause parallel vertical stripes. The DRT-filtered version (see
Fig. 12b) has no stripes and better defined morphology. As demonstrated in Section V-C,
moreover, noise reduction is essential to achieve accurate discrimination between different
geomorphological classes using second-derivative-based attributes. The low-pass-filtered im-
ages in Fig. 12c (7×7 boxcar filter applied to f−T f ) and 12d (frequency-domain Butterworth
filter applied to ∆ [f − T f ]) retain the vertical stripes. In particular, it does not help to filter
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the attribute image ∆ (f − T f) directly, nor is the effect on stripes sensitive to the filter size.
It may also be seen that lowpass filters cause greater smoothing of terrain features compared
to the DRT filter.

Fig. 13 shows gray level maps of bathymetry (gray-level-coded water depth) in area A
before and after the DRT filter was applied. Gray level (color) maps are usually not the best
way to visualize morphological details imaged by instruments like the MBES nor are they as
sensitive as attribute images to the forms of noise studied here. The maps were included to
show that the DRT filter did not alter the depth of real topographical features. As described
in Section III-B, to ensure this, it is necessary to subtract a trend surface from the DTM
before applying the Laplacian operator, to avoid having high values for the Laplacian along
the boundary. If a low-frequency distortion appears in the final restored DTM, one should
try and alter the degree p of the approximation operator T (p,D) (see Appendix D). Bear in
mind that the data in this area had not been through a post-processing chain; in particular,
there is no correction for tidal variations. This causes relatively large discontinuities that are
not completely eliminated. The effect of the DRT filter is best seen in the attribute images.

With the given orientation of the track lines, the stripe noise is most conspicuous when
taking the horizontal gradient (see Fig. 14). Again, by comparing Fig. 14b and Fig. 14c, it is
seen that the DRT filter is more effective than the lowpass filter in removing stripes, whereas
the latter yields a less sharp view of morphology. The straight line that runs at a steep angle
across the images is a real feature, probably a pipeline. The partial attenuation of this feature
is an unwanted side effect.

Fig. 15 shows an example of motion-induced noise from area C, in vertical gradient images,
and the effect of block processing with the DRT filter (128 × 128 pixels blocks). These
images show many pockmarks (craters) on an almost flat seabed. When experimenting with
the standard Radon transform and filtered backprojection, we found that many of the small
pockmark features were distorted by the filter, even with a high sampling rate in the angular
domain. This side effect was eliminated when using the GDB transform and iterative inverse.
Low-pass filters, in this example, a 5×5 pixels boxcar filter, can remove much of the motion-
induced noise (see Fig. 15b), but a better result is obtained with a DRT filter (see Fig. 15c).
In this example, the filter worked by zeroing the DRT in two narrow sectors symmetric about
the horizontal direction.

A yet more difficult example, from area B, is shown in Fig. 16. The interference of motion-
induced noise patterns, between the outer beams of adjacent track lines, creates an effect which
is visible in both the horizontal (see Fig. 16a and 16b) and vertical (see Fig. 16c and 16d)
gradient images. The DRT filter applied directly to area B did attenuate the vertically oriented
noise patterns but not completely (see Fig. 16b). Moreover, low-pass filters were not effective
in this respect. Block processing with a DRT filter, as in Fig. 15c, with block size 32× 32,
does markedly reduce the noise level. This result (see Fig. 16d) was achieved without any
discernible smoothing or distortion of the underlying geomorphological patterns showing the
ocean current-modified pockmarks of area B.

As the true terrain form and the amount of noise are not known, direct evaluation of the
signal-to-noise ratio (SNR) and the level of image distortion is not possible. However, the
inverse coefficient of variation (ICV) may be used as an approximate measure of SNR and
hence of image quality [21], [22], [57]. The ICV for an image region W is defined as

ICV =
Ra

Rsd

, (27)
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(a) Laplacian of original DTM (∆ f ) (b) Laplacian of DRT-filtered DTM

(c) Laplacian of lowpass-filtered DTM (d) Lowpass-filtered Laplacian of original DTM

Fig. 12. The Laplacian of the DTM for area A. The color (gray) scale is identical in all four images. Low-pass
filters are not effective for removing the vertical track line discontinuities; Fig. (c) was obtained after smoothing
the original DTM with a 7 × 7 pixels boxcar averaging filter, while Fig. (d) was obtained by smoothing the
Laplacian of the original DTM with a Butterworth filter.

