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Abstract

Acoustical seabed classification is a technology for mapping seabed sediments. Pro-
cessed multibeam sonar data yield the variation of the seabed scattering strength with
incidence angle, and this paper examines the effect of this on classification. A simple
Gaussian statistical model is developed for the observed scattering strength, whereby an
observation is represented by a piecewise constant function of incidence angle. Provided
some data for which the sediment types are known (training data), the statistics for each type
can be robustly estimated. Subsequently, standard Bayesian theory is applied to classify new
observations. The model was used to compute limits on classification accuracy in terms of
the intrinsic scattering strength statistics of the seabed, and to predict whether a logarithmic
or linear scale for the data is preferable. Systematic experiments on a North Sea data set
with four sediment classes tested how the classification accuracy depends on the piecewise
function approximation, incidence angle range, amount of training data, and spatial averag-
ing (combining consecutive pings into one observation). The classifier based on Gaussian
statistics performed at least as well as sophisticated algorithms with no assumptions about
the data statistics. The best accuracy (95 %) was attained for logarithmic data. The amount
of training data needed to achieve this was about 500 pings per class; spatial averaging
could be limited to 10–20 pings. Comparable across-track spatial resolution was possible
by dividing the full swath into separate independent sectors, but only at reduced accuracy
(87 % or less). However, comparable accuracy may be possible by taking into account the
spatial relationships of observations.
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I. INTRODUCTION

The purpose of acoustical seabed classification (ASC) and characterization is to map sur-
ficial seabed composition with sonars [1]. Multibeam echo sounders (MBES) are particularly
useful, as they are now widely used for high-resolution bathymetry. MBES technology has
had a significant impact on the marine sciences. Images of seabed morphology produced from
multibeam bathymetry tell a detailed story of the physical processes that influence the seabed.
ASC adds an extra dimension of information by analyzing and mapping out variations in the
seabed acoustical response. This has proven useful, for example, in the field of marine ecology,
where ASC is applied to the study of seabed (benthic) habitats [2]–[4]. Seabed ecosystems can
be vulnerable to the effects of human activity, from disruptions caused by bottom trawling, to
anthropogenic climate change. Between the conflicting interests of resource development and
nature conservation, seabed mapping and monitoring will likely only increase in importance.

The solution of a generic classification problem has two main steps [5]: First, to preprocess
the data and extract the signal characteristics that are the most effective for discriminating
between different classes of signals. Second, to compute a decision rule which assigns a signal
to one of several possible classes. The decision rule is often computed based on the statistical
distribution of a set of signals for which the class is known, the training data (supervised
learning). There are many powerful methods available for computing the decision rule [5], [6],
but their relative performance is data dependent, and it is difficult to draw general conclusions
about classifier performance based on just a few test data sets. Nevertheless, one should try
and answer questions concerning how accurate is the decision rule, how well will the method
work on new data sets (generalizability), and when might it not work.

The strategy adopted here is to develop a classification method and consider these questions
experimentally as well as with the help of a simple statistical model for the observations.
We focus on a property of the seabed acoustical response which can be fairly well modeled
and measured. An MBES forms many narrow beams in a wide fan perpendicular to the
ship’s track, and therefore measures how the seabed scattering strength S varies with the
incidence angle θ [7, Ch. 8]. The shape of S(θ) depends on the seabed reflection coefficient,
the roughness spectrum, and the strength of sediment volume scattering [8, Ch. 13–14]. While
the received signal statistics can be sensitive to changes in the ensonification pattern on the
seabed [9]–[11] (an extraneous factor), properly measured scattering strength is not.

Although seabed characterization based on S(θ) can be ambiguous due to the complex
interplay of scattering mechanisms, several promising results suggest that S(θ) is a useful
feature for seabed classification and characterization. The angular range analysis of [12] is
an inverse method for estimating acoustical parameters. It works by fitting simulated and
observed features of S(θ) in several separate angular subsectors. The inversion algorithm
is based on the fact that some features correlate with different scattering mechanisms; this
fact may also alleviate the problem with ambiguities. Inversion results based on model-data
comparison of the S(θ) function are also reported in [13], [14]. The parameter estimates
of [13] are consistent with independent estimates made by inversion of a time-domain (echo
shape) model applied to single beam echo sounder data in [15]. The papers [16]–[19] describe
statistical or pattern recognition methods applied to the measured S(θ) function, including
Bayesian classifiers, neural networks, and cluster algorithms. Simulation results in [17] showed
best performance with a Bayesian classifier, albeit on data with known statistical distributions.
A Markov random field based segmentation algorithm for sonar image mosaics, which also
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takes into account the angular variation, was presented in [20]. Pattern recognition methods
are less vulnerable to systematic errors in the data, but are best suited to situations where
observations divide naturally into a set of discrete classes, which may not be fully known in
advance. This problem is addressed in [21], which represents the backscatter histogram at a
single angle with a normal mixture probability density function (PDF), where the number of
components is determined from the acoustical data.

This paper describes a statistical supervised classification method, building on preliminary
results in [22]. We consider several questions of practical importance concerning ASC ap-
plied to S(θ) measurements: accuracy (discriminating power), spatial resolution, training data
requirements, statistics, and PDF estimation. In the statistical approach, an observation of
S(θ) (θ ∈ [θmin, θmax]) is identified not with physical seabed parameters, but by its posterior
probability P (ω|S) and likelihood p(S|ω) with respect to certain classes ω. The classes
are defined by ground truth data or other independent knowledge. In theory, the optimum
(minimum error) classifier is the Bayes classifier [5], but this presupposes that the PDFs
p(S|ω) are known. To get robust estimates of the PDFs from possibly scarce data, we propose
to replace S(θ) by a vector d =

[
d1 . . . dK

]T
, where dk is the average scattering strength

in a segment θk−1 ≤ θ < θk. The number of components in d represents a trade-off between
accurate approximation and robustness. If there are too few segments, the classification error
rate increases because important information is lost by excessive smoothing. If there are too
many segments, good estimation of the PDFs for d requires an unrealistic amount of training
data. To achieve a good balance, the segments are determined such that the approximation
error is minimized for the data set as a whole (for a fixed number of components K) [23],
[24]. The observation vector d retains a simple physical interpretation, and is insensitive to all
but very large errors in the estimated incidence angles. Section II-B and Section II-C explain
the processing steps for obtaining the observation vectors.

The classification accuracy depends on the amount of averaging, the intrinsic scattering
strength S, and the variance of S. Observation vectors result from averaging over time
samples, angular segments, and consecutive pings. In Section II-D and appendix A, we
compute approximate PDFs for the observation vectors, using a central limit theorem, for
the simplest case of uncorrelated components. This is used to compare error bounds for
classification with intensity and log-intensity data respectively. It may also be used to generate
PDFs from modeled S(θ) functions.

The method was applied to a North Sea MBES data set. The survey area and supporting
data are described in Section II-A. The experimental procedure is explained in Section III-A.
The purpose of the experiments was to test how the classification accuracy depends on

• the dimension of the scattering strength vector d;
• the amount of training data;
• the amount of spatial averaging (combining data from several pings);
• the extent of the angular sector.