where Ra is the mean pixel value in W and Rsd is the standard deviation of the pixels in
W . In the works [21], [22], and [57], the ICV is computed in two or four small (10 × 10

pixels), homogeneous, noisy image regions, and Rsd is assumed to be mainly determined by
noise. Here, we have computed the ICV for the whole DTM, in 8× 8 pixels blocks, so that
the result can be displayed as an image (see Fig. 17) showing the linear discontinuities as
regions with low ICV (SNR) (to save space we only include the result for area A). Another
measure employed in the above-cited works is the mean relative deviation (MRD), which
is computed in noise-free regions. However, as the present images are affected by (motion-
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(a) Original DTM

1 km

(b) DRT-filtered DTM

Fig. 13. Gray level maps of bathymetry in area A (depth range of 94–110 m). The rectangles in Fig. 13b mark
the areas representing the three classes of seafloor morphology in the classification tests (see Section V-C). Gray
level (color) maps alone do normally not yield a good visual impression of morphology and noise (although
moderately useful in this particular case). Here, they demonstrate that major features and absolute depth values
are preserved after taking the inverse Radon transform and inverse Laplace operator.

induced) noise effectively everywhere, the MRD is not considered here. The ICV may, by
definition, be high for blurred (or smoothed) images, which conflicts with the perceived sense
of poor image quality. On the other hand, we emphasize that the DRT filter better preserves the
image sharpness compared to low-pass filters. We have therefore also attempted to quantify
the effect of denoising in terms of the practical measure of terrain classification error.

C. Effect on Classification

The classification experiment was restricted to a single area (A) to ensure that extraneous
factors, such as differences in the noise characteristics or instrument resolution, did not
improve the classification accuracy artificially. Three main geomorphological classes were
identified, labeled, and defined by the training areas enclosed by rectangles in Fig. 13b. Each
training area contains about 500 non-overlapping subcells with 16 × 16 pixels, for which
the local ECDFs and rotation-invariant LBP histograms were computed for the quantities K
(Gaussian curvature), H (mean curvature), ∆ f (Laplacian), and f − T f (depth residual).
With respect to ECDFs, each cell is characterized by the set of 10-quantiles, which gives 9
features (or 18 if two geometric quantities are combined, etc.). For comparison, we have also
tested the full set of uniform LBPs, which are not rotation invariant. The experiment was also
run on 32× 32 blocks, which yields more robust estimation of local distributions at the cost
of lower spatial resolution and less training samples.

The classification results are presented here as learning curves (see Fig. 18), where the
estimated classification error obtained with the Bayesian normal density classifier (quadratic
discriminant function) is plotted versus the number of features D used in the classifier. A
range of other classifiers were also tested, but none performed significantly better than the
normal density classifier. The forward feature selection method was used to select subsets
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(a) Horizontal gradient of original DTM
(∇xf )

(b) Horizontal gradient of lowpass-filtered
DTM

(c) Horizontal gradient of DRT-filtered DTM

Fig. 14. Horizontal gradients (detail from area A) show vertical linear artifacts due to track line discontinuities
and lack of tidal corrections. Fig. (b) was obtained after filtering the original 1024× 1024 pixels DTM with a
Butterworth lowpass filter with parameters n = 2 and D0 = 400 [see equation (26)]. The single oblique line
seen is most likely a real feature (e.g., a pipeline).
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(a) Vertical gradient of original DTM (∇yf )
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(b) Vertical gradient of lowpass-filtered DTM
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(c) Vertical gradient of block-DRT-filtered
DTM

Fig. 15. Vertical gradients in a flat area with pockmarks (detail from area C) show motion-induced artefacts
forming a “fishbone pattern”, where the overlapping areas between adjacent swathes (vertically oriented)
correspond to the spine of the fish. Fig. (b) was obtained by filtering the original 1024×1024 pixels DTM with
a 5× 5 pixels boxcar averaging filter. Block processing the DTM with a DRT filter produced Fig. (c) (32× 32
pixels block size).
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(a) Horizontal gradient of original DTM
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(b) Vertical gradient,original DTM (detail)
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(c) Horizontal gradient, LP-filtered DTM
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(d) Vertical gradient, LP-filtered DTM

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

(e) Horizontal gradient, DRT-filtered DTM
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(f) Vertical gradient, DRT-filtered DTM

Fig. 16. Depth estimation errors and motion-induced noise cause vertical linear artifacts in the horizontal
gradient image of area B (a). The DRT filter, applied to the 1024 × 1024 pixels DTM, dampens much of the
stripe noise (e), whereas a lowpass filter (5× 5 boxcar) is ineffective (c). However, the severe motion-induced
noise, shown in Fig. (b) by taking the vertical gradient in a close-up corresponding to the lower right quadrant
of (a), is difficult to eliminate without blurring the image (d). A partial solution, which reduces noise without
blurring, is to apply a DRT-filter in (nonoverlapping) blocks (here 32×32 pixels) (f); the DRT is applied to ∆ f
(Laplacian of original DTM) and dampens nearly-horizontal linear structures. Here, one color map has been
used for the left column panels and another for the right column panels, because the general scale of magnitudes
is different for horizontal and vertical gradients.
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(a) Original DTM

(b) Low-pass-filtered DTM
 

 

lo
g
 I

C
V

5

5.5

6

6.5

7

7.5

8

8.5

9

(c) DRT-filtered DTM

Fig. 17. Inverse coefficient of variation (ICV) computed for area A (cf. Fig. 12 and 13) in 8× 8 pixels blocks.
The ICV is a measure of the SNR, assuming that the variance of the pixels is due to noise. In (a) and (b) the
linear discontinuities in the DTM are seen as regions with low ICV (SNR). In other regions, smoothing (b)
produces high ICV values by definition of the ICV. However, in reality, pixel variance is due to both real terrain
variations as well as noise, and smoothing affects real features.

of D features. To avoid a potential selection bias caused by performing feature selection
and error estimation on the same data set (see, e.g., [58], [59]), we have used the holdout
approach. The complete dataset was randomly split into a training dataset and a test dataset,
with 75 % of the samples assigned for training. Feature selection was subsequently done
using 10-fold cross-validation on the training set only, using the normal density classification
accuracy as selection criterion. Following feature selection, the trained classifier was applied
to the test data set to get the error estimate. To reduce the variance of the error estimate, the
whole process was repeated 20 times (random splits) and the average error computed.

The maximum estimated classification accuracy for various types of features is listed in
Table I. For DRT-filtered data, good accuracy (92–95 %) was attained for S = 32 using
K, H , or ∆ f , while moderately good accuracy (83–89 %) was attained for S = 16. The
best results were obtained using uniform LBPs applied to ∆ f (Fig. 18d). However, one
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TABLE I
OVERALL CLASSIFICATION ACCURACY (%)

Features Raw image Filtered image

16× 16 32× 32 16× 16 32× 32

ECDF H and ∆ f 72.9 82.4 83.4 93.7

LBP (rot. inv.) ∆ f 55.3 63.3 85.4 91.5

LBP (uniform) ∆ f 61.6 71.4 88.6 95.2

ECDF f − T f 74.8 75.9 74.2 73.9

should bear in mind that despite the fact that ∆ f is (approximately) rotation invariant, the
distribution of uniform LBPs is not. Fig. 18d also demonstrates the adverse effect of having
a low ratio between the number of training samples and the number of features (for S = 32).
It is evident that noise filtering is necessary to obtain good classification results when using
noise-sensitive attributes such as curvature; the improvement is as high as 30 % in some
instances (see Fig. 18b). On the other hand, less reliable results may be expected when using
the local distributions of the depth residual f − T f (Fig. 18c) primarily because the result
will depend on the particulars of the trend surface T f .

Appendix F contains a more detailed accuracy assessment, including confusion matrices,
for classification with invariant geometrical properties and rotation-invariant LBPs, using the
optimum number of features.

VI. SUMMARY AND DISCUSSION

The principal aim of this work has been to reduce stripe noise and motion-induced noise
in remote sensing data, particularly in MBES bathymetry as a step towards more robust
classification of seabed type. This paper has four subthemes: inversion of the GDB (DRT)
transform, construction of a linear invertible edge detection operator, noise signature reduction
in the GDB transform domain, and finally, the effect of noise reduction on the classification
of geomorphology by invariant terrain features.