Spatial averaging limits the along-track resolution of ASC mapping. Across-track resolution
was also considered by dividing the full sonar swath into separate subsectors. We believe
the data set is a useful testing ground for ASC methods. The survey area covers distinct
sedimentary environments: a sandy plateau with low present day sedimentation; a deeper
trench with thick soft marine depositions; as well as a transition zone between them. A set of
sediment samples (gravity cores and grab samples) with laboratory analyses is available, and
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TABLE I
DEFINITION OF SEDIMENT TYPES

Type Grain size (mm) φ a

Clay < 0.002 > 9

Silt 0.002-0.063 4-9

Sand 0.063-2.0 (−1)-4

Gravel > 2.0 < −1

a φ = − log2(D/1 mm), where D is
particle diameter.

a previous survey using an alternative ASC method and single beam echo sounder (SBES)
provides a reference point [25].

Test results show that good classification accuracy and spatial resolution is possible even
with limited training data. Section III-B presents the experimental results, which are discussed
in Section IV.

II. METHODS AND DATA

A. Survey area

The survey area stretches from the eastern margin of the North Sea plateau and into the
Norwegian Trench (Fig. 1). The North Sea is a shallow continental sea bounded by the British
Isles, Norway, and the northern European continent. The Norwegian Trench (or Channel) is
a depression in the continental shelf along the coast of southern Norway, with depths of
about 300 m in the survey area; its recent geology is influenced by alternating glaciations
and inundations during the Quaternary age [26]. The Norwegian Trench is an important trap
for fine-grained water-borne sediments in the North Sea [27], and the top seabed layer is
soft, silty and rich in organic material [28]. The eastern North Sea plateau is about 100 m
deep, and the seabed is covered with sand and gravel [25], [29]. There is almost no present-
day accumulation of water-borne, fine-grained sediments in this area. A gradual change in
grain size distribution is expected down the western side of the trench. However, this slope
is marked by flutes, ditches or elongated pockmarks, which suggests strong action by ocean
currents or fluid seepage from below [30], [31].

The sediment sample data set (Fig. 1) confirms this picture. The mass fraction of sand
in the samples increases westwards, up to more than 90 % on the plateau. The samples are
labeled according to a modified version of Folk’s classification system (TABLE I,II) [25],
[32]. A previous study covering the area employed single beam echo sounder and the QTC
Impact software [33] for seabed classification. Based on the ASC results and the same set of
samples, it was concluded that four classes of seabed sediments could be discerned [25]:

1) silt and mud (deep central part of the trench);
2) sand with varying amounts of gravel (shallow plateau);
3) a variety of clay, silt, and sand (lower western slope of the trench);
4) sandy mud with gravel (upper western slope).
There are seven sediment samples inside the studied survey area, classified as either sand

(S), sandy silt (sZ) or silt (Z). A fourth class designated U (unknown) was taken to represent
a subarea devoid of samples. One of the sand samples (described as fine sand with shell
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Fig. 1. Bathymetry and sediment samples (gravity cores and grabs) in and around the study area (solid lines)
[25]. Letters indicate laboratory classification of samples, e.g. zS means “silty sand” (TABLE I, II).

TABLE II
COMPOSITION OF SEDIMENT SAMPLES

Abbr. Mass fraction Description

M Clay+Silt > 90% 1 : 2 < Clay:Silt < 2 : 1 Mud

C Sand < 10 % Clay:Silt > 2 : 1 Clay

Z Sand < 10 % Clay:Silt < 1 : 2 Silt

S Sand > 90 % Gravel < 2 % Sand

sZ Sand < 50 % Clay:Silt < 1 : 2 Sandy silt

zS Sand > 50 % Clay:Silt < 1 : 2 Silty sand

gS Gravel 2-30 % Clay+Silt:Sand < 1 : 9 Gravelly
sand

zC Sand < 10 % Clay:Silt > 1 : 1 Silty clay

sM Sand < 50 % 1 : 2 < Clay:Silt < 2 : 1 Sandy mud

gmS Gravel 2-30 % Clay+Silt:Sand < 1 : 1 Gravelly,
muddy
sand

csZ Silt > 50 % 1 : 2 < Clay:Sand < 2 : 1 Clayey,
sandy silt
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fragments) lies in a wedge-shaped area with higher backscatter levels than the surroundings.
The sand class was therefore split in two: S and S2. Hence we defined five classes in our
classifier evaluation: S, S2, Z, sZ and U.

B. Data preparation

The MBES data and sediment samples were acquired by the Norwegian Defence Research
Establishment (FFI) on the research vessel M/S HU Sverdrup II. About 15 GB of data were
collected during 600 hours of three separate surveys in the fall of 2005 and late winter of 2006.
The three surveys together cover the contiguous area outlined in Fig. 1. The echo sounder
was a Kongsberg Maritime EM 1002. The EM 1002 has a center frequency of 95 kHz; the
array is semi-cylindrical and emits a fan-shaped beam with 2.0◦ along-track 3 dB beamwidth,
and it forms 111 beams with 2.0◦ beamwidth across track. Fig. 2 illustrates the acquisition
geometry of an MBES, and Fig. 3 shows a map of the backscatter data. The latter corresponds
to Fig. 1, with sounding depth replaced by beam intensity, interpolated onto a regular 10 m2

grid. The beam intensity is an approximation to the seabed scattering strength [34], [35], and
not normalized with respect to angular variations. The angular coverage of the EM 1002 is
up to 150◦ athwartships, but we have only used port and starboard sectors from 0-50◦. The
present data were acquired with a maximum beam angle (with respect to the vertical) of up
to about 65◦, but many pings have a narrower angular range. This depends in particular on
the water depth, refraction, and possibly also the weather conditions; outer beams may also
be missing due to erroneous bottom detection. In addition, other authors [16] have observed
that beampattern effects may cause unphysical backscatter levels at high incidence angles. To
avoid extrapolating missing data when comparing data from different pings, observations with
missing data would have to be discarded. Hence the maximum angle during data processing
was set as low as 50◦ to avoid discarding many observations.

To describe the data processing, we let y = |Π(t)|2 denote the squared envelope of the
complex pressure time series. The averaged scattering cross section is defined as in [36, Ch.
16]:

s(θ) =

∫
Γ

σ(r; θ)Ω(r; r0) d2r, (1)

where σ is the local scattering cross section. The integration variable r is position on the
seafloor; the integral is over the ensonified area Γ of a single beam (at time t); Ω(r; r0) is
the ensonification function, which is the beam pattern expressed as a function of r and r0,
the position of the array. It is assumed that Γ is small, so that the incidence angle θ is fixed.