As an image-transform-based method, the proposed algorithm shares some of the strengths
and weaknesses of Fourier domain filtering, but the noise characteristics are very different
in the DRT domain. The two first steps of the algorithm, edge detection plus forward DRT,
closely parallels a standard method for straight line detection in image analysis, namely
to apply a gradient operator, thresholding, and the Hough transform [25] (see, e.g., [60]
concerning the relationship between the Hough and Radon transforms). A straight line will
correspond to a high intensity spot in the DRT domain irrespective of orientation or other
image features. When lines are parallel, as in the present data and much other remote sensing
imagery, the spots will align in a single vertical column in the global DRT plot (Fig. 6),
but this is merely convenient, not essential. In general one could apply a computational
method for finding the high intensity peaks, analogous to the houghpeaks function in
the Matlab®Image Processing Toolbox [61]. The corresponding stripes may subsequently be
suppressed by zeroing the DRT in a small window centered on each peak. The weak point in
this approach is the risk of suppressing real linear features in the image, as exemplified by
the supposed pipeline in Fig. 12. The proposed denoising algorithm works as a smoothing
filter which, applied to the present MBES datasets, suppressed noise better than standard
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(a) ECDF (H and ∆ f )
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(b) Rotation-invariant LBPs (∆ f )
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(c) ECDF (f − T f )
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(d) Uniform LBPs (∆ f )

Fig. 18. Learning curves for the terrain classification experiment (three geomorphological classes), before and
after the DRT noise filter was applied. The legend in Fig. (c) applies to all four panels. The classification is
based on local distributions (ECDFs and LBP histograms) of geometric quantities, in 16×16 and 32×32 pixels
blocks.

low-pass filters and also caused less distortion of topographic features. We also found that
it was simpler to design a noise filter in the DRT domain than in the Fourier domain (see
Section III-B).

Compared with conventional filters in the spatial or Fourier domains, the full DRT denoising
algorithm (see Section III-B) is complicated, with more adjustable parameters: the polynomial
degree p and downsampling factor D of the approximation algorithm (see Appendix D), the
ε-factor and dimension M of the modified Laplacian (23), and a stopping criterion for the
iterative DRT inverse (residual error threshold or fixed number of iterations). In addition there
is some freedom of choice in how to suppress the high-intensity peaks in the DRT domain.
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However, little fine-tuning was needed to obtain the results presented here; only the degree
p needed to be adjusted in some trials to avoid a low-frequency distortion in the restored
DTM. The degree p should anyhow not be too large, so as to avoid fitting the approximation
to the noise. A factor D > 1 both counters this tendency and reduces computer memory
requirements. We think, moreover, that the fixed values of ε = 10−3 and M = 7 will work
in other applications as well.

In addition to image size, the stopping criterion is the critical parameter with respect to
computational cost. The tolerance rk should not be smaller than necessary; rk ∼ 10−2 or 10−3

produced good results for the present data. The DRT of smaller image blocks can be inverted
noniteratively, i.e., by computing a pseudoinverse matrix explicitely. This may speed up
execution when an image can be processed in disjoint blocks as in the two examples above
(see Fig. 15c and 16d). A short discussion of these aspects can be found in Appendix E.
Other iterative inverse methods that were not explored in the present work include the class of
algebraic reconstruction techniques (ART), a common alternative to filtered backprojection in,
e.g., medical imaging [62]. Another possibility we have not tried is to replace the approximate
inverse operator B in (13) with filtered backprojection, and then apply GMRES to obtain an
iterative refinement.

The classification experiment demonstrates that segmentation or classification based on
local distributions of simple, invariant, second-derivative-based quantities can be an effective
means for discriminating between geomorphological types. The mean and Gaussian curvatures
have previously proven useful, e.g., for terrain recognition in airplane navigation, partly due to
their invariant properties [63]. Curvature is, however, sensitive to noise; the Laplacian is after
all used precisely as a noise detector in the DRT filter algorithm. Therefore, it is important to
filter the data before classification, as Fig. 18 and Table I show. Only small differences were
found when performing classification based on K, H , ∆ f , or a combination of the three.
However, the easily interpreted quantities K and H may be useful in some situations. Indeed,
it may be possible to construct features for discriminating between specific morphological
types. For example, an even sandy seabed (sloping or not) has curvature K ≈ H ≈ 0, but if
water currents deform the seabed by forming parallel ripples, then K ≈ 0 but |H| 6= 0.

While the experimental results shown in this paper are for MBES bathymetry only, we
have also used the DRT filter to remove scalloping in SAR images of the Earth’s surface.
Scalloping is an amplitude modulation that causes parallel stripes in burst mode SAR images
[64, Ch. 5.3], particularly wide-swath ScanSAR images of ocean scenes. The procedure was
the same as the DENOISE algorithm of Section III-B, minus the DRT domain median filter.
(Recall that the median filter was only intended to remove motion-induced noise in MBES
data.) The SAR tests suggest that the proposed method may be useful in other remote sensing
applications. It is also possible to reverse the DRT domain filter so as to accentuate linear
features that are oriented in a particular angular sector, i.e. by zeroing the DRT domain outside
the sector before applying the inverse transform. When the DRT filter is applied locally, in
sliding windows, this method can be useful for detecting thin structures with a predominant
orientation, such as seismic fault lines, fractures, or perhaps blood vessels. In such applications
we would use the matrix representation of the DRT inverse as described above.

Another possible development is the use of invertible gradient operators, which may be
constructed in the same way as the modified Laplacian, i.e by using convolution with (23)
but based instead on the PSFs of, e.g., the Sobel operators. Finally, we note that, in some
applications, inversion of the GDB transform can be sped up, and memory consumption
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lowered, by using the fact that each quadrant map Ri is injective, implying that each of the
four quadrants of the GDB transform, R1f , . . . ,R4f , contains all the information needed to
reconstruct f (see Appendix A).

APPENDIX A
INJECTIVITY OF R

The GDB transform R is injective (one-to-one) if and only if Rf = 0 implies that f = 0.
Suppose that f ∈ R2n×2n, where n = 2k and k ∈ {0, 1, 2, . . .}. The matrix (image) f is
divided into a left half f (L) and a right half f (R), each of size 2n × n. We let xhs and yhs
denote, in f (L) and f (R) respectively, the sum of pixel values on the graph Dn(h, s) , i.e.

xhs=
∑

(i,j)∈Dn(h,s)

f
(L)
ij (28a)

yhs=
∑

(i,j)∈Dn(h,s)

f
(R)
ij , (28b)

where −2n < h < 2n and 0 ≤ s < n. Thus x00 + y00 is the sum of the bottom row,
x0,n−1 + yn,n−1 is the sum of the anti-diagonal, and so on. The zero-padded matrix is

f 0 =



0(2n−1)×n 0(2n−1)×n

f11 . . . f1n

... xn
,n
−1

−−−
−→ ...

fn1 fnn

fn+1,1 fn+1,n

... x0,
n−

1

−−−
→ ...

f2n,1
x00−−→ f2n,n

f1,n+1 . . . f1,2n

... yn
,n
−1

−−−
−→ ...

fn,n+1 fn,2n

fn+1,n+1 fn+1,2n

... y0,
n−

1

−−−
→ ...

f2n,n+1
y00−−→ f2n,2n

0(2n−1)×n 0(2n−1)×n



.

By construction (4), R1f = 0 implies that

xhs + yh+s,s = xhs + yh+s+1,s = 0. (29)

It follows that
y−2n+1,s = y−2n+2,s = . . . = y0s = . . . = y2n−1,s, (30)

i.e. yhs must be independent of h. Since y0s = −x−s−1,s = 0, all yhs are zero. Consequently
all xhs are also zero by the assumption R1f = 0. By (4), the complete graphs D2k+1(h, s)

are constructed by recursively combining the graphs D2j of pairs of adjacent subimages; the
subimage size is 2k+1 × 2j , for j = 0, . . . , k. The above argument may now be applied to
any pair of graphs D(L)

2j
and D(R)

2j
. Hence if xhs and yhs are defined as in (28), with n = 2j ,

and xhs + yhs = 0, then xhs = 0 and yhs = 0. By induction which terminates when j = 1, it
follows that f = 0.

The same conclusion is reached assuming that Rif = 0 for i = 2, 3, or 4. Each quadrant
map Ri is injective, and each Rif contains all information needed to reconstruct f .
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APPENDIX B
DECOMPOSITION OF THE DRT DOMAIN

The recursive backprojection algorithm of the GDB transform is such that, in the backpro-
jected image, each pixel p is the sum of all DRT points (Ri) (h, s) whose associated graphs
contain p [32]. From the linear algebra viewpoint, the GDB backprojection algorithm is the
transpose RT of the forward transform. To see this, consider that RT maps between the
vector spaces

RT : RP → RQ,

where P = 6N2−2N and Q = N2 as before. The two spaces have orthonormal basis vectors
gk, k = 1, . . . , P and ek, k = 1, . . . , Q with unity in the kth component and zeros elsewhere.
Let Πj ⊂ { 1, 2, . . . , Q } denote the set of pixels included in the jth graph (j = 1, . . . , P ).
The components of RT are (

RT
)
ij

= eTi R
Tgj = gTj Rei

=

1 if i ∈ Πj

0 otherwise.