For a long stationary signal, Γ is the beam footprint. The mean square envelope (in volts2),
compensated for propagation loss, is then

〈y〉 = 2s2
0s

2
rs(θ), (2)

where s0 is the source level and sr is the receiver sensitivity on the beam’s maximum response
axis. The factor 2 occurs if s0 is defined in terms of RMS pressure [8, App. F–G]. For a
short MBES pulse of length τ, the across-track width of Γ is limited to cτ/2 sin θ, and it is
not precisely known where Γ lies within the footprint (at particular time t). Nor was Ω(r, r0)

precisely known. Instead (2) is used with 〈y〉 replaced by the mean intensity, ȳ, in a window
around the echo peak. On average, samples near the echo peak are energy scattered from
resolution cells near the maximum of the ensonification function, where its value (Ω = 1) is
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Fig. 2. MBES geometry in the across-track plane. The vessel moves along the x-axis. A single ping with pulse
length τ ensonifies a strip of seafloor which is wide in y and narrow in x. The receiver array steers many beams
at different depression angles Φ, yielding backscatter response at different incidence angles θ. A resolution cell
has a length of cτ/2 sin θ; the beam footprint length is approximated as RΨr. The beampattern shown here
has 3 dB beamwidth Ψr = 10◦ and uniform −20 dB sidelobe levels. The actual beamwidth of the EM 1002 is
Ψr = 2.0◦, but the precise beampattern is not known.

known by definition of Ω, s0, and sr. We understand that the manufacturer accounts for the
factors s0 and sr, which have been determined experimentally [34], [35]. The corrected beam
intensity is

yc =
ȳq2

s2
0r

2
0A
, (3)

where q is the one-way propagation loss. The factor A is an approximation to∫
Γ

Ω d2r ≈ A = RΨt ×min [RΨr, cτ/2 sin θ],

where R is the slant range, and Ψt, Ψr are the 3 dB transmit and receive beamwidths. The
factor A ensures that 〈yc〉 ≈ 〈σ〉 . The bias caused by the simplification A ≈

∫
Γ

Ω d2r is
independent of seabed type. In the present work it is only the difference between seabed
types which matters. The best way to determine scattering strength would be to measure the
total backscattered energy from the beam footprint [37]. However, our recorded data did not
include the full time series of the seabed echoes.

We used ray theory [38, Ch. 3] to compute the geometrical spreading loss and the beam
direction v at the seafloor. Sound absorption was estimated using conductivity, temperature,
and density (CTD) profiles and the empirical formulae of [39]. The seabed shape and surface
normal n were calculated with cubic spline interpolation using depth soundings from a set of
consecutive pings. (By comparison, the system software assumes that the seabed has a constant
slope across the whole swath.) The incidence angle was found from the three-dimensional
scalar product cos θ = n · v/‖v‖.
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Fig. 3. Scattering strength data (beam intensity) in the survey area. An area of high backscatter levels which
contains the S2 sample (Fig. 1) is also indicated.

C. Observations

Suppose 0 < θ1 < . . . < θK−1 < θmax is a subdivision of the incidence angle range of
the sonar swath. An observation is a K-dimensional vector d, where each component dk is
the average of corrected intensity measurements (3) for incidence angles θ ∈ [θk−1, θk) . As
Fig. 4 shows, the vector d is simply a piecewise constant approximation to the full scattering
strength observation. A group of measurements can be formed from Np consecutive pings,
but data from port and starboard sides of the swath are kept as separate observations.

For a seabed type ω, we shall estimate a PDF p(d|ω) for the random vector d with respect to
ω. As a rule-of-thumb [40], there should be at least ten times as many training observations
for ω as there are components in d. To keep K as low as possible without reducing the
approximation accuracy too much, the segments [θk−1, θk) , k = 1, . . . , K, are defined such
that the total approximation error for the data set is minimized for fixed K. Hence the segments
in Fig. 4 are short where the intensity variation with angle is large, and longer where the
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Fig. 4. Two observations of scattering strength versus incidence angle (irregular curves), along with piecewise
constant approximations with K = 5 segments: sand (thick lines) and silt (thin lines). Each segment is an angular
range corresponding to a horizontal line segment in the piecewise constant approximations. The segments are
the same for both (all) classes. The K-dimensional observation vectors d comprise the mean values for the K
segments. (Data from 10 consecutive pings have been used to form one vector.)

variation is smaller.
Mathematically, getting d from measurements can be viewed as a two-step binning process,

defined by two non-decreasing onto functions b and c,

[0, θmax]
b−→ {1, 2, . . . N} c−→ {1, 2, . . . K} , K < N.

We let 〈A〉 denote the arithmetic mean of the elements of a discrete set A. A full observation
(irregular curve in Fig. 4) is thus a vector ς =

[
ς1 . . . ςN

]
, where the component ςi is the

average of all measurements in the ith bin for a group of pings,

ςi = 〈yc(θ) | b(θ) = i〉 . (4)

The number of bins N depends on the angular coverage and resolution. In this paper θmax =

50◦ and N = 50, so the bin length is 1◦ (about the ratio of angular coverage to number of
beams). A data set of M observations ς1, . . . , ςM is represented by an M ×N matrix

N bins−−−→

D =


ς1
1 . . . ς1

N

... . . . ...

ςM1 . . . ςMN

.
yM observations

The segments correspond to the horizontal lines in Fig. 4 and are defined by c. Hence ς is
replaced by the observation vector d =

[
µ1 . . . µK

]
, where µk = 〈ςi | c(i) = k〉 is the mean

of all components in the kth segment. For a given number of segments K, the approximation
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error depends on c, which is determined adaptively from D. We use a method from [23], [24],
which minimizes the total squared approximation error for the data set D. The optimization
problem is

min
c

K∑
k=1

M∑
j=1

∑
i∈Ik

(
ςji − µ

j
k

)2
, (5)

where Ik = { n | c(n) = k }. A fast and straightforward algorithm for solving (5) can be
found in [23]. The solution for c can be implemented as a linear transform in the following
way. Let nk be the number of elements in Ik, and define Nk =

∑k−1
i=1 nk, N1 = 0. Let wk

be the N × 1 vector with 1/nk in rows Nk + 1 . . . Nk+1 and 0 elsewhere. Then

W =
[
w1 . . . wK

]
(6)

is an N ×K matrix such that d = ςW is the feature vector of observation ς .
The optimization (5) is performed on the whole data set (all observations and seabed

types), or a representative subset, not just the training samples. The segments are the same
for all seabed types. The main point is to reduce the dimension of ς (i.e. K < N ); the PDF
p(d|ω) can be estimated more accurately when K is small. This is relevant for ASC when
training observations must be picked near a few ground truth sites and therefore are limited in
number. Failing to ensure a high ratio between training set size and sample space dimension
may impair the classification accuracy, as is commonly seen in pattern recognition problems
[5].

D. Bayesian classification

Let p(d|ωi) denote the PDF for feature vector d with respect to seabed class ωi. The Bayes
decision rule [5, Ch. 2] states that a new observation x should be assigned to the class with
the highest posterior probability. By Bayes’ theorem, this means selecting class ωi if

p(x|ωi)P (ωi) > p(x|ωj)P (ωj) for all j 6= i, (7)

where P (ωi) is the prior probability assigned to class ωi. The PDFs may be estimated para-
metrically or non-parametrically. We used a multinormal model and equal prior probabilities.
Thus,

p(d|ωi) =
(2π)−K/2

|Σ̂i|1/2
exp

[
−1

2
(d− µ̂i)T Σ̂

−1

i (d− µ̂i)
]
, (8)

where µ̂i = (1/N)
∑N

k=1 d
i
k is the mean vector from N training samples in class ωi, and

Σ̂i =
1

N

N∑
k=1

(dik − µ̂i)(dik − µ̂i)T

is the sample covariance matrix for observations in class ωi.
Classification was implemented with the Matlab toolbox PRTools4 from TU Delft [41].

We have tested the three common variants of the Bayesian normal classifier: Quadratic
discriminant classifier (QDC), linear discriminant (LDC), and uncorrelated (UDC). UDC is
the assumption that the covariance matrices are diagonal; LDC is the assumption that the
covariance matrices are equal (Σi = Σ for all classes ωi); QDC is general (no assump-
tion on covariance structure). LDC or UDC may be preferred over QDC when Σ is near-
singular (typically, with few and closely correlated training samples). For QDC, the decision
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Fig. 5. Scatterplot and decision boundaries for the QDC in two dimensions. Segment 2 is the angular range
[5◦, 12◦〉, and segment 5 is the range [32◦, 50◦〉. We used the forward floating search method [42] to pick the
two most informative features from a five-dimensional approximation of scattering strength. The plot contains
800 observations (200 per class), which were randomly selected from large training areas as explained in
Section III-A and Fig. 7.

boundaries (points of equality in (7)) are (K − 1)-dimensional quadric hypersurfaces, as the
two-dimensional example in Fig. 5 shows.

The critical step is PDF estimation, not the assumption of normality in (8). However, using
a normal model reduces the risk of overfitting the model to the data, and simplifies the PDF
estimation task to computing µ̂ and Σ̂

−1
. By definition, a feature vector d results from a triple

averaging over time samples, over pings, and over incidence angle segments. It is therefore a
sum of many random vectors, each component of which is a sum of intensities from separate
sonar resolution cells. With the common assumption of statistical independence, it follows
below that the PDFs for the observation vectors should be asymptotically normal.

Suppose the PDF fY |θ(y) describes the distribution of beam intensity measurements at angle
θ, for a particular seabed type. The seabed type is characterized by a distribution fS|Θ(s|θ)
of the average scattering strength (1). To be more specific, we consider the compound model
in [36, Ch. 16.3], where it is assumed that intensity measurements collected from regions
with a fixed value of s are exponentially distributed (i.e. Gaussian complex pressure). The
compound PDF is

fY |Θ(y|θ) =

∫ ∞
0

1

s
e−y/sfS|Θ(s|θ) ds. (9)

Measurements in the kth segment are for random angles in [θk−1, θk), so we regard Θ as a
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continuous random variable with uniform PDF

fΘ(θ; k) =

1/ (θk − θk−1) if θ ∈ [θk−1, θk)

0 otherwise.
(10)

We write the expected value in segment k with respect to Θ as

〈A〉k =
1

θk − θk−1

∫ θk

θk−1

A(θ) dθ. (11)

The marginal distribution

fY (y; k) =

∫ θk

θk−1

fY |Θ(y|θ)fΘ(θ; k) dθ

=

∫ ∞
0

1

s
e−y/s

〈
fs|Θ(s|θ)

〉
k

ds (12)

is a model for the normalized histogram of intensity measurements in the kth segment. For
log-intensity measurements, (12) must be replaced with

fW (u; k) =

∫ ∞
0

fW |S(u)
〈
fS|Θ(s|θ)

〉
k

ds,

W = log Y, (13)

fW |S(u) =
eu

s
e−e

u/s.

Now form the vector Z =
[
Y1 . . . YK

]T
, where Yk is a random variable with PDF as in

(12) or (13). If Z1, . . . ,ZM are M independent random vectors distributed as Z, with mean
µ and finite covariance matrix Γ, then

Z1 + . . .+ZM

√
M

D−→ N(
√
Mµ,Γ), (14)

where D−→ means convergence in distribution [43, Ch. 11]. For sufficiently large M the PDF
for the average

m =
Z1 + . . .+ZM

M
(15)

approaches the normal distribution N(µ,Γ/M). The average m (15) is a model for the
observation vector d, although in practice we allow for different number of measurements in
different segments. The number of independent measurements increases with Np (number of
pings) and decreases with K (number of segments). With the notation

ς(θ) = E[S|Θ = θ] (15a)

ν2(θ) = Var[S|Θ = θ] (15b)

ςL(θ) = E[log S|Θ = θ] (15c)

ν2
L(θ) = Var[logS|Θ = θ], (15d)

then from the appendix (28)–(29),

µk ≡ E[dk] = E[Y ] = 〈ς〉k (16)

MΣkk ≈ Var[Y ] = 2
〈
ν2
〉
k

+
〈
ς2
〉
k

+ VarΘ [ς] (17)
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for linear intensity. For log-intensity, the result is (30)–(31)

µk ≡ E[dk] = E[log Y ] = 〈ςL〉k − γ (18)

MΣkk ≈ Var[log Y ] =
〈
ν2
L

〉
k

+
π2

6
+ VarΘ [ςL] . (19)

Here γ is the Euler-Mascheroni constant.
In the appendix we have used these formulae to calculate error bounds for discrimination

between pairs of classes, parameterized by M and the standard deviation of the intrinsic
scattering strength. This may in turn be used to predict whether it is better to apply the
classification method to intensity or log-intensity data in general. Since we do not know the
underlying distributions fS|Θ(s|θ), the maximum entropy principle [44] is invoked to make
the comparisons. From (43)–(44) in the appendix,

ν2(θ) =
(
eν

2
L − 1

)
ς2(θ),

so ν is proportional to ς, and ν = 0 for νL = 0. If we assume for simplicity that the
proportionality factor (hence νL) is angle-independent and class-independent, then the error
bound (36) can be plotted as a function of the single parameter νL. This gives a family of
error bound curves indexed by the number M. Fig. 6 shows one example for the classes S
and Z. To make this plot we have used the class means of the observed scattering strength
ςL(θ) (full observations with N = 50 bins). These error bounds are for classification in K = 5

dimensions. Fig. 6 suggests that log-intensity is the better choice. The picture is similar for
e.g. the pair sZ and U.

III. EXPERIMENTS AND RESULTS

A. Experimental setup

The purpose of the experiments was to see how the classification accuracy depended on
• the dimension of the scattering strength vector d;
• the amount of training data;
• the amount of spatial averaging;
• the extent of the angular sector.

These factors determine the reliability, spatial resolution, and practical applicability of the
method. We evaluated the classifier in two alternative ways. Both involved the following
recipe:

1) Select random, independent training and test data for each known class (seabed type).
2) Estimate the PDFs (8) using the training set.
3) Count the number of misclasssified test samples in repeated experiments to obtain an

average error rate, the probability of error.
The first way was with small training areas centered on the sediment sample sites. This
would be the natural approach to mapping new areas where little is known about the seabed
geology in advance. There are seven samples inside the survey area, representing four classes
(Section II-A and Fig. 1), and each defined the center of a 3 km2 block of training data.
Two additional blocks of data were taken from an area far from any samples. These data
represented the class U (unknown, not sampled). We defined test blocks similar in number
and size in the vicinity of the sample sites; they did not overlap with the training areas, but
the seabed type could nevertheless be asserted with reasonable confidence based on prior
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Fig. 6. Error bounds for discrimination between the S and Z classes (K = 5 segments). It is assumed that
the variance is the same for both classes. With five segments, the values M = 50 and M = 100 correspond
roughly to 10–20 pings spatial averaging. Error bounds for both intensity and log-intensity data are shown for
comparison.

knowledge. Randomly drawn observations from the training areas were used to estimate the
PDFs.