Hence, for any G =
∑P

j=1Gjgj ∈ RP ,

(
RTG

)
i

=
P∑
j=1

(
RT
)
ij
Gj =

∑
j:i∈Πj

Gj,

which is the ith pixel of the backprojection of G.
The vector space RP can be decomposed as the direct sum of the range of R and its

orthogonal complement, RP = I(R)⊕I(R)⊥. Moreover, I(R)⊥ can be identified with the
null space of the Hermitian adjoint R+, and R+ = RT since R is real [39]. Thus, RP is the
orthogonal direct sum

RP = I(R)⊕N (R+), (31)

where R+ as in the continuous case denotes the backprojection operator/algorithm.

APPENDIX C
ANALYSIS OF THE PRESS INVERSE

The approximate inverse algorithm of [33], B, can be represented by a Q× P matrix B,
and the product BR is square (Q × Q). Provided BR is nonsingular, and by defining the
residual error matrix E = 1Q −BR, the identity (BR)−1BR = 1Q may be written

(1Q −E)−1BR = 1Q, (32)

and (1Q −E)−1B is seen to be a left-inverse of R. If the spectral radius of E (largest
eigenvalue magnitude) is ρ(E) < 1, then [40, Ch. 7.10]

(1Q −E)−1 =
∞∑
k=0

Ek,

(a Neumann series) and the left-inverse becomes

R−1
L ≡

(
1Q +E +E2 + . . .

)
B. (33)
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TABLE II
SPECTRAL RADIUS OF E

N 64 128 256 512 1024 2048

ρ 0.838 0.895 0.931 1.027 1.293 1.562

log10 σ -14.6 -14.5 −13.9 −14.4 −14.4 −14.4

From (33) follows the recurrence relation for the iteratively inverse DRT of [33], namely

f 0 = Bd (34a)

fk+1 ≡

(
k+1∑
j=0

Ej

)
Bd = fk +B (d−Rf k) . (34b)

This scheme involves only matrix-vector multiplications which are implemented by the fast,
recursive algorithms R and B. There is no need to compute explicitly the matrices B and
Ej , which is practically impossible for large images.

Although the iterative inverse (34) works very well for test images (Fig. 3) and random
images [33], numerical analysis suggests that the condition ρ(E) < 1 does not hold for
image sizes N ≥ 512. The spectral radius of E, estimated using Arnoldi iteration [65]–
[67], is shown in TABLE II. The Press approximate inverse algorithm involves a high-pass
filter which we have here implemented using symmetric boundary conditions. Using other
boundary conditions (zero-padding, periodicity, or replication of nearest value) results in
slightly different values but does not alter the conclusion. The eigenpairs (λ, g) estimated in
this way are good approximations of true eigenpairs at the outer edge of the spectrum; for
(λ, g) corresponding to ρ in TABLE II, the residual is σ ≡ ‖Eg − λg‖2 ∼ 10−14 (in operator
2-norm), which is close to machine precision. This means that the Neumann series

∑∞
j=0E

j

does not converge, but the inverse (1Q−E)−1 = (BR)−1 still exists provided only that λ = 1

is not an eigenvalue of E. If E has s distinct eigenvalues λ1, . . . , λs, Jordan decomposition
gives E = C diag (Jλ1,1, . . . ,Jλs,ts)C

−1, where C is a non-singular Q×Q matrix and there
are tj = dimCN (E − λjIQ) Jordan blocks for eigenvalue λj . The approximation error for
the kth iterate in (34) may then be written

f − fk = f − (1Q −E)−1 (1Q −Ek+1
)
Bd

= P−1 diag
(
Jk+1
λ1,1

, . . . ,Jk+1
λs,ts

)
Pf , (35)

where P ≡ C−1BR ≈ C−1. For |λ| < 1, limk→∞ J
k
λ,i = 0 [40, Ch. 7.10], and in fact the

spectrum of E is concentrated in the range 0 < |λ| < 1. For N = 512, only four eigenvalues
found by Arnoldi iteration have magnitude |λ| > 1. With respect to a basis obtained by the
coordinate transformation matrix P−1, only the relatively few components of f corresponding
to Jordan blocks with |λ| ≥ 1 will not be correctly reconstructed in the limit k → ∞, and
the RMS error will be small. However, the amplification of the blocks Jkλ,∗ for |λ| > 1

destroys convergence for sufficiently many iterations k. The reconstruction algorithm (34)
will therefore not work in all instances. This is demonstrated in Fig. 4 using an eigenimage
of E for N = 512 with |λ| = ρ = 1.027.
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APPENDIX D
TREND COMPUTATION