The second way was with more data and more careful randomization. This was an attempt
to make the results and conclusions more robust. For each class we defined a large rectangular
training area (rectangles with thick outlines in Fig. 7). Each training area was divided into
smaller cells by a 20×20 grid subdivision (for better legibility, Fig. 7 illustrates this for 4×4

grids only). In the trials, half of the cells were assigned to training and the rest to testing.
This was done in a random manner, with new random selection for each run. In each run, a
specified number of training observations, ranging from 5 to 500 per class, were randomly
selected from the combined set of 200 training cells and used to estimate the PDFs.

In its basic form, the present method yields two observations per group of pings, one on
either side of the vessel. This limits the lateral (across-track) spatial resolution of the final
class map, i.e. the number of independently classified seabed patches. To see how the method
may handle environments where the seabed type varies across the swath, we extracted data
from smaller, complementary angular sectors. We ran the same set of tests as above on each
subsector independently of the others. The sectors were specified in two alternative ways. One
approach was to define equiangular sectors, for example 0–25◦ and 25◦–50◦. The segments
in each sector were computed from (5) applied to measurements in each sector separately.
The number of segments K was set equal for all sectors. The other approach was to apply
(5) to all data in the full angular range as before, and assign an equal number of segments to
each sector. For example, with K = 8 (we let K be a power of two), we defined two sectors
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Fig. 7. Training areas (large rectangles with thick lines) with 4× 4 subdivisions for five seabed classes in the
survey area. In practice 20 × 20 subdivisions were used. For each test run, cells were randomly assigned for
training and testing in a fixed proportion, and a specified number of observations were selected from the set of
training cells and used to estimate the PDFs. See also TABLE I, II and Fig. 1.

with segments 1–4 and 5–8 respectively, and four sectors with segments 1–2, 3–4, 5–6, and
7–8 respectively. In the latter approach the PDF for a sector can be obtained from the full
PDF by marginalizing out the segments outside the sector, which for normal distributions just
means discarding the corresponding components.

B. Results

1) Accuracy: We ran the tests on yc(θ) and 10 log10 yc(θ) data, where yc was the corrected,
dimensionless beam intensity (Section II-B). The results presented here are for the classes
S, Z, sZ and U. The S2 class was left out because its small extent limits the amount of
independent training and test data, and because we are less confident about the true class and
nature of the S2 data. However, when all five classes were taken into account, using small
training areas around the samples, the results were again very similar to those of Fig. 8–
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Fig. 8. Error rate vs. observation vector dimension (number of segments). The topmost curve is for intensity
data, the rest are for log-intensity data (QDC, Np = 20 pings averaging.)

Fig. 10. A single example (five classes, log-intensity, LDC, 50 pings averaging) can be found
in [22].

As Fig. 8 shows, the best results were obtained with log-intensity (decibel) data, about
5 % less errors. Therefore, the results in Fig. 8–Fig. 11 are for log-intensity data, except for
the topmost curve in Fig. 8. The estimated error rates were similar for the two approaches
described in Section III-A, showing the same trends and minimum error rate. The main
difference was a better error rate in very low (1–2) dimensions when using the large training
areas with randomized subdivision. The results in this section have all been obtained with
large training areas. The incidence angle domain was 0–50◦.

The variable parameters are the number of training observations per class, the number of
segments (observation vector dimension K), the number of pings (Np) in the spatial averaging,
and the classifier itself (QDC, LDC, or UDC). As the minimum error rate was attained with
about five segments, we set K = 5 in the plots where observation vector dimension is not
the independent variable. For each set of parameters, the estimated error rate is the average
fraction of misclassifications from five random experiments.

Fig. 8 shows the error rate as a function of observation vector dimension. The minimum
error rate is about 5 %, it is achieved with log-intensity data, and is quite stable up to 16
dimensions. However, the importance of dimensional reduction is apparent when the number
of training observations is small. Even with much training data, the error rate increases in
more than 16 dimensions, sometimes sharply. Fig. 9 shows the effects of training set size and
spatial averaging. These results suggest that adequate estimation of the PDFs was achieved
with about 50–100 observations per class, which is about 10–20 times the observation vector
dimension (for K = 5). Increasing the number of pings in a group of measurements from 10 to
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Fig. 9. Error rate vs. training set size (per class). (QDC, K = 5 segments.)

Fig. 10. Error rate vs. feature vector dimension (all classifiers). (100 training observations per class.)

50 reduces the variance, and hence the error rate, as Fig. 6 also implies. Fig. 10 compares the
classifiers QDC, LDC and UDC. QDC performs best, but LDC and UDC are not much worse.
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(a) Equiangular sectors with four segments each (b) Eight globally determined segments and subsets

Fig. 11. Error rates for observations restricted to angular subsectors (QDC, 20 pings averaging, 300 training
observations per class). Each horizontal line between ∧ and ∨ marks the width of a sector; the vertical bars
mark the limits of segments. In (11b) there are 8 segments determined for the full angular range, with subsectors
comprising two or four segments. In (11a), the sectors have been obtained by dividing the the full range into
two or four equiangular parts, with four separately determined segments per sector.

In high dimensions, the reduced ratio between training set size and dimension causes more
unstable estimates of the inverse covariance matrix, which affects QDC the worst. However,
in 16 dimensions or less, the performance degradation of QDC is not significant.

2) Lateral resolution: For equiangular subsectors (Section III-A), the lateral (across-track)
resolution is, roughly, the swath width on the seafloor divided by the number of sectors.
Recall that we also tested an alternative subdivision method: determine the segments using
all data (full swath), and assign an equal number of segments to each subsector. Fig. 11a
and Fig. 11b show the error rates for the two approaches. The error rate for each subsector
has been plotted as a horizontal line, whose extent indicates the opening angle of the sector.
The vertical bars on each sector line show the breakpoints of the segments (Section II-C). In
Fig. 11a, each subsector has been obtained by dividing the full swath into one, two, or four
subsectors; in Fig. 11b, there are eight segments in total, and sectors with two, four, or eight
segments.

For any partition into complementary sectors, the overall accuracy is limited by the accuracy
of the worst sector. In these examples (Fig. 11), the best partition consist of the two sectors
at 13 % error rate in Fig. 11b. This results in an overall error rate of 13 %. By comparison,
the equiangular partitions in Fig. 11a do not yield acceptable error rates at moderate-to-high
incidence angles. For almost every sector, the segments are longer at high angles, because
the data vary less with angle in this regime. This is as predicted by scattering physics [36,
Ch. 13–14]. The plots also show that using the full sector (0-50◦) gives the lowest error rate.

3) Sediment map: The classifier (decision rule) was applied to the whole data set to produce
a seabed class map of the survey area (Fig. 12). To make this map, the training data were
restricted to 2.8 km2 blocks containing the sediment samples shown in Fig. 1 (inside the
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Fig. 12. Classification result for the survey area (five classes).

survey area). We included the S2 sample, so the map has five sediment classes. The scattering
strength observations were represented by a piecewise constant function approximation with
K = 5 segments. The spatial averaging was Np = 20 pings. The PDFs p(x|ωi) were computed
using (8) with no assumptions about Σ̂i (i.e. QDC). Each observation d was then classified
according to the decision rule (7) with equal prior probabilities. Each observation was assigned
the geographical coordinates of the midpoint of its angular sector (on the seafloor). The
classified observations were then preprocessed with a 100 m2 spatial block mode filter before
each point was plotted with color codes to get Fig. 12. The map shows that the boundary
between the sZ and U classes in particular is not crisp; sZ and U tend to blend into each
other. We did anticipate that sZ and U would be similar. In fact, most of the misclassifications
found during error rate estimation can be attributed to confusion between the sZ and U classes
[22].
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C. Statistics

In Section II-D it was argued that the PDF p(d|ωi) for observations within a class ωi
could be approximated by a multivariate normal model (8). This argument was based on the
central limit theorem, so one should only expect it to hold if there are many statistically
independent measurements for each observation vector. Moreover, the rate of convergence
will be affected by the level of variance in the intrinsic scattering strength within each class.
We have also assumed, based on available background information, that the training areas
(Fig. 7) are homogeneous, i.e. cover a single sediment class. Since ground truth is limited, it
is possible that the empirical distributions are contaminated by samples from other sediment
types. Other types of outliers include those caused by acoustical shadows, and those which
occur when the sonar bottom tracking algorithm fails for several consecutive pings.

The normal PDFs are on the form p(d|ωi) ∝ exp (−r2/2), where

r2 = (d− µ̂i)T Σ̂
−1

i (d− µ̂i) (20)

is the (squared) Mahalanobis distance. The classification accuracy is therefore directly influ-
enced by the statistical distribution of r2. For a true multinormal distribution, the standardized
residuals ε = Σ

−1/2
i (d− µi), where Σ

−1/2
i is the Cholesky decomposition of Σ−1

i , form
an uncorrelated Gaussian random sequence with zero mean and unit standard deviation.
Therefore, r2 = εTε is the sum of the squares of K standard independent normal random
variables, and follows a χ2(K)-distribution with K degrees of freedom (where K is the
dimension of the observation vectors). Thus one way to assess the multinormal assumption
is to consider a quantile-quantile plot of the empirical distribution of r2 versus the χ2(K)-
distribution [45, Ch. 4.6]. This is shown in Fig. 13 for the silt (Z) and sand (S) classes. To make
these plots, n = 500 random observations from each class (with K = 5 dimensions) were
drawn from the large training areas in Fig. 7. The spatial averaging was Np = 30 pings. The
observed values of r2 were sorted in ascending order and plotted against F−1(pi, K), where
pi = (i−0.5)/n, i = 1, . . . n are n equally spaced quantiles, and F−1 is the inverse cumulative
distribution function (CDF) for χ2(K). For a multinormal distribution, the observations are
expected to lie on the line with unit slope (dashed line).

Fig. 13a and Fig. 13b reveal some large outliers. To reduce the influence of outliers on µ̂
and Σ̂, hence make the outliers stand out more, µ̂ and Σ̂ were robustly estimated using the
minimum covariance determinant estimator [46], [47]. Fig. 13c and Fig. 13d show the same
data sets after first removing the 15 (for silt) and 16 (for sand) most extreme observations.
Note that the tail of the distribution in both classes is sensitive to how many observations
are considered as outliers. If too many or too few observations are excluded, the remaining
extreme observations will deviate more from the unit slope curve. However, for r2 less than
about 10 or 12, the observations follow the unit slope curve very closely.

IV. DISCUSSION

The purpose of this work has been to test a method for acoustical mapping of seabed
composition using measured scattering strength versus incidence angle. The questions that
arose concerned how effective the S(θ) function is for seabed type discrimination; what is
a suitable statistical model for this function; what spatial resolution can be achieved; and
how much training data or prior knowledge about backscatter statistics is required. The main
findings for the North Sea data set were:
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(a) Silt (all 500 samples) (b) Sand (all 500 samples)

(c) Silt (with 15 largest outliers removed) (d) Sand (with 16 largest outliers removed)

Fig. 13. Quantile-quantile plots for the distribution of the robustly determined Mahalanobis distance r2 versus
the χ2(K)-distribution with K degrees of freedom; here K = 5 (the dimension of the observation vectors).
Fig. (a) and (b) show the result for 500 random observations from the silt (Z) and sand (S) classes respectively,
drawn from the large training areas shown in Fig. 7. Fig. (c) and (d) show the result after first eliminating the
15 largest outliers for silt and the 16 largest outliers for sand. For a multinormal distribution, the observations
are expected to lie on the line with unit slope (dashed line).

• The minimum error rate was about 5 %; most errors occured because we have split a
large area with sparse ground truth into two classes which are physically similar.

• When the spatial averaging is decreased from 50 pings to 10 pings, the error rate increases
from about 5 % to about 7 %. As this increase is not very large in absolute terms, it
seems acceptable to use 10–20 pings averaging, which corresponds to a distance of about
25–50 m (5 knots, 1 Hz ping rate).

• The minimum error rate was attained with 3–5 segments in the piecewise constant
approximation of S(θ). Using a single segment (overall average scattering strength) yields
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a comparatively poor result, about 30 % errors. The less training data available, the worse
performance in higher dimensions.

• Getting a low error rate required about 50–100 training observations per class. This
agrees with the long-established rule-of-thumb that the ratio between training set size
and dimension should be at least 10 (since here, K = 3–5) [40]. For complex classifiers,
the ratio should be higher, which is a reason to choose the simple Bayesian normal
classifier. With training data restricted to small areas near ground truth sites, the results
were almost as good as when data were picked from large training areas in a random
manner.

• The lowest error rate was achieved with QDC, the performance of LDC and UDC was
marginally worse.

• For data restricted to smaller incidence angle sectors, the error rate was frequently
above 15 % (Fig. 11). However, for the sectors 0–17°and 17°–50°(either side of the
ship), the overall error rate was 13 % (Fig. 11b). By overall error rate we mean the
highest error rate observed in any sector. If accurate classification can be done in several
independent, complementary sectors, there will be more observations across the swath,
hence better across-track resolution in the class map. We think that the 13 % error
rate can be improved by taking into account contextual information, by weighting the
prior probabilities according to the neighboring observations. Across-track resolution
comparable to the along-track resolution may therefore be within reach for the present
data set, but has not been examined further in this paper.