This appendix summarizes the approximation algorithm T (p,D) (cf. Section III-B). The
image/DTM f ∈ RN×N is downsampled to size N/D ×N/D, and interpolated back to size
N × N using a Chebyshev polynomial tensor product basis of total degree p. Since N is a
power of 2, D is also conveniently taken to be a power of 2 (1 ≤ D < N ). We let { Tk(x) }∞k=0

denote the set of Chebyshev polynomials of the first kind on the interval [−1, 1] [68, Ch. 22].
Treating f as a set of discrete samples of a function f(x, y) on the square [−1, 1]× [−1, 1],
interpolation is accomplished via the expansion

f(x, y) ≈
∑

0≤j+k≤p

wjkTj(x)Tk(y). (36)

There are ηp =
∑p

d=0

(
d+1
d

)
= (p + 2)(p + 1)/2 terms in this series. The coefficients wjk

are determined by a least squares fit of N/D × N/D samples. This can be implemented
by multiplication with a generalized matrix inverse P of size ηp × (N/D)2, which may be
precomputed (i.e. need only be computed once). The Chebyshev polynomials T0(x), . . . , Tp(x)

are also precomputed at N evenly spaced points on the interval [−1, 1], and stored in a matrix
C ∈ RN×(p+1). The latter is accomplished by the following Matlab function given in Listing 1.

Listing 1. Compute Chebyshev polynomials (Matlab)

f u n c t i o n C = c h e b p o l (N, p )
x = −1 :2 / (N−1 ) : 1 ;
C = z e r o s (N, p + 1 ) ;
C ( : , 1 ) = ones (N , 1 ) ;
i f p > 1

C ( : , 2 ) = x ’ ;
end
i f p > 2

f o r k = 3 : p+1
C ( : , k ) = 2*x ’ . * C ( : , k−1)−C ( : , k−2);

end
end

The following code fragment given in Listing 2 generates the Chebyshev polynomials C and
the generalized inverse P for fixed N , p, and D.

Listing 2. Compute Chebyshev polynomials and the generalized inverse (Matlab)

M = N/D;
Ep = ( p + 1 ) * ( p + 2 ) / 2 ;
C = c h e b p o l (M, p ) ;
L = s i n g l e ( z e r o s (M, M, Ep ) ) ;
[ j , k ] = meshgrid ( 0 : p , 0 : p ) ;
f o r n = [ f i n d ( j +k<=p ) ’ ; 1 : Ep ]

L ( : , : , n ( 2 ) ) = . . .
C ( : , j ( n ( 1 ) ) + 1 ) *C ( : , k ( n ( 1 ) ) + 1 ) ’ ;

end
PI = pinv ( reshape ( L , Mˆ 2 , Ep ) ) ;
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i f D ∼= 1
C = c h e b p o l (N, p ) ;

end

If g ∈ RN/D×N/D is the downsampled image, then the coefficients wjk and trend t ∈ RN×N

may be obtained in Listing 3.

Listing 3. Compute approximate image by Chebyshev interpolation (Matlab)

w = PI *g ( : ) ;
t = z e r o s (N ) ;
f o r n = [ f i n d ( j +k<=p ) ’ ; 1 : Ep ]

t = t + w( n ( 2 ) ) * C ( : , j ( n ( 1 ) ) + 1 ) . . .
* C ( : , k ( n ( 1 ) ) + 1 ) ’ ;

end
t = d ou b l e ( t ) ;

Depending on N/D and p, this approach may require too much memory to compute and
store the (p + 2)(p + 1)/2 × (N/D)2 matrix P . This simple solution therefore cannot be
considered general, but has nevertheless worked well in our applications (both MBES and
SAR) for image sizes up to N = 2048 (also with D = 1 and p ∼ 10).

APPENDIX E
NOTE ON COMPUTING TIME

The stopping criterion influences the execution time of the DRT inverse, and the tolerance
rk (relative residual norm, Section II-C4) should not be set smaller than necessary. The code
for this paper was written in C as Matlab executable (MEX) files and ran on a single 2.93 GHz
CPU (core) on a Linux computer with 8 GB RAM. Less than five iterations with GMRES
usually sufficed to obtain a good result, and for image size N = 1024 (∼ 106 unknowns and
∼ 6 · 106 equations) good results were obtained in about 20 s execution time, although the
rate of convergence may depend on the data.