• A key question with respect to classification accuracy is how well the multinormal PDF
approximates the true density. The analysis of Section III-C suggests that, excluding some
outliers, the observed data are consistent with the assumptions. Each seabed type forms
a cluster which is well represented by a normal PDF in the feature space, even when
observations are picked at random across large areas. Because the feature vectors are
formed by taking averages, the PDFs should theoretically approach normal distributions
when the number of independent measurements is large. Averaging also reduces the
variance of each distribution, which improves the classification accuracy.

The less training data, the more important feature reduction becomes. The present approach,
piecewise constant approximation, is not the only possible solution. Alternatives include the
principal components transform (PCA), polynomial approximation, and wavelet transforms.
We tried to use the PCA transform on the scattering strength observations (4), and the
results were similar to those of Fig. 8–Fig. 10. The piecewise constant approximation has
three main advantages. First, each component of a feature vector has a physical meaning,
and each component measures the same quantity, the average scattering strength. Second,
taking averages over angular sectors which are typically wider than the uncertainty of the
incidence angle estimates, reduces the significance of this uncertainty. Third, each feature
vector component corresponds to an angular sector which ensonifies a separate patch of
seafloor. Therefore there is a natural way to increase the across-track resolution of the present
method, as discussed in connection with Fig. 11.

In practice, across-track resolution hinges not on the number of independently classified
observations, but on the ability to detect class transitions within the swath. Therefore, one
way to proceed would be to construct an algorithm which detects discontinuities in S(θ),

and suggests a partition of the incidence angle domain. Then each partition (sector) would
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be classified independently. The experiments of this paper (Fig. 11) merely suggest how
successful classification using smaller sectors would be.

With sufficient training data, the error rate was stable in dimensions less than K = 16.

More sophisticated classification methods like support vector machines [6, Ch. 12] did not
improve results, nor did non-parametric PDF estimation techniques. This indicates that the
5 % limit on accuracy is inherent in the data, particularly in the unclear distinction between the
U and sZ classes, and also due to insufficient ground truth in these two areas. The scattering
strength in the sZ area is surprisingly high, but consistently so in data from three different
cruises in the area. The western boundary of the sZ region also closely follows a transition
in seabed morphology (Fig. 12). On a large scale, the seabed is much more rough in the sZ
and U regions, with a very irregular pattern of depressions. This area corresponds roughly to
the western slope of the Norwegian Trench. The depressions may be a result of erosion by
a combination of water currents and fluid seepage up through the shallow geological layers,
which causes seabed sediments to be lifted into suspension. This theory was put forward
by Hovland [30], who observed very shallow gas blankets in seismic boomer data from a
part of the western slope, with apparent vertical escape routes matching the occurrence of
elongated depressions in the seabed. A similar phenomenon has been observed further south
in the Norwegian Trench (the Skagerrak) [31]. It is not possible based on two grab samples
to say whether the seabed has large roughness also at the scale of ultrasonic scattering, but
the presence of vertically migrating shallow gas may be a partial explanation for the observed
high scattering strength.

The fact that the statistical signal model (9) is formulated in terms of the spatially averaged
scattering strength s (1) (instead of σ) reflects a subtle point in ASC. Namely, the signal
statistics depend on the ensonification function Ω(r, r0) in a way which is not simple to
compensate for. This can be a problem because Ω is not related to sediment properties, but
rather to beampattern, incidence angle, pulse length and water depth. However, the present
method operates only on the mean, corrected intensity 〈yc〉 ≈ 〈σ〉 (3), and is therefore not
sensitive to Ω.

Besides the problem of lateral resolution, the present method has two main limitations. The
first is the possibility that different seabed types may have similar scattering strength functions.
The second is the problem of determining how many seabed types are recorded in the data,
especially when there is little available ground truth, or when there is a gradual change in
sediment composition, hence no clear boundary between distinct seabed types. Our data set
illustrates these dilemmas. In advance we supposed that the sediment grain size distribution
would change gradually from shallow to deep water. Thus the sand region between the U and
Z areas in Fig. 12 (at about 03 ◦30 ′E) was an unexpected classification result. There are three
alternative explanations. There may actually be sand in the area, because sand particles that
are moved by currents from the plateau possibly accumulate at the bottom of the slope. A core
sample at 03 ◦23 ′E, 59 ◦40 ′N contained a large sand fraction (28 %); likewise a core sample
at 03 ◦23 ′E, 60,◦ 43 ′N had a 50 cm sandy surficial layer [25]. Alternatively, there may be a
silty sediment with scattering strength similar to that of sand, due to a special combination of
surface roughness and scattering from suspended fluid inclusions or coarse material. The third
possibility is that the likelihood p(d|ω) of the data is small with respect to all the predefined
classes ω ∈ {S, S2, Z, sZ, U}. This implies that a new class should be introduced, or else a
seabed type (here: sand) with low likelihood may get a high posterior probability due to the
low evidence factor p(d) in Bayes’ theorem. The unsupervised Bayesian approaches of [33],
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[48] and [21] determine the number of classes based on a Gaussian mixture model for the
complete data set. Similar solutions may extend the present method.

The amount of training data needed to achieve a 5 % error rate is about 100 observations
per class using 30 pings averaging. If a 7 % error rate is acceptable, 50 observations using 10
pings averaging are sufficient. Then, in a survey with 400 m line spacing and a 1 Hz ping rate
at 5 kn speed, sufficient training data could be picked from 0.25 km2 areas surrounding the
ground truth sites. Because the classification is based on a physical quantity (mean scattering
strength) which is instrument independent, properly processed data from any calibrated MBES
survey could in principle be used for training. Moreover, with modeled scattering strength
functions ς(θ) and a given level of intrinsic variance ν2(θ), the equations from this paper can
be used to estimate theoretical PDFs, and the likelihood of observations with respect to the
theoretical PDFs can be studied. From this point of view, our method is therefore related to
the inverse theory approach of e.g. [12], [13].

The present results are compatible with works like [12]–[14], [16]–[19], which all obtained
good results by applying classification or inverse methods to the S(θ) function. There are of
course successful alternative strategies which analyze fluctuations in the backscatter levels for
discriminating between sediment types. An important example is texture analysis by means
of second-order statistics (gray level co-occurrence matrices) applied to corrected sidescan
mosaics [48]–[51]. In this approach, the pixel values in the mosaic are quantized to, say, L
values (gray levels). Then, for any rectangular neighborhood in the mosaic, one may form
an L×L matrix G(∆x,∆y), such that Gij is the relative frequency of two pixels with gray
levels i and j respectively being separated by pixel distance (∆x,∆y) [52]. From G(∆x,∆y)

one may derive several attributes which represent the character of the texture [52], [53].
This kind of information is discarded when using only scattering strength versus angle.

One solution, based on the angular range analysis (inversion) of [12], is to visually inspect
backscatter mosaics to ensure that the inversion is applied to data from acoustically similar
areas [54]. For classification too, it seems that a hybrid method is possible, where both
the angular variation and the backscatter scintillations are taken into account. For example,
consider again as in Section II-C a subdivision of the incidence angle range, 0 < θ1 <

. . . < θK−1 < θmax, where for a given K the subdivision is such that the variation with
angle is effectively minimized within each segment. Assume that the beamformed data have
been corrected for propagation loss and beampattern variations, and mapped to a gray level
range. Then within each segment, for a sequence of Np consecutive pings, one may form an
analogous co-occurrence matrixG(∆x,∆θ), where now ∆x is along-track separation between
pairs of samples, and ∆θ is the difference in estimated incidence angle. A special case would
be to set ∆x ≈ 0 and consider only separation in angle. This results in additional features
for each segment besides the mean scattering strength, e.g. the entropy and homogeneity
properties used in [50]. As shown in Section III-B2 and Fig. 11, it may be possible to
achieve a reasonable classification accuracy also after dividing the sonar swath into smaller
separate sectors, and consequently get a better lateral resolution. We hypothesize that this
accuracy can be improved by augmenting the observation vector d (Section II-C) with such
texture attributes.

V. CONCLUSION

We have presented a statistical seabed classification method for multibeam echo sounders,
and discussed its practical applicability. The method uses the observed scattering strength
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dependence on incidence angle S(θ). To obtain a robust statistical description from scarce
training data, S(θ) is represented by a piecewise constant function approximation. Theoretical
error bounds and experimental results on a North Sea data set showed that good classification
accuracy and spatial resolution is possible even with limited training data.

APPENDIX A

We want to compute asymptotic error bounds for discrimination between two seabed types,
ω1 and ω2, in terms of the mean and variance of the scattering strength. It is useful to
reinterpret (9) as a multiplicative noise model similar to the product model for clutter statistics
in radar images [55]. The PDF for the product of two random variables, Y = SX, is

pY (y) =

∫ ∞
−∞

1

|s|
pS,X(s,

y

s
) ds. (21)

If S ≥ 0, S and X are independent, and

pX(x) = e−x, (22)

then (21) reduces to (9) [with pS(s) = fs|θ(s)]. X represents noise (speckle) which is
exponentially distributed with unit variance.

The variance decomposition formula applied to Y and S is

Var[Y ] = Var[E[Y |S]] + E[Var[Y |S]]. (23)

By assumption (9), E[Y |S] = S and Var[Y |S] = S2, so

Var[Y |Θ] = Var[S|Θ] + E[S2|Θ]

= 2Var[S|Θ] + E[S|Θ]2. (24)

This result can also be found directly from the relation

E[Y n|Θ] = n! E[Sn|Θ], (25)

which follows from (9), but (23) is valid for other noise models as well. The PDF for logX

is
flogX(u) = eue−e

u

,

with E[logX] = −γ, the Euler-Mascheroni constant, and Var[logX] = π2/6. Thus, since S
and X are independent,

Var[log Y |Θ] = Var[logS + logX]

= Var[logS] +
π2

6
, (26)

E[log Y |Θ] = E[log S]− γ. (27)

With notation as in (11) and (16), we find using (24)-(27) that

µk ≡ E[dk] = E[Y ] = 〈ς〉k (28)

MΣkk = Var[Y ] = 2
〈
ν2
〉
k

+
〈
ς2
〉
k

+ VarΘ [ς] (29)

for linear intensity, and

µk ≡ E[dk] = E[log Y ] = 〈ςL〉k − γ (30)

MΣkk = Var[log Y ] =
〈
ν2
L

〉
k

+ π2/6 + VarΘ [ςL] (31)
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for log-intensity. The first equality in (29) and (31) is only strictly true in the asymptotic
(large M ) limit. By construction (5), the breakpoints θ0, . . . , θK are such that the variation
of mean intensity with angle is minimal within a segment (for a fixed number of segments
K). Therefore, the third term in (29) and (31) is small compared to the first term for most
segments.

For modeled (or observed) scattering strength with associated variance at N angles, these
formulae can be implemented using (6). If nk is the number of bins in the kth segment, and
n =

[
n1 . . . nK

]T
, then

µ = ςW (32)

Mdiag(Σ) = 2 (ν ? ν)W + (ς ? ς)W+

+ (ς −m) ? (ς −m)W (33)

m = µW T ? n,

where ς =
[
ς1 . . . ςN

]
, ν =

[
ν1 . . . νN

]
, and ? denotes element-wise multiplication.

For log-intensity, the formulae are

µ = ςLW (34)

Mdiag(Σ) = (νL ? νL)W +
π2

6
+ (ςL −m) ? (ςL −m)W (35)

m = µW T ? n.

In the asymptotic limit when p(d|ω1) and p(d|ω2) are normal distributions, the Bhat-
acharyya bound for the probability of error is [5, Ch. 2.8]

P (error) ≤
√
P (ω1)P (ω2)e−β, (36)

where

β =
1

8
(µ2 − µ1)T

[
Σ1 + Σ2

2

]−1

(µ2 − µ1)

+
1

2
log

det 1
2

[Σ1 + Σ2]
√

detΣ1 detΣ2

. (37)

The angular segments correspond to separate patches of seabed. We therefore consider an error
bound for data with independent features (the UDC assumption holds true). Consequently the
covariance matrix is diagonal, with entries given by (29) or (31). Then

β =
1

2

K∑
k=1

[
(〈ς2〉k − 〈ς1〉k)

2M/2

Var[Y ; k]1 + Var[Y ; k]2
+ log f (

√
ρk)

]
, (38)

with

ρk =
Var[Y ; k]1
Var[Y ; k]2

, (39)

f(x) =
1

2

(
x+

1

x

)
. (40)

If x ≥ 0, then f(x) ≥ 1, with minimum for x = 1. Hence both terms inside the brackets
are always greater than zero. The second term vanishes when the LDC assumption is correct.
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When the variance becomes large, the second term dominates, and P (error) tends to a limit
determined by the variance ratio ρk. The absolute upper limit (with equal prior probabilities)
is P (error) = 0.5 (pure guessing). For log-intensity we must replace 〈ς〉k with 〈ςL〉k, and
Var[Y ; k] (29) with Var[log Y, k] (31).

To compare classifiers based on intensity and log-intensity, we need to compare the means
and variances for S and logS without knowledge of the underlying scattering cross section
PDF fS|Θ(s|θ). For a given set of constraints, the least biased estimate for fS|Θ(s|θ) is the
distribution p(s) which maximizes the entropy [44], which for continuous distributions is [5,
App. A.7]

H = −
∫ ∞
−∞

p(s) log p(s) ds. (41)

If we constrain the mean and variance of logS,

E[logS|Θ] =

∫
log sfS|Θ(s|θ) ds = ςL(θ),

Var[log S|Θ] =

∫
(log s− ςL(θ))2 fS|Θ(s|θ) ds = ν2

L(θ),

then the maximum entropy PDF for S is log-normal. Thus [56],

fS|Θ(s|θ) =
1

sνL
√

2π
exp

[
−(log s− ςL)2

2ν2
L

]
, (42)

for which

ς = eςL+ν2L/2, (43)

ν2 =
(
eν

2
L − 1

)
e2ςL+ν2L . (44)

Hence, given the scattering strength ςL(θ) from a physics model or observation, we have the
necessary quantities to compare the Bhatacharyya bound (36) for Y and log Y, parameterized
by the variance ν2

L(θ) and the number M. These quantities are given by (28)–(31), (38)–(40),
and (43)–(44).
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