The results shown in Fig. 15c and Fig. 16d suggest that images can be processed in disjoint
blocks, and program execution may then be considerably faster. The main reason is that an
explicit DRT pseudoinverse matrix may be precomputed; inversion of each block is then
carried out non-iteratively, by matrix multiplication, yet with arbitrarily low tolerance rk. So
for small block sizes (N ≤ 64) we have computed the matrix representations of the three
iterative algorithms of Section II-C, which is not feasible for large images due to the memory
requirement. The solution to the normal equations (7) can be obtained by multiplication
with the Moore-Penrose pseudoinverse. The cost of inversion by matrix multiplication is
independent of the accuracy with which the matrix representations of the Press and GMRES
inverses are computed (and the Press inverse is an exact left-inverse for N < 512). The
cost of obtaining the (pseudo-)inverse matrices does depend on the accuracy, but this is a
one-time-only operation.

The time for processing the (1024/32)2 blocks of the DTM shown in Fig. 16d was about
9.1 s (only one quadrant of the image is shown in the figure). This includes not just the time
to invert the block DRTs, but also the time to compute the forward DRTs and apply the DRT
domain noise suppression filter. In this example the forward DRT was also computed using
a matrix representation, i.e., of the GDB algorithm. The number of additions in the GDB
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TABLE III
ACCURACY ASSESSMENT: ECDF (H AND ∆ f )

Class Assignments Total Omiss-
ions

Comm-
issions

MA

#1 #2 #2

#1 50.1 9.5 3.4 63 20.5% 21.7% 65.4%

#2 9.3 55.1 5.6 70 21.4% 16.4% 67.7%

#3 4.4 2.0 52.6 59 10.8% 15.3% 77.5%

(a) Original image

Class Assignments Total Omiss-
ions

Comm-
issions

MA

#1 #2 #2

#1 57.5 4.1 1.4 63 8.7% 4.7% 87.2%

#2 2.9 64.2 2.9 70 8.3% 7.0% 85.7%

#3 0.1 0.8 58.1 59 1.4% 7.3% 91.9%

(b) DRT-filtered image

algorithm is 4N2 log2N , which for large N is much lower than for conventional O(N3)

DRTs (e.g., discrete approximations to the classical Radon transform). For N = 128, we
have 4N2 log2N = 458752, while there are 8388608 non-zero elements (ones) in the matrix
representation of the GDB algorithm, which gives a ratio of 1 : 18. For N ≤ 64, however,
matrix multiplication using an efficient low-overhead library may be faster than the recursive
algorithm.

APPENDIX F
CLASSIFICATION ACCURACY ASSESSMENT

This appendix contains supplementary data about the classification experiments, cf. Sec-
tion V-C and Table I. Table III shows the accuracy assessment for classification with ECDFs
applied to invariant geometrical properties (minimum curvature and Laplacian combined) in
32× 32 pixels blocks. The six best features were employed, obtained using forward feature
selection, cf. Fig. 18. The experiment, including feature selection, was run 20 times, and
Table III shows the average values. Hence, the values for assignments are also fractional. The
mapping accuracy (MA) for a class ω is defined as

MA =
Ncor.(ω)

Ncor.(ω) +Nomi.(ω) +Ncom.(ω)
, (37)

where Ncor.(ω) is the number of correctly classified observations, and Nomi.(ω) and Ncom.(ω)

are the number of omissions and commissions, respectively, in class ω.
Table IV shows the corresponding results for classification with rotation-invariant LBPs in

32× 32 pixels blocks using the five best features.
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TABLE IV
ACCURACY ASSESSMENT: ROTATION-INVARIANT LBPS (∆ f )

Class Assignments Total Omiss-
ions

Comm-
issions

MA

#1 #2 #2

#1 28.4 16.4 18.2 63 54.9% 43.8% 31.4%

#2 15.7 49.5 4.8 70 29.4% 29.1% 54.8%

#3 11.9 4.0 43.1 59 26.9% 39.1% 52.6%

(a) Original image

Class Assignments Total Omiss-
ions

Comm-
issions

MA

#1 #2 #2

#1 63.0 0 0 63 0% 0.1% 99.9%

#2 0.1 61.5 8.4 70 12.1% 12.7% 78.1%

#3 0.0 8.9 50.1 59 15.1% 14.3% 74.4%

(b) DRT-filtered image
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